
Geometry of Interaction for ZX-Diagrams
Kostia Chardonnet # Ñ

Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190, Gif-sur-Yvette, France
Université de Paris, CNRS, IRIF, F-75006, Paris, France

Benoît Valiron # Ñ

Université Paris-Saclay, CNRS, CentraleSupélec, ENS Paris-Saclay, LMF,
91190, Gif-sur-Yvette, France

Renaud Vilmart #Ñ

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, LMF, 91190, Gif-sur-Yvette, France

Abstract
ZX-Calculus is a versatile graphical language for quantum computation equipped with an equational
theory. Getting inspiration from Geometry of Interaction, in this paper we propose a token-machine-
based asynchronous model of both pure ZX-Calculus and its extension to mixed processes. We
also show how to connect this new semantics to the usual standard interpretation of ZX-diagrams.
This model allows us to have a new look at what ZX-diagrams compute, and give a more local,
operational view of the semantics of ZX-diagrams.

2012 ACM Subject Classification Theory of computation → Quantum computation theory; Theory
of computation → Linear logic; Theory of computation → Equational logic and rewriting

Keywords and phrases Quantum Computation, Linear Logic, ZX-Calculus, Geometry of Interaction

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.30

Related Version Full Version: https://hal.archives-ouvertes.fr/hal-03154573/

Funding This work was supported in part by the French National Research Agency (ANR) under
the research project SoftQPRO ANR-17-CE25-0009-02, and by the DGE of the French Ministry of
Industry under the research project PIA-GDN/QuantEx P163746-484124.

1 Introduction

Quantum computing is a model of computation where data is stored on the state of particles
governed by the laws of quantum physics. The theory is well established enough to have
allowed the design of quantum algorithms whose applications are gathering interests from
both public and private actors [29, 31, 17].

One of the fundamental properties of quantum objects is to have a dual interpretations.
In the first one, the quantum object is understood as a particle: a definite, localized point
in space, distinct from the other particles. Light can be for instance regarded as a set of
photons. In the other interpretation, the object is understood as a wave: it is “spread-out”
in space, possibly featuring interference. This is for instance the interpretation of light as an
electromagnetic wave.

The standard model of computation uses quantum bits (qubits) for storing information and
quantum circuits [30] for describing quantum operations with quantum gates, the quantum
version of Boolean gates. Although the pervasive model for quantum computation, quantum
circuits’ operational semantics is only given in an intuitive manner. A quantum circuit is
understood as some sequential, low-level assembly language where quantum gates are opaque
black-boxes. In particular, quantum circuits do not natively feature any formal operational
semantics giving rise to abstract reasoning, equational theory or well-founded rewrite system.

From a denotational perspective, quantum circuits are literal description of tensors
and applications of linear operators. These can be described with the historical matrix
interpretation [30], or with the more recent sum-over-paths semantics [1, 6] – this can be

© Kostia Chardonnet, Benoît Valiron, and Renaud Vilmart;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 30; pp. 30:1–30:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kostia@lri.fr
https://www.lri.fr/~chardonnet/
mailto:benoit.valiron@universite-paris-saclay.fr
https://www.monoidal.net/
https://orcid.org/0000-0002-1008-5605
mailto:vilmart@lsv.fr
https://rvilmart.github.io/
https://orcid.org/0000-0002-8828-4671
https://doi.org/10.4230/LIPIcs.MFCS.2021.30
https://hal.archives-ouvertes.fr/hal-03154573/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Geometry of Interaction for ZX-Diagrams

regarded as a wave-style semantics. In such a semantics, the state of all of the quantum bits
of the memory is mathematically represented as a vector in a (finite dimensional) Hilbert
space: the set of quantum bits is a wave flowing in the circuit, from the inputs to the output,
while the computation generated by the list of quantum gates is a linear map from the
Hilbert space of inputs to the Hilbert space of outputs.

In recent years, an alternative model of quantum computation with better formal prop-
erties than quantum circuits has emerged: the ZX-Calculus [7]. Originally motivated by
a categorical interpretation of quantum theory, the ZX-Calculus is a graphical language
that represents linear maps as special kinds of graphs called diagrams. Unlike the quantum
circuit framework, the ZX-Calculus comes with a sound and complete [24, 33], well-defined
equational theory on a small set of canonical generators making it possible to reason on
quantum computation by means of local graph rewriting.

The canonical semantics of a ZX diagram consists in a linear operator. This operator
can be represented as a matrix or through the more recent sum-over-path semantics [35].
But in both cases, these semantics give a purely functional, wave-style interpretation to the
diagram. Nonetheless, this graphical language – and its equational theory – has been shown
to be amenable to many extensions and is being used in a wide spectrum of applications
ranging from quantum circuit optimization [14, 4], verification [25, 15, 13] and representation
such as MBQC patterns [16] or error-correction [12, 11].

The standard models for both quantum circuits and ZX-Calculus is therefore based on
a wave-style interpretation. An alternative operational interpretation of quantum circuit
following a particle-style semantics has recently been investigated in the literature [9]. In
this model, quantum bits are intuitively seen as tokens flowing inside the wires of the circuit.
Formally, a quantum circuit is interpreted as a token-based automata, based on Geometry
of Interaction (GoI) [21, 20, 19, 22]. Among its many instantiations, GoI can be seen as a
procedure to interpret a proof-net [23] – graphical representation of proofs of linear logic [18]
– as a token-based automaton [10, 2]. The flow of a token inside a proof-net characterises an
invariant of the proof – its computational content. This framework is used in [9] to formalize
the notion of qubits-as-tokens flowing inside a higher-order term representing a quantum
computation – that is, computing a quantum circuit. However, in this work, quantum
gates are still regarded as black-boxes, and tokens are purely classical objects requiring
synchronicity: to fire, a two-qubit gate needs its two arguments to be ready.

As a summary, despite their ad-hoc construction, quantum circuits can be seen from
two perspectives: computation as a flow of particles (i.e. tokens), and as a wave passing
through the gates. On the other hand, although ZX-Calculus is a well-founded language, it
still misses such a particle-style perspective.

In this paper, we aim at giving a novel insight on the computational content of a ZX term
in an asynchronous way, emphasizing the graph-like behavior of a ZX-diagram.

Following the idea of using a token machine to exhibit the computational content of
a proof-net or a quantum circuit, we present in this paper a token machine for the ZX-
Calculus. To exemplify the versatility of the approach, we show how to extend it to mixed
processes [8, 5]. To assess the validity of the semantics, we show how it links to the standard
interpretation of ZX-diagrams. While the standard interpretation of ZX-diagrams proceeds
with diagram decomposition as tensors and products of matrices, the tokens flowing inside
the diagram really exploits the connectivity of the diagram.

This ability illustrates one fundamental difference between our approach and the one
in [9]. The latter follows a classical control approach: if qubits can be in superposition, each
qubit inhabits a token sitting in one single position in the circuit. For instance, on the circuit
on the right, the state of the two tokens

K. Chardonnet, B. Valiron, and R. Vilmart 30:3

H

H

|0〉

|0〉

1

2 C
N
O
T

|••⟩ is
√

2
2 (|00⟩ + |10⟩). Although the two tokens can be regarded as being in superposition,

their position is not. In our system, tokens and positions can be superposed. The second
fundamental difference lies in the asynchronicity of our token-machine. Unlike [9], we rely
on the canonical generators of ZX-diagrams: tokens can travel through these nodes in an
asynchronous manner. For instance, in the above circuit the orange token has to wait for the
blue token before crossing the CNOT gate. As illustrated in Table 1, in our system one token
can interact with multi-wire nodes. Finally, as formalized in Theorem 27, a third difference
is that compared to [9], the token-machine we present is non-oriented: in the circuit above,
tokens have to start on the left and flow towards the right of the circuit whereas our system
is agnostic on where tokens initially “start”.

Plan of the paper. The paper is organized as follows: in Section 2 we present the ZX-
Calculus and its standard interpretation into Qubit, and its axiomatization.

In Section 3 we present the actual asynchronous token machine and its semantics and
show that it is sound and complete with regard to the standard interpretation of ZX-diagrams.
Finally, in Section 4 we present an extension of the ZX-Calculus to mixed processes and
adapt the token machine to take this extension into account. Proofs are in the appendix.

2 The ZX-Calculus

The ZX-Calculus is a powerful graphical language for reasoning about quantum computation
introduced by Bob Coecke and Ross Duncan [7]. A term in this language is a graph – called
a string diagram – built from a core set of primitives. In the standard interpretation of
ZX-Calculus, a string diagram is interpreted as a matrix. The language is equipped with an
equational theory preserving the standard interpretation.

2.1 Pure Operators
The so-called pure ZX-diagrams are generated from a set of primitives, given on the right:
the Identity, Swap, Cup, Cap, Green-spider and H-gate:e0,

e0 e1
, e0 e1, e0 e1,

...e1 en

e′
1 e′

m

...
α ,

e0

e1

n,m∈N
α∈R

ei,e′
i∈E

We shall be using the following labeling convention: wires (edges) are labeled with ei, taken
from an infinite set of labels E . We take for granted that distinct wires have distinct labels.
The real number α attached to the green spiders is called the angle. ZX-diagrams are read
top-to-bottom: dangling top edges are the input edges and dangling edges at the bottom
are output edges. For instance, Swap has 2 input and 2 output edges, while Cup has 2 input
edges and no output edges. We write E(D) for the set of edge labels in the diagram D, and
I(D) (resp. O(D)) for the list of input edges (resp. output edges) of D. We denote :: the
concatenation of lists.

MFCS 2021

30:4 Geometry of Interaction for ZX-Diagrams

ZX-primitives can be composed either sequentially or in parallel:

D2 ◦D1 :=

...

...

...
D2

D1
D1 ⊗D2 :=

...

...
D1

...

...
D2

We write ZX for the set of all ZX-diagrams. Notice that when composing diagrams with
(_ ◦ _), we “join” the outputs of the top diagram with the inputs of the bottom diagram.
This requires that the two sets of edges have the same cardinality. The junction is then made
by relabeling the input edges of the bottom diagram by the output labels of the top diagram.

▶ Convention 1. We define a second spider, red this time, by composition of Green-spiders
and H-gates, as shown below.

α

...
:=α

...

...

...

▶ Convention 2. We write σ for a permutation of wires, i.e any diagram generated by{
,

}
with sequential and parallel composition. We write the Cap as η and the Cup as

ϵ. We write Zn
k (α) (resp, Xn

k) for the green-node (resp, red-node) of n inputs, k outputs
and parameter α and H for the H-gate. In the remainder of the paper we omit the edge
labels when not necessary . Finally, by abuse of notation a green or red node with no explicit
parameter holds the angle 0:

...

...
0

...

...
:= and

...

...
0

...

...
:= .

2.2 Standard Interpretation
We understand ZX-diagrams as linear operators through the standard interpretation. In-
formally, wires are interpreted with the two-dimensional Hilbert space, with orthonormal
basis written as {|0⟩ , |1⟩}, in Dirac notation [30]. Vectors of the form |.⟩ (called “kets”) are
considered as columns vector, and therefore |0⟩ = (1

0), |1⟩ = (0
1), and α |0⟩ + β |1⟩ = (α

β).
Horizontal juxtaposition of wires is interpreted with the Kronecker, or tensor product. The
tensor product of spaces V and W whose bases are respectively {vi}i and {wj}j is the vector
space of basis {vi ⊗ wj}i,j , where vi ⊗ wj is a formal object consisting of a pair of vi and
wj . We denote |x⟩ ⊗ |y⟩ as |xy⟩. In the interpretation of spiders, we use the notation |0m⟩ to
represent an m-fold tensor of |0⟩. As a shortcut notation, we write |ϕ⟩ for column vectors
consisting of a linear combinations of kets. Shortcut notations are also used for two very
useful states: |+⟩ := |0⟩+|1⟩√

2 and |−⟩ := |0⟩−|1⟩√
2 . Dirac also introduced the notation “bra” ⟨x|,

standing for a row vector. So for instance, α ⟨0| + β ⟨1| is (α β). If |ϕ⟩ = α |0⟩ + β |1⟩, we
then write ⟨ϕ| for the vector α ⟨0| + β ⟨1| (with (.) the complex conjugation). The notation
for tensors of bras is similar to the one for kets. For instance, ⟨x| ⊗ ⟨y| = ⟨xy|. Using this
notation, the scalar product is transparently the product of a row and a column vector:〈
ϕ ψ

〉
, and matrices can be written as sums of elements of the form |ϕ⟩⟨ψ|. For instance,

the identity on C2 is (1 0
0 1) = (1 0

0 0) + (0 0
0 1) = (1

0) (1 0) + (0
1) (0 1) = |0⟩⟨0| + |1⟩⟨1|. For

more information on how Hilbert spaces, tensors, compositions and bras and kets work, we
invite the reader to consult e.g. [30].

In the standard interpretation [7], a diagram D is mapped to a map between finite
dimensional Hilbert spaces of dimensions some powers of 2: JDK ∈ Qubit := {C2n → C2m |
n,m ∈ N}.

K. Chardonnet, B. Valiron, and R. Vilmart 30:5

=
D

=...
...

......
D

...
...

... ...
= =

α

...

...
= α

...

...

σ
...

σ′
...

...

...
α =

...

...
α =

Figure 1 Connectivity rules. D represents any ZX-diagram, and σ, σ′ any permutation of wires.

If D has n inputs and m outputs, its interpretation is a map JDK : C2n → C2m (by abuse
of notation we shall use the notation JDK : n → m). It is defined inductively as follows.u

ww
v

...

...

...
D2

D1

}

��
~ =

t ...

...
D2

|

◦

t ...

...
D1

| t ...

...
D1

...

...
D2

|

=
t ...

...
D1

|

⊗

t ...

...
D2

|

r z
= idC2 = |0⟩⟨0| + |1⟩⟨1|

r z
=

∑
i,j∈{0,1}

|ji⟩⟨ij|

q y
=

q y† = |00⟩ + |11⟩
r z

= |+⟩⟨0| + |−⟩⟨1|
t

α

n...

...
m

|

= |0m⟩⟨0n| + eiα |1m⟩⟨1n|

t

α

n...

...
m

|

= |+m⟩⟨+n| + eiα |−m⟩⟨−n|

2.3 Properties and structure
In this section, we list several definitions and known results that we shall be using in the
remainder of the paper. See e.g. [34] for more information.

Universality. ZX-diagrams are universal in the sense that for any linear map f : n → m,
there exists a diagram D of ZX such that JDK = f .

The price to pay for universality is that different diagrams can possibly represent the
same quantum operator. There exists however a way to deal with this problem: an equational
theory. Several equational theories have been designed for various fragments of the language
[3, 26, 24, 27, 28, 33].

Core axiomatization. Despite this variety, any ZX axiomatization builds upon the core set
of equations provided in Figure 1, meaning that edges really behave as wires that can be
bent, tangled and untangled. They also enforce the irrelevance on the ordering of inputs and
outputs for spiders. Most importantly, these rules preserve the standard interpretation given
in Section 2.2. We will use these rules – sometimes referred to as “only connectivity matters”
– , and the fact that they preserve the semantics extensively in the proofs of the results of the
paper.

Completeness. The ability to transform a diagram D1 into a diagram D2 using the rules of
some axiomatization zx (e.g. the core one presented in Figure 1) is denoted zx ⊢ D1 = D2.

The axiomatization is said to be complete whenever any two diagrams representing the
same operator can be turned into one another using this axiomatization. Formally:

JD1K = JD2K ⇐⇒ zx ⊢ D1 = D2.

MFCS 2021

30:6 Geometry of Interaction for ZX-Diagrams

It is common in quantum computing to work with restrictions of quantum mechanics. Such
restrictions translate to restrictions to particular sets of diagrams – e.g. the π

4 -fragment which
consists of all ZX-diagrams where the angles are multiples of π

4 . There exists axiomatizations
that were proven to be complete for the corresponding fragment (all the aforementioned
references tackle the problem of completeness).

The developments of this paper are given for the ZX-Calculus in its most general form,
but everything in the following also works for fragments of the language.

Input and output wires. An important result which will be used in the rest of the paper is
the following:

▶ Theorem 3 (Choi-Jamiołkowski). There are isomorphisms between {D ∈ ZX | D : n → m}
and {D ∈ ZX | D : n− k → k +m} (when k ≤ n).

To see how this can be true, simply add cups or caps to turn input edges to output edges (or
vice versa), and use the fact that we work modulo the rules of Figure 1.

When k = n, this isomorphism is referred to as the map/state duality. A related but
more obvious isomorphism between ZX-diagrams is obtained by permutation of input wires
(resp. output wires).

2.4 Notions of Graph Theory in ZX
Theorem 3 is essential: it allows us to transpose notions of graphs into ZX-Calculus. It is for
instance possible to define a notion of connectivity.

▶ Definition 4 (Connected Components). Let D be a non-empty ZX-diagram. Consider all
of the possible decompositions with D1, ..., Dk ∈ ZX and σ, σ′ permutations of wires:

D =
...
D1

σ′
...

... σ
...

...
Dk

...
...

The largest such k is called the number of connected components of D. It induces a decom-
position. The induced D1, ..., Dn are called the connected components of D. If D has only
one connected component, we say that D is connected.

We can also consider the notions of paths, distance and cycles of usual multi-graphs.
We denote Paths(e0, en) the set of paths from edge e0 to en. We denote Paths(D) (resp.
Cycles(D)) the set of paths (resp. cycles) of diagram D. For a path p, we denote |p| its
length. We denote d(e0, en) the distance i.e. the length of the shortest path between e0
and en.

3 A Token Machine for ZX-diagrams

Inspired by the Geometry of Interaction [21, 20, 19, 22] and the associated notion of token
machine [10, 2] for proof nets [23], we define here a first token machine on pure ZX-diagrams.
The token consists of an edge of the diagram, a direction (either going up, noted ↑, or down,
noted ↓) and a bit (state). The idea is that, starting from an input edge the token will
traverse the graph and duplicate itself when encountering an n-ary node (such as the green
and red) into each of the input / output edges of the node. Notice that it is not the case for
token machines for proof-nets where the token never duplicates itself. This duplication is
necessary to make sure we capture the whole linear map encoded by the ZX-diagram. Due

K. Chardonnet, B. Valiron, and R. Vilmart 30:7

to this duplication, two tokens might collide together when they are on the same edge and
going in different directions. The result of such a collision will depend on the states held
by both tokens. For a cup, cap or identity diagram, the token will simply traverse it. As
for the Hadamard node the token will traverse it and become a superposition of two tokens
with opposite states. Therefore, as tokens move through a diagram, some may be added,
multiplied together, or annihilated.

▶ Definition 5 (Tokens and Token States). Let D be a ZX-diagram. A token in D is a triplet
(e, d, b) ∈ E(D) × {↓, ↑} × {0, 1}. We shall omit the commas and simply write (e d b). The set
of tokens on D is written tk(D). A token state s is then a multivariate polynomial over C,
evaluated in tk(D). We define tkS(D) := C[tk(D)] the algebra of multivariate polynomials
over tk(D).

In the token state t =
∑

i αi t1,i · · · tni,i, where the tk,i’s are tokens, the components
αi t1,i · · · tni,i are called the terms of t.

A monomial (e1 d1, b1) · · · (en dn, bn) encodes the state of n tokens in the process of flowing
in the diagram D. A token state is understood as a superposition – a linear combination – of
multi-tokens flowing in the diagram.

▶ Convention 6. In token states, the sum (+) stands for the superposition while the product
stands for additional tokens within a given diagram. We follow the usual convention of
algebras of polynomials: for instance, if ti stands for some token (ei di bi), then (t1 + t2)t3 =
(t1t2)+(t1t3), that is, the superposition of t1,t2 flowing in D and t1,t3 flowing in D. Similarly,
we consider token states modulo commutativity of sum and product, so that for instance the
monomial t1t2 is the same as t2t1. Notice that 0 is an absorbing element for the product
(0 × t = 0) and that 1 is a neutral element for the same operation (1 × t = t).

3.1 Diffusion and Collision Rules
The tokens in a ZX-diagram D are meant to move inside D. The set of rules presented in
this section describes an asynchronous evolution, meaning that given a token state, we will
rewrite only one token at a time. The synchronous setting is discussed in Section 5.

▶ Definition 7 (Asynchronous Evolution). Token states on a diagram D are equipped with
two transition systems:

a collision system (⇝c), whose effect is to annihilate tokens;
a diffusion sub-system (⇝d), defining the flow of tokens within D.

The two systems are defined as follows. With X ∈ {d, c} and 1 ≤ j ≤ ni, if ti,j are tokens in
tk(D), then using Convention 6,∑

i

αiti,1 · · · ti,j · · · ti,ni
⇝X

∑
i

αiti,1 · · ·

(∑
k

βkt
′
k

)
· · · ti,ni

provided that ti,j ⇝X

∑
k βkt

′
k according to the rules of Table 1. In the table, each rule

corresponds to the interaction with the primitive diagram constructor on the left-hand-side.
Variables x and b span {0, 1}, and ¬ stands for the negation. In the green-spider rules, eiαx

stands for the the complex number cos(αx) + i sin(αx) and not an edge label.
Finally, as it is customary for rewrite systems, if (→) is a step in a transition system,

(→∗) stands for the reflexive, transitive closure of (→).

We aim at a transition system marrying both collision and diffusion steps. However, for
consistency of the system, the order in which we apply them is important as illustrated by
the following example.

MFCS 2021

30:8 Geometry of Interaction for ZX-Diagrams

Table 1 Asynchronous token-state evolution, for all x, b ∈ {0, 1}.

e0 (e0 ↓ x)(e0 ↑ x)⇝c 1 (e0 ↓ x)(e0 ↑ ¬x)⇝c 0 (Positive/Negative Collision)
e0 e1 (eb ↓ x)⇝d (e¬b ↑ x) (-diffusion)
e0 e1 (eb ↑ x)⇝d (e¬b ↓ x) (-diffusion)

(ek ↓ x)⇝d e
iαx
∏
i̸=k

(ei ↑ x)
∏

j

(e′
j ↓ x)

(e′
k ↑ x)⇝d e

iαx
∏
j ̸=k

(e′
j ↓ x)

∏
i

(ei ↑ x)

(e0 ↓ x)⇝d (−1)x 1√
2

(e1 ↓ x) + 1√
2

(e1 ↓ ¬x)

(e1 ↑ x)⇝d (−1)x 1√
2

(e0 ↑ x) + 1√
2

(e0 ↑ ¬x)

...e1 en

e′
1 e′

m

...
α

e0

e1

(-Diffusion)

(
...
... -Diffusion)

▶ Example 8. Consider the equality given by the ZX equational theories: = .

If we drop a token with bit 0 at the top, we hence expect to get a single token with bit 0 at
the bottom. We underline the token that is being rewritten at each step. This is what we
get when giving the priority to collisions:

a

d

b c :: (a ↓ 0)⇝d (b ↓ 0)(c ↓ 0)⇝d (d ↓ 0)(c ↑ 0)(c ↓ 0)⇝c (d ↓ 0)

Notice that the collision (c ↑ 0)(c ↓ 0) rewrites to 1, and therefore the product (d ↓ 0) × 1 =
(d ↓ 0). If however we decide to ignore the priority of collisions, we may end up with a
non-terminating run, unable to converge to (d ↓ 0):

(a ↓ 0)⇝d (b ↓ 0)(c ↓ 0)⇝d (d ↓ 0)(c ↑ 0)(c ↓ 0)⇝d (d ↓ 0)(a ↑ 0)(b ↓ 0)(c ↓ 0)⇝d . . .

We therefore set a rewriting strategy as follows.

▶ Definition 9 (Collision-Free). A token state s of tkS(D) is called collision-free if for all
s′ ∈ tkS(D), we have s ̸⇝c s

′.

▶ Definition 10 (Token Machine Rewriting System). We define a transition system ⇝ as
exactly one ⇝d rule followed by all possible ⇝c rules. In other words, t⇝ u if and only if
there exists t′ such that t⇝d t

′ ⇝∗
c u and u is collision-free.

In [9], a token arriving at an input of a gate is blocked until all the inputs of the gates
are populated by a token, at which point all the tokens go through at once (while obviously
changing the state). The control is purely classical: it is causal. In our approach, the state
of the system is global and there is no explicit notion of qubit. Instead, tokens collect the
operation that is to be applied to the input qubits.

3.2 Strong Normalization and Confluence
The token machine Rewrite System of Definition 10 ensures that the collisions that can
happen always happen. The system does not a priori forbid two tokens on the same edge,
provided that they have the same direction. However this is something we want to avoid as

K. Chardonnet, B. Valiron, and R. Vilmart 30:9

there is no good intuition behind it: We want to link the token machine to the standard
interpretation, which is not possible if two tokens can appear on the same edge.

In this section we show that, under a notion of well-formedness characterizing token
uniqueness on each edge, the Token State Rewrite System (⇝) is strongly normalizing and
confluent.

▶ Definition 11 (Polarity of a Term in a Path). Let D be a ZX-diagram, and p ∈ Paths(D)
be a path in D. Let t = (e, d, x) ∈ tk(D). Then:

P (p, t) =


1 if e ∈ p and e is d-oriented
−1 if e ∈ p and e is ¬d-oriented
0 if e /∈ p

We extend the definition to subterms α t1...tm of a token-state s:

P (p, 0) = P (p, 1) = 0, P (p, α t1...tm) = P (p, t1) + ...+ P (p, tm).

In the following, we shall simply refer to such subterms as “terms of s”.

▶ Example 12. In the (piece of) diagram presented on the right, the blue directed line
p = (e0, e1, e2, e3, e4) is a path. The orientation of the edges in the path is represented
by the arrow heads, and e3 for instance is ↓-oriented in p which implies that we have
P (p, (e3 ↑ x)) = −1.

e0
e1

e2 e3
e4

▶ Definition 13 (Well-formedness). Let D be a ZX-diagram, and s ∈ tkS(D) a token state
on D. We say that s is well-formed if for every term t in s and every path p ∈ Paths(D) we
have P (p, t) ∈ {−1, 0, 1}.

▶ Proposition 14 (Invariance of Well-Formedness). Well-formedness is preserved by (⇝): if
s⇝∗ s′ and s is well-formed, then s′ is well-formed.

Well-formedness prevents the unwanted scenario of having two tokens on the same wire,
and oriented in the same direction (e.g. (e0 ↓ x)(e0 ↓ y)). As shown in the Proposition 15,
this property is in fact stronger.

▶ Proposition 15 (Full Characterisation of Well-Formed Terms). Let D be a ZX-diagram, and
s ∈ tkS(D) be not well-formed, i.e. there exists a term t in s, and p ∈ Paths(D) such that
|P (p, t)| ≥ 2. Then we can rewrite s ⇝ s′ such that a term in s′ has a product of at least
two tokens of the form (e0, d,_).

Although well-formedness prevents products of tokens on the same wire, it does not
guarantee termination: for this we need to consider polarities along cycles.

▶ Proposition 16 (Invariant on Cycles). Let D be a ZX-diagram, and c ∈ Cycles(D) a cycle.
Let t1, . . . , tn be tokens, and s be a token state such that t1...tn ⇝∗ s. Then for every non-null
term t in s we have P (c, t1...tn) = P (c, t).

MFCS 2021

30:10 Geometry of Interaction for ZX-Diagrams

This proposition tells us that the polarity is preserved inside a cycle. By requiring the
polarity to be 0, we can show that the token machine terminates. This property is defined
formally in the following.

▶ Definition 17 (Cycle-Balanced Token State). Let D be a ZX-diagram, and t a term in a
token state on D. We say that t is cycle-balanced if for all cycles c ∈ Cycles(D) we have
P (c, t) = 0. We say that a token state is cycle-balanced if all its terms are cycle-balanced.

To show that being cycle-balanced implies termination, we need the following intermediate
lemma. This essentially captures the fact that a token in the diagram comes from some other
token that “traveled” in the diagram earlier on.

▶ Lemma 18 (Rewinding). Let D be a ZX-diagram, and t be a term in a well-formed token
state on D, and such that t⇝∗ ∑

i λiti, with (en, d, x) ∈ t1. If t is cycle-balanced, then there
exists a path p = (e0, ..., en) ∈ Paths(D) such that en is d-oriented in p, and P (p, t) = 1.

We can now prove strong-normalization.

▶ Theorem 19 (Termination of well-formed, cycle-balanced token state). Let D be a ZX-
diagram, and s ∈ tkS(D) be well-formed. The token state s is strongly normalizing if and
only if it is cycle-balanced.

Intuitively, this means that tokens inside a cycle will cancel themselves out if the token
state is cycle-balanced. Since cycles are the only way to have a non-terminating token
machine, we are sure that our machine will always terminate.

▶ Proposition 20 (Local Confluence). Let D be a ZX-diagram, and s ∈ tkS(D) be well-
formed and collision-free. Then, for all s1, s2 ∈ tkS(D) such that s1

⇝s⇝ s2, there exists
s′ ∈ tkS(D) such that s1 ⇝∗ s′ ∗ ⇝s2.

▶ Corollary 21 (Confluence). Let D be a ZX-diagram. The rewrite system ⇝ is confluent
for well-formed, collision-free and cycle-balanced token states.

▶ Corollary 22 (Uniqueness of Normal Forms). Let D be a ZX-diagram. A well-formed and
cycle-balanced token state admits a unique normal form under the rewrite system ⇝.

3.3 Semantics and Structure of Normal Forms
In this section, we discuss the structure of normal forms, and relate the system to the
standard interpretation presented in Section 2.

▶ Proposition 23 (Single-Token Input). Let D : n → m be a connected ZX-diagram with
I(D) = [ai]0<i≤n and O(D) = [bi]0<i≤m, 0 < k ≤ n and x ∈ {0, 1}, such that:

JDK ◦ (idk−1 ⊗ |x⟩ ⊗ idn−k) =
2m+n−1∑

q=1
λq |y1,q, ..., ym,q⟩⟨x1,q, ..., xk−1,q, xk+1,q, ..., xn,q|

Then: (ak ↓ x)⇝∗
2m+n−1∑

q=1
λq

∏
i

(bi ↓ yi,q)
∏
i̸=k

(ai ↑ xi,q)

This proposition conveys the fact that dropping a single token in state x on wire ak gives
the same semantics as the one obtained from the standard interpretation on the ZX-diagram,
with wire ak connected to the state |x⟩.

Proposition 23 can be made more general. However, we first need the following result on
ZX-diagrams:

K. Chardonnet, B. Valiron, and R. Vilmart 30:11

▶ Lemma 24 (Universality of Connected ZX-Diagrams). Let f : C2n → C2m . There exists a
connected ZX-diagram Df : n → m such that JDf K = f .

▶ Proposition 25 (Multi-Token Input). Let D be a connected ZX-diagram with I(D) =
[ai]1≤i≤n and O(D) = [bi]1≤i≤m; with n ≥ 1.

If: JDK ◦

(2n∑
q=1

λq |x1,q, ..., xn,q⟩

)
=

2m∑
q=1

λ′
q |y1,q, ..., ym,q⟩

then:
2n∑

q=1
λq

n∏
i=1

(ai ↓ xi,q)⇝∗
2m∑
q=1

λ′
q

m∏
i=1

(bi ↓ yi,q)

▶ Example 26 (CNOT). In the ZX-Calculus, the CNOT-gate (up to some scalar) can be

constructed as follows:

u

wwww
v

a1

a2

b1

e1

e2 e3

e4

b2

}

����
~

= 1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


On classical inputs, this gate applies the NOT-gate on the second bit if and only if the

first bit is at 1. Therefore if we apply the state |10⟩ to it we get 1√
2 |11⟩.

We demonstrate how the token machine can be used to get this result. Following
Proposition 25, we start by initialising the Token Machine in the token state (a1 ↓ 1)(a2 ↓ 0),
matching the input state |10⟩.

We underline each step that is being rewritten, and take the liberty to sometimes do
several rewrites in parallel at the same time.

(a1 ↓ 1)(a2 ↓ 0)⇝d (b1 ↓ 1)(e1 ↓ 1)(a2 ↓ 0)⇝d (b1 ↓ 1)(e1 ↓ 1) 1√
2

(
(e3 ↓ 0) + (e3 ↓ 1)

)
⇝d

1√
2 (b1 ↓ 1)(e1 ↓ 1)

(
(e2 ↑ 0)(e4 ↓ 0) + (e2 ↑ 1)(e4 ↓ 1)

)
⇝d

1
2 (b1 ↓ 1)

(
(e2 ↓ 0) − (e2 ↓ 1)

)(
(e2 ↑ 0)(e4 ↓ 0) + (e2 ↑ 1)(e4 ↓ 1)

)
⇝2

c
1
2 (b1 ↓ 1)

(
(e4 ↓ 0) +

(
(e2 ↓ 0) − (e2 ↓ 1)

)
(e2 ↑ 1)(e4 ↓ 1)

)
⇝2

c
1
2 (b1 ↓ 1)

(
(e4 ↓ 0) − (e4 ↓ 1)

)
⇝d

1
2

√
2 (b1 ↓ 1)

(
(b2 ↓ 0) + (b2 ↓ 1) − (b2 ↓ 0) + (b2 ↓ 1)

)
= 1√

2 (b1 ↓ 1)(b2 ↓ 1)

The final token state corresponds to 1√
2 |11⟩, as described by Proposition 25. Notice that

during the run, each invariants presented before holds and that due to confluence we could
have rewritten the tokens in any order and still obtain the same result.

This proposition is a direct generalization of Proposition 23. It shows we can compute
the output of a diagram provided a particular input state. We can also recover the semantics
of the whole operator by initialising the starting token state in a particular configuration.

▶ Theorem 27 (Arbitrary Wire Initialisation). Let D be a connected ZX-diagram, with I(D) =
[ai]1≤i≤n, O(D) = [bi]1≤i≤m, and e ∈ E(D) ̸= ∅ such that (e ↓ x)(e ↑ x)⇝∗ tx for x ∈ {0, 1}
with tx terminal (the rewriting terminates by Corollary 22). Then:

JDK =
2m+n∑
q=1

λq |y1,q . . . ym,q⟩⟨x1,q . . . xn,q| =⇒ t0 + t1 =
2m+n∑
q=1

λq

∏
i

(bi ↓yi,q)
∏

i

(ai ↑xi,q).

MFCS 2021

30:12 Geometry of Interaction for ZX-Diagrams

▶ Example 28. If we take back the diagram from Example 26 and decide to initialize any
wire e of the diagram in the state (e ↓ 0)(e ↑ 0) + (e ↓ 1)(e ↑ 1) and apply the rewriting as in

Theorem 27 we in fact end up with the token state 1√
2

(
(a1 ↑ 0)(a2 ↑ 0)(b1 ↓ 0)(b2 ↓ 0)+(a1 ↑

0)(a2 ↑ 1)(b1 ↓ 0)(b2 ↓ 1) + (a1 ↑ 1)(a2 ↑ 0)(b1 ↓ 1)(b2 ↓ 1) + (a1 ↑ 1)(a2 ↑ 1)(b1 ↓ 1)(b2 ↓ 0)
)

which matches the actual matrix of the standard interpretation.

▶ Remark 29. At this point, it is legitimate to wonder about the benefits of the token machine
over the standard interpretation for computing the semantics of a diagram. Let us first
notice that when computing the semantics of a diagram à la Theorem 27, we get in the token
state one term per non-null entry in the associated matrix (the one obtained by the standard
interpretation).

We can already see that the token-based interpretation can be interesting if the matrix is
sparse, the textbook case being Zn

n whose standard interpretation requires a 2n × 2n matrix,
while the token-based interpretation only requires two terms (each with 2n tokens).

Secondly, we can notice that we can “mimic” the standard interpretation with the token
machine. Consider a diagram decomposed as a product of slices (tensor product of generators)
for the standard interpretation. Then, for the token machine, without going into technical
details, we can follow the strategy that consists in moving token through the diagram one
slice at a time. This essentially computes the matrix associated with each slice and its
composition.

The point of the token machine however, is that it is versatile enough to allow for more
original strategies, some of which may have a worst complexity, but also some of which may
have a better one.

4 Extension to Mixed Processes

The token machine presented so far worked for so-called pure quantum processes i.e. with no
interaction with the environment. To demonstrate how generic our approach is, we show
how to adapt it to the natural extension of mixed processes, represented with completely
positive maps (CPM). This in particular allows us to represent quantum measurements.

4.1 ZX-diagrams for Mixed Processes
The interaction with the environment can be modeled in the ZX-Calculus by adding a unary
generator to the language [8, 5], that intuitively enforces the state of the wire to be
classical. We denote with ZX the set of diagrams obtained by adding this generator.

Similar to what is done in quantum computation, the standard interpretation J.K for
ZX maps diagrams to CPMs. If D ∈ ZX we define JDK as ρ 7→ JDK† ◦ ρ ◦ JDK, and we
set J K as ρ 7→ Tr(ρ), where Tr(ρ) is the trace of ρ.

There is a canonical way to map a ZX -diagram to a ZX-diagram in a way that preserves
the semantics: the so-called CPM-construction [32]. We define the map (conveniently named)
CPM as the map that preserves compositions (_ ◦ _) and (_ ⊗ _) and such that:

∀D ∈ ZX, CPM
(...

...
D

)
=

...
D [D]cj

...
CPM () =

Where [D]cj is D where every angle α has been changed to −α.

K. Chardonnet, B. Valiron, and R. Vilmart 30:13

With respect to what happens to edge labels, notice that every edge in D can be mapped
to 2 edges in CPM(D). We propose that label e induces label e in the first copy, and e in
the second, e.g, for the identity diagram: e0 7−→ e0 e0

In the general ZX-Calculus, it has been shown that the axiomatization itself could be
extended to a complete one by adding only 4 axioms [5].

▶ Example 30. A ZX -diagram and its associated CPM construction is shown on the right
(without names on the wires for simplicity).

α

7→

α −α

4.2 Token Machine for Mixed Processes
We now aim to adapt the token machine to ZX , the formalism for completely positive
maps. To do so we give an additional state to each token to mimic the evolution of two token
on CPM(D).

▶ Definition 31. Let D be a ZX-diagram. A -token is a quadruplet (p, d, x, y) ∈ E(D) × {↓
, ↑}×{0, 1}×{0, 1}. We denote the set of -tokens on D by tk (D). A -token-state is then
a multivariate polynomial over C, evaluated in tk (D). We denote the set of -token-states
on D by tkS (D)

In other words, the difference with the previous machine is that tokens here have an
additional state (e.g. y in (a ↓ x, y)). The rewrite rules are given in appendix in Table 2.

Table 2 The rewrite rules for ⇝ , where δ is the Kronecker delta.

e0 (e0 ↓ x, y)(e0 ↑ x′, y′)⇝c δx,x′δy,y′ (Collision)

e0 e1 (eb ↓ x, y)⇝d (e¬b ↑ x, y) (-diffusion)
e0 e1 (eb ↑ x, y)⇝d (e¬b ↓ x, y) (-diffusion)

(ek ↓ x, y)⇝d e
iα(x−y)

∏
j ̸=k

(ej ↑ x, y)
∏

j

(e′
j ↓ x, y)

(e′
k ↑ x, y)⇝d e

iα(x−y)
∏

j

(ej ↑ x, y)
∏
j ̸=k

(e′
j ↓ x, y)

(e0 ↓ x, y)⇝d
1
2

∑
z,z′∈{0,1}

(−1)xz+yz′
(e1 ↓ z, z′)

(e1 ↑ x, y)⇝d
1
2

∑
z,z′∈{0,1}

(−1)xz+yz′
(e0 ↑ z, z′)

e0
(e0 ↓ x, y)⇝d δx,y (Trace-Out)

...e1 en

e′
1 e′

m

...
α

e0

e1

(-Diffusion)

(
...
... -Diffusion)

It is possible to link this formalism back to the pure token-states, using the existing CPM
construction for ZX-diagrams. We extend this map by CPM : tkS (D) → tkS(CPM(D)),

MFCS 2021

30:14 Geometry of Interaction for ZX-Diagrams

defined as:
2m+n∑
q=1

λq

∏
j

(pj , dj , xj,q, yj,q) 7→
∑
q=1

λq

∏
j

(pj , dj , xj,q)(pj , dj , yj,q)

Since CPM(D) can be seen as two copies of D where is replaced by , each token in
D corresponds to two tokens in CPM(D), at the same spot but in the two copies of D. The
two states x and y represent the states of the two corresponding tokens.

We can then show that this rewriting system is consistent:

▶ Theorem 32. Let D be a ZX -diagram, and t1, t2 ∈ tkS (D). Then whenever t1 ⇝ t2
we have CPM(t1)⇝{1,2} CPM(t2).

The notions of polarity, well-formedness and cycle-balancedness can be adapted, and we
get strong normalization (Theorem 19), confluence (Corollary 21), and uniqueness of normal
forms (Corollary 22) for well-formed and cycle-balanced token states.

5 Conclusion and Future Work

In this paper, we presented a novel particle-style semantics for ZX-Calculus. Based on
a token-machine automaton, it emphasizes the asynchronicity and non-orientation of the
computational content of a ZX-diagram. Compared to existing token-based semantics of
quantum computation such as [9], our proposal furthermore support decentralized tokens
where the position of a token can be in superposition.

As quantum circuits can be mapped to ZX-diagrams, our token machines induce a notion
of asynchronicity for quantum circuits. This contrasts with the notion of token machine
defined in [9] where some form of synchronicity is enforced.

Our token machines give us a new way to look at how a ZX-diagram computes with a
more local, operational approach. This could lead to extensions of the ZX-Calculus with
more expressive logical and computational constructs, such as recursion.

As a final remark, we notice that this formalism naturally extends to other graphical
languages for qubit quantum computation, and even for tensor networks. It suffices to adapt
the diffusion rewriting steps to the generators at hand, which is always possible in the setting
of finite dimensional Hilbert spaces, and if needs be to adapt the states in tokens to the
dimension of the wire they go through (e.g. if a wire in a tensor network is of dimension 4,
the state spans {0, 1, 2, 3}).

References
1 Matthew Amy. Towards Large-scale Functional Verification of Universal Quantum Circuits.

In Peter Selinger and Giulio Chiribella, editors, Proceedings 15th International Conference on
Quantum Physics and Logic, QPL 2018, Halifax, Canada, 3-7th June 2018, volume 287 of
EPTCS, pages 1–21, 2018. doi:10.4204/EPTCS.287.1.

2 Andrea Asperti and Cosimo Laneve. Paths, computations and labels in the λ-calculus.
Theoretical Computer Science, 142(2):277–297, 1995.

3 Miriam Backens. The ZX-Calculus is Complete for Stabilizer Quantum Mechanics. New
Journal of Physics, 16(9):093021, 2014. doi:10.1088/1367-2630/16/9/093021.

4 Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski, and John van de
Wetering. There and back again: A circuit extraction tale, 2020. arXiv:2003.01664.

5 Titouan Carette, Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Completeness
of Graphical Languages for Mixed States Quantum Mechanics. In Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium
on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz International

https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.1088/1367-2630/16/9/093021
http://arxiv.org/abs/2003.01664

K. Chardonnet, B. Valiron, and R. Vilmart 30:15

Proceedings in Informatics (LIPIcs), pages 108:1–108:15, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2019.108.

6 Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoît
Valiron. A Deductive Verification Framework for Circuit-building Quantum Programs.
arXiv:2003.05841. To appear in Proceedings of ESOP’21.

7 Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and
diagrammatics. New Journal of Physics, 13(4):043016, 2011.

8 Bob Coecke and Simon Perdrix. Environment and Classical Channels in Categorical Quantum
Mechanics. Logical Methods in Computer Science, Volume 8, Issue 4, November 2012. doi:
10.2168/LMCS-8(4:14)2012.

9 Dal Lago, Ugo and Faggian, Claudia and Valiron, Benoît and Yoshimizu, Akira. The geometry
of parallelism: Classical, probabilistic, and quantum effects. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, page 833–845,
New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3009837.
3009859.

10 Vincent Danos and Laurent Regnier. Reversible, irreversible and optimal λ-machines. Theor-
etical Computer Science, 227(1-2):79–97, 1999.

11 Niel de Beaudrap, Ross Duncan, Dominic Horsman, and Simon Perdrix. Pauli Fusion:
a computational model to realise quantum transformations from ZX terms. In QPL’19 :
International Conference on Quantum Physics and Logic, Los Angeles, United States, 2019.
12 pages + appendices. URL: https://hal.archives-ouvertes.fr/hal-02413388.

12 Niel de Beaudrap and Dominic Horsman. The ZX calculus is a language for surface code
lattice surgery. Quantum, 4:218, 2020. doi:10.22331/q-2020-01-09-218.

13 Ross Duncan and Liam Garvie. Verifying the smallest interesting colour code with quantomatic.
In Bob Coecke and Aleks Kissinger, editors, Proceedings 14th International Conference on
Quantum Physics and Logic, Nijmegen, The Netherlands, 3-7 July 2017, volume 266 of
Electronic Proceedings in Theoretical Computer Science, pages 147–163, 2018. doi:10.4204/
EPTCS.266.10.

14 Ross Duncan, Aleks Kissinger, Simon Perdrix, and John Van De Wetering. Graph-theoretic
Simplification of Quantum Circuits with the ZX-calculus. Quantum, 4:279, 2020.

15 Ross Duncan and Maxime Lucas. Verifying the Steane code with Quantomatic. In Bob Coecke
and Matty Hoban, editors, Proceedings of the 10th International Workshop on Quantum
Physics and Logic, Castelldefels (Barcelona), Spain, 17th to 19th July 2013, volume 171
of Electronic Proceedings in Theoretical Computer Science, pages 33–49. Open Publishing
Association, 2014. doi:10.4204/EPTCS.171.4.

16 Ross Duncan and Simon Perdrix. Rewriting Measurement-Based Quantum Computations
with Generalised Flow. Lecture Notes in Computer Science, 6199:285–296, 2010. doi:10.
1007/978-3-642-14162-1_24.

17 Elizabeth Gibney. Quantum gold rush: the private funding pouring into quantum start-ups.
Nature, 574:22–24, 2019. doi:10.1038/d41586-019-02935-4.

18 Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–101, 1987.
19 Jean-Yves Girard. Geometry of interaction II: deadlock-free algorithms. In International

Conference on Computer Logic, pages 76–93. Springer, 1988.
20 Jean-Yves Girard. Geometry of interaction I: interpretation of System F. In Studies in Logic

and the Foundations of Mathematics, volume 127, pages 221–260. Elsevier, 1989.
21 Jean-Yves Girard. Towards a geometry of interaction. Contemporary Mathematics, 92(69-108):6,

1989.
22 Jean-Yves Girard. Geometry of interaction III: accommodating the additives. London

Mathematical Society Lecture Note Series, pages 329–389, 1995.
23 Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. Lecture Notes in Pure and

Applied Mathematics, pages 97–124, 1996.

MFCS 2021

https://doi.org/10.4230/LIPIcs.ICALP.2019.108
https://arxiv.org/abs/2003.05841
https://doi.org/10.2168/LMCS-8(4:14)2012
https://doi.org/10.2168/LMCS-8(4:14)2012
https://doi.org/10.1145/3009837.3009859
https://doi.org/10.1145/3009837.3009859
https://hal.archives-ouvertes.fr/hal-02413388
https://doi.org/10.22331/q-2020-01-09-218
https://doi.org/10.4204/EPTCS.266.10
https://doi.org/10.4204/EPTCS.266.10
https://doi.org/10.4204/EPTCS.171.4
https://doi.org/10.1007/978-3-642-14162-1_24
https://doi.org/10.1007/978-3-642-14162-1_24
https://doi.org/10.1038/d41586-019-02935-4

30:16 Geometry of Interaction for ZX-Diagrams

24 Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. Two Complete Axiomatisations
of Pure-state Qubit Quantum Computing. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’18, pages 502–511, New York, NY, USA,
2018. ACM. doi:10.1145/3209108.3209128.

25 Anne Hillebrand. Quantum Protocols involving Multiparticle Entanglement and their Rep-
resentations. Master’s thesis, University of Oxford, 2011. URL: https://www.cs.ox.ac.uk/
people/bob.coecke/Anne.pdf.

26 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A Complete Axiomatisation of
the ZX-Calculus for Clifford+T Quantum Mechanics. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, pages 559–568, New York,
NY, USA, 2018. ACM. doi:10.1145/3209108.3209131.

27 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Diagrammatic Reasoning Beyond
Clifford+T Quantum Mechanics. In Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’18, pages 569–578, New York, NY, USA, 2018. ACM.
doi:10.1145/3209108.3209139.

28 Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A Generic Normal Form for
ZX-Diagrams and Application to the Rational Angle Completeness. In 2019 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–10, June 2019. doi:
10.1109/LICS.2019.8785754.

29 Alexandre Ménard, Ivan Ostojic, Mark Patel, and Daniel Volz. A game plan for quantum
computing. McKinsey Quaterly, 2020.

30 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2002.

31 Qureca.com. Overview on quantum initiatives worldwide. https://www.qureca.com/
overview-on-quantum-initiatives-worldwide/, January 2021.

32 Peter Selinger. Dagger compact closed categories and completely positive maps. Electronic
Notes in Theoretical computer science, 170:139–163, 2007.

33 Renaud Vilmart. A Near-Minimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum
Mechanics. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–10, June 2019. doi:10.1109/LICS.2019.8785765.

34 Renaud Vilmart. ZX-Calculi for Quantum Computing and their Completeness. Theses,
Université de Lorraine, 2019. URL: https://hal.archives-ouvertes.fr/tel-02395443.

35 Renaud Vilmart. The Structure of Sum-Over-Paths, its Consequences, and Completeness for
Clifford, 2020. arXiv:2003.05678.

https://doi.org/10.1145/3209108.3209128
https://www.cs.ox.ac.uk/people/bob.coecke/Anne.pdf
https://www.cs.ox.ac.uk/people/bob.coecke/Anne.pdf
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1145/3209108.3209139
https://doi.org/10.1109/LICS.2019.8785754
https://doi.org/10.1109/LICS.2019.8785754
https://www.qureca.com/overview-on-quantum-initiatives-worldwide/
https://www.qureca.com/overview-on-quantum-initiatives-worldwide/
https://doi.org/10.1109/LICS.2019.8785765
https://hal.archives-ouvertes.fr/tel-02395443
http://arxiv.org/abs/2003.05678

	1 Introduction
	2 The ZX-Calculus
	2.1 Pure Operators
	2.2 Standard Interpretation
	2.3 Properties and structure
	2.4 Notions of Graph Theory in ZX

	3 A Token Machine for ZX-diagrams
	3.1 Diffusion and Collision Rules
	3.2 Strong Normalization and Confluence
	3.3 Semantics and Structure of Normal Forms

	4 Extension to Mixed Processes
	4.1 ZX-diagrams for Mixed Processes
	4.2 Token Machine for Mixed Processes

	5 Conclusion and Future Work

