
Pebble Transducers with Unary Output
Gaëtan Douéneau-Tabot #

IRIF, Université de Paris, France

Abstract
Bojańczyk recently initiated an intensive study of deterministic pebble transducers, which are
two-way automata that can drop marks (named “pebbles”) on their input word, and produce an
output word. They describe functions from words to words. Two natural restrictions of this definition
have been investigated: marble transducers by Douéneau-Tabot et al., and comparison-free pebble
transducers (that we rename here “blind transducers”) by Nguyên et al.

Here, we study the decidability of membership problems between the classes of functions
computed by pebble, marble and blind transducers that produce a unary output. First, we show that
pebble and marble transducers have the same expressive power when the outputs are unary (which
is false over non-unary outputs). Then, we characterize 1-pebble transducers with unary output
that describe a function computable by a blind transducer, and show that the membership problem
is decidable. These results can be interpreted in terms of automated simplification of programs.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases polyregular functions, pebble transducers, marble transducers, streaming
string transducers, factorization forests

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.40

Related Version Full Version: https://arxiv.org/abs/2104.14019

Funding Gaëtan Douéneau-Tabot: Funded by the French Ministry of Defence (DGA IP).

Acknowledgements The author is grateful to Olivier Carton for discussing about this work. He also
thanks the reviewers for their helpful comments and remarks.

1 Introduction

Regular languages can be described by several models such as deterministic, non-deterministic,
or two-way (the reading head can move in two directions) finite automata [12]. A natural
extension consists in adding an output mechanism to finite automata. Such machines, called
transducers, describe functions from words to words (or relations when non-deterministic)
and provide a natural way to model simple programs that produce outputs. The particular
model of a two-way transducer consists in a two-way automaton enhanced with an output
function. It describes the class of regular functions which has been intensively studied for its
fundamental properties: closure under composition [5], logical characterization by monadic
second-order transductions [7], decidable equivalence problem [9], etc.

Pebble transducers and their variants. The model of k-pebble transducer can be defined
as an inductive extension of two-way transducers. A 0-pebble transducer is just a two-way
transducer. For k ≥ 1, a k-pebble transducer T is a two-way transducer that, when in a given
configuration, can “call” an external function f, computed by some (k−1)-pebble transducer.
T gives as argument to f its input word together with a mark, named “pebble”, on the
position from which the call was performed, and uses the output of f within its own output.

The behavior of a 1-pebble transducer is depicted in Figure 1. Intuitively, a k-pebble
transducer is some recursive program whose recursion depth is at most k+1. Equivalently,
it can be seen as an iterative algorithm with “two-way for-loops”, such that the maximal
depth of nested loops is k+1. A k-pebble transducer can only produce an output whose

© Gaëtan Douéneau-Tabot;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 40; pp. 40:1–40:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:doueneau@irif.fr
https://doi.org/10.4230/LIPIcs.MFCS.2021.40
https://arxiv.org/abs/2104.14019
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Pebble Transducers with Unary Output

length is polynomial in its input’s length, more precisely O(nk+1) when n is the input’s
length (this is intuitive from the “nested loops” point of view). The functions computed
by a k-pebble transducer for some k ≥ 0 are thus called polyregular functions [3]. Several
properties of polyregular functions have been investigated: closure under composition [3],
logical characterization by monadic second-order interpretations [4], etc. The equivalence
problem (given two machines, do they compute the same function?) is however still open.

Input word⊢ ⊣
Run of the main machine

Input word⊢ ⊣
Run of the submachine for f

pebble

Figure 1 Behavior of a 1-pebble transducer.

Recently, two natural restrictions of pebble transducers have been introduced. First, the
k-marble transducers of [6] only give as argument to their external function the prefix of the
input word which ends in the calling position (see Figure 4). Second, the k-blind transducers1

of [11] give the whole input word, but no pebble on the calling position (see Figure 3). The
classes of functions they compute are strict subclasses of polyregular functions [6, 11].

Class membership problems. These various models of transducers raise several membership
problems: given a function computed by a machine of model X, can it be computed by some
machine of model Y ? When Y is a restriction of X, this problem reformulates as a program
optimization question: given a “complex” algorithm in a class X, can we build an equivalent
“simpler” one in class Y ? Thus it is of a foremost interest in practice.

Given a function f computed by an ℓ-pebble transducer, one can ask whether it is
computable by a k-pebble transducer for a given k < ℓ. The problem is decidable [10],
and it turns out that a necessary and sufficient condition for this membership is that
|f(w)| = O(|w|k+1). Using the “nested loops” interpretation of pebble transducers, it means
that an output of size O(|w|k+1) can always be produced with at most k+1 nested loops.
Similar results have been obtained in [6] and [11] for their variants, with the same conclusion:
an output of size O(|w|k+1) can always be produced with depth at most k+1.

Contributions. In this paper, we study a different membership problem: can a function
given by a k-pebble transducer be computed by a k-marble or k-blind transducer? It turns out
to be a more difficult question, since there is no intuitive and machine-independent candidate
for a membership condition (such as the size of the output). In general, membership problems
for transducers are difficult, since contrary to regular languages, there is no “canonical” object
known to represent a regular function. Hence, there can be several seemingly unrelated
manners to produce the same function, and moving from one to another can be technical.

We focus on transducers whose output alphabet is unary, and our proof techniques are
new. The first main result is that (when the outputs are unary) k-pebble transducers and
k-marble transducers compute the same functions (one direction is obvious since k-marble
is a restriction of k-pebble). The transformation is effective, but the way of producing the
output must sometimes be completely modified (the transformation modifies the origin
semantics, in the sense of [2]), which creates an additional difficulty. The correspondence
fails as soon as the output is not over a unary alphabet, as detailed in Example 1.

1 The original terminology of [11] is comparison-free pebble transducers, but we strongly believe that the
term “blind” is more adapted, since there are no pebbles in this model.

G. Douéneau-Tabot 40:3

▶ Example 1 ([6, 11]). The partial function {a, b}∗ → {a, b}∗, ambn 7→ (bna)m can be
computed by a 1-pebble transducer, but not by a k-marble for any k ≥ 0.

Since the equivalence problem is decidable for marble transducers, it follows from our
result that it is also decidable for pebble transducers with unary output.

As a second main result, we show how to decide (when the outputs are unary) whether a
function given by 1-pebble (≡ 1-marble) transducer can be computed by a 1-blind transducer,
or more generally by a k-blind transducer for some k ≥ 0. The technical proof also gives a
syntactical characterization of 1-marble transducers whose function verify this property: it
describes a kind of “symmetry” in the production of the machine on its input. Furthermore,
the conversion is effective when possible, but once more the manner of producing the output
can be strongly modified. Our techniques heavily rely on the theory of factorization forests;
this is, to our knowledge, the first time this notion is used for membership problems of
transducers, and we believe this approach to be fruitful.

Our results are summarized in red in Figure 2. We also give some examples of functions
(their outputs are non-negative integers, since we identify {a}∗ with N).

0-pebble
=

0-marble
=

0-blind

1-blind
1-pebble

=
1-marble

O(n)

O(n2)

O(nk+1)

k-pebble
=

k-marble k-blind

nb-a : w ∈ {a, b}∗ 7→ |w|a

letter-product : w ∈ {a, b}∗ 7→ |w|a|w|b
square : an 7→ n2

product : ambn 7→ mn

iterated-square : an1 ban2 b · · · banℓ b 7→
∑ℓ

i=1(ni)2

triangular-sum : anℓ banℓ−1 b · · · ban1 b 7→
∑ℓ

i=1 ini

decidable
membership

Figure 2 Classes of functions with unary output and results of this paper.

Outline. We first recall in Section 2 the definitions of k-pebble, k-marble and k-blind
transducers, simplified for the case of unary outputs. In Section 3, we define the notions of
k-pebble, k-marble and k-blind bimachines, and show their equivalence with the transducer
models. Bimachines are easier to handle in the proofs, due to the fact that they avoid
two-way moves. In Section 4, we show that k-marble and k-pebble transducers are equivalent.
Finally, we solve in Section 5 the class membership problem from 1-pebble to 1-blind. Due
to space constraints, several proofs are sketched in the main paper, and we focus on the most
significant lemmas and characterizations.

2 Preliminaries

N is the set of nonnegative integers. If 0 ≤ i ≤ j, the set [i:j] denotes {i, i+1, . . . , j} ⊆ N
(empty if j < i). Capital letters A, B denote finite sets of letters (alphabets). The empty
word is denoted ε. If w ∈ A∗, let |w| ∈ N be its length, and for 1 ≤ i ≤ |w| let w[i] be its i-th
letter. If I = {i1 < · · · < iℓ} ⊆ {1, . . . , |w|}, let w[I] := w[i1] · · ·w[iℓ]. If a ∈ A, we denote
by |w|a the number of letters a occurring in w. Given A = {a, . . . }, let A := {a, . . . } be a

MFCS 2021

40:4 Pebble Transducers with Unary Output

disjoint copy of A. For 1 ≤ i ≤ |w|, we define w↑i := w[1:i−1]w[i]w[i+1:|w|] as “w in which
position i is underlined”. We assume that the reader is familiar with the basics of automata
theory, in particular the notion of two-way deterministic automaton.

Two-way transducers. A deterministic two-way transducer is a deterministic two-way
automaton enhanced with the ability to produce outputs along its run. The class of functions
described by these machines is known as regular functions [5, 7].

▶ Definition 2. A (deterministic) two-way transducer (A, B, Q, q0, F, δ, λ) is:
an input alphabet A and an output alphabet B;
a finite set of states Q with an initial state q0 ∈ Q and a set F ⊆ Q of final states;
a (partial) transition function δ : Q× (A ⊎ {⊢,⊣})→ Q× {◁, ▷};
a (partial) output function λ : Q× (A ⊎ {⊢,⊣})→ B∗ with same domain as δ.

When given as input a word w ∈ A∗, the two-way transducer disposes of a read-only
input tape containing ⊢w⊣. The marks ⊢ and ⊣ are used to detect the borders of the tape,
by convention we denote them as positions 0 and |w|+1 of w. Formally, a configuration over
⊢w⊣ is a tuple (q, i) where q ∈ Q is the current state and 0 ≤ i ≤ |w|+1 is the position of
the reading head. The transition relation → is defined as follows. Given a configuration
(q, i), let (q′, ⋆) := δ(q, w[i]). Then (q, i) → (q′, i′) whenever either ⋆ = ◁ and i′ = i − 1
(move left), or ⋆ = ▷ and i′ = i + 1 (move right), with 0 ≤ i′ ≤ |w|+1. A run is a sequence
of configurations (q1, i1) → · · · → (qn, in). Accepting runs are those that begin in (q0, 0)
and end in a configuration of the form (q, |w|+1) with q ∈ F (and it never visits such a
configuration before). The function f : A∗ → B∗ computed by the machine is defined as
follows. Let w ∈ A∗, if there exists an accepting run on ⊢w⊣, then f(w) is the concatenation
of the λ(q, w[i]) along this unique run on ⊢w⊣. To make f a total function, we let f(w) := ε

if there is no accepting run (the language of words having an accepting run in a two-way
transducer is regular [12], hence the domain does not matter).

▶ Example 3. reverse : A∗ → A∗, abac 7→ caba can be computed by a two-way transducer.

From now on, the output alphabet of the machines will always be a singleton. Up to
identifying {a}∗ and N, we assume that λ : Q× (A ⊎ {⊢,⊣})→ N and f : A∗ → N.

External functions. We now extend the notion of output function λ: it will not give directly
an integer, but performs a call to an external function which returns an integer. For pebbles,
the output of the external functions depends on the input word and the current position.

▶ Definition 4. A two-way transducer with external pebble functions (A, Q, q0, F, δ,F, λ) is:
an input alphabet A;
a finite set of states Q with an initial state q0 ∈ Q and a set F ⊆ Q of final states;
a (partial) transition function δ : Q× (A ⊎ {⊢,⊣})→ Q× {◁, ▷};
a finite set F of external functions f : (A ⊎A)∗ → N;
a (partial) output function λ : Q× (A ⊎ {⊢,⊣})→ F with same domain as δ.

Configurations (q, i) and runs of two-way transducers with external functions are defined
as for classical two-way transducers. The function f : A∗ → N computed by the machine
is defined as follows. Let w ∈ A∗ such that there exists an accepting run on ⊢w⊣. If
λ(q, w[i]) = f ∈ F, we let ν(q, i) := f(w↑i), that is the result of f applied to w marked in i.
Finally, f(w) is defined as the sum of the ν(q, i) along this unique accetping run on ⊢w⊣.
We similarly set f(w) = 0 if there is no accepting run.

G. Douéneau-Tabot 40:5

▶ Remark 5. If the external functions are constant, we exactly have a two-way transducer.

▶ Example 6. Let a, b ∈ A, fb : w ∈ (A ⊎ A)∗ 7→ |w|b and f0 : w ∈ (A ⊎ A)∗ 7→ 0. The
two-way transducer with external pebble functions, which makes a single pass on its input
and calls fb if reading a and f0 otherwise, computes letter-product : w ∈ A 7→ |w|a|w|b.

We define two other models. Their definition is nearly the same, except that the external
functions of F have type A∗ → N and ν(q, i) is defined in a slightly different way:

in a two-way transducer with external blind functions, we define ν(q, i) := f(w). The
external function is applied to w without marking the current position;
in a two-way transducer with external marble functions, we define ν(q, i) := f(w[1:i]). The
external function is applied to the prefix of w stopping at the current position.

Pebble, blind and marble transducers. We now describe the transducer models using the
formalism of external functions. These are not the original definitions from [3, 6, 11] (we are
closer to the nested transducers of [10]), but the correspondence is straightforward, as soon
as we know that pebble automata can only recognize regular languages.

▶ Definition 7. For k ≥ 0, a k-pebble (resp. k-blind, k-marble) transducer is:
if k = 0, a two-way transducer;
if k ≥ 1, a two-way transducer with external pebble (resp. blind, marble) functions that
are computed by (k−1)-pebble (resp. (k−1)-blind, (k−1)-marble) transducers.

The intuitive behavior of a 1-pebble transducer is depicted in Figure 1 in Introduction.
We draw in Figure 3 the behavior of a 1-blind transducer, which is the same except that the
calling position is not marked for the machine computing the external function.

Input word⊢ ⊣
Main machine

Input word⊢ ⊣
Submachine

Figure 3 Behavior of a 1-blind transducer.

Input word⊢ ⊣
Main machine

⊢ ⊣
Submachine

Figure 4 Behavior of a 1-marble transducer.

▶ Example 8. By restricting the functions fb and f0 of Example 6 to A∗, we see that
letter-product : w ∈ A∗ 7→ |w|a|w|b can be computed by a 1-blind transducer.

The intuitive behavior of a 1-marble transducer is depicted in Figure 4.

▶ Example 9. The function letter-product : w ∈ A∗ 7→ |w|a|w|b can be computed by a
1-marble transducer as follows. Assume that a ̸= b, let fa : w 7→ |w|a and fb : w 7→ |w|b. The
machine calls fb when reading a and fa when reading b. This way, each a is “counted” |w|b
times (from the call of fb starting in this a which computes all the b before it, plus each time
it is seen in a call of fa starting from some b after this a).

MFCS 2021

40:6 Pebble Transducers with Unary Output

The strategy for computing letter-product is really different between Examples 8 and 9.
This illustrates the difficulty to obtain a “canonical” form for a transduction.

3 From two-way transducers to bimachines

Since we consider a commutative output monoid, the order in which the production is
performed does not matter. It is thus tempting to simplify a two-way transducer in a one-way
machine which visits each position only once. This is exactly what we do with bimachines,
with the subtlety that they are able to check regular properties of the prefix (resp. suffix)
starting (resp. ending) in the current position. From now on, we consider only total functions
of type A+ → N (the output on ε can be treated separately and does not matter).

▶ Definition 10. A bimachine with external pebble functions (A, M, µ,F, λ) consists of:
an input alphabet A;
a morphism into a finite monoid µ : A∗ →M ;
a finite set F of external functions f : (A ⊎A)+ → N;
a total output function λ : M ×A×M → F.

Given 1 ≤ i ≤ |w| a position of w ∈ A∗, let fi := λ(µ(w[1:i−1]), w[i], µ(w[i+1:|w|])) ∈ F.
The bimachine defines a function f : A+ → N as follows:

f(w) :=
∑

1≤i≤|w|

fi(w↑i).

As before, we can define bimachines with external blind (resp. marble) functions (in this
case we have fi : A+ → N). We then let:

f(w) :=
∑

1≤i≤|w|

fi(w)

Ñ
resp. f(w) :=

∑
1≤i≤|w|

fi(w[1:i])

é
.

As for two-way transducers, we define bimachines (without external functions) by setting
λ : M × A ×M → N. Equivalently, it corresponds to bimachines with external constant
functions f : w 7→ n. Going further, we define k-pebble bimachines by induction.

▶ Definition 11. For k ≥ 0, a k-pebble (resp. k-blind, k-marble) bimachine is:
if k = 0, a bimachine (without external functions);
if k ≥ 1, a bimachine with external pebble (resp. blind, marble) functions which are
computed by (k−1)-pebble (resp (k−1)-blind, (k−1)-marble) bimachines.

▶ Example 12. The function triangular-sum : anℓbanℓ−1b · · · ban1b 7→
∑ℓ

i=1 ini can be com-
puted by a 1-marble bimachine. It uses the singleton monoid M = {1M} and the morphism
µ : a, b 7→ 1M in all its bimachines. The output function of the main bimachine is defined
by λ(1M , a, 1M) := fa and λ(1M , b, 1M) := fb. For computing fa : w 7→ 0 we use output
λfa

(1M , a, 1M) := 0 and λfa
(1M , b, 1M) := 0, and for computing fb : w 7→ |w|a we use output

λfb
(1M , a, 1M) := 1 and λfb

(1M , b, 1M) := 0.

Standard proof techniques allow to relate bimachines and transducers.

▶ Proposition 13. k-pebble (resp. k-blind, k-marble) bimachines and k-pebble (resp. k-blind,
k-marble) transducers compute the same functions, and both conversions are effective.

G. Douéneau-Tabot 40:7

Proof sketch. Both directions are treated by induction. From bimachines to transducers, we
show that a bimachine with external pebble functions can be transformed in an equivalent
two-way transducer with the same external pebble functions (we use a lookaround [7] to
simulate µ). From transducers to bimachines, the induction step shows that a two-way
transducer with external pebble functions can be transformed in an equivalent bimachine
with external pebble functions, by adapting the classical reduction from two-way to one-way
automata [12]. However the new external functions can be linear combinations of the former
ones, since we produce “all at once” the results of several visits in a position. We only need
to use a finite number of combinations, since in its accepting runs, a two-way transducer can
only visit each position a bounded number of times. ◀

4 Equivalence between k-pebble and k-marble transducers

The main goal of this section is to show equivalence between k-pebble and k-marble trans-
ducers, over unary outputs. We shall use another model which is equivalent to marble
transducers [6]: a streaming string transducer (with unary output), which consists in a de-
terministic automaton with a finite set X of registers that store integers. At each letter read,
the values of the registers are updated by doing a linear combination of their former values,
whose coefficients depend on the current state of the automaton. In our definition we focus
on the registers and forget about the states, which corresponds to a weighted automaton
over the semiring (N, +,×) (it is shown in [6] that both models are equivalent). The update
is represented by a matrix from NX×X, which is chosen depending on the letter read.

▶ Definition 14. A streaming string transducer (SST) T = (A,X, I, T, F) is:
an input alphabet A and a finite set X of registers;
an initial row vector I ∈ NX;
a register update function T : A→ NX×X;
an output column vector F ∈ NX.

T can be extended as a monoid morphism from A∗ to (NX×X,×). Given w ∈ A∗, the
vector IT (w) intuitively describes the values of the registers after reading w. To define the
function f : A∗ → N computed by T , we combine these values by the output vector:

f(w) := IT (w)F.

▶ Example 15. The function triangular-sum : anℓbanℓ−1b · · · ban1b 7→
∑ℓ

i=1 ini can be com-
puted by an SST. We use two registers x, y and allow constants in the updates for more
readability: x is initialized to 0 and updated x ← x + 1 on a and x ← x on b, and y is
initialized to 0 and updated y ← y on a and y ← y + x on b. Finally we output y.

We are now ready to state the main results of this section.

▶ Theorem 16. Given a k-pebble bimachine, one can build an equivalent SST.

The proof is done by induction on k ≥ 0. Consider a bimachine whose external functions
are computed by (k−1)-pebble bimachines. By hypothesis, we can compute these functions
by SSTs. The induction step is shown by Lemma 17, which uses new proof techniques.

▶ Lemma 17. Given a bimachine with external pebble functions computed by SSTs, one can
build an equivalent SST (with no external functions).

MFCS 2021

40:8 Pebble Transducers with Unary Output

Proof idea. Let T be the SST computing an external function f. On input w ∈ A+, the
bimachine calls f on several positions 1 ≤ i1 < · · · < iℓ ≤ |w|, which induces executions of
T on w↑i1, . . . , w↑iℓ. These executions are very similar: they only differ when reading the
marked letter. Thus we build an SST which computes “simultaneously” all these executions,
by keeping track of the sum of the values of the registers of T along them. ◀

As a consequence of Theorem 16, we obtain equivalence between pebbles and marbles
over unary outputs. The result is false over non-unary output alphabets [6, 11]. We also
relate these functions with those computed by SST, assuming that the output is bounded by
a polynomial in the input’s length.

▶ Corollary 18. For all k ≥ 0 and f : A∗ → N, the following conditions are equivalent:
1. f is computable by a k-pebble transducer;
2. f is computable by a k-marble transducer;
3. f is computable by an SST and f(w) = O(|w|k+1).

Furthermore the transformations are effective.

Proof. Clearly a k-pebble transducer can simulate a k-marble transducer, hence 2⇒ 1. Let
f be computed by a k-pebble transducer, we have f(w) = O(|w|k+1) and by Theorem 16
one can build an SST for f . Thus 1⇒ 3. Finally 3⇒ 2 is shown in [6]. ◀

Another important consequence is that we can decide equivalence of pebble transducers
with unary output, since we can do so for marble transducers [6].

▶ Corollary 19. One can decide if two pebble transducers compute the same function.

This has been an open question since [3], and it is still open for generic output alphabets.

5 Deciding if 1-pebble is 1-blind

Since the equivalence between marbles and pebbles is established, we now compare 1-pebble
(which are 1-marble) transducers with 1-blind transducers. It turns out that 1-pebble are
strictly more expressive; the main goal of this section is to show Theorem 20.

▶ Theorem 20 (Membership). One can decide if a function given by a 1-marble (or 1-pebble)
transducer can be computed by a k-blind transducer for some k ≥ 0. If this condition holds,
one can build a 1-blind transducer which computes it.

Let us fix a function f : A+ → N described by a 1-marble bimachine T = (A, M, µ,F, λ).
For f ∈ F, let Tf := (A, M, µ, λf) be the bimachine which computes it. We enforce the
morphism µ to be surjective (up to considering the co-restriction to its image) and the same
in all machines (up to taking the product of all morphisms used). Our goal is to give a
decidable condition on T for f to be computable by a 1-blind transducer. For this purpose,
we define the notion of bitype. Intuitively, it describes two disjoint factors in an input word,
together with a finite abstraction of their “context”.

Let Λ := 3|M | (it will be justified by Theorem 27).

▶ Definition 21. A bitype Φ := m⟨u1⟩m′⟨u2⟩m′′ consists in m, m′, m′′ ∈M , u1, u2 ∈ A+.

We can define “the production performed in u1 by the calls from u2”, in Φ. For 1 ≤ i ≤ |u1|
and 1 ≤ j ≤ |u2|, let Φ(i, j) := λfj (mµ(u1[1:i−1]), u1[i], µ(u1[i+1:|u1|])m′µ(u2[1:j])) ∈ N
where fj := λ(mµ(u1)m′µ(u2[1:j−1]), u2[j], µ(u2[j+1:|u2|])m′′). Then we set:

prod(m⟨u1⟩m′⟨u2⟩m′′) :=
∑

1≤i≤|u1|
1≤j≤|u2|

Φ(i, j) ∈ N.

G. Douéneau-Tabot 40:9

▶ Definition 22. The 1-marble bimachine T is symmetrical whenever ∀m, n, m1, n1, m2, n2∈
M and u1, u2 ∈ A+ such that |u1|, |u2| ≤ 2Λ, e1:=µ(u1), e2:=µ(u2) and e:=m1e1n1=m2e2n2
are idempotents, there exists K ≥ 0 such that ∀p ∈M :

if m1e1pe2n2 = e, em1e1pe2 = em2e2 and e1pe2n2e = e1n1e,
then prod(mem1e1⟨u1⟩e1pe2⟨u2⟩e2n2en) = K;
if m2e2pe1n1 = e, em2e2pe1 = em1e1 and e2pe1n1e = e2n2e,
then prod(mem2e2⟨u2⟩e2pe1⟨u1⟩e1n1en) = K.

ee em n
m1 e1

u1
e1 e1 p n2e2

u2
e2e2

e1n1eem2e2

(a) Bitype mem1e1⟨u1⟩e1pe2⟨u2⟩e2n2en.

ee em n
m2 e2

u2
e2 e2 p n1e1

u1
e1e1

e2n2eem1e1

(b) Bitype mem2e2⟨u2⟩e2pe1⟨u1⟩e1n1en

Figure 5 The bitypes used to define a symmetrical 1-marble bimachine.

Symmetry means that, under some idempotent conditions, prod(m⟨u1⟩m′⟨u2⟩m′′) only
depends on m, m′′, m′µ(u2)m′′ and mµ(u1)m′, that are the “contexts” of u1 and u2, but not
on the element m′ which separates them. The same holds if we swap u1 and u2. The bitypes
considered in Definition 22 are depicted in Figure 5, together with the equations they satisfy.

Symmetry is the decidable condition we are looking for, as shown in Theorem 23. Recall
that f is the function computed by the 1-marble bimachine T .

▶ Theorem 23 (Characterization). The following conditions are equivalent:
1. f is computable by a k-blind transducer for some k ≥ 0;
2. f is computable by a 1-blind transducer;
3. T is symmetrical.

Theorem 20 follows from Theorem 23, since it suffices to check whether the machine
is symmetrical, which can be decided by ranging over all monoid elements (including
idempotents) and words of length at most 2Λ.

▶ Example 24. Let us show that the bimachine of Example 12 computing triangular-sum is
not symmetrical. Let u1 := a, u2 := b, m, n, m1, n1, m2, n2, p, e = 1M , e1:=µ(u1) = 1M and
e2:=µ(u2) = 1M . Then prod(mem1e1⟨u1⟩e1pe2⟨u2⟩e2n2en) = prod(1M ⟨a⟩1M ⟨b⟩1M) = 1
and prod(mem2e2⟨u2⟩e2pe1⟨u1⟩e1n1en) = prod(1M ⟨b⟩1M ⟨a⟩1M) = 0. Furthermore the
equations of Definition 22 hold, thus triangular-sum is not computable by a k-blind bimachine.

Lemma 25 shows 1⇒ 3 in Theorem 23. It allows to show that some function cannot be
computed by a k-marble transducer. Its proof is technical; a coarse intuition is that a 1-blind
bimachine which makes a production on u1 when called from u2 cannot see the monoid
element m′ between u1 and u2 (since u2 is not marked, its position is “forgotten”).

▶ Lemma 25. If f is computable by a k-blind bimachine, then T is symmetrical.

MFCS 2021

40:10 Pebble Transducers with Unary Output

Since 2⇒ 1 in Theorem 23 is obvious, it remains to show that if T is symmetrical, then
f is effectively computable by a 1-blind bimachine. This is the goal of the two following
subsections. The main tool for the proof is the notion of factorization forest: using Lemma 36,
it allows us to compute the function f without directly referring to a machine.

5.1 Factorization forests
Recall that µ : A+ →M is a fixed monoid morphism. A factorization forest [1] of w ∈ A+ is
an unranked tree structure which decomposes w following the image of its factors by µ.

▶ Definition 26 ([13, 1]). A factorization (forest) of w ∈ A+ is a tree defined as follows:
if w = a ∈ A, it is a leaf a;
if |w| ≥ 2, then (F1) · · · (Fn) is a factorization of w if each Fi is a factorization of some
wi ∈ A+ such that w = w1 · · ·wn, and either:

n = 2: the root is a binary node;
or n ≥ 3 and µ(w1) = · · · = µ(wn) is an idempotent: the root is an idempotent node.

The set of factorizations over w is denoted Fact(w). Recall that Λ = 3|M |.

▶ Theorem 27 ([13, 1]). For all w ∈ A+, there is F ∈ Fact(w) of height at most Λ.

Let ÛA := A ⊎ {(,)}. We have defined Fact(w) as a set of tree structures, but we can
assume that Fact(w) ⊆ ÛA+. Indeed, in Definition 26, a factorization of w can also be seen as
“the word w with parentheses”. There exists a rational function which computes factorizations,
under this formalism. We reformulate this statement in Proposition 28 using a two-way
transducer (which, exceptionally in this paper, has a non-unary output alphabet ÛA).

▶ Proposition 28 (Folklore). One can build a two-way transducer which computes a function
A+ → ÛA+, w 7→ F ∈ Fact(w) for some F of height at most Λ.

We denote by Nodes(F) the set of (idempotent or binary) nodes of F . In order to simplify
the statements, we identify a node with the subtree rooted in this node. Thus Nodes(F)
can also be seen as the set of subtrees of F , and F ∈ Nodes(F). We shall use the standard
tree vocabulary of “height” (a leaf is a tree of height 1), “parent node”, “descendant” and
“ancestor” (defined in a non-strict way: a node is itself one of its ancestors), “branch”, etc.

▶ Example 29. Let A = {a, b, c}, M={1M , 2M , 3M} with 22
M =1M , 3M absorbing, µ(a):=2M

and µ(b):=µ(c):=3M . Then F := (aa)(bc(a(cbbcb))b) ∈ Fact(aabcaccbcbcb) (we dropped the
parens around single letters for more readability) is depicted in Figure 6. Idempotent nodes
are drawn using a horizontal line.

bcba a

a

bcbbc

Figure 6 The factorization (aa)(bc(a(cbbcb))b) of aabcacbbcbb.

We define Iterable-nodes(F) ⊆ Nodes(F) as the set of nodes which are the middle child of
an idempotent node. Intuitively, such nodes can be copied without modifying their “context”.

G. Douéneau-Tabot 40:11

▶ Definition 30. Let F ∈ Fact(w), we define the set of iterable nodes of F by induction:
if F = a ∈ A is a leaf, Iterable-nodes(F) := ∅;
if F = (F1) · · · (Fn) is a binary or idempotent node, then:

Iterable-nodes(F) := {Fi : 2 ≤ i ≤ n−1}
⊎

1≤i≤n

Iterable-nodes(Fi).

On the contrary, we now define sets of nodes which cannot be duplicated individually.

▶ Definition 31. Let F ∈ Fact(w), we define the dependency of F as follows:
if F = a ∈ A is a leaf, then Dep(F) := {a};
if F = (F1) · · · (Fn) is binary or idempotent, then Dep(F) := {F} ∪ Dep(F1) ∪ Dep(Fn).

Intuitively, Dep(F) ⊆ Nodes(F) contains all the nodes of F except those which are
descendant of a middle child. If I ∈ Nodes(F), we consider Dep(I) ⊆ Nodes(I) as a subset
of Nodes(F). We then define the frontier of I, denoted FrF (I) ⊆ {1, . . . , |w|} as the set of
positions of w which belong to Dep(I) (when seen as leaves of F).

▶ Example 32. In Figure 6, the top-most red node I is iterable. Furthermore Dep(I) is the
set of red nodes, FrF (I) = {5, 6, 10} and w[FrF (I)] = acb.

The relationship between iterable nodes and dependencies is detailed below. We denote
by Part(F) := Iterable-nodes(F) ⊎ {F}, the set of iterable nodes plus the root.

▶ Lemma 33. Let F ∈ Fact(w), then {Dep(I) : I ∈ Part(F)} is a partition of Nodes(F);
and {FrF (I) : I ∈ Part(F)} is a partition of {1, . . . , |w|}.

We define prod(i, j) in w as “the production performed in i when called from j”.

▶ Definition 34. Let w ∈ A+ and 1 ≤ i ≤ j ≤ |w| two positions of w. We define prod(i, j) ∈ N
as λfj (µ(w[1:i−1]), w[i], µ(w[i+1:j])), where fj := λ(µ(w[1:j−1]), w[j], µ(w[j+1:|w|])).

We extend this definition to pairs of nodes: given I,J ∈ Nodes(F), we define prod(I,J)
“the sum of all productions performed in the frontier of I, when called from the frontier of
J ” as follows (we have to ensure that the calling positions are “on the right”).

▶ Definition 35. Let w ∈ A+, F ∈ Fact(w) and I,J ∈ Nodes(F). We define:

prod(I,J) :=
∑

i∈FrF (I)
j∈FrF (J)

i≤j

prod(i, j) ∈ N.

If I is an ancestor of J (or the converse) then FrF (I) and FrF (J) are interleaved, hence
we can have both prod(I,J) ̸= 0 and prod(J , I) ̸= 0. However, if I and J are not on the
same branch, we have either prod(I,J) = 0 or prod(J , I) = 0.

Applying Lemma 33, it is not hard to compute f(w) using the prod(I,J).

▶ Lemma 36. Let w ∈ A+, F ∈ Fact(w). Then:

f(w) =
∑

I,J ∈Part(F)

prod(I,J).

5.2 Typology of pairs of nodes
We intend to compute (if possible) f using a 1-blind transducer. Following Lemma 36, it is
enough to consider the productions performed on the pairs of nodes of a factorization. For
this study, we split the pairs depending on their relative position in the tree.

MFCS 2021

40:12 Pebble Transducers with Unary Output

Pairs separated by the frontier of the root. The frontier of the root FrF (F) plays a very
specific role with respect to blind transducers. Indeed, over factorizations of height at most
Λ, the size of the frontier is bounded, hence it splits the word in a bounded number of
distinguishable “blocks”. Formally, we define the notion of basis.

▶ Definition 37. An idempotent node is a basis if it belongs to the dependency of the root.

The following result is shown by induction.

▶ Lemma 38. Let w ∈ A+ and F ∈ Fact(w). Given I ∈ Iterable-nodes(F), there exists a
unique basis, denoted basisF (I), such that I is the descendant of a middle child of basisF (I).

▶ Definition 39. Given w ∈ A+ and F ∈ Fact(w), we define D(F) ⊆ Part(F)×Part(F) by:

D(F) := {(I,J) : I,J ∈ Iterable-nodes(F) and basisF (I) ̸= basisF (J)}.

Intuitively basisF (I) ̸= basisF (J) means that FrF (I) and FrF (J) belong to two different
“blocks” of the input. Lemma 40 is shown by building a 1-blind bimachine which visits
successively each basis B, and for each iterable J such that basisF (J) = B, calls a submachine
which visits the I such that basisF (I) ̸= B and produces prod(I,J). The key element for
doing this operation without pebbles is that the number of bases is bounded.

▶ Lemma 40. One can build a 1-blind bimachine computing:

fD : (ÛA)+ → N,F 7→


∑

(I,J)∈D(F)

prod(I,J) if F factorization of height at most Λ;

0 otherwise.

Linked pairs. Let U(F) := Part(F)×Part(F) ∖ D(F), it corresponds to the pairs of
Iterable-nodes(F) which have the same basis, plus all the pairs (F , I) and (I,F) for I ∈
Part(F). We now study the pairs of U(F) which are “linked”, in the sense that one node is
(nearly) the ancestor of the other.

▶ Definition 41. Let w ∈ A+, F ∈ Fact(w). Let L(F) be the set of all (I,J) ∈ U(F) such
that I (or J) is either the ancestor of, or the right/left sibling of an ancestor of J (or I).

In particular, we have (F ,F), (I,F), (F , I), (I, I) ∈ L(F) for all I ∈ Part(F). If F has
height at most Λ, there are at most 3Λ nodes which are either an ancestor or the right/left
sibling of an ancestor of I. Lemma 42 follows from this boundedness.

▶ Lemma 42. One can build a 0-blind bimachine computing:

fL : (ÛA)+ → N,F 7→


∑

(I,J)∈L(F)

prod(I,J) if F factorization of height at most Λ;

0 otherwise.

Independent nodes. The remaining sum is the most interesting, since it is the only case
where we use the assumption that T to be symmetrical (and this assumption is crucial). Let
F ∈ Fact(w), we define the set I(F) := U(F)∖L(F). It contains the pairs (I,J) of iterable
nodes such that basisF (I) = basisF (J) (i.e. they descend from a common “big” idempotent),
and I (or J) is not an ancestor of J (or I), nor the left or right sibling of its ancestor.

G. Douéneau-Tabot 40:13

▶ Lemma 43. If T is symmetrical, one can build a 1-blind bimachine computing:

fI : (ÛA)+ → N,F 7→


∑

(I,J)∈I(F)

prod(I,J) if F factorization of height at most Λ;

0 otherwise.

Proof idea. We define typeF (I) for I ∈ Iterable-nodes(F) as a bounded abstraction of I
which describes the frontier and the location of I in F and in basisF (I). Using symmetry,
we show that for (I,J) ∈ I(F), prod(I,J) only depends on typeF (I) and typeF (J), but
not on their relative positions. Hence we build a 1-blind bimachine, whose main bimachine
ranges over all possible J and computes typeF (J), and whose submachines range over all
possible I (a special treatment has to be done to avoid I such that (I,J) ∈ L(F)), compute
typeF (I) and output prod(I,J). The submachines do not need to “see” J . ◀

We finally show 3 ⇒ 2 in Theorem 23. Given w ∈ A+ we first compute F of height
at most Λ by Proposition 28. Then we use the machines from Lemmas 40, 42 and 43 and
build a 1-blind transducer computing the sum of their outputs. The original function can be
recovered since 1-blind transducers are closed under composition with two-way [11].

6 Conclusion and outlook

As a conclusion, we discuss future work. This paper introduces new proof techniques, in
particular the use of factorization forests to study the productions of transducers. We believe
that these techniques give a step towards other membership problems concerning pebble
transducers. Among them, let us mention the membership problem from k-pebble to k-blind,
at first over unary alphabets. Similarly, the membership from k-pebble to k-marble over
non-unary alphabets is worth being studied (the answer seems to rely on combinatorial
properties of the output, since unary outputs can always be produced using marbles).

References
1 Mikołaj Bojańczyk. Factorization forests. In International Conference on Developments in

Language Theory, pages 1–17. Springer, 2009.
2 Mikołaj Bojańczyk. Transducers with origin information. In International Colloquium on

Automata, Languages, and Programming, pages 26–37. Springer, 2014.
3 Mikolaj Bojańczyk. Polyregular functions. arXiv preprint, 2018. arXiv:1810.08760.
4 Mikolaj Bojańczyk, Sandra Kiefer, and Nathan Lhote. String-to-string interpretations with

polynomial-size output. In 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, pages 106:1–106:14, 2019.

5 Michal P Chytil and Vojtěch Jákl. Serial composition of 2-way finite-state transducers and
simple programs on strings. In 4th International Colloquium on Automata, Languages, and
Programming, ICALP 1977, pages 135–147. Springer, 1977.

6 Gaëtan Douéneau-Tabot, Emmanuel Filiot, and Paul Gastin. Register transducers are marble
transducers. In 45th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2020, August 24–28, 2020, Prague, Czech Republic, 2020.

7 Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions and two-way
finite-state transducers. ACM Transactions on Computational Logic (TOCL), 2(2):216–254,
2001.

8 Emmanuel Filiot and Pierre-Alain Reynier. Copyful streaming string transducers. In Interna-
tional Workshop on Reachability Problems, pages 75–86. Springer, 2017.

9 Eitan M Gurari. The equivalence problem for deterministic two-way sequential transducers is
decidable. SIAM Journal on Computing, 11(3):448–452, 1982.

MFCS 2021

http://arxiv.org/abs/1810.08760

40:14 Pebble Transducers with Unary Output

10 Nathan Lhote. Pebble minimization of polyregular functions. In 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS. IEEE, 2020.

11 Lê Thành Dung Nguyên, Camille Noûs, and Pierre Pradic. Comparison-free polyregular
functions. In 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, 2021.

12 John C Shepherdson. The reduction of two-way automata to one-way automata. IBM Journal
of Research and Development, 3(2):198–200, 1959.

13 Imre Simon. Factorization forests of finite height. Theoretical Computer Science, 72(1):65–94,
1990.

A Proof of Lemma 17

We show that given a bimachine with external pebble functions, which are computed by
SSTs, one can build an equivalent SST.

A.1 SST with lookaround
We first define a variant of SST with the same expressive power. Intuitively, this model is
similar to bimachines, in the sense that the register update not only depends on the current
letter, but also on a finite abstraction of the prefix and suffix.

▶ Definition 44. An SST with lookaround T = (A,X, M, µ, I, λ, F) is:
an input alphabet A and a finite set X of registers;
a morphism into a finite monoid µ : A∗ →M ;
an initial row vector I ∈ NX;
a register update function λ : M ×A×M → NX×X;
an output column vector F ∈ NX.

Let us define its semantics. Intuitively, in position i of w ∈ A+, we perform the register
update λ(µ(w[1:i−1]), w[i],]µ(w[i+1:|w|])). Formally, for 0 ≤ i ≤ |w|, we define T w,i ∈ NX

(“the values of the registers after reading w[1:i]”2) as follows:
T w,0 := I;
for i ≥ 1, T w,i := T w,i−1 × λ(µ(w[1:i−1]), w[i],]µ(w[i+1:|w|])).

To define the function f : A+ → N computed by T , we combine the final values by the
output vector:

f(w) := T w,|w|F.

It is known that SST with lookaround are equivalent to SST (the proof is roughly a
“determinisation” procedure for eliminating the rightmost argument of λ, and an encoding of
the monoid in the registers for eliminating the leftmost argument).

▶ Lemma 45 ([8]). Given an SST with lookaround, we can build an equivalent SST.

Hence, it is sufficient to build an SST with lookaround.

2 Due to the fact that λ looks “on the right”, T w,i depends on the whole w and not only on w[1:i].

G. Douéneau-Tabot 40:15

A.2 Main proof of Lemma 17
Let T = (A, M, µ, λ,F) be the bimachine with external pebble functions. Each f ∈ F is
computed by an SST Tf := (A ⊎A,Xf, If, Tf, Ff).

▶ Example 46 (Running example). Let T = (A, M, µ, λ, {f}) with M = {1M} singleton and
λ(1M , a, 1M) = f for a ∈ A. Let Tf have two registers x, y with x initialized to 1 and y

initialized to 0. When reading a ∈ A ⊎A it performs x← x, y ← y + x. Finally it outputs y.
Then f(w) = |w| and T computes f : w 7→ |w|2.

▶ Definition 47. Let w ∈ A∗ and f ∈ F. We define Calls(w, f) as the set of positions of w in
which f is called, that is {1 ≤ j ≤ |w| : λ(µ(w[1:j−1]), w[j], µ(w[j+1:|w|]) = f}.

For 1 ≤ j ≤ i ≤ |w|, IfTf(w[1:i]↑j) corresponds to the value of the registers of Tf in
position i when the call to f is performed from position j.

▷ Claim 48. For all w ∈ A∗, the following holds:

f(w) =
∑
f∈F

∑
1≤j≤|w|

j∈Calls(w,f)

IfTf(w↑j)Ff

Proof. By definition of external pebble functions we have:

f(w) :=
∑

1≤j≤|w|

fj(w↑j)

where fj := λ(µ(w[1:j−1]), w[j], µ(w[j+1:|w|])) is “the external function called in j”.
Hence by partitioning the sum depending on the external functions it follows:

f(w) :=
∑
f∈F

∑
1≤j≤|w|

j∈Calls(w,f)

f(w↑j)

And finally we note that f(w↑j) = IfTf(w↑j)Ff. ◁

Idea of the construction. Let us fix an external function f. Following Claim 48, we want
to build an SST with lookaround U which computes the values of the vector:∑

1≤j≤|w|
j∈Calls(w,f)

IfTf(w↑j) ∈ NX.

For this, it will keep track when in position i of the values of:∑
1≤j≤i

j∈Calls(w,f)

IfTf(w[1:i]↑j) ∈ NX

and these values will be updated when going from i to i + 1.

▶ Example 49 (Running example). We have IfTf(w[1:i]↑j)(x) = 1 and IfTf(w[1:i]↑j)(y) = i.
Hence

∑
1≤j≤i

j∈Calls(w,f)

IfTf(w[1:i]↑j)(x) = i and
∑

1≤j≤i
j∈Calls(w,f)

IfTf(w[1:i]↑j)(y) = i2.

MFCS 2021

40:16 Pebble Transducers with Unary Output

Formal construction. Let U = (A,X, M, µ, I, κ, F) be an SST with lookaround with:
the set X :=

⊎
f∈F{Sumx : x ∈ Xf} ⊎ {Oldx : x ∈ Xf} of registers;

the morphism µ : A∗ →M used in T ;
an initial column vector I ∈ NX such that for all f ∈ F and x ∈ Xf:

I(Sumx) = 0;
I(Oldx) = If(x);

the update κ : M × A × M → NX×X as follows. Let (m, a, n) ∈ M × A × N and
f := λ(m, a, n). Then κ(m, a, n) performs the following updates:

for all g ̸= f and x ∈ Xg:
∗ Sumx ←

∑
y∈Xg

αy Sumy;
∗ Oldx ←

∑
y∈Xg

αy Oldy;
where x←

∑
y∈Xg

αyy is the update performed by Tg when reading a;
for all x ∈ Xf:
∗ Sumx ←

∑
y∈Xf

αy Sumy +
∑

y∈Xf
βy Oldy;

∗ Oldx ←
∑

y∈Xf
αy Oldy;

where x←
∑

y∈Xf
αyy is the update performed by Tf when reading a;

and x←
∑

y∈Xf
βyy is the update performed by Tf when reading a.

Intuitively, the sum with the βy corresponds to what is “added” by the new call to f.
the output line vector F ∈ NX such that for all f ∈ F and x ∈ Xf:

F (Sumx) = Ff(x);
F (Oldx) = 0.

▶ Example 50 (Running example). U performs the following updates:
Oldx ← Oldx, Oldy ← Oldy + Oldx;
Sumx ← Sumx + Oldx, Sumy ← Sumy + Sumx + Oldy + Oldx.

We can check that Uw,i(Oldx) = 1, Uw,i(Oldy) = i and Uw,i(Sumx) = i, Uw,i(Sumy) = i2.

Correctness of the construction. As the registers Oldx for x ∈ Xf are updated following
the updates of Tf, it follows immediately that:

▷ Claim 51. Given x ∈ Xf, for all w ∈ A+ and 1 ≤ i ≤ |w| we have:

Uw,i(Oldx) = IfTf(w[1:i])(x).

We can finally show that the registers Sumx store the information we wanted.

▷ Claim 52. Given x ∈ Xf, for all w ∈ A+ and 0 ≤ i ≤ |w| we have:

Uw,i(Sumx) =
∑

1≤j≤i
j∈Calls(w,f)

IfTf(w[1:i]↑j)(x).

Proof. We proceed by induction on 0 ≤ i ≤ |w|. For i = 0 both terms equal 0. For the
induction step with i ≥ 1 let f ∈ F and x ∈ Xf.

Suppose that λ(µ(w[1:i−1]), w[i], µ(w[i+1:|w|])) = f (the case when they differ is similar
and even easier), then:∑

1≤j≤i
j∈Calls(w,f)

IfTf(w[1:i]↑j)(x) = IfTf(w[1:i]↑i)(x) +
∑

1≤j≤i−1
j∈Calls(w,f)

IfTf(w[1:i]↑j)(x).
(1)

G. Douéneau-Tabot 40:17

Let x←
∑

y∈Xf
αyy be the update performed by Tf when reading a.

Then for j ≤ i− 1, IfTf(w[1:i]↑j)(x) =
∑

y∈Xf
αy × IfTf(w[1:i−1]↑j)(y).

Let x←
∑

y∈Xf
βyy be the update performed by Tf when reading a.

Then IfTf(w[1:i]↑i)(x) =
∑

y∈Xf
βy × IfTf(w[1:i−1])(y).

Hence we can rewrite Equation 1 using values in position i−1. By Claim 51 and the
induction hypothesis, this sum coincides with the update in U . ◁

The fact that U computes f follows from the definition of F and Claim 48.

MFCS 2021

	1 Introduction
	2 Preliminaries
	3 From two-way transducers to bimachines
	4 Equivalence between k-pebble and k-marble transducers
	5 Deciding if 1-pebble is 1-blind
	5.1 Factorization forests
	5.2 Typology of pairs of nodes

	6 Conclusion and outlook
	A Proof of Lemma 17
	A.1 {SST} with lookaround
	A.2 Main proof of Lemma 17

