HyperLTL Satisfiability Is 3}-Complete,
HyperCTL* Satisfiability Is X2-Complete

Marie Fortin &
University of Liverpool, UK

Louwe B. Kuijer &
University of Liverpool, UK

Patrick Totzke =
University of Liverpool, UK

Martin Zimmermann &
University of Liverpool, UK

—— Abstract

Temporal logics for the specification of information-flow properties are able to express relations

between multiple executions of a system. The two most important such logics are HyperLTL
and HyperCTL*, which generalise LTL and CTL* by trace quantification. It is known that this
expressiveness comes at a price, i.e. satisfiability is undecidable for both logics.

In this paper we settle the exact complexity of these problems, showing that both are in fact highly
undecidable: we prove that HyperLTL satisfiability is ©1-complete and HyperCTL* satisfiability is
Y?-complete. These are significant increases over the previously known lower bounds and the first
upper bounds. To prove Y3-membership for HyperCTL*, we prove that every satisfiable HyperCTL*
sentence has a model that is equinumerous to the continuum, the first upper bound of this kind. We
prove this bound to be tight. Finally, we show that the membership problem for every level of the
HyperLTL quantifier alternation hierarchy is IT{-complete.

2012 ACM Subject Classification Theory of computation — Logic and verification; Theory of
computation — Formal languages and automata theory

Keywords and phrases HyperLTL, HyperCTL*, Satisfiability, Analytical Hierarchy
Digital Object Identifier 10.4230/LIPIcs. MFCS.2021.47
Related Version Extended Version: https://arxiv.org/abs/2105.04176 [27]

Funding Partially funded by EPSRC grants EP/S032207/1 and EP/V025848/1.

Acknowledgements We thank Karoliina Lehtinen and Wolfgang Thomas for fruitful discussions.

1 Introduction

Most classical temporal logics like LTL and CTL* refer to a single execution trace at a time
while information-flow properties, which are crucial for security-critical systems, require
reasoning about multiple executions of a system. Clarkson and Schneider [13] coined the
term hyperproperties for such properties which, structurally, are sets of sets of traces. Just
like ordinary trace and branching-time properties, hyperproperties can be specified using
temporal logics, e.g. HyperLTL and HyperCTL* [12], expressive, but intuitive specification
languages that are able to express typical information-flow properties such as noninterference,
noninference, declassification, and input determinism. Due to their practical relevance
and theoretical elegance, hyperproperties and their specification languages have received
considerable attention during the last decade [1, 2, 5, 6, 7, 10, 12, 13, 14, 16, 26, 28, 31, 32, 39].

© Marie Fortin, Louwe B. Kuijer, Patrick Totzke, and Martin Zimmermann;
37 licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).

Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 47; pp.47:1-47:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:Marie.Fortin@liverpool.ac.uk
https://orcid.org/0000-0001-5278-0430
mailto:Louwe.Kuijer@liverpool.ac.uk
https://orcid.org/0000-0001-6696-9023
mailto:totzke@liverpool.ac.uk
https://orcid.org/0000-0001-5274-8190
mailto:Martin.Zimmermann@liverpool.ac.uk
https://orcid.org/0000-0002-8038-2453
https://doi.org/10.4230/LIPIcs.MFCS.2021.47
https://arxiv.org/abs/2105.04176
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2

HyperLTL Satisfiability Is X]-Complete, HyperCTL* Satisfiability Is £2-Complete

HyperLTL is obtained by extending LTL [34], the most influential specification language
for linear-time properties, by trace quantifiers to refer to multiple executions of a system.
For example, the HyperLTL formula

Vr. V' Glig < in) = G(0r < 0n/)

expresses input determinism, i.e. every pair of traces that always has the same input (represen-
ted by the proposition 7) also always has the same output (represented by the proposition o).
Similarly, HyperCTL* is the extension of the branching-time logic CTL* [17] by path quan-
tifiers. HyperLTL only allows formulas in prenex normal form while HyperCTL* allows
arbitrary quantification, in particular under the scope of temporal operators. Consequently,
HyperLTL formulas are evaluated over sets of traces while HyperCTL* formulas are evaluated
over transition systems, which yield the underlying branching structure of the traces.

All basic verification problems, e.g. model checking [18, 25], runtime monitoring [3,
8, 11, 24], and synthesis [9, 21, 22], have been studied. Most importantly, HyperCTL*
model checking over finite transition systems is decidable and TOWER-complete for a fixed
transition system [25, 33]. However, for a small number of alternations, efficient algorithms
have been developed and were applied to a wide range of problems, e.g. an information-flow
analysis of an 12C bus master [25], the symmetric access to a shared resource in a mutual
exclusion protocol [25], and to detect the use of a defeat device to cheat in emission testing [4].

But surprisingly, the exact complexity of the satisfiability problems for HyperLTL and
HyperCTL* is still open. Finkbeiner and Hahn proved that HyperLTL satisfiability is
undecidable [19], a result which already holds when only considering finite sets of ultimately
periodic traces and V3-formulas. In fact, Finkbeiner et al. showed that HyperLTL satisfiability
restricted to finite sets of ultimately periodic traces is X{-complete [20] (i.e. complete for
the set of recursively enumerable problems). Furthermore, Hahn and Finkbeiner proved
that the 3*V*-fragment has decidable satisfiability [19] while Mascle and Zimmermann
studied the HyperLTL satisfiability problem restricted to bounded sets of traces [33]. The
latter work implies that HyperLTL satisfiability restricted to finite sets of traces (even non
ultimately periodic ones) is also X{-complete. Finally, Finkbeiner et al. developed tools and
heuristics [20, 23].

As every HyperLTL formula can be turned into an equisatisfiable HyperCTL* formula,
HyperCTL* satisfiability is also undecidable. Moreover, Rabe has shown that it is even
Y1-hard [35], i.e. it is not even arithmetical. However, both for HyperLTL and for HyperCTL*
satisfiability, only lower bounds, but no upper bounds, are known.

Our Contributions. In this paper, we settle the complexity of the satisfiability problems for
HyperLTL and HyperCTL* by determining exactly how undecidable they are. That is, we
provide matching lower and upper bounds in terms of the analytical hierarchy and beyond,
where decision problems (encoded as subsets of N) are classified based on their definability
by formulas of higher-order arithmetic, namely by the type of objects one can quantify over
and by the number of alternations of such quantifiers. We refer to Roger’s textbook [36]
for fully formal definitions. For our purposes, it suffices to recall the following classes. 39
contains the sets of natural numbers of the form

{z e N|3zg- - Jzp. ¥(x,20,...,28)}

where quantifiers range over natural numbers and 1 is a quantifier-free arithmetic formula.
The notation X9 signifies that there is a single block of existential quantifiers (the subscript 1)
ranging over natural numbers (type 0 objects, explaining the superscript 0). Analogously, X1

M. Fortin, L. B. Kuijer, P. Totzke, and M. Zimmermann

is induced by arithmetic formulas with existential quantification of type 1 objects (functions
mapping natural numbers to natural numbers) and arbitrary (universal and existential)
quantification of type 0 objects. Finally, X% is induced by arithmetic formulas with existential
quantification of type 2 objects (functions mapping type 1 objects to natural numbers) and
arbitrary quantification of type 0 and type 1 objects. So, ¥¥ is part of the first level of the
arithmetic hierarchy, 31 is part of the first level of the analytical hierarchy, while ¥? is not
even analytical.

In terms of this classification, we prove that HyperLTL satisfiability is YX1-complete while
HyperCTL* satisfiability is ¥2-complete, thereby settling the complexity of both problems
and showing that they are highly undecidable. In both cases, this is a significant increase of
the lower bound and the first upper bound.

First, let us consider HyperLTL satisfiability. The X1 lower bound is a reduction from
the recurrent tiling problem, a standard ¥}-complete problem asking whether N x N can be
tiled by a given finite set of tiles. So, let us consider the upper bound: i allows to quantify
over type 1 objects: functions from natural numbers to natural numbers, or, equivalently,
over sets of natural numbers, i.e. countable objects. On the other hand, HyperLTL formulas
are evaluated over sets of infinite traces, i.e. uncountable objects. Thus, to show that
quantification over type 1 objects is sufficient, we need to apply a result of Finkbeiner and

Zimmermann proving that every satisfiable HyperLTL formula has a countable model [26].

Then, we can prove Yi-membership by expressing the existence of a model and the existence
of appropriate Skolem functions for the trace quantifiers by type 1 quantification. We also
prove that the satisfiability problem remains Y1-complete when restricted to ultimately
periodic traces, or, equivalently, when restricted to finite traces.

Then, we turn our attention to HyperCTL* satisfiability. Recall that HyperCTL* formulas
are evaluated over (possibly infinite) transition systems, which can be much larger than
type 2 objects whose cardinality is bounded by ¢, the cardinality of the continuum. Hence,
to obtain our upper bound on the complexity we need, just like in the case of HyperLTL,
an upper bound on the size of minimal models of satisfiable HyperCTL* formulas. To this
end, we generalise the proof of Finkbeiner and Zimmermann to HyperCTL*, showing that
every satisfiable HyperCTL* formula has a model of size ¢. We also exhibit a satisfiable
HyperCTL* formula ¢, whose models all have at least cardinality c, as they have to encode
all subsets of N by disjoint paths. Thus, our upper bound ¢ is tight.

With this upper bound on the cardinality of models, we are able to prove Y3-membership
of HyperCTL* satisfiability by expressing with type 2 quantification the existence of a model
and the existence of a winning strategy in the induced model checking game. The matching
lower bound is proven by directly encoding the arithmetic formulas inducing X2 as instances of
the HyperCTL* satisfiability problem. To this end, we use the formula ¢, whose models have
for each subset A C N a path encoding A. Now, quantification over type 0 objects (natural
numbers) is simulated by quantification of a path encoding a singleton set, quantification
over type 1 objects (which can be assumed to be sets of natural numbers) is simulated by
quantification over the paths encoding such subsets, and existential quantification over type 2
objects (which can be assumed to be subsets of 2V) is simulated by the choice of the model,
i.e. a model encodes k subsets of 2V if there are k existential type 2 quantifiers. Finally,
the arithmetic operations can easily be implemented in HyperLTL, and therefore also in
HyperCTL*.

After settling the complexity of satisfiability, we turn our attention to the HyperLTL
quantifier alternation hierarchy and its relation to satisfiability. Rabe remarks that the
hierarchy is strict [35], and Mascle and Zimmermann show that every HyperLTL formula has

47:3

MFCS 2021

47:4

HyperLTL Satisfiability Is X]-Complete, HyperCTL* Satisfiability Is £2-Complete

a polynomial-time computable equi-satisfiable formula with one quantifier alternation [33].
Here, we present a novel proof of strictness by embedding the FO[<] alternation hierarchy,
which is also strict [15, 37]. We use our construction to prove that for every n > 0, deciding
whether a given formula is equivalent to a formula with at most n quantifier alternations is
T3 -complete (i.e. the co-class of ¥1).

All proofs omitted due to space restrictions can be found in the full version [27].

2 Preliminaries

Fix a finite set AP of atomic propositions. A trace over AP is a map t: N — 2P denoted
by t(0)t(1)¢(2) - - -. Tt is ultimately periodic, if t = x - y* for some z,y € (24F)F, i.e. there are
s,p > 0 with t(n) = t(n + p) for all n > s. The set of all traces over AP is (24F)~.

A transition system 7 = (V| E, vy, \) consists of a set V of vertices, a set E CV xV
of (directed) edges, an initial vertex v; € V, and a labelling A: V' — 24P of the vertices by
sets of atomic propositions. A path p through 7 is an infinite sequence p(0)p(1)p(2)--- of
vertices with (p(n), p(n + 1)) € E for every n > 0.

HyperLTL. The formulas of HyperLTL are given by the grammar

pu=3m. @ |Vr. |9 Yu=ar | Y VY | Xy [U

where a ranges over atomic propositions in AP and where 7 ranges over a fixed countable
set V of (trace) variables. Conjunction, implication, and equivalence are defined as usual,
and the temporal operators eventually F and always G are derived as F 1 = —¢ U ¢ and
Gy =-F). A sentence is a formula without free variables.

The semantics of HyperLTL is defined with respect to a trace assignment, a partial
mapping IT: V — (24F)“. The assignment with empty domain is denoted by IIy. Given a
trace assignment II, a variable 7, and a trace ¢t we denote by II[r — t] the assignment that
coincides with IT everywhere but at 7, which is mapped to ¢t. Furthermore, II[j, co) denotes
the trace assignment mapping every 7 in II’'s domain to II(7)(j)II(7)(j + 1)II(7)(5 +2) - - -,
its suffix from position j onwards.

For sets T of traces and trace assignments IT we define
T,11) = a, if a € TI(7)(0),

(

(T10) =~ if (T'10) j~ o,

(T,10) |= o1 V iy if (T, 10) |= ¢y or (T',10) = 1o,

(T, 1) = X if (T, TI[1, 00)) = o,

(T, 1) = ¢1 U g if there is a j > 0 such that (T, 1I[j,00)) = 12 and for all 0 < j' < j:
(T, (5", 00)) |= 41,

(T,1I) = 3. ¢ if there exists a trace t € T such that (T,II[r — t]) | ¢, and

(T,1I) = V7. ¢ if for all traces t € T: (T,I1[r — t]) |= .
We say that T satisfies a sentence ¢ if (T, IIp) = ¢. In this case, we write T' |= ¢ and say
that T is a model of p. Although HyperLTL sentences are required to be in prenex normal
form, they are closed under Boolean combinations, which can easily be seen by transforming
such formulas into prenex normal form. Two HyperLTL sentences ¢ and ¢’ are equivalent if
T | pif and only if T |= ¢ for every set T of traces.

M. Fortin, L. B. Kuijer, P. Totzke, and M. Zimmermann

HyperCTL*. The formulas of HyperCTL* are given by the grammar

pr=ar |0 loVe | Xp|eUge|Im. p|Vr. ¢

where a ranges over atomic propositions in AP and where 7 ranges over a fixed countable
set V of (path) variables, and where we require that each temporal operator appears in the
scope of a path quantifier. Again, other Boolean connectives and temporal operators are
derived as usual. Sentences are formulas without free variables.

Let 7 be a transition system. The semantics of HyperCTL* is defined with respect to a
path assignment, a partial mapping II from variables in V to paths of 7. The assignment
with empty domain is denoted by Ily. Given a path assignment II, a variable 7, and a path p
we denote by II[m — p] the assignment that coincides with IT everywhere but at m, which is
mapped to p. Furthermore, II[j, c0) denotes the path assignment mapping every 7 in II’s
domain to II(7)(j)II(7)(j + V)II(7)(j + 2) - - -, its suffix from position j onwards.

For transition systems 7 and path assignments II we define

(T,I) &= a, if a € A(T1(7)(0)), where A is the labelling function of T,

(T 1) = = if (T, 10) = ¢,

(T, 10) = p1 Vabe 3f (T, 10) |= 41 or (T, 10) |= 4o,

(T, I) | X if (T,10[1,00)) |= ¢,

(T,1II) |= 41 Uy if there exists a j > 0 such that (7, II[j,00)) = 92 and for all 0 < j" < j:
(T T, 50)) = 1,

(T,II) = Jm. ¢ if there exists a path p of T, starting in rent(IT), such that (7, II[r —

rl) ¢, and

(T,1I) |= V. p if for all paths p of T starting in rent(II): (7,1 — p]) = ¢.
Here, rent(ID) is the initial vertex of II(7), where 7 is the path variable most recently added
to II, and the initial vertex of 7 if II is empty.! We say that T satisfies a sentence ¢ if
(T,IIy) E ». In this case, we write T |= ¢ and say that T is a model of ¢.

Complexity Classes for Undecidable Problems. A type 0 object is a natural number n € N,

a type 1 object is a function f: N — N, and a type 2 object is a function f: (N — N) — N.

As usual, predicate logic with quantification over type 0 objects (first-order quantifiers) is
called first-order logic. Second- and third-order logic are defined similarly.

We consider formulas of arithmetic, i.e. predicate logic with signature (0,1,+,, <)
evaluated over the natural numbers. With a single free variable of type 0, such formulas
define sets of natural numbers (see, e.g. Rogers [36] for more details):

%Y contains the sets of the form {z € N | 3xq---3xy. ¥(z, x0,...,2x)} where ¢ is a

quantifier-free arithmetic formula and the z; are variables of type 0.

%1 contains the sets of the form {z € N | Jxq - - Jwy. ¥ (z, 20, ..., 2%)} where ¢ is an

arithmetic formula with arbitrary (existential and universal) quantification over type 0

objects and the x; are variables of type 1.

%2 contains the sets of the form {z € N | Jxq - - Iwy. ¥(z, 20, ..., 2%)} where ¢ is an

arithmetic formula with arbitrary (existential and universal) quantification over type 0

and type 1 objects and the x; are variables of type 2.

Note that there is a bijection between functions of the form f: N — N and subsets of N,
which is implementable in arithmetic. Similarly, there is a bijection between functions of the

L For the sake of simplicity, we refrain from formalising this notion properly, which would require to keep
track of the order in which variables are added to II's domain.

47:5

MFCS 2021

47:6

HyperLTL Satisfiability Is X]-Complete, HyperCTL* Satisfiability Is £2-Complete

form f: (N — N) — N and subsets of 2, which is again implementable in arithmetic. Thus,
whenever convenient, we use quantification over sets of natural numbers and over sets of sets
of natural numbers, instead of quantification over type 1 and type 2 objects; in particular
when proving lower bounds. We then include € in the signature.

3 HyperlLTL satisfiability is X}-complete

In this section we settle the complexity of the satisfiability problem for HyperLTL: given a
HyperLTL sentence, determine whether it has a model.

» Theorem 1. HyperLTL satisfiability is ¥} -complete.

We should contrast this result with [20, Theorem 1], which shows that HyperLTL
satisfiability by finite sets of ultimately periodic traces is ¥9-complete. The ¥}-completeness
of HyperLTL satisfiability in the general case implies that, in particular, the set of satisfiable
HyperLTL sentences is neither recursively enumerable nor co-recursively enumerable. A
semi-decision procedure, like the one introduced in [20] for finite sets of ultimately periodic
traces, therefore cannot exist in general.

The ¥} upper bound relies on the fact that every satisfiable HyperLTL formula has
a countable model [26]. This allows us to represent these models, and Skolem functions
on them, by sets of natural numbers, which are type 1 objects. In this encoding, trace
assignments are type 0 objects, as traces in a countable set can be identified by natural
numbers. With some more existential type 1 quantification one can then express the existence
of a function witnessing that every trace assignment consistent with the Skolem functions
satisfies the quantifier-free part of the formula under consideration.

» Lemma 2. HyperLTL satisfiability is in 1.

Proof. Let ¢ be a HyperLTL formula, let ® denote the set of quantifier-free subformulas of ¢,
and let IT be a trace assignment whose domain contains the variables of (. The expansion of
¢ on II is the function e, r: @ x N — {0, 1} with

1 if TI[f, 00) = ¢, and

0 otherwise.

ecp,l_[('(/}mj) = {

The expansion is completely characterised by the following consistency conditions:
ep(ar,j) =1 if and only if a € II(7)(j).
e, n(—, j) =1 if and only if e, (¢, j) = 0.
e (11 Ve, j) = 1if and only if e, m(11,7) =1 or e, m(v2,7) = 1.
e, (X 1,5) =11if and only if e, (¢, 5 + 1) = 1.
ep (Y1 Uy, j) = 1 if and only if there is a j° > j such that e, (¢s,j) = 1 and
ep (12, 5") =1 for all 7/ in the range j < j” < j'.

Every satisfiable HyperLTL sentence has a countable model [26]. Hence, to prove that
the HyperLTL satisfiability problem is in 1, we express, for a given HyperLTL sentence
encoded as a natural number, the existence of the following type 1 objects (relying on the
fact that there is a bijection between finite sequences over N and N itself):

A countable set of traces over the propositions of ¢ encoded as a function T" from N x N to

N, mapping trace names and positions to (encodings of) subsets of the set of propositions

appearing in ¢.

M. Fortin, L. B. Kuijer, P. Totzke, and M. Zimmermann

A function S from N x N* to N to be interpreted as Skolem functions for the existentially
quantified variables of ¢, i.e. we map a variable (identified by a natural number) and a
trace assignment of the variables preceding it (encoded as a sequence of natural numbers)
to a trace name.
A function E from N x N x N to N, where, for a fixed a € N encoding a trace assignment II,
the function z,y — E(a,x,y) is interpreted as the expansion of ¢ on II, i.e. encodes a
subformula in ® and y is a position.
Then, we express the following properties using only type 0 quantification: For every trace
assignment of the variables in ¢, encoded by a € N, if a is consistent with the Skolem
function encoded by S, then the function x,y — E(a, x,y) satisfies the consistency conditions
characterising the expansion, and we have E(a,xg,0) = 1, where xq is the encoding of the
maximal quantifier-free subformula of ¢. We leave the tedious, but standard, details to the
industrious reader. |

Now, we prove hardness.
» Lemma 3. HyperLTL satisfiability is X1 -hard.

Proof. By a reduction from the recurring tiling problem which is given as follows. A tile
is a function 7: {east, west, north, south} — C that maps directions into a finite set C of
colours. Given a finite set 7 of tiles, a tiling of the positive quadrant with T is a function
T :N x N — T with the property that:

if T(i,j) =7 and T'(i + 1, j) = 72, then 11 (east) = m2(west) and

if T(i,j) =7 and T(i,j + 1) = 72 then 7 (north) = mo(south).
The recurring tiling problem is to determine, given a finite set T of tiles and a designated
70 € T, whether there is a tiling T of the positive quadrant with 7 such that there are
infinitely many j € N such that T(0,j) = 79. This problem is known to be ¥i-complete [29],
so if we reduce it to HyperLTL satisfiability this will establish the desired hardness result.

In our reduction, each z-coordinate in the positive quadrant will be represented by a
trace, and each y-coordinate by a point in time.? In order to keep track of which trace
represents which z-coordinate, we use one designated atomic proposition x that holds on
exactly one time point in each trace: x holds at time 7 if and only if the trace represents
z-coordinate i.

For this purpose, let T be given, and define the following formulas over AP = {2} U T

Every trace has exactly one point where = holds:
w1 =7 (-2, Uz, AN X G —z,))
For every ¢ € N, there is a trace with x in the ¢-th position:
w2 = (Am. z:) A (Vrr. Ime. F(zg, AX2gy))
If two traces represent the same z-coordinate, then they contain the same tiles:

p3 = V1. ¥y, (F(2r, A2iny) = G(N (72, © 7n,)))
TET

2 Note that this means that if we were to visually represent this construction, traces would be arranged
vertically.

47:7

MFCS 2021

47:8 HyperLTL Satisfiability Is X]-Complete, HyperCTL* Satisfiability Is £2-Complete

Every time point in every trace contains exactly one tile:

ps=Vr. G \/ (T A /\ ("))

TeT T'eT\{1}

Tiles match vertically:

_ /
¥5 = vm. G \E/T(Tﬂ A \/-r’E{T’ETl‘r(north):‘r’(south)} X(T)ﬂ')

Tiles match horizontally:

06 = V1. Vs, (F(2r, AX@r,) = G \/ (7, A/ (7")72))

reT T'e{r' €T |r(east)=7"(west)}

Tile 79 occurs infinitely often at x-position 0:
w7 =3r. (2 NGF1g)

Finally, take ¢ = A;-;<;@i- Technically @7 is not a HyperLTL formula, since it
is not in prenex normal form, but it can be trivially transformed into one. Collectively,
subformulas ¢1—3 are satisfied in exactly those sets of traces that can be interpreted as
N x N. Subformulas ¢4—pg then hold if and only if the N x N grid is correctly tiled with
T. Subformula @7, finally, holds if and only if the tiling uses the tile 7y infinitely often at
z-coordinate 0. Overall, this means 7 is satisfiable if and only if 7 can recurrently tile the
positive quadrant.

The Y1-hardness of HyperLTL satisfiability therefore follows from the ¥}-hardness of the
recurring tiling problem [29]. <

The Y}-completeness of HyperLTL satisfiability still holds if we restrict to ultimately
periodic traces.

» Theorem 4. HyperLTL satisfiability restricted to sets of ultimately periodic traces is
Y1-complete.

Proof. The problem of whether there is a tiling of {(i,j) € N? | i > j}, i.e. the part of
N x N below the diagonal, such that a designated tile 75 occurs on every row, is also :1-
complete [29].3 We reduce this problem to HyperLTL satisfiability on ultimately periodic
traces.

The reduction is very similar to the one discussed above, with the necessary changes
being: (i) every time point beyond x satisfies the special tile “null”, (ii) horizontal and
vertical matching are only checked at or before time point x and (iii) for every 7 there is a
7o such that mo has designated tile 79 at the time where 7 satisfies z (so 7¢ holds at least
once in every row).

Membership in ¥} can be shown similarly to the proof of Lemma 2. So, the problem is
Y1-complete. |

3 The proof in [29] is for the part above the diagonal with 7o occurring on every column, but that is easily
seen to be equivalent.

M. Fortin, L. B. Kuijer, P. Totzke, and M. Zimmermann

4 The HyperLTL Quantifier Alternation Hierarchy

The number of quantifier alternations in a formula is a crucial parameter in the complexity of
HyperLTL model-checking [25, 35]. A natural question is then to understand which properties
can be expressed with n quantifier alternations, that is, given a sentence ¢, determine if
there exists an equivalent one with at most n alternations. In this section, we show that
this problem is in fact exactly as hard as the HyperLTL unsatisfiability problem (which asks
whether a HyperLTL sentence has no model), and therefore I1}-complete. Here, II} is the
co-class of ¥}, i.e. it contains the complements of the X1 sets.

Formally, the HyperLTL quantifier alternation hierarchy is defined as follows. Let ¢ be a
HyperLTL formula. We say that ¢ is a ¥g- or a IIp-formula if it is quantifier-free. It is a
Y, -formula if it is of the form ¢ = 37y - - - Img. ¥ and ¢ is a II,,_;-formula. It is a IL,-formula
if it is of the form ¢ = Vmy - - - Vmg. ¢ and ¢ is a ¥,,_;-formula. We do not require each block
of quantifiers to be non-empty, i.e. we may have k = 0 and ¢ = 9. By a slight abuse of
notation, we also let ¥,, denote the set of hyperproperties definable by a X,,-sentence, that
is, the set of all L(p) = {T C (2A7)¥ | T |= ¢} such that ¢ is a ¥,-sentence of HyperLTL.

» Theorem 5 ([35, Corollary 5.6.5]). The quantifier alternation hierarchy of HyperLTL is
strict: for alln >0, ¥, C Xp41.

The strictness of the hierarchy also holds if we restrict our attention to sentences whose
models consist of finite sets of traces that end in the suffix (%, i.e. that are essentially finite.

» Theorem 6. For all n > 0, there exists a X, 1-sentence ¢ of HyperLTL that is not
equivalent to any %, -sentence, and such that for all T C (2°F)”, if T |= ¢ then T contains
finitely many traces and T C (24F) 0.

This fact is a necessary ingredient for our argument that membership at some fixed level
of the quantifier alternation hierarchy is IT}-hard. It could be derived from a small adaptation
of the proof in [35], and we provide an alternative proof in the extended version [27] by
exhibiting a connection between the HyperLTL quantifier alternation hierarchy and the
quantifier alternation hierarchy for first-order logic over finite words, which is known to be
strict [15, 38].

Our goal is to prove the following.

» Theorem 7. Fizn > 0. The problem of deciding whether a HyperLTL sentence is equivalent
to some ¥, -sentence is 11} -complete.

The easier part is the upper bound, since a corollary of Theorem 1 is that the problem of
deciding whether two HyperLTL formulas are equivalent is II}-complete. The lower bound
is proven by reduction from the HyperLTL unsatisfiability problem. The proof relies on
Theorem 6: given a sentence ¢, we are going to combine ¢ with some ¥, 1-sentence ;41
witnessing the strictness of the hierarchy, to construct a sentence 1) such that ¢ is unsatisfiable
if and only if ¢ is equivalent to a 3,-sentence. Intuitively, the formula 1 will describe models
consisting of the “disjoint union” of a model of ¢, 11 and a model of ¢. Here “disjoint” is to
be understood in a strong sense: we split both the set of traces and the time domain into
two parts, used respectively to encode the models of ¢, 1 and those of ¢.

To make this more precise, let us introduce some notations. We assume a distinguished
symbol $ ¢ AP. We say that a set of traces T C (22PY{8H)” is bounded if there exists b € N
such that T C (247)". {§1e.

47:9

MFCS 2021

47:10 HyperLTL Satisfiability Is X}-Complete, HyperCTL* Satisfiability Is £2-Complete

fa,0} {a} {a}| {3} {8} {8} {8} {§}
oy 0 {a}| {3} {8} {8} {8} {%}
{3t {8 {8} |[{a} {a} {ab} 0 {a}
{8y {8+ {8y [{o} {a} {0} {0} {a}

Ty

T,

Figure 1 Example of a split set of traces where each row represents a trace and b = 3.

» Lemma 8. There exists a Ili-sentence ppq such that for all T C (2APU{$})M, we have
T = wpa if and only if T is bounded.

Proof. We let

pra =Y. V1 (<8, UGS) A J\ G((ar A$2)) AF (=8, A= A XS AXS,) .
a€AP

The conjunct (=$, UG $:) AA,cap G(—(axA$r)) ensures that every trace is in (247)"- {$}«,
while F (=8, A =8, A X $: A X $,/) ensures that the $’s in any two traces m and 7’ start at
the same position. |

We say that T is split if there exist b € N and T, T such that T = Ty W15, T C
(2AP)b -{$}¥, and T, C {$}*- (227)”. Note that b is unique here. Hence, we define the
left and right part of T as T, = T} and T, = {t € (247)" | {$}" - t € Ty}, respectively (see
Figure 1).

It is easy to combine HyperLTL specifications for the left and right part of a split model
into one global formula.

» Lemma 9. For all HyperLTL sentences @y, @y, one can construct a sentence ¥ such that
for all split T C (28P9BNY it holds that Ty = ¢¢ and T, = @, if and only if T = 1.

Proof of Lemma 9. Let p, denote the formula obtained from ¢, by replacing:

every existential quantification 3r. ¢ with Ir. (F G =$,) A »);

every universal quantification Vr. ¢ with Vr. (F G —$;) — ¢);

the quantifier-free part ¢ of ¢, with $, U(=$; A ¢), where 7 is some free variable in .
Here, the first two replacements restrict quantification to traces in the right part while the
last one requires the formula to hold at the first position of the right part. We define @, by
similarly relativizing quantifications in ¢,. The formula @; A , can then be put back into
prenex normal form to define). |

Conversely, any HyperLTL formula that only has split models can be decomposed into a
Boolean combination of formulas that only talk about the left or right part of the model.
This is formalised in the lemma below.

» Lemma 10. For all HyperLTL ¥, -sentences ¢ there exists a finite family (o}, ¢L); of
Y, -sentences such that for all split T C (2APU{$})W: T |= o if and only if there is an i with

T, = ¢y and T, = 4.
We are now ready to prove Theorem 7.

Proof of Theorem 7. The upper bound is an easy consequence of Theorem 1: Given a
HyperLTL sentence ¢, we express the existence of a 3,-sentence v using first-order quanti-
fication and encode equivalence of ¢ and ¢ via the formula (- A) V (¢ A —p), which is
unsatisfiable if and only if ¢ and 1 are equivalent. Altogether, this shows membership in I13,
as I1} is closed under existential first-order quantification (see, e.g. [30, Page 82]).

M. Fortin, L. B. Kuijer, P. Totzke, and M. Zimmermann

We prove the lower bound by reduction from the unsatisfiability problem for HyperLTL.
So given a HyperLTL sentence o, we want to construct 1 such that ¢ is unsatisfiable if and
only if 1 is equivalent to a X,-sentence.

We first consider the case n > 1. Fix a ¥, -sentence ,, 1 that is in not equivalent to
any X,-sentence, and such that every model of ¢, 41 is bounded. The existence of such a
formula is a consequence of Theorem 6. By Lemma 9, there exists a computable ¢ such that
for all split models T', we have T' |= ¢ if and only if Ty = @41 and T, = .

First, it is clear that if ¢ is unsatisfiable, then 1 is unsatisfiable as well, and thus equivalent
to 7. ax A —a,, which is a ¥,,-sentence since n > 1.

Conversely, suppose towards a contradiction that ¢ is satisfiable and that 1) is equivalent
to some ¥,,-sentence. Let (1}, 1%); be the finite family of ,-sentences given by Lemma 10
for ¢. Fix a model T}, of . For a bounded T, we let T' denote the unique split set of traces
such that Ty = T and T, = T,. For all T', we then have T' |= ¢, if and only if T" is bounded
and T E 1. Recall that the set of bounded models can be defined by a II;-sentence @pg
(Lemma 8), which is also a X,-sentence since n > 1. We then have T = ¢, 41 if and only if
T |= ¢pa and there exists i such that T |= ¢ and T, = 1. So @41 is equivalent to

A i
Pbd \/Z with T, =i (e

which, since ¥,-sentences are closed (up to logical equivalence) under conjunction and
disjunction, is equivalent to a ¥,,-sentence. This contradicts the definition of ¢, 41.

We are left with the case n = 1. Similarly, we construct ¢ such that ¢ is unsatisfiable if
and only if ¢ is unsatisfiable, and if and only if ¢ is equivalent to a X;-sentence. However,
we do not need to use bounded or split models here. Every satisfiable ¥1-sentence has a
model with finitely many traces. Therefore, a simple way to construct i so that it is not
equivalent to any Xi-sentence (unless it is unsatisfiable) is to ensure that every model of ¢
contains infinitely many traces.

Let z ¢ AP, and T,, = {0"{z}0* | n € N}. As seen in the proof of Lemma 3, T, is
definable in HyperLTL: There is a sentence ¢,, such that 7' C (2APY{#})« is a model of ¢, if
and only if T = T,,. By relativising quantifiers in ¢, and ¢ to traces with or without the
atomic proposition z, one can construct a HyperLTL sentence 1) such that T' = ¢ if and only
if T, CTand T\ T, E ¢.

Again, if ¢ is unsatisfiable then 1 is unsatisfiable and therefore equivalent to Iw. a; A —ay,
a Yi-sentence. Conversely, all models of i contain infinitely many traces and therefore, if 1
is equivalent to a Xi-sentence then it is unsatisfiable, and so is . <

5 HyperCTL* satisfiability is X2-complete

Here, we consider the HyperCTL* satisfiability problem: given a HyperLTL sentence,
determine whether it has a model 7 (of arbitrary size). We prove that it is much harder
than HyperLTL satisfiability. As a key step of the proof, we also prove that every satisfiable
sentence admits a model of cardinality at most ¢ (the cardinality of the continuum), and
conversely, we exhibit a satisfiable sentence whose models are all of cardinality at least c.

» Theorem 11. HyperCTL* satisfiability is X2 -complete.

On the other hand, HyperCTL* satisfiability restricted to finite transition systems is
¥9-complete. The upper bound follows from HyperCTL* model checking being decidable [12]
(therefore, the problem is recursively enumerable and thus in X9) while the matching lower
bound is inherited from HyperLTL [19].

47:11

MFCS 2021

47:12

HyperLTL Satisfiability Is X]-Complete, HyperCTL* Satisfiability Is £2-Complete

Upper bound. We begin by proving membership in $2. The first step is to obtain a bound
on the size of minimal models of satisfiable HyperCTL* sentences. For this, we use an
argument based on Skolem functions, which is a transfinite generalisation of the proof that
all satisfiable HyperLTL sentences have a countable model [26].

In the following, we use w and w; to denote the first infinite and the first uncountable
ordinal, respectively, and write g and ¥ for their cardinality.

» Lemma 12. FEach satisfiable HyperCTL* sentence ¢ has a model of size at most c.

Proof sketch. Suppose ¢ has a model T of arbitrary size, and fix Skolem functions witnessing
this satisfaction. We then create a transfinite sequence of transition systems 7,. We start by
taking 7y to be any single path from 7T starting in the initial vertex, and obtain 7,1 by
adding to T, all vertices and edges of the paths that are the outputs of the Skolem functions
when restricted to inputs from 7,. If « is a limit ordinal we take 7, to be the union of all
previous transition systems.

This sequence does not necessarily stabilise at w, since 7, may contain a path p such that
p(i) was introduced in 7;. This would result in 7, containing a path that was not present in
any earlier model 7; with ¢ < w, and therefore we could have 7,11 # T,

The sequence does stabilise at w;, however. This is because every path p contains only
countably many vertices, so if every element p(i) of p is introduced at some countable «;,
then there is a countable a such that all of p is included in 7. It follows that 7., does not
contain any “new” paths that were not already in some 7T, with o < wy, and therefore the
Skolem function f does not generate any “new” outputs either.

In each step of the construction at most ¢ new vertices are added, so 7, contains at most
¢ vertices. Furthermore, because 7y, is closed under the Skolem functions, the satisfaction of
@ in T implies its satisfaction in 7,,. <

With the upper bound at hand, we can place HyperCTL* satisfiability in X%, as the
existence of a model of size ¢ can be captured by quantification over type 2 objects.

» Lemma 13. HyperCTL* satisfiability is in 2.

Proof. As in the proof of Theorem 1. Because every HyperCTL* formula is satisfied in a
model of size at most ¢, these models can be represented by objects of type 2. Checking
whether a formula is satisfied in a transition system is equivalent to the existence of a winning
strategy for Verifier in the induced model checking game. Such a strategy is again a type 2
object, which is existentially quantified. Finally, whether it is winning can be expressed
by quantification over individual elements and paths, which are objects of types 0 and 1.
Checking the satisfiability of a HyperCTL* formula ¢ therefore amounts to existential third-
order quantification (to choose a model and a winning strategy) followed by a second-order
formula to verify that ¢ holds on the model. Hence HyperCTL* satisfiability is in 2.

Formally, we encode the existence of a winning strategy for Verifier in the HyperCTL*
model checking game G(T, ¢) induced by a transition system 7 and a HyperCTL* formula .
This game is played between Verifier and Falsifier, one of them aiming to prove that 7 | ¢
and the other aiming to prove T £ . It is played in a graph whose positions correspond to
subformulas which they want to check (and suitable path assignments of the free variables):
each vertex (say, representing a subformula 1) belongs to one of the players who has to pick
a successor, which represents a subformula of 1. A play ends at an atomic proposition, at
which point the winner can be determined.

M. Fortin, L. B. Kuijer, P. Totzke, and M. Zimmermann

Formally, a vertex of the game is of the form (II, 4, b) where II is a path assignment,) is
a subformula of ¢, and b € {0,1} is a flag used to count the number of negations encountered
along the play; the initial vertex is (Ily, ¢, 0). Furthermore, for until-subformulas v, we need
auxiliary vertices of the form (II,1), b, j) with j € N. The vertices of Verifier are

of the form (I1, 1, 0) with ¢ = 11 V 12, ¥ = 11 Uy, or ¢ = Im. ¢/,

of the form (I1,Vr. ¢', 1), or

of the form (IT, 91 U s, 1, 7).
The moves of the game are defined as follows:

A vertex (IL, ar, b) is terminal. It is winning for Verifier if b = 0 and a € A(II(7)(0)) or if

b=1and a ¢ A(II(7)(0)), where X is the labelling function of 7.

A vertex (II, =9, b) has a unique successor (II, %, b+ 1 mod 2).
I1, 41 V 1ba, b) has two successors of the form (IT,;,b) for i € {1,2}.
A vertex (II, X 1, b) has a unique successor (II[1,00),,b).
A vertex (II,41 U1y, b) has a successor (II, 11 Utg, b, j) for every j € N.
A vertex (II,9; U1, b,j) has the successor (II[j,00),12,b) as well as successors
(T1[5’, 00), 41, b) for every 0 < j' < j.
A vertex (II, 37. 4, b) has successors (I[r — p], ¥, b) for every path p of T starting in
rent(IT).
A vertex (II, V7. 9, b) has successors (II[w — p], 1, b) for every path p of T starting in
rent(IT).

A vertex

~ o~~~

A play of the model checking game is a finite path through the graph, starting at the
initial vertex and ending at a terminal vertex. It is winning for Verifier if the terminal vertex
is winning for her. Note that the length of a play is bounded by 2d, where d is the depth? of
, as the formula is simplified during each move.

A strategy o for Verifier is a function mapping each of her vertices v to some successor
of v. A play vg - - vy is consistent with o, if v11 = o(vg) for every 0 < k' < k such that
vk is a vertex of Verifier. A straightforward induction shows that Verifier has a winning
strategy for G(T,) if and ounly if T | .

Recall that every satisfiable HyperCTL* sentence has a model of cardinality ¢ (Lemma 12).
Thus, to place HyperCTL* satisfiability in 32, we express, for a given natural number
encoding a HyperCTL* formula ¢, the existence of the following type 2 objects (using
suitable encodings):

A transition system 7T of cardinality c.

A function o from V to V, where V is the set of vertices of G(T, ¢). Note that a single

vertex of V' is a type 1 object.

Then, we express that o is a strategy for Verifier, which is easily expressible using quanti-
fication over type 1 objects. Thus, it remains to express that ¢ is winning by stating that
every play (a sequence of type 1 objects of bounded length) that is consistent with o ends
in a terminal vertex that is winning for Verifier. Again, we leave the tedious, but standard,
details to the reader. <

Lower bound. We first describe a satisfiable HyperCTL* sentence ¢, that does not have
any model of cardinality less than ¢ (more precisely, the initial vertex must have uncountably
many successors), thus matching the upper bound from Lemma 12. We construct ¢, with
one particular model 7¢ in mind, defined below, though it also admits other models.

4 The depth is the maximal nesting of quantifiers, Boolean connectives, and temporal operators.

47:13

MFCS 2021

47:14

HyperLTL Satisfiability Is X]-Complete, HyperCTL* Satisfiability Is £2-Complete

* o

«-""
-«
-
-«
-

* o

£~ -

Figure 2 A depiction of 7;. Vertices in black (on the left including the initial vertex) are labelled
by fbt, those in red (on the right, excluding the initial vertex) are labelled by set.

The idea is that we want all possible subsets of A C N to be represented in 7, in the form
of paths p 4 such that p4(7) is labelled by 1 if i € A, and by 0 otherwise. By ensuring that the
first vertices of these paths are pairwise distinct, we obtain the desired lower bound on the
cardinality. We express this in HyperCTL* as follows: First, we express that there is a part
of the model (labelled by £bt) where every reachable vertex has two successors, one labelled
with 0 and one labelled with 1, i.e. the unravelling of this part contains the full binary tree.
Thus, this part has a path p4 as above for every subset A, but their initial vertices are not
necessarily distinct. Hence, we also express that there is another part (labelled by set) that
contains a copy of each path in the fbt-part, and that these paths indeed start at distinct
successors of the initial vertex.

We let 7. = (Vi, Ec, te, \¢) (see Figure 2), where

Ve={tu |ue{0,1}'}U{s4 |ic NAACN}

{set,0} ifi¢ A
{set,1} ifi€ A

Be = {(tus tuo), (tus tur) | u € {0,1}"F U {(te, s%) | A S N}U{(sh,s4) | ACN,i € N}.

Ac(te) = {fbt} Ac(two) = {fbt,0} Ac(tw-1) = {fbt,1} /\c(s;) = {

» Lemma 14. There is a satisfiable HyperCTL* sentence @, that has only models of cardinality
at least c.

Proof. The formula ¢, is defined as the conjunction of the formulas below:
1. The label of the initial vertex is {fbt} and the labels of non-initial vertices are {fbt,0},
{fbt, 1}, {set,0}, or {set,1}:

V. (£bty A =0 A =1z A —sety) AX G ((setr <> —fbty) A (0r > =15))

2. All fbt-labelled vertices have a successor with label {fbt,0} and one with label {fbt, 1},
and all fbt-labelled vertices that are additionally labelled by 0 or 1 have no set-labelled
SUCCessor:

vr. G (£fbty — ((Fmo. X(£btryA0ry))A(Fm1. X(£btr, Alr,))A((07V1r) = V' X £btr)))

3. For every path of fbt-labelled vertices starting at a successor of the initial vertex, there
is a path of set-labelled vertices (also starting at a successor of the initial vertex) with
the same {0, 1} labelling:

vr. (X £bt,) — 3n'. X(setr A G(0r <> 0)))

M. Fortin, L. B. Kuijer, P. Totzke, and M. Zimmermann

4. Any two paths starting in the same set-labelled vertex have the same sequence of labels:
vr. G (set; = Vr'. G(0r <> 0)) .

It is easy to check that 7¢ |= ¢.. Note however that it is not the only model of ¢,: for
instance, some paths may be duplicated, or merged after some steps if their label sequences
share a common suffix. So, consider an arbitrary transition system 7 = (V, E,vr, A) such
that 7 | ¢.. By condition 2, for every set A C N, there is a path p4 starting at a successor
of vy such that A(pa(i)) = {fbt,1} if i € A and A(pa(i)) = {£fbt,0} if i ¢ A. Condition 3
implies that there is also a set-labelled path p/, such that p/; starts at a successor of v, and
has the same {0, 1} labelling as p4. Finally, by condition 4, if A # B then p/,(0) # p’5(0). <«

Before moving to the proof that HyperCTL* satisfiability is ¥3-hard, we introduce
one last auxiliary formula that will be used in the reduction, showing that addition and
multiplication can be defined in HyperCTL*, and in fact even in HyperLTL, as follows: Let
AP = {argl,arg2,res,add,mult} and let T(4 .y be the set of all traces ¢ € (24%)* such that

there are unique nq,ng,n3 € N with argl € t(n1), arg2 € t(n3), and res € t(n3), and

either add € t(n) for all n and n; + ng = ng, or mult € t(n) for all n and ny - ny = ns.

» Lemma 15. There is a HyperLTL sentence ¢4 .y which has T(y .y as unique model.

To establish ¥2-hardness, we give an encoding of formulas of existential third-order
arithmetic into HyperCTL*. As explained in Section 2, we can (and do for the remainder of
the section) assume that first-order (type 0) variables range over natural numbers, second-
order (type 1) variables range over sets of natural numbers, and third-order (type 2) variables
range over sets of sets of natural numbers.

» Lemma 16. Suppose ¢ = 3x1 ... 3x,. ¥, where x1, ..., x, are third-order variables, and
Y is a formula of second-order arithmetic. One can construct a HyperCTL* formula ¢’ such
that (N,0,1,+, -, <, €) is a model of ¢ if and only if ¢ is satisfiable.

Proof. The idea of the proof is as follows. We represent sets of natural numbers as infinite
paths with labels in {0, 1}, so that quantification over sets of natural numbers in ¢ can be
replaced by HyperCTL* path quantification. First-order quantification is handled in the
same way, but using paths where exactly one vertex is labelled 1. In particular we encode
first- and second-order variables x of ¢ as path variables m, of ¢'. For this to work, we
need to make sure that every possible set has a path representative in the transition system
(possibly several isomorphic ones). This is where formula ¢, defined in Lemma 14 is used.
For arithmetical operations, we rely on the formula ¢, .) from Lemma 15. Finally, we
associate with every existentially quantified third-order variable z; an atomic proposition a;,
so that for a second-order variable y, the atomic formula y € x; is interpreted as the atomic
proposition a; being true on m,. This is all explained in more details below.

Let AP ={ay,...,an,0,1,set, fbt, argl, arg2, res, mult,add}. Given an interpretation
vi{xy,...,n} — 2(2") of the third-order variables of ©, we denote by 7T, the transition
system over AP obtained as follows: We start from 7., and extend it with an {a1,...,a,}-

labelling by setting a; € AM(pa(0)) if A € v(x;); then, we add to this transition system all
traces in T(y .y as disjoint paths below the initial vertex.

From the formulas ¢, and ¢4 .y defined in Lemmas 14 and 15, it is not difficult to
construct a formula ¢ ;) such that:

For all v: {z1,...,2,} — 2(2N), the transition system 7, is a model of (. 4).

Conversely, in any model 7" = (V, E,vr, A) of (¢ 4.y, the following conditions are satisfied:

47:15

MFCS 2021

47:16

HyperLTL Satisfiability Is X]-Complete, HyperCTL* Satisfiability Is £2-Complete

1. For every path p starting at a set-labelled successor of the initial vertex vy, the vertex
p(0) has a label of the form A(p(0)) = {set,b} U with b € {0,1} and ¢ C {aq,...,an},
and every vertex p(i) with ¢ > 0 has a label A(p(i)) = {set,0} or A(p(i)) = {set, 1}.

2. For every A C N, there exists a set-labelled path p4 starting at a successor of vy such
that 1 € A(pa(i)) ifi € A, and 0 € A(pa(?)) if i ¢ A. Moreover, all such paths have
the same {ay,...,a,} labelling; this can be expressed by the formula

/
vr. Vr'. X (G(set,r Asetp A(1z < 10)) — /\ae{al,...,an} ar & aﬂ/>)

3. For every path p starting at an add- or mult-labelled successor of the initial vertex,
the label sequence A(p(0))A(p(1))--- of pis in T(4 ..

4. Conversely, for every trace t € T4 .y, there exists a path p starting at a successor of
the initial vertex such that A(p(0))A(p(1))--- =t.

We then let " = @ 4.y AImg.Im1. X1y AXGO0ry AOry AX 1 AXXGOr,) A (1)),
where my and 7 are used to encode the constants 0 and 1, and h(v)) is defined inductively
from the second-order body % of ¢ as follows:

h(1 V h2) = h(1) V h(12) and h(=¢1) = =h(¢1).

If « ranges over sets of natural numbers, h(Jz. ¢1) = Im,. (X setr,) A h(¢1)), and
h(Vz. 1) = V7. (X sety,) — h(1)).

If ranges over natural numbers, h(3z. 1) = Im,. (Xsetr,)AX (0, U(1l;, AX G 0r,))A
h(¢1)), and h(Vx. 1) = Ve, (Xsetr,) AX(0r, U(lz, AXGO,,)) = h(¥1)).

If y ranges over sets of natural numbers, h(y € z;) = X(a;)r, -

If & ranges over natural numbers and y over sets of natural numbers, h(z € y) =

(r<y)=F(r, AXF1g).
h(z -y = z) = 3r. (Xadd,) A F(argl, Aly,) AF(arg2, Alg) AF(resy Aly,), and
(r+y=2)=3Ir. (Xmult,) AF(argl Al;,) AF(arg2, Aly) AF(res; Aly,).

If 4 is true under some interpretation v of x1,...,x, as sets of sets of natural numbers,
then the transition system 7, defined above is a model of ¢’. Conversely, if 7 = ¢’ for some
transition system 7T, then for all sets A C N there is a path p4 matching A in 7, and all such

paths have the same {a1, ..., a,}-labelling, so we can define an interpretation v of z1,...,z,
by taking A € v(z;) if and only if a; € A(pa(0)). Under this interpretation ¢ holds, and thus
@ is true. |

» Lemma 17. HyperCTL* satisfiability is ¥%-hard.

Proof. Let N be a X2 set, i.e. N = {x € N | 3xg---Iwy. ¥(,20,...,2x)} for some second-
order arithmetic formula 1 with existentially quantified third-order variables x;. For every
n € N, we define a sentence

onp =3x¢---zp. Fr. 2 =04+1+1+-- -+ 1AY(z,20,...,2%)) -
N—— —

n times
Then ¢, is true if and only if n € N. Combining this with Lemma 16, we obtain a computable

function that maps any n € N to a HyperCTL* formula ¢!, such that n € N if and only if
! is satisfiable. <

M. Fortin, L. B. Kuijer, P. Totzke, and M. Zimmermann

6

Conclusion

In this work, we have settled the complexity of the satisfiability problems for HyperLTL
and HyperCTL*. In both cases, we significantly increased the lower bounds, i.e. from X9
and ¥} to X} and X%, respectively, and presented the first upper bounds, which are tight
in both cases. Along the way, we also determined the complexity of restricted variants, e.g.

HyperLTL satisfiability restricted to ultimately periodic traces (or, equivalently, to finite

traces) is still ¥i-complete while HyperCTL* satisfiability restricted to finite transition

systems is X{-complete. As a key step in this proof, we showed a tight bound of ¢ on the size

of minimal models for satisfiable HyperCTL* sentences. Finally, we also show that deciding

membership in any level of the HyperLTL quantifier alternation hierarchy is IT3-complete.

—— References

1

10

11

12

13

14

Erika Abrahdm, Ezio Bartocci, Borzoo Bonakdarpour, and Oyendrila Dobe. Probabilistic hy-
perproperties with nondeterminism. In Dang Van Hung and Oleg Sokolsky, editors, ATVA 2020,
volume 12302 of LNCS, pages 518-534. Springer, 2020. doi:10.1007/978-3-030-59152-6_29.
Erika Abrahdm and Borzoo Bonakdarpour. HyperPCTL: A temporal logic for probabilistic
hyperproperties. In Annabelle Mclver and Andras Horvath, editors, QEST 2018, volume
11024 of LNCS, pages 20-35. Springer, 2018. doi:10.1007/978-3-319-99154-2_2.

Shreya Agrawal and Borzoo Bonakdarpour. Runtime verification of k-safety hyperproperties
in HyperLTL. In CSF 2016, pages 239-252. IEEE Computer Society, 2016. doi:10.1109/CSF.
2016.24.

Gilles Barthe, Pedro R. D’Argenio, Bernd Finkbeiner, and Holger Hermanns. Facets of software
doping. In Tiziana Margaria and Bernhard Steffen, editors, ISoLA 2016, Proceedings, Part II,
volume 9953 of LNCS, pages 601-608, 2016. doi:10.1007/978-3-319-47169-3_46.

Ezio Bartocci, Thomas Ferrére, Thomas A. Henzinger, Dejan Nickovic, and Ana Oliveira
da Costa. Flavours of sequential information flow. arXiv, 2021. arXiv:2105.02013.

Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner, and César Sanchez.
A temporal logic for asynchronous hyperproperties. arXiv, 2021. arXiv:2104.14025.
Béatrice Bérard, Stefan Haar, and Loic Hélouét. Hyper partial order logic. In Sumit Ganguly
and Paritosh K. Pandya, editors, FSTTCS 2018, volume 122 of LIPIcs, pages 20:1-20:21.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2018. doi:10.4230/LIPIcs.FSTTCS.2018.
20.

Borzoo Bonakdarpour and Bernd Finkbeiner. Runtime verification for HyperLTL. In Ylies
Falcone and César Séanchez, editors, RV 2016, volume 10012 of LNCS, pages 41-45. Springer,
2016. doi:10.1007/978-3-319-46982-9_4.

Borzoo Bonakdarpour and Bernd Finkbeiner. Controller synthesis for hyperproperties. In
CSF 2020, pages 366-379. IEEE, 2020. doi:10.1109/CSF49147.2020.00033.

Laura Bozzelli, Adriano Peron, and Cesar Sanchez. Asynchronous extensions of hyperltl, 2021.
arXiv:2104.12886.

Noel Brett, Umair Siddique, and Borzoo Bonakdarpour. Rewriting-based runtime verification
for alternation-free HyperLTL. In Axel Legay and Tiziana Margaria, editors, TACAS 2017,
Part II, volume 10206 of LNCS, pages 77-93, 2017. doi:10.1007/978-3-662-54580-5_5.
Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sanchez. Temporal logics for hyperproperties. In Martin Abadi and
Steve Kremer, editors, POST 2014, volume 8414 of LNCS, pages 265—-284. Springer, 2014.
doi:10.1007/978-3-642-54792-8_15.

Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157—
1210, 2010. doi:10.3233/JCS-2009-0393.

Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The hierarchy of
hyperlogics. In LICS 2019, pages 1-13. IEEE, 2019. doi:10.1109/LICS.2019.8785713.

47:17

MFCS 2021

https://doi.org/10.1007/978-3-030-59152-6_29
https://doi.org/10.1007/978-3-319-99154-2_2
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1007/978-3-319-47169-3_46
http://arxiv.org/abs/2105.02013
http://arxiv.org/abs/2104.14025
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.20
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.20
https://doi.org/10.1007/978-3-319-46982-9_4
https://doi.org/10.1109/CSF49147.2020.00033
http://arxiv.org/abs/2104.12886
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1109/LICS.2019.8785713

47:18

HyperLTL Satisfiability Is X]-Complete, HyperCTL* Satisfiability Is £2-Complete

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Rina S. Cohen and Janusz A. Brzozowski. Dot-depth of star-free events. J. Comput. Syst.
Sei., 5(1):1-16, 1971. doi:10.1016/S0022-0000(71)80003-X.

Rayna Dimitrova, Bernd Finkbeiner, and Hazem Torfah. Probabilistic hyperproperties of
Markov decision processes. In Dang Van Hung and Oleg Sokolsky, editors, ATVA 2020, volume
12302 of LNCS, pages 484-500. Springer, 2020. doi:10.1007/978-3-030-59152-6_27.

E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and "not never” revisited: on branching
versus linear time temporal logic. J. ACM, 33(1):151-178, 1986. doi:10.1145/4904.4999.
Bernd Finkbeiner. Model checking algorithms for hyperproperties (invited paper). In Fritz
Henglein, Sharon Shoham, and Yakir Vizel, editors, VMCAT 2021, volume 12597 of LNCS,
pages 3-16. Springer, 2021. doi:10.1007/978-3-030-67067-2_1.

Bernd Finkbeiner and Christopher Hahn. Deciding hyperproperties. In Josée Desharnais and
Radha Jagadeesan, editors, CONCUR 2016, volume 59 of LIPIcs, pages 13:1-13:14. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.13.
Bernd Finkbeiner, Christopher Hahn, and Tobias Hans. MGHyper: Checking satisfiability of
HyperLTL formulas beyond the 3*V* fragment. In ATVA 2018, volume 11138 of LNCS, pages
521-527. Springer, 2018. doi:10.1007/978-3-030-01090-4_31.

Bernd Finkbeiner, Christopher Hahn, Jana Hofmann, and Leander Tentrup. Realizing omega-
regular hyperproperties. In Shuvendu K. Lahiri and Chao Wang, editors, CAV 2020, Part II,
volume 12225 of LNCS, pages 40—63. Springer, 2020. doi:10.1007/978-3-030-53291-8_4.
Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and Leander Tentrup.
Synthesis from hyperproperties. Acta Informatica, 57(1-2):137-163, 2020. doi:10.1007/
s00236-019-003568-2.

Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger. EAHyper: Satisfiability, Im-
plication, and Equivalence Checking of Hyperproperties. In Rupak Majumdar and Viktor
Kuncak, editors, CAV 2017, Part II, volume 10427 of LNCS, pages 564-570. Springer, 2017.
doi:10.1007/978-3-319-63390-9_29.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. RVHyper: A
runtime verification tool for temporal hyperproperties. In Dirk Beyer and Marieke Huisman,
editors, TACAS 2018, Part II, volume 10806 of LNCS, pages 194-200. Springer, 2018. doi:
10.1007/978-3-319-89963-3_11.

Bernd Finkbeiner, Markus N. Rabe, and César Sanchez. Algorithms for Model Checking
HyperLTL and HyperCTL*. In Daniel Kroening and Corina S. Pasareanu, editors, CAV 2015,
Part I, volume 9206 of LNCS, pages 30—48. Springer, 2015. doi:10.1007/978-3-319-21690-4_
3.

Bernd Finkbeiner and Martin Zimmermann. The First-Order Logic of Hyperproperties. In
STACS 2017, volume 66 of LIPIcs, pages 30:1-30:14. Schloss Dagstuhl — Leibniz-Zentrum fir
Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.30.

Marie Fortin, Louwe B. Kuijer, Patrick Totzke, and Martin Zimmermann. HyperLTL satisfiab-
ility is 2{-complete, HyperCTL* satisfiability is X%-complete. arXiv, 2021. arXiv:2105.04176.
Jens Oliver Gutsfeld, Markus Miiller-Olm, and Christoph Ohrem. Propositional dynamic
logic for hyperproperties. In Igor Konnov and Laura Kovécs, editors, CONCUR 2020, volume
171 of LIPIcs, pages 50:1-50:22. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2020.
do0i:10.4230/LIPIcs.CONCUR.2020.50.

David Harel. Recurring Dominoes: Making the Highly Undecidable Highly Understandable.
North-Holland Mathematical Studies, 102:51-71, 1985. doi:10.1016/50304-0208(08)73075-5.
Peter G. Hinman. Recursion-Theoretic Hierarchies. Perspectives in Logic. Cambridge University
Press, 2017. doi:10.1017/9781316717110.

Hsi-Ming Ho, Ruoyu Zhou, and Timothy M. Jones. Timed hyperproperties. Information and
Computation, page 104639, 2020. doi:10.1016/j.ic.2020.104639.

Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. Team semantics for
the specification and verification of hyperproperties. In Igor Potapov, Paul G. Spirakis, and
James Worrell, editors, MFCS 2018, volume 117 of LIPIcs, pages 10:1-10:16. Schloss Dagstuhl
— Leibniz-Zentrum fiir Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.10.

https://doi.org/10.1016/S0022-0000(71)80003-X
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1145/4904.4999
https://doi.org/10.1007/978-3-030-67067-2_1
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-030-53291-8_4
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.4230/LIPIcs.STACS.2017.30
http://arxiv.org/abs/2105.04176
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.1016/S0304-0208(08)73075-5
https://doi.org/10.1017/9781316717110
https://doi.org/10.1016/j.ic.2020.104639
https://doi.org/10.4230/LIPIcs.MFCS.2018.10

M

33

34

35

36

37

38

39

. Fortin, L. B. Kuijer, P. Totzke, and M. Zimmermann

Corto Mascle and Martin Zimmermann. The keys to decidable HyperLTL satisfiability: Small
models or very simple formulas. In Maribel Ferndndez and Anca Muscholl, editors, CSL 2020,
volume 152 of LIPIcs, pages 29:1-29:16. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2020. doi:10.4230/LIPIcs.CSL.2020.29.

Amir Pnueli. The temporal logic of programs. In FOCS 1977, pages 46-57. IEEE, October
1977. doi:10.1109/SFCS.1977.32.

Markus N. Rabe. A temporal logic approach to information-flow control. PhD thesis, Saarland
University, 2016. URL: http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/.
Hartley Rogers. Theory of Recursive Functions and Effective Computability. MIT Press,
Cambridge, MA, USA, 1987.

Wolfgang Thomas. A combinatorial approach to the theory of omega-automata. Inf. Control.,
48(3):261-283, 1981. doi:10.1016/50019-9958(81)90663-X.

Wolfgang Thomas. Classifying regular events in symbolic logic. J. Comput. Syst. Sci.,
25(3):360-376, 1982. doi:10.1016/0022-0000(82)90016-2.

Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen, and Fan Yang. Linear-
time temporal logic with team semantics: Expressivity and complexity. arXiv, 2020. arXiv:
2010.03311.

47:19

MFCS 2021

https://doi.org/10.4230/LIPIcs.CSL.2020.29
https://doi.org/10.1109/SFCS.1977.32
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/
https://doi.org/10.1016/S0019-9958(81)90663-X
https://doi.org/10.1016/0022-0000(82)90016-2
http://arxiv.org/abs/2010.03311
http://arxiv.org/abs/2010.03311

	1 Introduction
	2 Preliminaries
	3 HyperLTL satisfiability is Sigma_1^1-complete
	4 The HyperLTL Quantifier Alternation Hierarchy
	5 HyperCTL* satisfiability is Sigma^2_1-complete
	6 Conclusion

