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Abstract
The equational theory of relations can be characterized using graphs and homomorphisms. This
result, found independently by Freyd and Scedrov and by Andréka and Bredikhin, shows that the
equational theory of relations is decidable. In this paper, we extend this characterization to the
whole universal first-order theory of relations. Using our characterization, we show that the positive
universal fragment is also decidable.
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1 Introduction

Binary relations are a versatile mathematical object, used to model graphs, programs,
databases, etc. It is then a natural task to understand the laws governing them. Since the
seminal work of Tarski [14], this task has occupied researchers for several decades [15, 12, 3,
9, 11, 10, 2, 4, 13].

Relations usually come with a certain number of standard operations: union ∪, intersection
∩, composition ·, converse ◦ etc. We are interested in containment between terms built
with these operations with respect to their relational interpretations. When a containment
between two terms t and u holds, we say that t ≥ u is a valid inequation for relations and
write Rel |= t ≥ u. For instance, an emblematic valid inequation is the following one:

(a · b) ∩ (a · c) ≥ a · (b ∩ c)

This law is valid because no matter how we interpret the letters a, b and c as relations, the
relation denoted by the term a · (b ∩ c) will be contained in the relation denoted by the term
(a · b) ∩ (a · c). A very simple way to check that this inequation is valid relies on the following
characterization ([1, Thm. 1], [7, p. 208]):

Rel |= t ≥ u ⇔ G(t) ▷ G(u) (⋆)

In this theorem, G(t) and G(u) are finite graphs associated to the terms t and u respectively,
and ▷ denotes the existence of a graph homomorphism. For example, the validity of the law
above is witnessed by this homomorphism (in red) from the graph of (a · b) ∩ (a · c) to the
graph of a · (b ∩ c):
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41:2 Graph Characterization of the Universal Theory of Relations

Using this characterization, we can show that relational validity of inequations is decidable.
As maybe noticed by the reader, inequations are implicitly universally quantified. They

actually form a fragment of the more general universal first-order formulas. The latter
comprises universal positive formulas which are basically disjunctions of inequations, and
Horn formulas which are implications between inequations.

Universal first-order formulas have received a lot of attention in the model theory
community. They enjoy for example the Łoś–Tarski theorem [8, Thm.5.4.4], which states that
the set of universal first-order formulas is exactly the set of first-order formulas preserved
under taking substructures.

In this paper, we give a graph characterization for those universal first-order formulas
which are valid for relations, generalizing the characterization (⋆). To this end, we proceed
in three steps. First, we provide a characterization of relational validity for positive universal
formulas. Based on this, we show that relational validity is decidable for this fragment. As
a second step, we characterize relational validity for Horn formulas. Finally we combine
the techniques used for both fragments to characterize validity for all universal first-order
formulas. Before presenting our results, we start by recalling some background in Section 2.

2 Preliminaries

2.1 Universal theory of relations
We let a, b . . . range over the letters of an alphabet A. Terms are generated by this syntax:

t, u ::= t · u | t ∩ u | t◦ | 1 | ⊤ | a a ∈ A

We denote the set of terms by T . We often write tu for t · u, and assign priorities to symbols
so that ab ∩ c, a ∩ b◦ and ab◦ parse respectively as (a · b) ∩ c, a ∩ (b◦) and a · (b◦).

First-order formulas are generated by the following syntax:

φ,ψ := t ≥ u | ¬(t ≥ u) | φ ∨ ψ | φ ∧ ψ | ∃a.φ | ∀a.φ t, u ∈ T , a ∈ A.

Formulas of the form t ≥ u are called inequations. We extend the operation of negation ¬ to
all formulas in the standard way, for instance ¬(φ ∧ ψ) = ¬φ ∨ ¬ψ. Implication φ ⇒ ψ is a
shortcut for ¬φ ∨ ψ. Free and bound variables are defined as usual, and we call sentence a
formula without free variables.

A universal formula is a formula from the syntax above which does not use existential
quantification. A generalized Horn formula is a formula of the following form, where ∀a⃗
denotes a sequence of universal quantifications:

∀a⃗.
∧
j∈J

(vj ≥ wj) ⇒
∨
i∈I

(ti ≥ ui)

We generally write it as follows, where H is the set of inequations {vj ≥ wj , j ∈ J}:

∀a⃗. H ⇒
∨
i∈I

(ti ≥ ui)

We call H its hypothesis and
∨

i∈I

(ti ≥ ui) its conclusion. A Horn formula is a generalized

Horn formula whose conclusion contains a single disjunct. We write it like this:

∀a⃗. H ⇒ t ≥ u
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A Positive universal formula is a generalized Horn formula whose set of hypothesis is empty.
It looks like this:

∀a⃗.
∨
i∈I

(ti ≥ ui)

A universal inequation is a positive universal formula with a single disjunct. We will
sometimes call it simply inequation. It looks like this:

∀a⃗. t ≥ u

In the rest of the paper, we will be interested only on universal sentences, this is why we will
omit the universal quantification in front of our formulas.

Note that every universal formula can be written as the conjunction of generalized Horn
formulas. In the rest of the paper, we will mainly focus on the latter.

Let us define relational validity for generalized Horn sentences. An interpretation σ is a
function σ : A! P(B ×B) mapping letters into relations over a base set B. We can extend
σ to all terms σ : T ! P(B ×B), by interpreting the operations ·,∩,◦ , 1 and ⊤ on relations
as follows:

R · S = {(x, y) | ∃z.(x, z) ∈ R and (z, y) ∈ S} (Composition)
R ∩ S = {(x, y) | (x, y) ∈ R and (x, y) ∈ S} (Intersection)
R◦ = {(x, y) | (y, x) ∈ R} (Converse)
1 = {(x, x) | x ∈ B} (Identity)
⊤ = {(x, y) | x, y ∈ B} (Full relation)

Let σ be an interpretation as above. An inequation t ≥ u is true under σ, noted σ |= t ≥ u,
if σ(t) ⊇ σ(u). A set of inequations H are true under σ, noted σ |= H, if this is the case for
every inequation in H. A generalized Horn sentence

φ := (H ⇒
∨
i∈I

(ti ≥ ui))

is true under σ, noted σ |= φ if either σ ̸|= H or there exists i ∈ I such that σ |= ti ≥ ui. We
say that φ is valid for relations, noted Rel |= φ, if φ is true under all interpretations, using
all possible base sets B.

Here are respectively a universal inequation (1), a positive universal sentence (2), and a
Horn sentence (3), that are all valid for relations:

a(ba ∩ 1)b ≥ ab ∩ 1 (1)(
⊤c⊤ ∩ ab ∩ ad ≥ a(b ∩ d)

)
∨

(
d ≥ ac

)
(2)

ef◦ ≥ ⊤ ⇒ (ae ∩ cf)(e◦b ∩ f◦d) ≥ ab ∩ cd (3)

We will see in the upcoming sections how to check their validity.

2.2 Graph characterization of the inequational theory of relations
Let A be an alphabet. A 2-pointed labeled graph is a structure (V,E, ι, o) where V is a set of
vertices, E ⊆ V ×A× V is a set of edges and ι and o are two distinguished vertices called
the input and output. We simply call them graphs in the sequel; we depict them as expected,
with unlabeled ingoing and outgoing arrows to denote the input and the output, respectively.
We denote by Gr the set of finite graphs. If G is a graph and x, y two of its vertices, we
denote by (x,G, y) the graph obtained from G by forgetting the original input and output of
G, and considering x and y as the new input and output respectively.

MFCS 2021



41:4 Graph Characterization of the Universal Theory of Relations

We define the following operations of graphs.

G ∩H =
G

H
G ·H = G H G◦ = G

We associate to every term t ∈ T a graph G(t) called the graph of t, by letting

G (a) = a G (1) = G (⊤) =

and by interpreting the operations ·,∩ and ◦ on graphs as above.
▶ Example 1. The graphs G(⊤c⊤ ∩ ab), G(ab ∩ 1) and G(bd◦) are respectively the following:

b d
a b

a b

c

Graph homomorphisms play a central role in the paper, they are defined as follows:
▶ Definition 2 (Graph homomorphism). Given two graphs G = ⟨V,E, ι, o⟩ and G′ =
⟨V ′, E′, ι′, o′⟩, a (graph) homomorphism h : G ! H is a mapping from V ! V ′ that
preserves labeled edges, ie. if (x, a, y) ∈ E then (h(x), a, h(y)) ∈ E′, and preserves input and
output, ie. h(ι) = ι′ and h(o) = o′.
The image of G by h, denoted h(G), is the graph ⟨h(V ), E′′, ι′, o′⟩ where

E′′ = {(h(x), a, h(y)) | (x, a, y) ∈ E} .

We write G▷H if there exists a graph homomorphism from G to H, and G ↪! H if there
exists an injective graph homomorphism from G to H. In the later case, we usually consider
G as an actual subgraph of H.

Our starting point was this characterization of the inequational theory of relations:
▶ Theorem 3 ([1, Thm. 1], [7, p. 208]). For all terms u, v,

Rel |= u ≥ v iff G (u) ▷ G (v)

2.3 Graphs and interpretations
We state below the main lemma (Lemma 6) that was used to prove Theorem 3, which will
be useful for us too. But first, let us explicit a link between graphs and interpretations.
▶ Definition 4 (Graphs and interpretations). Let σ : A ! P(B × B) be an interpretation.
The graph associated to σ, G(σ), is the graph whose set of vertices is B and

(x, a, y) is an edge of G(σ) iff (x, y) ∈ σ(a).

Conversely if G = (V,E) is a graph, the interpretation associated to G, I(G), is the function

A ! P(V × V )
a 7! {(x, y) | (x, a, y) ∈ E}

In the above definition, graphs are considered without distinguished input and output.
▶ Remark 5. The functions G and I are inverses of each other: I ◦ G and G ◦ I are the
identity function on interpretations and graphs respectively.
Recall that (x,G, y) is the graph G where x and y are chosen to be the input and output.
▶ Lemma 6 ([1], Lemma 3). Let t be a term, σ : A! P(B ×B) be an interpretation and
x, y ∈ B. We have that:

σ(t) ∋ (x, y) iff G(t) ▷ (x,G(σ), y)
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3 Characterizing the positive universal theory of relations

Given two graphs G and H, we define G⊕H as the disjoint union of G and H, whose input
and output are those of G. Note that ⊕ is associative, but not commutative. However, note
that the following holds:

G⊕H ⊕K = G⊕K ⊕H

G▷H ⊕H ⊕K ⇔ G▷H ⊕K

Now we can state our first characterization theorem:

▶ Theorem 7. For all terms ti, ui where i ∈ [1, n], the following holds

Rel |=
∨

i∈[1,n]

(ti ≥ ui) iff
∨

i∈[1,n]

(
G(ti) ▷ G(ui) ⊕G

)
where G = G(u1) ⊕ · · · ⊕ G(un).

Using the remark above, the case of two disjuncts can be formulated as follows

Rel |= (t0 ≥ u0) ∨ (t1 ≥ u1) iff G(t0)▷G(u0) ⊕G(u1) or G(t1)▷G(u1) ⊕G(u0)

Before proving Theorem 7, let us see an example of its application.

▶ Example 8. The validity of the following positive universal sentence(
⊤c⊤ ∩ ab ∩ ad ≥ a(b ∩ d)

)
∨

(
d ≥ ac

)
(2)

is witnessed by this homomorphism depicted below:

G(⊤c⊤ ∩ ab ∩ ad) ▷ G(a(b ∩ d)) ⊕ G(ac)

a b

d

a c

a b

a d

c

▶ Remark 9. Surprisingly, this characterization tells us that only one left-hand-side (lhs) of
the disjuncts of a positive universal sentence plays a role in its validity. For instance, in the
sentence (2) above, we can replace the lhs of the second inequation, d, by any term without
affecting the validity.

Proof. We show here the case of binary disjunctions to lighten notations. The general case
works exactly in the same way.

(⇒) Suppose that Rel |= (t0 ≥ u0) ∨ (t1 ≥ u1), let us show that either

G(t0) ▷ G(u0) ⊕ G(u1) or G(t1) ▷ G(u1) ⊕ G(u0)

Let G be the graph (without specified input and output) which is the disjoint union of
G(u0) and G(u1), and let σ be the interpretation associated to G. We denote by G0 the
graph G(u0) ⊕ G(u1) and by G1 the graph G(u1) ⊕ G(u0). To conclude the proof of this
direction, we show that, for i = 0, 1:

σ(ti) ⊇ σ(ui) ⇒ G(ti) ▷Gi

MFCS 2021



41:6 Graph Characterization of the Universal Theory of Relations

Suppose that σ(t0) ⊇ σ(u0), the other case is treated symmetrically. Let ι and o be
respectively the vertices corresponding to the input and output of G(u0) in G. We have
that G(u0) ▷ (ι, G, o), then by Lemma 6, σ(u0) ∋ (ι, o). Thus, σ(t0) ∋ (ι, o) and again by
Lemma 6, G(t0) ▷ (ι, G, o). But (ι, G, o) is G0 and this remark concludes the proof.

(⇐) Suppose that G(t0) ▷ G(u0) ⊕ G(u1) and let us show that:

Rel |= (t0 ≥ u0) ∨ (t1 ≥ u1)

The other case is treated symmetrically. Let σ : A! P(B ×B) be an interpretation, and let
G be its graph. We distinguish two cases. We have either:

∀x, y ∈ B, G(u1) ̸ ▷(x,G, y)

In this case, by Lemma 6, there is no pair (x, y) such that (x, y) ∈ σ(u1), hence σ(t1) ⊇ σ(u1)
is vacuously true.
Suppose now that there is x1 and y1 in B such that G(u1) ▷ (x1, G, y1), let h1 be such
homomorphism. Notice the following:

∀x, y ∈ B, G(u0) ▷ (x,G, y) ⇒ G(u0) ⊕ G(u1) ▷ (x,G, y) (†)

Indeed, if h0 is a homomorphism from G(u0) to (x,G, y), then we can combine it with h1 to
get a homomorphism from G(u0) ⊕ G(u1) to (x,G, y).

Let us show that σ(t0) ⊇ σ(u0). If σ(u0) ∋ (x, y), then by Lemma 6, we have that
G(u0) ▷ (x,G, y). Using the remark (†), we get that G(u0) ⊕ G(u1) ▷ (x,G, y). By our
hypothesis, we know that G(t0) ▷ G(u0) ⊕ G(u1), thus G(t0) ▷ (x,G, y). We conclude that
σ(t0) ∋ (x, y), and this ends the proof of our first characterization theorem. ◀

Testing the existence of a homomorphism between finite graphs is decidable. Hence, we
get as a corollary of Theorem 7 that:

▶ Theorem 10. The positive universal theory of relations is decidable.

4 Characterizing the Horn theory of relations

To give a characterization of the Horn theory of relations, we need to generalize the homo-
mophism relation between graphs to take into account some set of hypothesis.

A context is a graph with a distinguished edge labeled by a special letter •, called its
hole. If G is a graph and C a context, then C[G] is the graph obtained by “plugging G in
the hole” of C, that is, C[G] is the graph obtained as the disjoint union of G and C, where
we identify the input (resp. output) of G with the input (resp. output) of the edge labeled
by • in C, and we remove the edge of C labeled •.

▶ Definition 11 (The relation ▷H). Let H be a set of inequations. We define the relation >H
on graphs as follows. We set G >H H if and only if there is a context C and an inequation
(t ≥ u) ∈ H such that

G = C[G(t)] and H = C[G(u)]

We define ▷H as the transitive closure of ▷∪ >H .

In the definition above, the graphs G, H and C are not necessarily the graphs of some terms.
We can state now the main theorem of this section:
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▶ Theorem 12. For all terms t, u and set of inequations H, we have:

Rel |= (H ⇒ t ≥ u) iff G(t) ▷H G(u)

Hence, in order to show that a Horn sentence (H ⇒ t ≥ u) is valid, we need to find a sequence
of graphs G0, . . . , Gn such that G0 = G(t), Gn = G(u) and for every i ∈ [0, n− 1] the graphs
Gi and Gi+1 are either related by homomorphism or by the relation >H . We say that this
sequence witnesses the validity of this Horn sentence.

▶ Example 13. The validity of the following Horn sentence:

ef◦ ≥ ⊤ ⇒ (ae ∩ cf)(e◦b ∩ f◦d) ≥ ab ∩ cd (3)

is witnessed by the following sequence:

a e

c f

e b

f d

▷

a
e

c
f

b

d

>H

a

c

b

d

We start by applying a homomorphism represented by the dotted lines, then we factorize the
obtained graph into a context (in green) and an inner graph (in red) which is the graph of
ef◦, the lhs of the hypothesis ef◦ ≥ ⊤. We replace it by the graph of the rhs ⊤, which is
the empty graph. Doing so, we get the graph of ab ∩ cd

Notice that the intermediary graph is not the graph of a term.

▶ Remark 14. One may wonder whether Theorem 12 leads to a decidability result for the
Horn theory of relations. Actually, the latter is undecidable, as it subsumes the word problem
for monoids [6, Thm.4.5].

The next two subsections are dedicated to the proof of Theorem 12.

4.1 From ▷H to validity
In this section we prove the right-to-left implication of Theorem 12. But first, let us show
the following lemma, which says that ▷H collapses to ▷ if the target graph is the graph of
an interpretation making H true.

▶ Lemma 15. Let H be a set of inequations and σ an interpretation. If the inequations H
are true under σ, then for every graph G:

G▷H (x,G(σ), y) iff G▷ (x,G(σ), y)

Proof. The right-to-left direction is trivial. We prove the other direction by induction on
the length of a sequence witnessing that G▷H (x,G(σ), y). The most interesting base case is
when, for some graph H:

G >H H ▷ (x,G(σ), y) (BC)

The other two base cases are: G▷ (x,G(σ), y), which is trivial, and G >H (x,G(σ), y), which
can be seen as a particular case of the interesting base case, by taking H to be (x,G(σ), y).
The inductive step is easy, as the composition of two homomorphisms is a homomorphism.
Now, let us prove the interesting base case. Suppose that there is a graph H satisfying (BC),
and let us find a homomorphism from G to (x,G(σ), y).

MFCS 2021



41:8 Graph Characterization of the Universal Theory of Relations

Since G >H H, there is an inequation (t ≥ u) ∈ H and a context C such that G = C[G(t)]
and H = C[G(u)]. We have also that H ▷ (x,G(σ), y), so let h be a homomorphism:

h : C[G(u)] ! (x,G(σ), y)

Let x′ and y′ be respectively the image of the input and the output of G(u) by h. By
considering the restriction of h to G(u), we have that G(u)▷(x′,G(σ), y′). Hence, by Lemma 6,
we have that (x′, y′) ∈ σ(u). As H is true under σ, we have also that (x′, y′) ∈ σ(t), and
again by Lemma 6, G(t) ▷ (x′,G(σ), y′). Let us denote by k a homomorphism:

k : G(t) ! (x′,G(σ), y′)

With these ingredients, we construct a homomorphism f from G = C[G(t)] to (x,G(σ), y)
as follows: the restriction of f to C is h and the restriction of f to G(t) is k. It is easy to
check that f is indeed an homomorphism, and this ends the proof. ◀

We can now prove the right-to-left direction of Theorem 12.

Proof of Theorem 12 (⇐). Suppose that G(t)▷H G(u). Let σ be an interpretation satisfying
H and suppose that (x, y) ∈ σ(u).

σ(u) ∋ (x, y) ⇒ G(u) ▷ (x,G(σ), y) Lem. 6
⇒ G(t) ▷H (x,G(σ), y) By hypothesis
⇒ G(t) ▷ (x,G(σ), y) Lem. 15
⇒ σ(t) ∋ (x, y) Lem. 6 ◀

4.2 From validity to ▷H

The main ingredient to prove the left-to-right direction of Theorem 12 is to construct, given a
set of hypothesis H, an interpretation making them true. For that we start from an arbitrary
graph and “saturate” it by the hypothesis H, then we iterate this construction ω-times and
take the limit graph. The desired interpretation will be the interpretation associated to this
graph. In the sequel, we define the notions of graph limit and saturation, then we proceed to
the proof of our theorem.

4.2.1 Limit of a sequence of graphs
When we consider an increasing sequence of graphs (Gi)i∈ω, that is, Gi ↪! Gi+1 for every
i ∈ ω, the notion of limit is clear: it is just the union of the graphs Gi, its input and output
being respectively the common input and output of the graphs Gi; we denote it by lim

i∈ω
Gi.

We denote by θi : Gi ! lim
i∈ω

Gi the natural injection of Gi into the limit graph, we call it the
limit injection for Gi. Here is an illustration of this construction:
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In the following, we extend this notion of limit to the case where the graphs Gi and Gi+1
are related by an arbitrary homomorphism, not necessarily an injective one. Let us start
with an observation.

Let G0
h0−! G1

h1−! G2 . . . be a sequence of finite graphs related by homomorphism. Let
(Hi)i∈ω be the successive images of G0 by these homomorphisms, that is:

H0 = G0, and Hi+1 = hi(Hi) for i ≥ 0.

At some point, the image of G0 will stabilize, in other words there is an index s such that,
for all i > s the function ki : Hi ! Hi+1, the restriction of hi to Hi is a bijection. We call
stabilization index of G0 the least index s satisfying this property, we denote it by s0. We
call stable image of G0 the graph Hs0 and we denote it by S(G0).

We define in the same way the stabilization index of Gi, and denote it si: it is the least
index starting from which the homomorphisms hj for j > si do not merge nodes coming
from Gi. We define similarly the stable image of Gi and denote it by S(Gi).

Note that if i ≤ j then si ≤ sj and S(Gi) ↪! S(Gj). By considering the sequence of the
stable images of the graphs Gi, we can now define the limit of this sequence:

▶ Definition 16 (Limit of a sequence of graphs). Let (Gi)i∈ω be a sequence of finite graphs
such that there is a homomorphism hi : Gi ! Gi+1 for every i ∈ ω. As the sequence of stable
images (S(Gi))i∈ω is increasing, its limit lim

i∈ω
S(Gi) is well defined. For every i ∈ ω, let θi

be the limit injection θi : S(Gi) ! lim
i∈ω

S(Gi).

We define the limit of the sequence (Gi)i∈ω as follows:

lim
i∈ω

Gi = lim
i∈ω

S(Gi)

For every i < j ∈ ω, we denote by h[i,j] the homomorphism h[i,j] : Gi ! Gj obtained as the
composition hj−1 ◦ · · · ◦ hi. We denote by πi : Gi ! lim

i∈ω
Gi the homomorphism θsi

◦ h[i,si].
We call πi the limit homomorphism for Gi.

▶ Example 17. Consider the sequence of terms (ti)i∈ω defined by:

ti = (
i
∩

k=0
ak ·

i
∩

k=0
bk) ∩ (ai+1 · bi+1).

There is a (unique) homomorphism hi : G(ti) ! G(ti+1). The limit of the sequence of graphs
(G(ti))i∈ω related by the homomorphisms (hi)i∈ω, converges to the graph of this “term”1:

∞
∩

k=0
ak ·

∞
∩

k=0
bk

Here is an illustration of this example:

1 This is not really a term since it contains infinite intersections, but it is clear how to define the graphs
of such generalized terms.

MFCS 2021



41:10 Graph Characterization of the Universal Theory of Relations

Note that the limit does not depend only on the sequence of graphs, but also on the
homomorphisms relating them. Consider for instance the following sequence of terms.

ui = (
i
∩

k=0
ak ·

i
∩

k=0
bk) ∩

i+1
∩

k=0
(ak · bk).

If we consider the injections ιi : G(ui) ! G(ui+1), then the sequence (G(ui))i∈ω related by
the homomorphisms (ιi)i∈ω converges to the graph of this “term”:

(
∞
∩

k=0
ak ·

∞
∩

k=0
bk) ∩

∞
∩

k=0
(ak · bk)

But if we consider the homomorphisms ki : G(ui) ! G(ui+1) which merges all the inner
nodes2 of G(ui), we obtain as limit the graph of this “term”:

∞
∩

k=0
ak ·

∞
∩

k=0
bk

▶ Remark 18. This notion of limit is a well known concept of category theory. Since the
category of graphs and graph homomorphisms is cocomplete, every infinite sequence of
homomorphisms has a colimit, unique up to isomorphism. We made the choice to give an
explicit definition for the readers which are, as the author, not familiar with category theory.

Here are some properties satisfied by the limit of a sequence of graphs.

▶ Proposition 19. Let (Gi)i∈ω be a sequence of graphs, and hi : Gi ! Gi+1. Let Gω be their
graph limit, πi be the limit homomorphism for Gi and H be a finite graph.
1. For every i ∈ ω, if H ▷ (x,Gi, y) then H ▷ (πi(x), Gω, πi(y)).
2. Conversely, if H ▷ (x,Gω, y) then H ▷ (x′, Gi, y

′) for some i, x′, y′ satisfying πi(x′) = x

and πi(y′) = y.
3. In particular, we have that: H ▷Gω ⇔ ∃i ∈ ω, H ▷Gi.

Proof. Property (1) is trivial. Indeed, if h : H ! (x,Gi, y) is a homomorphism then
hi ◦ h : H ! (πi(x), Gω, πi(y)) is also a homomorphism.

Suppose that H ▷ (x,Gω, y). Since H is finite, there is i ∈ ω such that H ▷ (x′, S(Gi), y′)
where πi(x′) = x and πi(y′) = y. But S(Gi) is a subgraph of some Gj , where j ∈ ω. Hence
H ▷ (x′, Gj , y

′). ◀

2 That is, nodes different from the input and the output.
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4.2.2 Saturation by hypothesis
Let G,H ∈ Gr and let x, y be two vertices of G. We denote by G[H/xy] the graph obtained
from G by merging the input of H with x and its output with y. The input and output of
G[H/xy] are those of G.

▶ Remark 20. Note that if the input and output of H are equal, then the operation G[H/xy]
merges the nodes x, y. Note also that G▷G[H/xy], but this homomorphism is not necessarily
injective because of the possible merge of x and y.

▶ Definition 21 (Saturation). Let H be a finite set of inequations, G ∈ Gr and V its set of
vertices. Let T ⊆ V × V × Gr be the set of triplets satisfying:

(x, y,H) ∈ T iff ∃(t ≥ u) ∈ H, G(u) ▷ (x,G, y) and H = G(t)

Let (xi, yi, Hi)i≤n be an enumeration of T . The saturation of G by H is the graph denoted
SatH(G) and defined as:

SatH(G) = G[H0/x0y0] . . . [Hn/xnyn]

In words, a triplet (x, y,H) is in T means that in the graph G, we “identified” the graph
G(u), the rhs of a hypothesis in H, between the nodes x and y. The graph H is G(t), the
graph of the lhs of this hypothesis. To make G “agree” with hypothesis H, we need to plug
H between x and y. When we do that for all the triplets in T , we obtain the saturation of G
by H. Now, let us make some properties of saturation explicit.

▶ Proposition 22. Let G be a graph and H a set of inequations.
1. For every inequation (t ≥ u) ∈ H, we have:

G(u) ▷ (x,G, y) ⇒ G(t) ▷ (x, SatH(G), y)

2. G▷ SatH(G).
3. SatH(G) ▷H G.

Proof. To prove (1), suppose that (t ≥ u) ∈ H and G(u) ▷ (x,G, y). This means that the
triplet (x, y,G(t)) is in the set T of Definition 21. Hence SatH(G) is of the form K[G(t)/xy].
It is clear then that G(t) ▷ (x, SatH(G), y).

Property (2) is a consequence of Remark 20 above. For property (3), we will show that
if (x, y,H) ∈ T , where T is as in definition 21, then G[H/xy] ▷H G. The result will be an
iteration of this argument for all elements of T . By definition of T , there is a hypothesis
(t ≥ u) such that G(u) ▷ (x,G, y) and H = G(t). Let us denote by k a homomorphism from
G(u) to (x,G, y). Let C be the context obtained from G by adding an edge labeled • between
x and y. We have that:

G[H/xy] = C[G(t)] >H C[G(u)] ▷G

Indeed, the equality and inequation >H are trivially true. To justify the ▷ inequation,
we define a homomorphism from C[G(u)] to G as follows: its restriction to G(u) its is the
homomorphism k, and its restriction to C is the identity. ◀

Now, we can define the ω-saturation of a graph by a set of hypothesis.
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▶ Definition 23 (ω-saturation). If G is a graph and H a set of inequations, we define the
sequence (Sati

H
(G))i∈ω as the successive iterations of G by saturation by the hypothesis H:

Sat0
H

(G) = G, Sati+1
H

(G) = Sat(Sati
H

(G)) (i ∈ ω).

By Proposition 22 (2), we have that Sati
H

(G) ▷ Sati+1
H

(G). The limit is then well defined by
Definition 16. We define the ω-saturation of G by H as the graph:

Satω
H

(G) = lim
i∈ω

Sati
H

(G).

The ω-saturation satisfies the following property. It says that given a set of inequations
H, if we start from an arbitrary graph G (so in general, the inequations of H are not true
under the interpretation associated to G) and we ω-saturate it by H, then the inequations
from H are true under the interpretation associated to the obtained graph.

▶ Proposition 24. Let H be a set of inequations, G be a graph, and σ the interpretation
associated to Satω

H
(G). The inequations from H are true under σ.

Proof. We denote by Gω the graph Satω
H

(G), by Gi the graph Sati
H

(G) for every i ∈ ω and
by σ the interpretation associated to Gω. By Remark 5, the graph associated to σ is Gω.
Let πi : Gi ! Gω be the limit homomorphism for Gi.

Let (t ≥ u) ∈ H, let us show that σ(t) ⊇ σ(u). Suppose that σ(u) ∋ (x, y).

σ(u) ∋ (x, y) =====⇒ G(u) ▷ (x,Gω, y) Lem. 6
∃i,x′,y′

=====⇒ G(u) ▷ (x′, Gi, y′), x = πi(x′) and y = πi(y′) Prop. 19 (2)

=====⇒ G(t) ▷ (x′, Gi+1, y′) Prop. 22 (1)

=====⇒ G(t) ▷ (x,Gω, y) Prop. 19 (1)

=====⇒ σ(t) ∋ (x, y) Lem. 6

And this concludes the proof. ◀

We can go back to the proof of Theorem 12.

Proof of Theorem 12 (⇐). Suppose that Rel |= H ⇒ t ≥ u and let us show that G(t) ▷H

G(u). We denote by G(u)ω the graph Satω
H

(G(u)), by G(u)i the graph Sati
H

(G(u)) for every
i ∈ ω, and by σ be the interpretation associated to G(u)ω. By Proposition 24, the inequations
H are true under σ. Note that the graph associated to σ is G(u)ω and that the input and
output of G(u)ω are those of G(u), let us denote them by ι and o respectively.

By Poposition 19 (1), we have G(u) ▷ G(u)ω. It follows that:

G(u) ▷ G(u)ω ⇒ σ(u) ∋ (ι, o) Lem. 6
⇒ σ(t) ∋ (ι, o) By hypothesis
⇒ G(t) ▷ G(u)ω Lem. 6
⇒ G(t) ▷ G(u)i for some i ∈ ω Prop. 19 (3)
⇒ G(t) ▷H G(u) Prop. 22 (3)

This ends the proof of Theorem 12. ◀
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4.3 Characterizing the universal theory of relations
We characterize now the validity of the generalized Horn sentences. The proof is a mix of
the techniques used to prove Theorems 7 and 12.

▶ Theorem 25. For all terms ti, ui where i ∈ [1, n], and set of inequations H, the following
holds:

Rel |= H ⇒
∨

i∈[1,n]

(ti ≥ ui) iff
∨

i∈[1,n]

(
G(ti) ▷H

G(ui) ⊕G
)

where G = G(u1) ⊕ · · · ⊕ G(un).

Proof. As for Theorem 7, we prove this result in the case of binary dijunctions, that is:

Rel |= H ⇒ (t0 ≥ u0) ∨ (t1 ≥ u1) iff G(t0)▷
H

G(u0)⊕G(u1) or G(t1)▷
H

G(u1)⊕G(u0)

(⇒) Suppose that Rel |= H ⇒ (t0 ≥ u0) ∨ (t1 ≥ u1), let us show that either

G(t0) ▷H G(u0) ⊕G(u1) or G(t1) ▷H G(u1) ⊕G(u0)

We set G = G(u0) ⊕ G(u1), and let Gω denote the graph Satω
H

(G), Gi denote the graph
Sati

H
(G) for every i ∈ ω, and let σ be the interpretation associated to Gω. By Proposition 24,

the inequations H are true under σ. Hence, we have either σ(t0) ⊇ σ(u0) or σ(t1) ⊇ σ(u1).
Let us study the former case, the latter being symmetric.

Suppose that σ(t0) ⊇ σ(u0). Let ι and o be respectively the input and output of Gω.
Notice that G(u0) ▷ (ι, Gω, o), it follows that:

G(u0) ▷ (ι, Gω, o) ⇒ σ(u0) ∋ (ι, o) Lem. 6
⇒ σ(t0) ∋ (ι, o) By hypothesis
⇒ G(t0) ▷Gω Lem. 6
⇒ G(t0) ▷Gi for some i ∈ ω Prop. 19 (3)
⇒ G(t0) ▷H G Prop. 22 (3)

This concludes the proof of this direction.

(⇐) Suppose that G(t0) ▷H G(u0) ⊕G(u1) and let us show that:

Rel |= H ⇒ (t0 ≥ u0 ∨ t1 ≥ u1)

Note that the other case is symmetric. Let σ : A! P(B ×B) be an interpretation under
which H is true, and let G be its graph. We distinguish two cases. We have either:

∀x, y ∈ B, G(u1) ̸ ▷(x,G, y)

In this case, by Lemma 6, there is no pair (x, y) such that (x, y) ∈ σ(u1), hence σ(t1) ⊇ σ(u1)
is vacuously true.
Suppose now that there is x1 and y1 in B such that G(u1)▷ (x1, G, y1). Notice the following:

∀x, y ∈ B, G(u0) ▷ (x,G, y) ⇒ G(u0) ⊕ G(u1) ▷ (x,G, y)

By using Lemma 6 and this remark, we get that if σ(u0) ∋ (x, y) then G(t0)▷H (x,G, y). By
Lemma 15, and since the inequations H are true under σ, we have that G(t0) ▷ (x,G, y).
Hence, by Lemma 6, we get σ(t0) ∋ (x, y) which concludes the proof. ◀

As every universal sentence can be written as the conjunction of some generalized Horn
sentences, Theorem 25 gives us a characterization of the validity of all universal sentences.
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5 Conclusion

We end this paper by some concluding remarks and open problems.
By characterizing the universal theory of relations, we characterized also their existential

theory. Now, can we characterize the full first-order theory of relations using graphs and
homomorphisms?

Another direction of work is to extend the syntax of terms. For instance, we could add
the operations of union and Kleene star. In this case, terms are interpreted, not by a single
graph as we did here, but by a set of graphs as in [4, Def. 4]. Graph homomorphism is
generalized to the relation ▶ between sets of graphs as follows:

C ▶ D ⇔ ∀H ∈ D, ∃G ∈ C, G▷H

With these interpretations, Theorem 7 can be easily adapted when union is added to the
syntax. However, it is not clear how to adapt it in the presence of the Kleene star. Theorem 12
seems hard to adapt both for the union and the Kleene star extensions.

Even if Theorems 12 and 25 do not give decidability for the corresponding theories, we
can wonder whether it can be obtained under some restrictions on the hypothesis H. For
instance, is it the case when the hypothesis H form a Noetherian rewriting system?

We can easily adapt this work to the realm of conjunctive queries. Indeed, terms can
be replaced by conjunctive queries and inequations between terms by equivalence between
conjunctive queries Q1 ≡ Q2. For example, by adapting Theorem 7 we get the decidability
of the following problem:

Input: Conjunctive queries Q1, Q2, Q3 and Q4.
Output: Do we have (Q1 ≡ Q2) ∨ (Q3 ≡ Q4)?

which generalizes the result of Chandra and Merlin [5].
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