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Abstract
We present a parallel algorithm for permanent mod 2k of a matrix of univariate integer polynomials.
It places the problem in ⊕L ⊆ NC2. This extends the techniques of Valiant [26], Braverman, Kulkarni
and Roy [3] and Björklund and Husfeldt [2] and yields a (randomized) parallel algorithm for shortest
two disjoint paths improving upon the recent (randomized) polynomial time algorithm [2].

We also recognize the disjoint paths problem as a special case of finding disjoint cycles, and
present (randomized) parallel algorithms for finding a shortest cycle and shortest two disjoint cycles
passing through any given fixed number of vertices or edges.
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1 Introduction

The problem of computing the determinant of a matrix has been a very well studied problem
in the past, and several fast (both sequential and parallel) algorithms are known. On the
contrary, Valiant in his seminal paper [26] showed that computing permanent of a matrix, an
algebraic analogue of determinant, is hard. However modulo 2, determinant and permanent
are equal and so building up on this, he presented an algorithm for computing permanent of
an integer matrix modulo small powers of 2. The algorithm uses Gaussian elimination which
is known to be highly sequential and so it is desirable to have a parallel algorithm. This was
resolved by [3] who presented a ⊕L ⊆ NC algorithm.

Moreover, NC algorithms for computing determinant of matrices over arbitrary com-
mutative rings are also known, e.g. [18]. We would like to ask a similar question for the
permanent. One natural extension would be to consider the ring of polynomials with integer
coefficients. In this paper, we present an NC algorithm to compute permanent of matrices
over integer polynomials modulo 2k for any fixed k.

▶ Theorem 1. Let k ≥ 1 be fixed and A be an n× n matrix of integer polynomials, such that
the degree of each entry is at most poly(n). We can compute perm(A) (mod 2k) in ⊕L ⊆ NC2
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In the second half of the paper, we consider some applications of our parallel polynomial
permanent algorithm. One direct consequence is that we are now able to parallelize the
shortest two disjoint paths problem [2]. Furthermore, we generalize this problem by adding
more constraints on the disjoint paths - that the paths should pass through any given set
of edges. This can also be viewed as a problem of finding two disjoint cycles, for which we
present a randomized parallel algorithm, using the techniques from [28] and [2].

▶ Theorem 2. Let k ≥ 1 be fixed and G be an undirected graph with k marked vertices. We
can find shortest two disjoint cycles passing through the marked vertices in ⊕L/poly (and
RNC).

Finally, we notice that a similar approach gives us an algorithm to compute Hafnians
modulo 2k of symmetric matrices of integers. Unfortunately, unlike the case of the permanent,
we weren’t able to extend this to a parallel algorithm. But nevertheless it gives a direct proof
of the fact that counting number of perfect matchings modulo 2k, in any general graph, is in
P, as proved in [3].

1.1 Historical Survey
The problem of computing permanent of an integer matrix was first shown to be NP-
hard by Valiant, where he also presented a O(n4k−3) running time algorithm to compute
permanent modulo 2k. It was also shown that computing permanent modulo any odd prime
still remains hard. Zanko [29] gave a proof for hardness of permanent under many-one
reductions strengthening the result from the weaker Turing reductions used by Valiant.
Later, Braverman, Kulkarni and Roy [3] presented a parallel ⊕SPACE(k2 logn) algorithm
for computing permanent modulo 2k. Björklund and Husfeldt [2] presented a d3nO(k) time
algorithm to compute permanent modulo 2k of matrices over integer polynomials where the
entries are of degree at most d.

Finding k disjoint paths in a graph has been a well studied problem in the past: given
a graph (undirected/directed) and k pairs of terminals (si, ti)1≤i≤k, find k pairwise vertex-
disjoint paths Pi from si to ti, if they exist.

When k is not fixed (and is part of input) then the problem is known to be NP-hard even
for undirected planar graphs [16]. Linear time algorithms are known when further restricting
directed planar graphs to the case: when all terminals lie on outer face [25], or when all
the si-terminals lie on one common face while all the ti-terminals lie on another common
face [22]. If we further ask for paths with minimal total length in the latter problem, then [7]
presented a O(kn logn) running time algorithm to achieve the same.

When k is fixed, the problem remains NP-hard for directed graphs, even for k = 2 [11],
who had also given given a poly time algorithm for the restricted case of directed acyclic
graphs. In the restriced setting of directed planar graphs, [24] presented a nO(k) running
time algorithm, which was further improved to a fixed parameter tractable algorithm by [4].

Shifting our focus to undirected graphs, the celebrated work of Robertson and Seymour [23]
gave a O(n3) algorithm for finding k disjoint paths in an undirected graph, for any fixed k.
[6] gave a parallel algorithm for class of planar graphs where all the terminals lie either on
one or two faces. All this while, the question of finding shortest disjoint paths in general
undirected graphs, remained open for many years until recently, Björklund and Husfeldt [2]
gave a polynomial time algorithm for finding the shortest two disjoint paths. For general k,
this problem still remains open. Björklund and Husfeldt also gave a parallel algorithm to
count shortest two disjoint paths but only for cubic planar graphs [1].
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1.2 Our Techniques
To compute permanent of a matrix A over integer polynomials, we closely follow the analysis
of [3] but immediately hit an obstacle. They give a reduction from perm(A) (mod 4) to
several computations of perm(.) (mod 2), which crucially uses the fact that Z2 is a field.
More precisely, when mimicking the proof, firstly it is required to find a non-trivial solution
of Av = 0 with the property that at least one of the entries of this vector is invertible. This
fails1 over Z2[x]. Moreover, their algorithm also uses the fact that a non-singular matrix
admits a LU decomposition iff all the leading principal minors are non-zero, which is known
to hold in general only for matrices over fields.

Therefore, replacing Z2k with Z2k [x] in their analysis doesn’t work as Z2[x] isn’t a field
while Z2 is. Furthermore, any finite field F of characteristic 2 only corresponds to modulo
2 arithmetic. We need a way to extend the field structure so that it supports modulo 2k
arithmetic as well. If F was realized as Z2[x]/(p(x)) where p(x) is irreducible over Z2 then a
possible candidate is the ring Z[x]/(2k, p(x)). Therefore, the appropriate algebraic structure
to consider would be the ring R = Z[x]/(p(x))

Now we see that replacing Z with R solves the above mentioned problems in the analysis,
primarily because of the fact that R (mod 2) is a finite characteristic 2 field. With a
slight bit of modification in the proof, we achieve that: given a matrix A over R, we
can find perm(A) (mod 2k) or in other words if A is a matrix over Z[x], we can compute
perm(A) (mod 2k, p(x)).

We are still not done because our aim was to compute perm(A) (mod 2k) over Z[x]. To
achieve that, we choose p(x) such that its degree is larger than the degree of polynomial
perm(A). This requires doing computations over a large field. Alternatively, we develop a
new way of interpolation over R, which allows us to choose p(x) such that its degree is of
logarithmic order of degree perm(A), but with a tradeoff of computing several (polynomially
many) more permanents. We present this technique for its novelty.

Wahlström [28] addressed the question of finding a cycle passing through given vertices.
We ask if we can also find shortest such cycle. And furthermore, can we also find shortest
two disjoint cycles passing through these vertices? We combine techniques of [28] and [2] to
answer the above questions, by reducing them to computing permanents modulo 2 of 2k−1

and modulo 4 of 2k−1 + 2k−2 matrices respectively. These matrices are adjacency matrix of
what we refer to as pattern graphs. Notice that for k = 2 finding shortest two disjoint cycles
corresponds to finding shortest two disjoint paths (by connecting each pair of terminals with
a common vertex), and in this case our pattern graphs are exactly those presented in [2].

1.3 Organization of the Paper
In section 2, we first introduce the preliminaries and the notation that we shall be using
throughout this paper. In the next section 3, we present proof of our main theorem 1 about
computing permanent modulo 2k, following which we also discuss the complexity of certain
computations over the ring R which shows that our algorithm is in ⊕L. We also present an
alternative proof for our main theorem in section 4 which uses new techniques. Then we
present applications of our result that is finding shortest disjoint cycles, in section 5.

Finally, we discuss an example of our permanent algorithm and we show that using the
same techniques as above we can also compute Hafnians and hence it gives an alternate proof
of the already known result that counting perfect matchings modulo 2k is in P. These are
listed in the appendix for lack of space.

1 Let A =
(

x x + 1
x x + 1

)
then there does not exist any null vector of the form

(
f
1

)
or
(1

f

)
for any f ∈ Z2[x]

MFCS 2021
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2 Preliminaries

We begin by stating the definition of the complexity class ⊕L.

▶ Definition 3. ⊕L is the class of decision problems solvable by an NL machine such that
If the answer is “yes”, then the number of accepting paths is odd.
If the answer is “no”, then the number of accepting paths is even.

By a slight abuse of notation, we say a function class is in ⊕L if each of its bits can be
computed in ⊕L. We will have the occasion to use only constantly many bits because we are
working mod 2k.

Given an n× n matrix A = (aij)i,j∈[n], determinant and permanent of A are defined as

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aiσ(i) perm(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i)

The permanent of a matrix can be regarded as the weighted sum of cycle covers of an
undirected graph. This gives a combinatorial interpretation to a seemingly pure algebraic
quantity. We shall use this bridge to illustrate an application of our parallel polynomial
permanent.

Let G be a weighted undirected graph (not necessarily loopless) with the associated
weight function w.

▶ Definition 4. We say C ⊆ V (G)× V (G) is a cycle cover of G if
(u, v) ∈ C =⇒ {u, v} ∈ E(G)
C is a union of vertex-disjoint simple directed cycles in G

every vertex is incident to some directed edge in C

Note: loops are allowed as simple cycles in the above definition.

▶ Definition 5. For any cycle cover C we denote the weight of C by w̃(C) =
∏
e∈C w(e)

The above definition is well-defined because any directed edge (u, v) or (v, u) in our cycle
cover correspond to the same edge {u, v} in our underlying undirected graph. And hence
both these directed edges get the same weight, that is w((u, v)) = w((v, u)) = w({u, v}).
In literature, such type of weight functions are commonly referred to as symmetric weight
functions.

▶ Definition 6. Let V (G) = [n] then we say A = (aij)i,j∈[n] is the (n× n) adjacency matrix
of G if

aij =
{
w(e) if e = {i, j} ∈ E(G)
0 otherwise

▶ Observation 7. perm(A) =
∑
w̃(C) where the sum is taken over all cycle covers C of G

3 Permanent over R Mod 2k

To begin with, we fix some general notation. Let p(x) be an irreducible polynomial over
Z2[x] such that deg(p(x)) is at most poly(n). Denote by F the finite field of characteristic 2
which is realized as Z2[x]/(p(x)) and by Rk = Z[x]/(2k, p(x)). In particular R1 ∼= F. Now as
already discussed, we essentially replace Z by R in the algorithm of [3]. We are ready to
state the main theorem.
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▶ Theorem 8. Let k ≥ 1 be fixed and A ∈ Rn×n. We can compute perm(A) (mod 2k) in ⊕L

Proof is by induction on k. We start with the base case k = 1. Note that perm(A) ≡
det(A) (mod 2). Using corollary 17 we can find perm(A) (mod 2) in ⊕L. Now suppose k > 1,
we shall reduce it to computing several such determinants modulo 2, all of which can be
computed in parallel. In doing so, we first illustrate an algorithm which is sequential and
then we shall see how to parallelize it.

3.1 Sequential algorithm for computing permanent modulo 2k

We present the algorithm from [3] for computing permanent modulo 2k but translated within
our framework. Let A = (aij)i,j∈[n] ∈ Rn×n be such that det(A) ≡ 0 (mod 2). Therefore
we can find a non-zero vector v ∈ Fn such that AT v = 0 over F. Assume without loss of
generality v1 = 1.

Let ri denote the ith row of A and define A′ to be the matrix where the 1st row in matrix
A is replaced with

∑
i viri. Now if we expand the permanent along the first row then we get

perm(A′) =
n∑
i=1

viperm(A[1← i]) = perm(A) +
n∑
i=2

viperm(A[1← i]) (1)

where A[i ← j] is the matrix A but with ith row replaced with the jth row. For I, J ⊆
[n] denote by A[Î , Ĵ ] the matrix obtained from A by deleting rows indexed by I and
columns indexed by J . With this equation, modulo 2k computation reduces to modulo 2k−1

computations of the minors as follows:

perm(A′) =
n∑
j=1

(
n∑
i=1

viaij

)
perm(A[{̂1}, {̂j}])

Since AT v = 0 (mod 2), we can write
∑
i viaij = 2bj (mod 2k) for some bj ∈ Rk, therefore,

we can re-write the above permanents as:

perm(A′) (mod 2k) = 2

 n∑
j=1

bjperm(A[{̂1}, {̂j}]) (mod 2k−1)


Similarly, expanding perm(A[1← i]) along the 1st and ith rows, we get the reduction:

perm(A[1← i]) =
∑
j ̸=l

aijailperm(A[{̂1, i}, {̂j, l}])

perm(A[1← i]) (mod 2k) = 2

∑
j<l

aijailperm(A[{̂1, i}, {̂j, l}]) (mod 2k−1)


Substituting these equations back in 1, we get

perm(A) (mod 2k) = 2

 n∑
j=1

bjperm(A[{̂1}, {̂j}]) (mod 2k−1)



− 2
n∑
i=2

vi

 n∑
j,l=1
j<l

aijailperm(A[{̂1, i}, {̂j, l}]) (mod 2k−1)



MFCS 2021
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Since addition and multiplication in Rk is in ⊕L (see 14) we get that perm(A) (mod 2k)
⊕L-reduces to perm(.) (mod 2k−1). Hence by induction, we can compute perm(A) (mod 2k)
in ⊕L, provided that perm(A) ≡ 0 (mod 2).

Let us see how to drop this assumption. We expand the permanent of A along the ith
row, then

perm(A) =
∑
j

aijperm(A[{̂i}, {̂j}])

If perm(A) ̸≡ 0 (mod 2), then ∃i, j such that perm(A[{̂i}, {̂j}]) ̸≡ 0 (mod 2). We can find
this pair (i, j) by running over all n2 possibilities and evaluating perm(A[{̂i}, {̂j}]) (mod 2)
using corollary 17, as already discussed above. Consider the matrix C where all entries are
same as A except the (i, j)th entry which is replaced with aij + y. Then, we get perm(C) =
perm(A) + yperm(A[{̂i}, {̂j}]). Notice that perm(A) + yperm(A[{̂i}, {̂j}]) ≡ 0 (mod 2) is a
linear equation in y over the field F and so there exists a unique y ∈ F which satisfies this
equation, which is y0 = perm(A)perm(A[{̂i}, {̂j}])−1 (mod 2) and can be computed using
corollaries 14, 15 and 17. Setting y = y0 we get perm(C) ≡ 0 (mod 2), so we can compute
perm(C) (mod 2k) and then compute perm(A[{̂i}, {̂j}]) recursively as A[{̂i}, {̂j}] is a smaller
(n− 1)× (n− 1) size matrix. Hence we obtain perm(A) = perm(C)− y0perm(A[{̂i}, {̂j}])
(mod 2k). This yields a sequential algorithm for computing permanent modulo 2k over R.

3.2 Parallel algorithm for computing permanent modulo 2k

The bottleneck was finding i, j such that A[{̂i}, {̂j}] is non-singular over F. We fix this by
again appealing to the fact that we are working over a field, and modifying A such that
all leading principal minors are non-zero. This modification essentially derives from the
following fact.

▶ Theorem 9 ([14, Corollary 1]). Let A be an invertible matrix over a field F, then all leading
principal minors are non-zero iff A admits an LU decomposition

Every invertible matrix admits a PLU factorization [14] so let A = PLU . Denote by
Q = P−1, then QA = LU . Since Q is also a permutation matrix, we get that perm(QA) =
perm(A) (because permanent is invariant under row swaps). Therefore, it suffices to give a
⊕L algorithm to find Q so that we can replace A by QA which is an invertible matrix such
that all leading principal minors are non-zero. Thus computing perm(A) (mod 2k) reduces
to the problem of computing (in parallel) permanent modulo 2k of n − 1 matrices with
perm ≡ 0 (mod 2). This gives a ⊕L algorithm to compute permanent modulo 2k over R.

To find Q, we closely follow [9]. For each 1 ≤ i ≤ n, let Ai be the matrix formed from A

by only taking the first i columns. Let Aji matrix obtained from Ai by only taking the first j
rows. We construct a set Si ⊆ [n] inductively as follows:

Base case: l ∈ Si if rank(Ali) = 1 and rank(Aki ) = 0 for all k < l

Include j ∈ Si iff rank(Aji ) = 1 + rank(Aj−1
i )

Since rank(Ai) = i, we get |Si| = i. Furthermore note that Si ⊂ Si+1. So let S1 = {s1}
and for each i ≥ 2, denote by si ∈ Si \ Si−1. Consider the following permutation Q =
(n, sn) . . . (2, s2)(1, s1). Thus Q is our desired permutation, such that QA has all leading
principal minors non-zero.

As a corollary, we immediately get our desired result.
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▶ Corollary 10 (Theorem 1 restated). Given an n× n matrix A = (aij)i,j∈[n] over Z[x] with
deg(aij) at most poly(n), we can compute perm(A) (mod 2k) in ⊕L for any fixed k ≥ 1

Proof. Let N = nmax{deg(aij)}+ 1 and choose l = ⌈log3(N/2)⌉. Consider p(x) = x2·3l +
x3l + 1 which is irreducible over Z2[x] (see [27] Theorem 1.1.28)

Since deg(p(x)) ≥ N > deg(perm(A)), using this p(x) in above theorem, we get
perm(A) (mod 2k) for any fixed k. ◀

▶ Remark. See appendix A for a complete worked out example of the above algorithm.

3.3 Complexity Analysis
We discuss the complexity results for arithmetic operations over the ring Rk and matrix
operations over the field F, which were required in our above algorithm. To begin with, we
state a well-known fact about integer polynomials matrix multiplication modulo 2. This
shall form our basis for showing computations over F in ⊕L.

▶ Lemma 11 (Folklore [5]). Let A1, A2, . . . An ∈ Z2[x]n×n then the product A1A2 . . . An can
be computed in ⊕L

To obtain an analogous result over F we first perform multiplication over Z2[x] and then
divide all entries by p(x), using the following polynomial division, as demonstrated by Hesse,
Allender and Barrington in [12], to get that iterated matrix product over F is in ⊕L

▶ Lemma 12 ([12, Corollary 6.5]). Given g(x), p(x) ∈ Z[x] of degree at most poly(n), we can
compute g(x) (mod p(x)) in DLOGTIME− uniform TC0 ⊆ L

In particular, it follows that given an irreducible polynomial p(x) (over Z2[x]), then for
any g(x) ∈ Z[x] of degree at most poly(n) we can find g(x) (mod 2k, p(x)) in ⊕L, for any
fixed k ≥ 1.

▶ Corollary 13. Let A1, A2, . . . An ∈ Fn×n such that the degree of each entry is at most
poly(n) then the product A1A2 . . . An can be computed in ⊕L

Now we discuss arithmetic over Rk

▶ Lemma 14. Let k ≥ 1 be fixed then the following operations can be done in ⊕L
Multiplication : Given a, b ∈ Rk compute ab
Iterated Addition: Given c1, c2, . . . , cn ∈ Rk compute

∑
i ci

Proof. We use the fact that the arithmetic operations mentioned in the statement of lemma,
but over Z2k are in ⊕L (see for e.g. [12])

Let a(x), b(x) ∈ Rk and write a(x) =
∑D
i=0 aix

i and b(x) =
∑D′

i=0 bix
i, then a(x)b(x) =∑D+D′

i=0

(∑i
j=0 ajbi−j

)
xi. Finally, using lemma 12, divide a(x)b(x) by p(x) to obtain

ab ∈ Rk

Similarly, let c1(x), c2(x), . . . , cn(x) ∈ Rk and write ci(x) =
∑Di

j=0 cijx
j for each i ∈ [n],

then
∑n
i=1 ci(x) =

∑max{Di}
j=0 (

∑n
i=1 cij)xj where we assume cij = 0 if j > Di. ◀

Our algorithm also requires computing inverse of non-zero elements. To compute inverse
over F∗ we adopt the techniques from Fich and Tompa [8, 10]. Since F = Z2[x]/(p(x)) with
N = deg(p(x)) which is at most poly(n), then given a ∈ F∗, we observe that a−1 = aq−2

where q = 2N = |F|.

MFCS 2021
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We interpret this equation over Z2[x], that is we need to compute a(x)q−2 (mod p(x))
over Z2[x]. First we show how to compute a(x)2 (mod p(x)). Construct the N ×N matrix
Q whose ith row (Qi,0, Qi,1, . . . , Qi,N−1) is defined as:

N−1∑
j=0

Qi,jx
j = x2i (mod p(x))

for each 0 ≤ i ≤ N − 1. Matrix Q can be computed in ⊕L using the divison lemma 12. Then
the elements of the row vector (a0, a1, . . . , aN−1)Q are the coefficients of a(x)2 (mod p(x))
as explained in section 3 of [10]. Furthermore, the coefficients of a(x)2k (mod p(x)) are given
by (a0, a1, . . . , aN−1)Qk. From lemma 11 we get that a(x)2k (mod p(x)) can be computed
in ⊕L, for any k bounded by poly(n). Therefore. writing q − 2 = (c0, c1, . . . , cN−1) in binary,

a(x)q−2 (mod p(x)) =
N−1∏
i=0

a(x)ci2i

(mod p(x))

can be computed in ⊕L, which gives us a−1.

▶ Corollary 15. Let a ∈ F then a−1 ∈ F can be computed in ⊕L

Mahajan and Vinay [18] describe a way to reduce the computation of a determinant
over a commutative ring to a semi-unbounded logarithmic depth circuit with addition and
multiplication gates over the ring. In fact, the following is an easy consequence of their result:

▶ Lemma 16 (Mahajan-Vinay [18]). Let A ∈ Rn×n be a matrix over a commutative ring.
Then there exist M ∈ R(2n2)×(2n2) and two vectors a, b ∈ R2n2 such that det(A) = aTMnb.
Moreover, each entry of the matrix Mij and the vectors a, b is one of the entries Ai′,j′ or
a constant from {0, 1} and the mapping ϕ where for every (i, j) ∈ [2n2] × [2n2], ϕ(i, j) ∈
A[n]×[n] ∪ {0, 1} is computable in Logspace.

Proof. (Sketch) In [18], given a matrix A they construct a graph HA whose vertex set is
{s, t+, t−} ∪ Q where Q = {[p, h, u, i] : p ∈ {0, 1}, h, u ∈ [n], i ∈ {0, . . . , n − 1}}. Moreover,
the edges are one of the following forms (s, q), (q, q′), (q, t+) and (q, t−) where q, q′ ∈ Q and
have weights w(q, q′) that each depend on a single entry of A or are one of the constants
0, 1. Moreover the mapping is very simple to describe. Let us focus on the induced subgraph
HA[Q]. Notice that |Q| = 2n3 and each “layer” of HA[Q] is identical. In other words,
ei = ⟨[p, h, u, i], [p′, h′, u′, i+ 1]⟩ is an edge in HA[Q] iff ej = ⟨[p, h, u, j], [p′, h′, u′, j + 1]⟩ is
an edge in HA[Q] and both have the same weights for every i, j ∈ {0, . . . , n− 1}. Thus define
the matrix M by putting M[p,h,u],[p′,h′,u′] as the weight of any of the edges ei.

Finally to define a, b: let a[n mod 2,1,1] = 1 and aq = 0 for all other q. b[1,h,u] = auh and
b[0,h,u] = −auh. The correctness of our Lemma then follows from the proof of Lemma 2
of [18]. ◀

Using above lemma 16, we reduce determinant over F to matrix powering over F, which
can be computed in ⊕L using corollary 13. Hence we get

▶ Corollary 17. Let A ∈ Fn×n then det(A) can be computed in ⊕L

Now we demonstrate two results: computing rank and a null vector a matrix over F in
⊕L. We use Mulmuley’s algorithm [19], which requires finding determinant over the ring
F[y, t], which reduces to matrix powering over F[y, t] by the above result. We shall further
reduce this to matrix powering over F as follows: Let R be an arbitrary commutative ring.
We associate with each polynomial f(x) =

∑d−1
i=0 fix

i ∈ R[x] a d× d lower-triangular matrix
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P (f) =


f0
f1 f0
f2 f1 f0
...

...
...

. . .
fd−1 fd−2 fd−3 . . . f0

 ∈ Rd×d

Suppose we have two polynomials f(x) and g(x) of degree d1 and d2 respectively. We
can interpret them as degree d1 + d2 polynomials (with higher exponent coefficients as 0).
Then we have that P (f + g) = P (f) + P (g) and P (fg) = P (f)P (g).

▶ Theorem 18. Let R be any commutative ring and A1, A2, . . . An be n× n matrices over
R[x] such that the degree of each entry is at most poly(n). Denote by A =

∏
Al. There

exists poly(n)× poly(n) matrices B1, B2, . . . Bn over R such that the coefficient of xk in Aij

is equal to Bψ(i,j,k) where B =
∏
Bl and ψ is logspace computable.

In other words, iterated matrix multiplication over R[x] is logspace reducible to iterated
matrix multiplication over R.

Proof. Let N = nmaxi,j,k∈[n]{deg((Ai)jk)} where (Ai)jk denotes the (j, k)th entry of Ai.
By our assumption, N is at most poly(n). Now for each 1 ≤ i ≤ n, compute the matrix
Bi ∈ RnN×nN obtained from Ai by replacing each polynomial (Ai)jk with the N ×N matrix
P ((Ai)jk). These matrices Bi can be computed in log space. Now the coefficient of xk in
Aij can be read from the entry Bψ(i,j,k) where ψ(i, j, k) = ((i− 1)N + k+ 1, (j − 1)N + 1) is
logspace computable. The correctness follows from our observation P (fg) = P (f)P (g). ◀

▶ Remark. This gives us an alternate proof of the fact that iterated matrix multiplication
over Z2[x] is in ⊕L, as it follows immediately from the definition of ⊕L that iterated matrix
multiplication over Z2 is in ⊕L.

▶ Lemma 19 ([19]). Let A ∈ Fm×n then rank(A) can be computed in ⊕L

Proof. We can assume that A is a square (n × n) symmetric matrix because otherwise

replace A with
(

0 A

AT 0

)
which has rank twice that of A. Let Y be an n × n diagonal

matrix with the (i, i)th entry as yi−1. And let m be the smallest number such that tm has a
non-zero coefficient in the characteristic polynomial of Y A, that is det(tI − Y A). Then rank
of A = n−m.

Suffices to show that det(tI − Y A) can be computed in ⊕L. Notice that (tI − Y A) ∈
F[y, t]n×n and so det(tI − Y A) is logspace reducible to matrix powering over F[y, t]. Using
the canonical isomorphism F[y, t] ∼= F[y][t], repeated application of theorem 18 logspace
reduces it to matrix powering over F. ◀

▶ Observation 20. Let A ∈ Fn×n be an invertible matrix then A−1 can be computed in ⊕L

This follows from the fact that computing A−1 involves computing the determinant of
A and n2 cofactors, that is determinants of n2 matrices of size (n − 1) × (n − 1). Notice
that this also requires inverting the determinant, an element of F∗, which has been explained
above.

▶ Corollary 21. Let A ∈ Fn×n then finding a non-trivial null vector (if it exists) is in ⊕L

MFCS 2021
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Proof. Let rank(A) = m, then permute the rows and columns of A so that we can express

A =
(
B C

D E

)
such that B is an invertible m ×m matrix. Let

(
x

y

)
be a column vector

where x ∈ Fm and y ∈ Fn−m, such that

A

(
x

y

)
= 0 =⇒

(
B C

D E

)(
x

y

)
= 0

This reduces to the set of equations: Bx+ Cy = 0 and Dx+ Ey = 0. But the later is
a redundant set of equations because

(
D E

)
can be written in terms of

(
B C

)
. More

precisely, there exists a matrix V ∈ Fn−m×m such that D = V B and E = V C and so
Dx + Ey = V Bx + V Cy = V (Bx + Cy) = 0. Therefore setting x = 1 and y = −B−1C1,
gives us the desired null vector. So it suffices to give a ⊕L algorithm to transform A to the
form as specified above, which follows from [9]. Let Ai be the matrix formed from first i
rows of A. We construct a set S ⊆ [n] as follows:

Base case: i ∈ S if rank(Ai) = 1 and rank(Aj) = 0 for all j < i

Include k ∈ S iff rank(Ak) = 1 + rank(Ak−1)

It follows that |S| = m and let S = {i1 < i2 < · · · < im} and Pr be the permutation
matrix described by (m, im) . . . (2, i2)(1, i1). Then PrA is the required matrix having first
m rows as linearly independent. Next, consider the matrix A′ = (PrA)T and apply the
above algorithm to get a permutation matrix Pc such that first m rows of PcA′ are linearly
independent. Then PrAP

T
c is the required matrix such that the leading principal m−minor

is non-singular. ◀

4 Permanent via Interpolation

We now demonstrate another technique to compute permanent modulo 2k, which doesn’t
resort to computations over exponentially sized fields. This proceeds by choosing small degree
polynomial p(x). The techniques developed in this section are new and hence interesting by
themself.

First we mention a result from [15] used to interpolate the coefficients of a polynomial.

▶ Lemma 22 ([15, Lemma 3.1]). Let F be a finite, characteristic 2, field of order q.∑
a∈F∗

am =
{

0 if q − 1 ∤ m
1 otherwise

This dichotomy allows us to extract coefficients of any integer polynomial.

▶ Lemma 23 ([15, Corollary 3.2]). Let f(x) =
∑d
i=0 cix

i be a polynomial with integer
coefficients and q > d+ 1, then for any 0 ≤ t ≤ d,∑

a∈F∗

aq−1−tf(a) = ct (mod 2)

But this gives us the coefficients modulo 2 only. How do we get coefficients modulo 2k?
The crucial observation here is that the above sum was computed over F. So instead we

do so over R by identifying a copy of F∗ ↪−→ R, and then we have∑
a∈F∗

am =
{

2αm if q − 1 ∤ m
2βm + 1 otherwise

where αm, βm ∈ R.
Now we use repeated squaring method to obtain our desired modulo 2k result.
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▶ Lemma 24. ∀m ≥ 0, k ≥ 1

∑
a1,...,a2k−1 ∈F∗

(a1a2 · · · a2k−1)m =
(∑
a∈F∗

am

)2k−1

=
{

0 (mod 2k) if q − 1 ∤ m
1 (mod 2k) otherwise

Note: We remind the reader that the computation here is done over Rk

Proof. Fix any m ≥ 0. Clearly (2αm)2k−1 ≡ 0 (mod 2k).
Suffices to show (2βm + 1)2k−1 ≡ 1 (mod 2k). This follows from induction on k. For k = 1

the result holds as stated above. Assume that for some k ≥ 1, the result holds. Then we
have (2βm + 1)2k−1 = 2kγm,k + 1 where γm,k ∈ R

(2βm + 1)2k

=
(

(2βm + 1)2k−1
)2

= (2kγm,k + 1)2 = 1 (mod 2k+1) ◀

Using this we can interpolate coefficients of an integer polynomial as follows:

∑
a1,...,a2k−1 ∈F∗

(a1 . . . a2k−1)q−1−tf(a1 . . . a2k−1) = ct (mod 2k)

Finally let A(x) be an n×n matrix of integer polynomials and the permanent polynomial be

perm(A(x)) =
N∑
i=0

cix
i

From the above lemma it follows that

∑
a1,a2...∈F∗

(a1a2 · · · )q−1−tperm(A(a1a2 · · · )) = ct (mod 2k)

provided that our field F is of order at least N + 2. For this, fix l = ⌈ log logN
log 3 ⌉ so that

22.3l

> N + 1. Hence the field obtained from the irreducible polynomial p(x) = x2·3l +x3l + 1
([27] Theorem 1.1.28) serves the purpose. It suffices to compute |F∗|2k−1 = O(N2k−1) many
permanents over Rk to obtain all the coefficients ct modulo 2k, all of which can be computed
in parallel. Hence, we can compute the permanent of A modulo 2k over Z[x] in ⊕L.

5 Shortest Disjoint Cycles

Now that we have a ⊕L algorithm to compute permanent mod 2k for matrices over Z[x], we
are all set to demonstrate a parallel algorithm for shortest two disjoint paths. But we notice
that we can place this problem in a more general framework of shortest disjoint cycles. Let
us first formally define these problems.

SDP (k): Given a weighted undirected graph with k pairs of marked vertices {(si, ti) |
1 ≤ i ≤ k}, find the minimum of sum of weight of paths between each pair si and ti such
that all paths are pairwise disjoint.

SDC(l, k): Given a weighted undirected graph with k marked vertices, find the minimum
of sum of weight of l cycles such that they pass through all the marked vertices and are
pairwise disjoint and each cycle is incident to at least one of the marked vertices.

MFCS 2021
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▶ Note. We only consider non-trivial cycles that is we don’t consider self-loops in the above
problem.

Given an instance of the SDP (2) problem, join the pairs of vertices (s1, t1) and (s2, t2)
with new vertices u1 and u2 respectively, as show in Figure 1. Notice that any two disjoint
cycles passing through u1 and u2 give us two disjoint paths between (s1, t1) and (s2, t2).

s1

t1

u1

s2

t2

u2

1

1

1

1

Figure 1 Converting an instance of SDP (2) to SDC(2, 2).

Similarly, connecting the k-pairs of vertices via another new vertex and edges of weight
x0 = 1, gives us a reduction from k disjoint paths to k disjoint cycles via k vertices. Since
this reduction preserves the weight of the path/cycle, it is indeed a reduction from SDP (k)
to SDC(k, k).

To apply the techniques of [2] to disjoint cycles problem, we instead consider the following
variant SDCE(l, k): Given a weighted undirected graph with k marked edges, find the
minimum of sum of weight of l cycles such that they pass through all the marked edges and
are pairwise disjoint.

It can be easily seen that for a fixed k there is a logspace reduction from SDC(l, k)
to SDCE(l, k) as follows: Let (G, {v1, v2, . . . , vk}) be an instance of SDC(l, k). Assume
without loss of generality that the marked vertices form an independent set, or otherwise
split the edge into two by introducing a new vertex in the middle. For each i, choose a vertex
ui, a neighbour of vi, such that i ̸= j =⇒ ui ≠ uj , we solve (G, {e1, e2, . . . ek}) an instance
of SDCE(l, k) where ei = {ui, vi} and output the smallest solution amongst all the instances
of SDCE thus created. Since for each i, deg(vi) < n, number of instances of SDCE created
are bounded by O(nk) all of which can be solved in parallel as k is fixed.

5.1 Pre-processing

Given a graph G = (V,E,w) and k marked edges {ei = {si, ti}}i≤k, assign weight xw(e) to
the edge e of G and add self loops (weight 1) on all vertices except {si, ti}i≤k. Observe that
all the non-zero terms appearing in the permanent of adjacency matrix correspond to a cycle
cover in G. To force these k-edges in our cycle cover, we direct these edges in a certain way
which we shall call as a pattern.

Formally, define a pattern P as an ordered pairing of terminals of given edges {si, ti |
1 ≤ i ≤ k}. Furthermore, we view each undirected edge {u, v} in G as two directed edges
(u, v) and (v, u) with the same weight. For any pattern P , define a pattern graph GP with
the same vertex/edge set as of G but such that if (u, v) ∈ P then all outgoing edges from u,
except edge (u, v), are deleted. We denote by AP the adjacency matrix of GP .

Now we shall show how to solve the SDCE(1, k) problem for any k ≥ 1. This algorithm
essentially follows from the work of [28]. Next, we also present how to solve the SDCE(2, k)
problem for any k ≥ 2. As far as we know, no algorithm (better than brute force) was known
apriori to our work for k ≥ 3.
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5.2 Shortest Cycle
Let {ei = {si, ti}}i≤k be given k-edges. For each binary sequence b = (b1, b2, . . . , bk−1) of
length k − 1, consider the following pattern Pb:

(s1, t1) ∈ Pb
∀2 ≤ i ≤ k, if bi−1 = 0 then (si, ti) ∈ Pb else (ti, si) ∈ Pb

So {Pb}b is the collection of patterns with the orientation of e1 fixed and all possible
orientations of the other edges {ei}i≥2, as dictated by each binary sequence.

▷ Claim 25. Under the assumption that the shortest cycle is unique, the smallest exponent
with non-zero coefficient in f1(x) (mod 2) is the weight of unique shortest cycle passing
through the given edges, where

f1(x) =
∑
b

perm(APb
)

Proof. Let C be any cycle cover which consists of at least 2 non-trivial cycles. Consider the
cycle in C which doesn’t contain edge e1 - there are two ways of orienting this cycle, namely
clockwise and counter-clockwise. So this cycle cover contributes to f1(x) for at least two
such b-sequences and so it vanishes modulo f1 (mod 2).

Thus the only terms that survive in f1 (mod 2) are the cycle covers which consist of
one cycle passing through all the given edges and self-loops on the remaining vertices, and
furthermore number of cycles of this weight must be odd.

Since the shortest weight cycle was unique by our assumption, we get the desired result.
◁

To drop the assumption that a unique minimum weight solution exists, we instead assign
modified weights 2nmw(e) + w′(e) where n = |V (G)|, m = |E(G)|, w(e) is the given weight
of edge e and w′(e) ∈ {0, 2, . . . , 2m− 1} is choosen independently and uniformly at random
for each edge e. Then isolation lemma [20] tells us that, with probability 1

2 , the minimum
weight cycle is unique. Hence if the term xj survives as the smallest exponent with non-zero
coefficient term in f1(x) (mod 2) then we get the weight of shortest cycle as ⌊j/2nm⌋.

But this gives us only a randomized ⊕L algorithm (that is RNC algorithm). To further
show that a common poly weight scheme exists for all graphs of size n, we use the well-known
result of [21] which immediately places this problem in ⊕L/poly. For completeness sake, we
provide a proof of this fact in the appendix B.

5.3 Shortest Two Disjoint Cycles
We shall first prove the following stronger result:

▶ Theorem 26. Given a set of k-edges {ei}i≤k, we can find weight of the shortest two disjoint
cycles passing through these edges such that e1 and e2 appear in different cycles in ⊕L/poly
(and RNC)

Let {Pb}b be the patterns as defined above. Furthermore, for each binary sequence
c = (c1, c2, . . . , ck−2) of length k − 2, define pattern Qc as

(s1, s2) ∈ Qc
(t1, t2) ∈ Qc
∀3 ≤ i ≤ k, if ci−2 = 0 then (si, ti) ∈ Qc else (ti, si) ∈ Qc

MFCS 2021
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With a combination of these patterns, we can get our desired cycle covers. We claim that
the non-zero terms appearing in

f2(x) =
∑
b

perm(APb
)−

∑
c

perm(AQc
)

correspond to cycle covers in GPb
such that edges e1 and e2 appear in different cycles.

To prove our claim, we need to argue that the cycle covers of GPb
in which e1 and e2

appear in the same cycle are exactly the cycle covers of GQc Let

CQ =
⊔
c

cycle covers of GQc

CP =
⊔
b

cycle covers of GPb
such that edges e1 and e2 appear in the same cycle

where each cycle cover is counted with repetitions in CP and CQ.

▷ Claim 27. There is a one-one correspondence between CP and CQ.

Proof. We define the mapping φ : CP → CQ as follows. Given a cycle cover in CP , remove
the edges e1 and e2 and add edges (s1, s2) and (t1, t2), refer to Figure 2 below.

s1

t1

s2

t2

s1

t1

s2

t2

Type 1 cycle cover in CP Type 1 cycle cover in CQ

s1

t1

s2

t2

s1

t1

s2

t2

Type 2 cycle cover in CP Type 2 cycle cover in CQ

Figure 2 Bijection between CP and CQ.

To show that this a well-defined mapping and indeed a bijection, we partition CP into
type 1 and type 2 cycle covers, depending upon the orientation of the edge e2. Consider the
cycle in which e1 and e2 appear together. Then if the edge e2 is oriented as (s2, t2) then we
call it type 1 cycle cover otherwise we call it a type 2 cycle cover.

Similarly, we partition CQ into type 1 and type 2 cycle covers. If the edges {s1, s2} and
{t1, t2} appear in the same cycle then we call it a type 1 cycle cover otherwise we call it a
type 2 cycle cover.

Fix a type 1 cycle cover of CP . Then it contains a cycle of the form

(s1
e1−→ t1 → P1 → s2

e2−→ t2 → P2 → s1)

Applying φ to this cycle cover we get the cycle

(s1
e1−→ s2 → P reverse

1 → t1
e2−→ t2 → P reverse

2 → s1)

and the other cycles remain intact. This constitutes a type 1 cycle cover in CQ
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Similarly, consider a type 2 cycle cover of CP with the cycle

(s1
e1−→ t1 → P1 → t2

e2−→ s2 → P2 → s1)

Applying φ to this cycle cover we get two cycles

(s1
e1−→ s2 → P reverse

2 → s1)

(t1
e2−→ t2 → P reverse

1 → t1)

and the other cycles remain intact. This constitutes a type 2 cycle cover in CQ.
Therefore, φ is a well-defined mapping and furthermore type i cycle covers of CP are

mapped to type i cycle covers of CQ, i ∈ {1, 2}. Now consider ψ : CQ → CP defined as follows.
Given a cycle cover in CQ, remove the edges (s1, s2) and (t1, t2) in the cycle and insert edges
e1 and e2 with the orientation decided by the type. By an similar argument as above, we get
that ψ is well-defined and clearly ψ is inverse of φ. ◁

Now suppose C is a cycle cover of G such that edges e1 and e2 appear in different cycles.
We have two cases:
Case 1: number of non-trivial cycles in C is more than 2. Consider any two non-trivial

cycles in C such that e1 is not incident on them. We can orient these two cycles in both
clockwise and anti-clockwise direction and so we get that C is a cycle cover in GPb

for at
least 4 b-sequences. Hence, the term corresponding to C cancels out in f2 (mod 4)

Case 2: number of non-trivial cycles is exactly two. Then C is a cycle cover in GPb
for exactly

two b-sequences , that is the the cycle passing through e2 has two possible orientations
whereas cycle passing through e1 has a fixed orientation (as orientation of e1 remains
fixed in all GPb

). Hence, the term corresponding to C appears with a coefficient of two
in f2 (mod 4). Therefore, the non-zero terms in f2 (mod 4) correspond to only the cycle
covers in which edges e1 and e2 appear in different cycles and number of non-trivial cycles
is exactly 2. Assuming a unique shortest two disjoint cycle exists, it’s weight can be
obtained from the smallest exponent with a non-zero coefficient in f2 (mod 4). Finally,
to drop this assumption, we again assign random weights as done previously to ensure
that the minimum weight solution is unique, with high probability. Furthermore, as in
the previous case, we can again follow the proof of [21] to obtain a ⊕L/poly algorithm.
This completes the proof of Theorem 26.

▶ Corollary 28 (Theorem 2 restated). Given a set of k-edges {ei}i≤k, we can find weight of
the shortest two cycles passing through these edges in ⊕L/poly (and RNC)

Proof. For each pair of edges ei and ej , we can find weight of the shortest cycles separating
them using the above algorithm. Hence taking the minimum over all pairs, we get our desired
result. ◀

5.4 Constructing Cycles
We remark that under the assumption that the shortest cycle(s) are unique, we can recover
these cycles C just from the knowledge of their weight w(C). This follows the standard
strategy of solving search via isolation as in [20]: for each edge e ̸∈ {e1, . . . , ek}, delete the
edge e and call the resulting graph Ge. Running our algorithm on (Ge, {e1, . . . , ek}), if the
shortest cycle(s) weight is more than w(C), then discard e otherwise add e to the set C,
which gives us the required cycle(s). Doing this procedure in parallel for each edge e, it can
be easily seen that we can recover C in ⊕L/poly (or RNC).
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6 Conclusion

We started by recognizing the appropriate algebraic structure R over which we can present a
parallel algorithm to compute permanent modulo 2k. Then we saw two techniques to get
permanent over Z[x] (mod 2k) from R (mod 2k). First method was to choose a large enough
irreducible polynomial for our ring R. Another method was to interpolate over the ring R,
which was an extension of the commonly known interpolation over finite fields.

Then we considered applications for parallel polynomial permanent. This includes a
direct parallelization of the shortest two disjoint paths problem as given by [2]. Another
direct application, although which required some modification, was finding shortest cycle
passing through given vertices [28]. We further presented a common framework to view
the above mentioned problems. This also aided us in further generalizing and obtaining a
parallel algorithm to find shortest two disjoint cycles in any weighted undirected graph.

The more general question of computing permanent over arbitrary commutative rings of
characteristic 2k for k ≥ 2 still remains open. On the other hand, using the framework we
presented, we ask if it is possible to obtain shortest k disjoint cycles for k ≥ 3 in RNC or
even perhaps in randomized polynomial time?
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A Examples

Example 1

Let A =

 1 x+ 1 x+ 2
x x2 x2 + x

x2 3 x2 + 3

, p(x) = x6 + x3 + 1 be the irreducible polynomial and we

want to evaluate perm(A) (mod 4) over the ring R = Z[x]/(p(x)). First of all, a direct
computation gives us perm(A) = 2x5 + 6x4 + 2x3 + 12x2 + 12x. Now we demonstrate the
steps taken by our algorithm.

Step 1: We start by evaluating perm(A) (mod 2). We directly notice here that last column
is the sum of first two columns and so det(A) = 0 =⇒ perm(A) ≡ 0 (mod 2)

Step 2: Since det(A) ≡ 0 (mod 2), we solve the equation AT v = 0 over F by our method as

follows:

 1 x x2

x+ 1 x2 1
x x2 + x x2 + 1

v1
v2
v3

 = 0

Since rank of the principal 2 × 2 submatrix is already 2, we set v3 = 1 and solve the

equation:
(
v1
v2

)
= −

(
1 x

x+ 1 x2

)−1(
x2

1

)
1 to get v1 = x3 + 1 and v2 = x5 + x.

Step 3: For each j = 1, 2, 3, we find bj such that
∑
i viaij = 2bj (mod 4)

j = 1 : (x3 + 1) + x(x5 + x) + x2 = 2x2

j = 2 : (x+ 1)(x3 + 1) + x2(x5 + x) + 3 = 2x3

j = 3 : (x+ 2)(x3 + 1) + (x2 + x)(x5 + x) + x2 + 3 = 2x3 + 2x2

Step 4: We have the formula

perm(A) (mod 4) = 2

 3∑
j=1

bjperm(A[{̂3}, {̂j}]) (mod 2)



− 2
2∑
i=1

vi

 3∑
j,k=1
j<k

aijaikperm(A[{̂3, i}, {̂j, k}]) (mod 2)


Step 4.1:

perm(A[{̂3}, {̂1}]) = perm
(
x+ 1 x+ 2
x2 x2 + x

)
= x (mod 2)

perm(A[{̂3}, {̂2}]) = perm
(

1 x+ 2
x x2 + x

)
= x (mod 2)

perm(A[{̂3}, {̂3}]) = perm
(

1 x+ 1
x x2

)
= x (mod 2)

=⇒
3∑
j=1

bjperm(A[{̂3}, {̂j}]) = ((x3) + (x4) + (x4 + x3)) = 0 (mod 2)
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Step 4.2:

3∑
j,k=1
j<k

a1ja1kperm(A[{̂1, 3}, {̂j, k}])

= (x+ 1)(x2 + x) + (x+ 2)x2 + (x+ 1)(x+ 2)x = x3 + x2 + x (mod 2)
3∑

j,k=1
j<k

a2ja2kperm(A[{̂2, 3}, {̂j, k}])

= x3(x+ 2) + x(x2 + x)(x+ 1) + x2(x2 + x) = x4 + x3 + x2 (mod 2)

2∑
i=1

vi

 3∑
j,k=1
j<k

aijaikperm(A[{̂3, i}, {̂j, k}]) (mod 2)

 = x5 + x4 + x3 (mod 4)

Therefore, perm(A) (mod 4) = 2x5 + 2x4 + 2x3 which matches with our direct
computation.

Example 2

Consider A =

1 x x2

x x2 1
1 x2 x

, and so perm(A) = x5 + x4 + x2 + x. Therefore, we now have

det(A) ̸≡ 0 (mod 2)

Step 1: Find Q such that QA has all leading principal minors are non-zero. In this case, we

will get Q =

1 0 0
0 0 1
0 1 0

 =⇒ QA =

1 x x2

1 x2 x

x x2 1


Step 2: Consider matrix C whose all entries are same as A except the last one which

is incremented by y, that is C =

1 x x2

1 x2 x

x x2 1 + y

, then perm(C) = perm(A) +

yperm(A[{̂3}, {̂3}]). Again construct C ′ same as A[{̂3}, {̂3}] but replace the last entry

incremented by y′, that is C ′ =
(

1 x

x x2 + y′

)
=⇒ perm(C ′) = perm(A[{̂3}, {̂3}]) +

y′perm(A[{̂2, 3}, {̂2, 3}]). Written as one equation, we get

perm(A) = perm(C)− y (perm(C ′)− y′a11)

In this equation, both C,C ′ are matrices with det ≡ 0 (mod 2) with the correct choice of
y, y′, which were:

y0 = perm(A)perm(A[{̂3}, {̂3}])−1 (mod 2) = (x5 + x4 + x2 + x)(x4 + x3 + x2) = x3 + 1

y′
0 = perm(A[{̂3}, {̂3}])perm(A[{̂2, 3}, {̂2, 3}])−1 (mod 2) = x2 + x

So we can compute perm(C) and perm(C ′) by above method and substitute it into
previous equation to get perm(A) (mod 4).
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B Weights as a Polynomial Advice

Our proof is based on [21]. Call a weighted undirected graph (G,w) (w is the given weight
function on edges) min-k-unique, if for any k marked edges on G, there exists unique shortest
l disjoint cycles passing through these k edges. Our goal is to show for each n > 0 there exists
a set of n2 weight functions w1, . . . , wn2 such that given a graph G on n vertices, (G,wi) is
min-k-unique for some i ∈ [1, n2].

Given a graph G on n vertices and k marked edges e1, . . . , ek, let F(e1, . . . , ek) be the
family of all l disjoint cycles passing through e1, . . . , ek. Using isolation lemma [20], if w is a
random weight function, that is each edge is assigned a weight from [1, 4n2k+2] independently
and uniformly at random, then probability that F(e1, . . . , ek) has a unique minimum weight
element is at least 1− 1/4n2k. Therefore, probability that (G,w) is not min-k-unique for a
random weight function w is at most

Pr[∃e1, . . . , ek : F(e1, . . . , ek) doesn’t have a minimum weight element] ≤
∑

e1,...,ek

1
4n2k

≤ 1/4

Now we claim that there exists a set of n2 weight functions W = (w1, . . . , wn2) such that
for any given graph G on n vertices, (G,wi) is min-k-unique for some 1 ≤ i ≤ n2. We say
W is bad if it doesn’t meet this criteria and in particular W is bad for G, if none of (G,wi)
is min-k-unique. For a randomly choosen W , that is each wi is chosen independently and
uniformly at random, then

Pr[W is bad for G] ≤ Pr[∀i : (G,wi) is not min-k-unique] ≤
(

1
4

)n2

=⇒ Pr[W is bad] ≤ Pr[∃G : W is bad for G] ≤ 2n
2
(

1
4

)n2

< 1

Hence there exists some W = (w1, . . . , wn2) which satisfies the above property and so W
is the required poly advice. To complete the argument for SDCE(1, k), SDCE(2, k) ∈ ⊕L,
we obtain the weight of shortest cycle(s), using each of the weight functions wi and output
the minimum amongst them.

C Hafnians and counting perfect matchings modulo 2k

Similar to permanent and determinant, another pair of well-studied algebraic analogous
functions on a matrix are hafnians and pfaffians. Let A = (aij) be a symmetric 2n × 2n
matrix over integers, hafnian is defined as

hf(A) = 1
2nn!

∑
σ∈S2n

n∏
j=1

aσ(2j−1),σ(2j) (2)

Note that the diagonal entries of A don’t contribute in the calculation of hafnians and
hence we can assume them to be 0. Let B = (bij) be a skew-symmetric 2n × 2n matrix,
pfaffian is defined as

pf(B) = 1
2nn!

∑
σ∈S2n

sgn(σ)
n∏
j=1

bσ(2j−1),σ(2j) (3)
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But notice that hf(A) ≡ pf(A) (mod 2). [17] have shown that pf(A) can be computed in
NC and hence as an immediate consequence we get that hf(A) (mod 2) can be computed in
NC. We can reduce the computation of hafnian to several hafnians of smaller submatrices
using the following lemma. Denote by A[i, j] the matrix obtained from A by deleting rows i
and j, columns i and j.

▶ Lemma 29 ([13, Lemma 2.2]).

hf(A) =
∑
j:j ̸=i

aijhf(A[i, j])

hf(A) = aijhf(A[i, j]) +
∑

pq:p,q ̸∈{i,j},p̸=q

(aipajq + aiqajp)hf(A[i, j, p, q])

Assume pf(A) ≡ 0 (mod 2), then det(A) ≡ 0 (mod 2) and we can find a vector v ∈ Z2n
2

such that Av = AT v = 0 (mod 2). Assume without loss of generality v1 = 1.
Let ri, ci denote the ith row and ith column of A respectively.

Construct A′ by replacing first row with
∑
viri and then replacing first column with∑

vici

Construct Ai by replacing first row with ri and first column with ci.

Then we check that

hf(A′) =
∑
j>1

∑
i≥1

viaij

 hf(A[1, j])

=
∑
i≥1

vi

∑
j>1

aijhf(A[1, j])


=
∑
j>1

a1jhf(A[1, j]) +
∑
i>1

vi

∑
j>1

aijhf(A[1, j])


= hf(A) +

∑
i>1

vihf(Ai)

Computing hf(A′): since AT v = 0 (mod 2) =⇒
∑
i≥1 viaij = 2bj (mod 2k) for some

cj ∈ Z and hence

hf(A′) =
∑
j>1

∑
i≥1

viaij

hf(A[1, j])

=
∑
j>1

2bjhf(A[1, j])

=⇒ hf(A′) (mod 2k) = 2

∑
j>1

bjhf(A[1, j]) (mod 2k−1)


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Computing hf(Ai):

hf(Ai) = aiihf(A[1, i]) +
∑

pq:p,q ̸∈{1,i},p̸=q

2aipaiqhf(A[1, i, p, q])

=⇒ hf(Ai) (mod 2k) = 2

 ∑
pq:p,q ̸∈{1,i},p̸=q

aipaiqhf(A[1, i, p, q]) (mod 2k−1)


Thus, we can compute hf(A) (mod 2k) provided pf(A) ≡ 0 (mod 2).
Now if pf(A) ̸≡ 0 (mod 2), then we can find (i, j), i ̸= j such that hf(A[i, j]) ̸≡ 0 (mod 2).

Consider the matrix C where all entries are same as inA except aij is replaced with aij+1, then
we get hf(C) = hf(A)+hf(A[i, j]). Since hf(C) ≡ 0 (mod 2), we can compute hf(C) (mod 2k)
as described above and since hf(A[i, j]) is a (n− 2)× (n− 2) matrix, we compute it’s hafnian
recursively modulo 2k. Therefore, we can compute hf(A) = hf(C)− hf(A[i, j]) (mod 2k).

This gives us a P algorithm for computing hafnians modulo 2k.

Counting perfect matchings modulo 2k

Let G be an undirected graph and AG denote the adjacency matrix of the graph G. If G
has odd number of vertices, then clearly there aren’t any perfect matchings. Otherwise it is
straight-forward to see that number of perfect matchings in G is same as the value hf(AG).
Hence the result follows.
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