
The Simplest Non-Regular Deterministic
Context-Free Language
Petr Jančar #

Dept. of Computer Science, Faculty of Science, Palacký University Olomouc, Czech Republic

Jiří Šíma #

Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic

Abstract
We introduce a new notion of C-simple problems for a class C of decision problems (i.e. languages),
w.r.t. a particular reduction. A problem is C-simple if it can be reduced to each problem in C. This
can be viewed as a conceptual counterpart to C-hard problems to which all problems in C reduce.
Our concrete example is the class of non-regular deterministic context-free languages (DCFL′), with
a truth-table reduction by Mealy machines. The main technical result is a proof that the DCFL′

language L# = {0n1n | n ≥ 1} is DCFL′-simple, and can be thus viewed as one of the simplest
languages in the class DCFL′, in a precise sense. The notion of DCFL′-simple languages is nontrivial:
e.g., the language LR = {wcwR | w ∈ {a, b}∗} is not DCFL′-simple.

By describing an application in the area of neural networks (elaborated in another paper), we
demonstrate that C-simple problems under suitable reductions can provide a tool for expanding the
lower-bound results known for single problems to the whole classes of problems.

2012 ACM Subject Classification Theory of computation → Grammars and context-free languages;
Theory of computation → Problems, reductions and completeness; Theory of computation →
Transducers

Keywords and phrases deterministic context-free language, truth-table reduction, Mealy automaton,
pushdown automaton

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.63

Related Version Full Version: https://arxiv.org/abs/2102.10416

Funding Presented research has been partially supported by the Czech Science Foundation, grant
GA19-05704S, and by the institutional support RVO: 67985807 (J. Šíma).

Acknowledgements J. Šíma also thanks Martin Plátek for his intensive collaboration at the first
stages of this research.

1 Introduction

We introduce a new notion of C-simple problems for a class C of decision problems (i.e.
languages). A problem is C-simple if it can be reduced to each problem in C; if this problem
is, moreover, in C, it can be viewed as a simplest problem in C. The C-simple problems are
thus a conceptual counterpart to the common C-hard problems (like, e.g., NP-hard problems)
to which conversely any problem in C reduces. These definitions (of C-simple and C-hard
problems) are parametrized by a chosen reduction that does not have a higher computational
complexity than the class C itself. Therefore, it may be said that if a C-hard problem has a
(computationally) “easy” solution, then each problem in C has an “easy” solution. On the
other hand, if we prove that a C-simple problem is not “easy”, in particular that it cannot
be solved by machines of a type M that can implement the respective reduction, then all
problems in C are not “easy”, that is, are not solvable by M; this extends a lower-bound
result for one problem to the whole class of problems.

© Petr Jančar and Jiří Šíma;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 63; pp. 63:1–63:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:petr.jancar@upol.cz
https://orcid.org/0000-0002-8738-9850
mailto:sima@cs.cas.cz
https://doi.org/10.4230/LIPIcs.MFCS.2021.63
https://arxiv.org/abs/2102.10416
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 The Simplest Non-Regular Deterministic Context-Free Language

In this paper, we consider C to be the class of non-regular deterministic context-free
languages, which we denote by DCFL′; we thus have DCFL′ = DCFL∖REG (where REG
denotes the class of regular languages). We use a truth-table reduction by Mealy machines
(which is motivated below). Hence a DCFL′-simple problem is a language L0 ⊆ Σ∗ (over
an alphabet Σ) that can be reduced to each DCFL′ language L ⊆ ∆∗ by a Mealy machine
A with an oracle L, denoted AL. More precisely, we have a finite-state transducer A that
transforms a given input word w ∈ Σ∗ to a word A(w) ∈ ∆∗ (a query prefix), and each state
q of A is associated with a finite tuple σq = (sq,1, sq,2, . . . , sq,rq) of rq words from ∆∗ (query
suffixes), and with a truth table fq : {0, 1}rq → {0, 1}. The oracle-machine AL behaves like
A, hence it reads an input word w (translating it to A(w)) by which it enters a state q, and
then submits rq queries, i.e. the words A(w) · sq,i for all i ∈ {1, 2, . . . , rq}, to the oracle that
for each i ∈ {1, 2, . . . , rq} decides whether or not A(w) · sq,i is in L (or, equivalently, whether
or not A(w) belongs to the quotient L/sq,i = {v ∈ ∆∗ | v · sq,i ∈ L}); the oracle-answers are
then aggregated by the truth table fq, which decides whether or not w ∈ L0.

This truth-table reduction by Mealy machines induces a preorder on the class of languages;
we denote this preorder by ≤A

tt, using the superscript “A” to stress that our truth-table
reduction is realized by simple automata, not by general Turing machines. The main technical
result of this paper is that the DCFL′ language L# = {0n1n | n ≥ 1} (over the binary
alphabet {0, 1}) is DCFL′-simple, since L# ≤A

tt L for each language L in DCFL′. The class
DCFLS of DCFL′-simple languages comprises REG and is a strict subclass of DCFL; e.g.,
the DCFL′ language LR =

{
wcwR | w ∈ {a, b}∗}

over the alphabet {a, b, c} proves to be not
DCFL′-simple. The closure properties of DCFLS are similar to that of DCFL as the class
DCFLS is closed under complement and intersection with regular languages, while being not
closed under concatenation, intersection, and union.

The above definition of DCFL′-simple problems has originally been motivated by the
analysis of the computational power of neural network (NN) models which is known to depend
on the (descriptive) complexity of their weight parameters [9, 12]. The so-called analog
neuron hierarchy [10] of binary-state NNs with increasing number of α extra analog-state
neurons, denoted as αANN for α ≥ 0, has been introduced for studying NNs with realistic
weights between integers (finite automata) and rational numbers (Turing machines). We use
the notation αANN also for the class of languages accepted by αANNs, which can clearly
be distinguished by the context. The separation 1ANN ⊊ 2ANN has been witnessed by the
DCFL′ language L# ∈ 2ANN \ 1ANN. The proof of L# /∈ 1ANN is rather technical (based
on the Bolzano-Weierstrass theorem) which could hardly be generalized to other DCFL′

languages, while it was conjectured that L /∈ 1ANN for all DCFL′ languages L, that is,
DCFL′ ⊆ (2ANN \ 1ANN) (implying 1ANN ∩ DCFL = 0ANN = REG). An idea how to
prove this conjecture is to show that L# is in some sense the simplest problem in the class
DCFL′, namely, to reduce L# to any DCFL′ language L by using a reduction that can be
carried out by 1ANNs, which are at least as powerful as finite automata. If the composition
of a 1ANN that carries out the reduction of L# to L with a hypothetical 1ANN accepting
L can be realized by another 1ANN, which would thus accept L#, we get that no 1ANN
accepting L can exist, since L# has been proven not to be accepted by 1ANNs.

The idea why L# should serve as the simplest language in the class DCFL′ comes from
the fact that any reduced context-free grammar G generating a non-regular language L ⊆ ∆∗

is self-embedding [4, Theorem 4.10]. This means that there is a so-called self-embedding
nonterminal A admitting the derivation A ⇒∗ xAy for some non-empty strings x, y ∈ ∆+.
Since G is reduced, there are strings v, w, z ∈ ∆∗ such that S ⇒∗ vAz and A ⇒∗ w where S

is the start nonterminal in G, which implies S ⇒∗ vxmwymz ∈ L for every m ≥ 0. It is thus

P. Jančar and J. Šíma 63:3

straightforward to suggest to reduce an input word 0m1n ∈ {0, 1}∗ where m, n ≥ 1, to the
string vxmwynz ∈ ∆∗ (while the inputs outside 0+1+ are mapped onto some fixed string
outside L) since 0m1n ∈ L# entails vxmwynz ∈ L.

However, the suggested (one-one) reduction from L# to L is not consistent because
vxmwynz ∈ L does not necessarily imply 0m1n ∈ L#. For example, consider the DCFL′

language L1 = {0m1n | 1 ≤ m ≤ n} over the binary alphabet ∆ = {0, 1} for which there are
no words v, x, w, y, z ∈ ∆∗ such that vxmwynz ∈ L1 would ensure m = n. Nevertheless, we
can pick two inputs 0m1n−1 and 0m1n instead of one, that is, x = 0, y = 1, and v = w = z = ε

(ε denoting the empty string), which satisfy 0m1n ∈ L# iff m = n iff vxmwyn−1z /∈ L1 and
vxmwynz ∈ L1.

It turns out that this can be generalized to any DCFL′ language. Namely, we prove
in this paper that for each DCFL′ language L ⊆ ∆∗, over an alphabet ∆, there are words
v, x, w, y, z ∈ ∆+ and a language L′ ∈ {L, L}, where L = ∆∗ ∖ L is the complement of
L, such that 0m1n ∈ L# iff vxmwyn−1z /∈ L′ and vxmwynz ∈ L′. In fact, we even show
that either for all m, n ≥ 0 we have vxmwynz ∈ L′ iff m = n, or for all m, n ≥ 0 we have
vxmwynz ∈ L′ iff m ≤ n. We note that this technical result seems interesting on its own since
in the class DCFL it substantially strengthens the known result for context-free languages
(CFL) [2, Theorem 2.10] that for any CFL′ language L ⊆ ∆∗ (where CFL′ = CFL∖REG)
there is a so-called non-degenerated iterative pair (v, x, w, y, z) ∈ (∆∗)5 with non-empty xy,
satisfying vxmwymz ∈ L for all m ≥ 0 and vxmwynz /∈ L for some m ̸= n.

Hence the inconsistent many-one (in fact, one-one) reduction from L# with one query to
the oracle L is replaced by a truth-table reduction, that is, by a special Turing reduction in
which all its finitely many (in our case two) oracle queries are presented at the same time
and there is a Boolean function (a truth table) which, when given the answers to the queries,
produces the final answer of the reduction. This truth-table reduction from L# to L can
be implemented by a deterministic finite-state transducer (a Mealy machine) A with the
oracle L: It transforms the input 0m1n where m, n ≥ 1 (the inputs outside 0+1+ are rejected),
to the output vxmwyn−1 ∈ ∆+ and carries out two queries to L that arise by concatenation
of this output with two fixed suffixes z and yz; hence the queries are vxmwyn−1z

?
∈ L and

vxmwynz
?
∈ L. The truth table is defined so that the input 0m1n is accepted by AL iff the

two answers to these queries are distinct and at same time, the first answer is negative in
the case L′ = L, and positive in the case L′ = L, which is equivalent to 0m1n ∈ L#.

It follows that the DCFL′ language L# is DCFL′-simple under the truth-table reduction by
Mealy machines. Since this reduction can be implemented by 1ANNs, we achieve the desired
stronger separation DCFL′ ⊆ (2ANN \ 1ANN) in the analog neuron hierarchy [10, 11]. This
result constitutes a non-trivial application of the proposed concept of DCFL′-simple problem.
Moreover, if we could generalize the result to (nondeterministic) CFL, e.g. by proving that
some DCFL′ language is CFL′-simple, which would imply that L# is CFL′-simple by the
transitivity of reduction, then we would achieve that even the intersection of CFL′ and 1ANN
is empty. We note the interesting fact that L# cannot be CSL′-simple (under our reduction),
since 1ANN accepts some context-sensitive languages outside CFL [10].

In general, if we show that some C-simple problem under a given reduction cannot be
computed by a computational model M that implements this reduction, then all problems in
the class C are not solvable by M either. The notion of C-simple problems can thus be useful
for expanding known (e.g. technical) lower-bound results for individual problems to the whole
classes of problems at once, as it was the case of the DCFL′-simple problem L# /∈ 1ANN,
expanding to DCFL′ ∩ 1ANN = ∅. It seems worthwhile to explore if looking for C-simple
problems in other complexity classes C could provide effective tools for strengthening known
lower bounds.

MFCS 2021

63:4 The Simplest Non-Regular Deterministic Context-Free Language

We remark that the hardest context-free language by Greibach [3] can be viewed as
CFL-hard under a special type of our reduction ≤A

tt. Related line of study concerns the
types of reductions used in finite or pushdown automata with oracle. For example, non-
deterministic finite automata with oracle complying with many-one restriction have been
applied to establishing oracle hierarchies over the context-free languages [8]. For the same
purpose, oracle pushdown automata have been used for many-one, truth-table, and Turing
reducibilities, respectively, inducing the underlying definitions also to oracle nondeterministic
finite automata [14]. In addition, nondeterministic finite automata whose oracle queries are
completed by the prefix of an input word that has been read so far and the remaining suffix,
have been employed in defining a polynomial-size oracle hierarchy [1].

In the preliminary study [13], some considerations about the simplest DCFL′ language
have appeared, yet without formal definitions of DCFL′-simple problems, that included only
sketches of incomplete proofs of weaker results based on the representation of DCFL by
so-called deterministic monotonic restarting automata [6], which have initiated investigations
of non-regularity degrees in DCFL [7].

In this paper we achieve a complete argument for L# to be a DCFL′-simple problem,
within the framework of deterministic pushdown automata (DPDA) by using some ideas on
regularity of pushdown processes from [5]. We now give an informal overview of the proof.
Given a DPDA M recognizing a non-regular language L ⊆ ∆∗, it is easy to realize that some
computations of M (from the initial configuration) must be reaching configurations where
the stack is arbitrarily large while it can be (almost) erased afterwards. Hence the existence
of words v, x, w, y, z ∈ ∆+ such that vxmwymz ∈ L for all m ≥ 0 is obvious. However, we
aim to guarantee that for all m, n the equality m = n holds if, and only if, vxmwyn−1z /∈ L′

and vxmwynz ∈ L′, where L′ is either the language L or its complement. This is not
so straightforward but it is confirmed by our detailed analysis (in Section 3). We study
the computation of M on an infinite word a1a2a3 · · · that visits infinitely many pairwise
non-equivalent configurations. We use a natural congruence property of language equivalence
on the set of configurations, and avoid some tedious technical details by a particular use of
Ramsey’s theorem. This allows us to extract the required tuple v, x, w, y, z ∈ ∆+ from the
mentioned infinite computation. We note that determinism of M is essential in the presented
proof; we leave open if it can be relaxed to show that L# is even CFL′-simple.

The rest of the paper is organized as follows. In Section 2 we recall basic definitions and
notation regarding DPDA and Mealy machines, introduce the novel concept of DCFL′-simple
problems under truth-table reduction by Mealy machines and show some simple properties of
the class DCFLS of DCFL′-simple problems. In Section 3 we present the proof of the main
technical result which shows that L# is DCFL′-simple. Finally, we summarize the results
and list some open problems in Section 4.

2 DCFL′-Simple Problem Under Truth-Table Mealy Reduction

In this section we define the truth-table reduction by Mealy machines, introduce the notion
of DCFL′-simple problems, show their basic properties, and formulate the main technical
result (Theorem 1). But first we recall standard definitions of pushdown automata.

A pushdown automaton (PDA) is a tuple M = (Q, Σ, Γ, R, q0, X0, F) where Q is a finite
set of states including the start state q0 ∈ Q and the set F ⊆ Q of accepting states, while the
finite sets Σ ̸= ∅ and Γ ̸= ∅ represent the input and stack alphabets, respectively, with the
initial stack symbol X0 ∈ Γ. In addition, the set R contains finitely many transition rules

P. Jančar and J. Šíma 63:5

pX
a−→ qγ with the meaning that M in state p ∈ Q, on the input a ∈ Σε = Σ ∪ {ε} (recall

that ε denotes the empty string), and with X ∈ Γ as the topmost stack symbol may read a,
change the state to q ∈ Q, and pop X, replacing it by pushing γ ∈ Γ∗.

By a configuration of M we mean pα ∈ Q × Γ∗, and we define relations a−→ for a ∈ Σε

on Q × Γ∗: each rule pX
a−→ qγ in R induces pXα

a−→ qγα for all α ∈ Γ∗; these relations are
naturally extended to w−→ for w ∈ Σ∗. For a configuration pα we define L(pα) = {w ∈ Σ∗ |
pα

w−→ qβ for some q ∈ F and β ∈ Γ∗}, and L(M) = L(q0X0) is the language accepted by
M. A PDA M is deterministic (a DPDA) if there is at most one rule pX

a−→ .. for each tuple
p ∈ Q, X ∈ Γ, a ∈ Σε; moreover, if there is a rule pX

ε−→ .., then there is no rule pX
a−→ .. for

a ∈ Σ. We also use the standard assumption that all ε-steps are popping, that is, in each
rule pX

ε−→ qγ in R we have γ = ε.
The languages accepted by (deterministic) pushdown automata constitute the class of

(deterministic) context-free languages; the classes are denoted by DCFL and CFL, respectively,
whereas DCFL′ = DCFL∖REG.

In the following theorem we formulate the main technical result: any language in DCFL′

includes a certain “projection” of the language L# = {0n1n | n ≥ 1}, which means that L#
is in some sense the simplest language in the class DCFL′. The theorem, whose proof will be
presented in Section 3, thus provides an interesting property of DCFL′.

▶ Theorem 1. Let L ⊆ ∆∗ be a non-regular deterministic context-free language over an
alphabet ∆. There exist non-empty words v, x, w, y, z ∈ ∆+ and a language L′ ∈ {L, L}
(where L = ∆∗ ∖ L is the complement of L) such that

either for all m, n ≥ 0 we have vxmwynz ∈ L′ iff m = n,
or for all m, n ≥ 0 we have vxmwynz ∈ L′ iff m ≤ n;

this entails that for all m ≥ 0 and n > 0 we have(
vxmwyn−1z /∈ L′ and vxmwynz ∈ L′) iff m = n . (1)

In order to formalize the DCFL′-simple problems, we now define a Mealy machine A with
an oracle: it is a tuple A = (Q, Σ, ∆, δ, λ, q0, {(σq, fq) | q ∈ Q}) where Q is a finite set of states
including the start state q0 ∈ Q, and the finite sets Σ ̸= ∅ and ∆ ̸= ∅ represent the input and
output (oracle) alphabets, respectively. Moreover, δ : Q×Σ → Q is a (partial) state-transition
function which extends to input strings as δ : Q × Σ∗ → Q where δ(q, ε) = q for every q ∈ Q,
while δ(q, wa) = δ(δ(q, w), a) for all q ∈ Q, w ∈ Σ∗, a ∈ Σ. Similarly, λ : Q × Σ → ∆∗ is an
output function which extends to input strings as λ : Q × Σ∗ → ∆∗ where λ(q, ε) = ε for all
q ∈ Q, and λ(q, wa) = λ(q, w)·λ(δ(q, w), a) for all q ∈ Q, w ∈ Σ∗, a ∈ Σ. In addition, for each
q ∈ Q, the tuple σq = (sq,1, sq,2, . . . , sq,rq) of strings in ∆∗ contains rq query suffixes, while
fq : {0, 1}rq → {0, 1} is a truth table that aggregates the answers to the rq oracle queries.

The above Mealy machine A starts in the start state q0 and operates as a deterministic
finite-state transducer that transforms an input word w ∈ Σ∗ to the output string A(w) =
λ(q0, w) ∈ ∆∗ written to a so-called oracle tape. The oracle tape is a semi-infinite, write-only
tape which is empty at the beginning and its contents are only extended in the course of
computation by appending the strings to the right. Namely, given a current state q ∈ Q

and an input symbol a ∈ Σ, the machine A moves to the next state δ(q, a) ∈ Q and writes
the string λ(q, a) ∈ ∆∗ to the oracle tape, if δ(q, a) is defined; otherwise A rejects the input.
After reading the whole input word w ∈ Σ∗, the machine A is in the state p = δ(q0, w) ∈ Q,
while the oracle tape contains the output A(w) = λ(q0, w) ∈ ∆∗.

Finally, the Mealy machine A, equipped with an oracle L ⊆ ∆∗, in this case denoted AL,
queries the oracle whether A(w) belongs to the (right) quotient L/sp,i = {u ∈ ∆∗ | u·sp,i ∈ L},
for each suffix sp,i in σp, and the answers are aggregated by the truth table fp. Thus, the
oracle Mealy machine AL accepts the input word w ∈ Σ∗ iff

MFCS 2021

63:6 The Simplest Non-Regular Deterministic Context-Free Language

fp

(
χL/sp,1(A(w)), χL/sp,2(A(w)), . . . , χL/sp,rp

(A(w))
)

= 1

where p = δ(q0, w) and χL/sp,i
: ∆∗ → {0, 1} is the characteristic function of L/sp,i, that is,

χL/sp,i
(u) = 1 if u · sp,i ∈ L, and χL/sp,i

(u) = 0 if u · sp,i /∈ L. The language accepted by the
machine AL is defined as L(AL) = {w ∈ Σ∗ | w is accepted by AL}.1

We say that L1 ⊆ Σ∗ is truth-table reducible to L2 ⊆ ∆∗ by a Mealy machine, which is
denoted as L1 ≤A

tt L2, if L1 = L(AL2) for some Mealy machine A running with the oracle L2.
The following lemma shows that we can chain these reductions together since the relation
≤A

tt is a preorder.

▶ Lemma 2. The relation ≤A
tt is reflexive and transitive.

Proof. The relation ≤A
tt is reflexive since L = L(AL) ⊆ Σ∗ for the oracle Mealy machine

AL = ({q}, Σ, Σ, δ, λ, q, {(σq, fq)}) where δ(q, a) = q and λ(q, a) = a for every a ∈ Σ, σq = (ε),
and fq is the identity.

Now we show that the relation ≤A
tt is transitive. Let L1 ≤A

tt L2 and L2 ≤A
tt L3 which

means L1 = L(AL2
1) ⊆ Σ∗ and L2 = L(AL3

2) ⊆ ∆∗ for some oracle Mealy machines AL2
1 =

(Q1, Σ, ∆, δ1, λ1, q1
0 , {(πq, gq) | q ∈ Q1}) and AL3

2 = (Q2, ∆, Θ, δ2, λ2, q2
0 , {(ϱq, hq) | q ∈ Q2}),

respectively. We will construct the oracle Mealy machine AL3 = (Q, Σ, Θ, δ, λ, q0, {(σq, fq) |
q ∈ Q}) such that L1 = L(AL3) ⊆ Σ∗ which implies the transitivity L1 ≤A

tt L3. We
define Q = Q1 × Q2 with q0 = (q1

0 , q2
0), δ((q1, q2), a) = (δ1(q1, a), δ2(q2, λ1(q1, a))) and

λ((q1, q2), a) = λ2(q2, λ1(q1, a)) for every (q1, q2) ∈ Q and a ∈ Σ, which ensures A(w) =
λ(q0, w) = λ2(q2

0 , λ1(q1
0 , w)) = A2(A1(w)) ∈ Θ∗ for every w ∈ Σ∗. For each state p =

(p1, p2) ∈ Q in A, we define the tuple of query suffixes from Θ∗,

σp =
(
λ2(p2, sp1,i) · sp2(i),j

∣∣ i = 1, . . . , rp1 , j = 1, . . . , rp2(i)
)

where πp1 = (sp1,1, sp1,2 . . . , sp1,rp1
) ∈ ∆rp1 and ϱp2(i) = (sp2(i),1, sp2(i),2 . . . , sp2(i),rp2(i)) ∈

Θrp2(i) are the query suffixes associated with p1 ∈ Q1 and p2(i) = δ2(p2, sp1,i) ∈ Q2 for
i ∈ {1, . . . , rp1}, respectively, and the truth table fp = gp1(hp2(1), . . . , hp2(rp1)) aggregates
the answers to the corresponding oracle queries, which ensures L1 = L(AL3) ⊆ Σ∗. ◀

We say that L0 ⊆ Σ∗ is DCFL′-simple if L0 ≤A
tt L for every non-regular deterministic

context-free language L ⊆ ∆∗. We show that Theorem 1 entails that the DCFL′ language
L# is DCFL′-simple. In addition, we denote by DCFLS the class of DCFL′-simple problems
and formulate its basic properties.

▶ Corollary 3 (of Theorem 1). The non-regular deterministic context-free language L# =
{0n1n | n ≥ 1} is DCFL′-simple.

Proof. Let L ⊆ ∆∗ be any DCFL′ language. According to Theorem 1, there are v, x, w, y, z ∈
∆+ and L′ ∈ {L, L} such that condition (1) holds for L′. We define the Mealy machine AL =
({q0, q1, q2}, {0, 1}, ∆, δ, λ, q0, {(σq, fq) | q ∈ Q}) with the oracle L, as δ(q0, 0) = δ(q1, 0) = q1,
δ(q1, 1) = δ(q2, 1) = q2, λ(q0, 0) = vx, λ(q1, 0) = x, λ(q1, 1) = w, λ(q2, 1) = y, σq0 = σq1 = ()

1 Note that the described protocol works also for non-prefix-free languages since for any input prefix
that has been read so far, the output value from the truth table determines whether the oracle Mealy
machine is in an “accepting” state, deciding about this prefix analogously as a deterministic finite
automaton. The truth-table reduction only requires that the given oracle answers do not influence
further computation when subsequent input symbols are read.

P. Jančar and J. Šíma 63:7

(rq0 = rq1 = 0), σq2 = (z, yz) (rq2 = 2), fq0 = fq1 = 0, fq2(0, 0) = fq2(1, 1) = 0, and
fq2(1, 0) = 1 − fq2(0, 1) where fq2(0, 1) = 1 iff L′ = L. It is easy to verify that L# = L(AL),
which implies L# ≤A

tt L. Hence, L# is DCFL′-simple. ◀

▶ Proposition 4.
1. REG ⊊ DCFLS.
2. DCFLS ⊊ DCFL, and LR = {wcwR | w ∈ {a, b}∗} ∈ DCFL ∖ DCFLS.
3. The class DCFLS is closed under complement and intersection with regular languages.
4. The class DCFLS is not closed under concatenation, intersection and union.

Proof (Sketch).
1. For any regular language L, consider a Mealy machine AL# with the DCFL′-simple oracle

L#, that simulates a deterministic finite automaton recognizing L, while its constant
truth tables produce 1 iff associated with the accept states. Hence, L ≤A

tt L# which
means L is DCFL′-simple according to Lemma 2 and Corollary 3 which also implies
REG ̸= DCFLS.

2. We first observe that DCFLS ⊆ DCFL. Let L ∈ DCFLS be any DCFL′-simple language
which ensures L ≤A

tt L# by an oracle Mealy machine AL# . The machine AL# can be
simulated by a DPDA M which extends a suitable DPDA M# (e.g. with no ε-transitions)
accepting L# = L(M#), so that the finite control of M implements the finite-state
transducer A whose output is presented online as an input to M#. Moreover, for each
state q of A, the finite control of M evaluates the truth table fq which aggregates the
answers to the queries with rq suffixes associated with q, by inspecting at most constant
number of topmost stack symbols. Hence L = L(M) ∈ DCFL.
In order to show that DCFLS ≠ DCFL, we prove that the DCFL LR = {wcwR | w ∈
{a, b}∗} over the alphabet {a, b, c} is not DCFL′-simple. For the sake of contradiction,
suppose that LR ≤A

tt L# by a Mealy machine AL# = (Q, {a, b, c}, {0, 1}, δ, λ, q0, {(σq, fq) |
q ∈ Q}) with the oracle L# = {0n1n | n ≥ 1}, which means LR = L(AL#). Consider
all the 2k possible prefixes w ∈ {a, b}k of inputs presented to AL# that have the length
|w| = k. These strings can bring AL# into a finite number |{δ(q0, w) | w ∈ {a, b}k}| ≤ |Q|
of distinct states while the length |λ(q0, w)| of outputs written to the oracle tape is bounded
by O(k). For λ(q0, w) outside 0∗1∗, the acceptance of words wu where u ∈ {a, b, c}∗,
depends only on the truth values fq(0, . . . , 0) associated with the states q from the
finite set Q, due to λ(q0, wu) /∈ L#/s for any s ∈ {0, 1}∗. On the other hand, the
number of distinct outputs λ(q0, w) in 0∗1∗ is bounded by O(k). This means that for a
sufficiently large k ≥ 1, there must be two distinct prefixes w1, w2 ∈ {a, b}k such that
δ(q0, w1) = δ(q0, w2) and λ(q0, w1) = λ(q0, w2) in 0∗1∗, which results in the contradiction
w1cwR

2 ∈ L(AL#) ∖ LR.
3. The class DCFLS is closed under complement since the truth tables can be negated.

Furthermore, any oracle Mealy machine be can modified so that it simulates another
given finite automaton in parallel and is forced to reject if this automaton rejects, which
shows DCFLS to be closed under intersection with regular languages.

4. Observe that R = {1}∗, L1 = {0m1m0n | m, n ≥ 1}, L2 = {0m1n0n | m, n ≥ 1}, and
L3 = L1 ∪ ({1} · L2) are DCFL′-simple while R · L3 /∈ DCFL, L1 ∩ L2 /∈ CFL, and
L1 ∪ L2 /∈ DCFL are not DCFL′-simple according to 2. ◀

MFCS 2021

63:8 The Simplest Non-Regular Deterministic Context-Free Language

3 Proof of the Main Result (Theorem 1)

Theorem 1 follows from the (more specific) next lemma that we prove in this section.
(See Appendix for an informal overview with figures.)

By N we denote the set {0, 1, 2, . . . }, and by [i, j] the set {i, i+1, . . . , j} (for i, j ∈ N).

▶ Lemma 5. Let M = (Q, Σ, Γ, R, p0, X0, F) be a DPDA where L = L(M) = L(p0X0) is
non-regular (hence L belongs to DCFL′). There are v ∈ Σ∗, x, w, y, z ∈ Σ+, p, q ∈ Q, X ∈ Γ,
γ ∈ Γ+, δ ∈ Γ∗ such that the following four conditions hold:
1. p0X0

v−→ pXδ and pX
x−→ pXγ, which entails the infinite (stack increasing) computation

p0X0
v−→ pXδ

x−→ pXγδ
x−→ pXγγδ

x−→ pXγγγδ
x−→ · · · ; (2)

2. pX
w−→ q;

3. qγ
y−→ q, hence qγℓδ′ yℓ

−→ qδ′ for all ℓ ∈ N and δ′ ∈ Γ∗;
4. one of the following cases is valid (depending on whether z ∈ L(qδ) or z ̸∈ L(qδ)):

a. L(qγkδ) ∋ yℓz iff k = ℓ (for all k, ℓ ∈ N), or L(qγkδ) ∋ yℓz iff k ≤ ℓ (for all k, ℓ ∈ N);
b. L(qγkδ) ∋ yℓz iff k ̸= ℓ (for all k, ℓ ∈ N), or L(qγkδ) ∋ yℓz iff k > ℓ (for all k, ℓ ∈ N).

We note that p0X0
v−→ pXδ

xm

−−→ pXγmδ
w−→ qγmδ

ym

−−→ qδ (for each m ∈ N); hence
vxmwymz ∈ L iff z ∈ L(qδ) (since z is nonempty). Theorem 1 indeed follows from the
lemma: there is L′ ∈ {L, L} such that either vxmwynz ∈ L′ iff m = n (for all m, n ∈ N), or
vxmwynz ∈ L′ iff m ≤ n (for all m, n ∈ N). (In Theorem 1 we also stated that v is nonempty.
If v = ε here, then we simply take vx and yz as the new v, z, respectively.)

Proof of Lemma 5

In the rest of this section we provide a proof of Lemma 5, assuming a fixed DPDA M =
(Q, Σ, Γ, R, p0, X0, F) where L = L(p0X0) is non-regular. The proof structure is visible from
the auxiliary claims that we state and prove on the way.

Convention. W.l.o.g. we assume that M always reads the whole input u ∈ Σ∗ from
p0X0. This can be accomplished in the standard way, by adding a special bottom-of-stack
symbol ⊥ and a (non-accepting) fail-state. (Each empty-stack configuration qε becomes q⊥,
and each originally stuck computation enters the fail-state where it loops. We also recall
that all ε-steps are popping, and thus infinite ε-sequences are impossible.) Hence for any
infinite word a1a2a3 · · · in Σω there is a unique infinite computation of M starting in p0X0;
it stepwise reads the whole infinite word a1a2a3 · · · .

The left quotient of L by u ∈ Σ∗ is the set u\L = {v ∈ Σ∗ | uv ∈ L}; concatenation has
priority over \, hence u1u2\L = (u1u2)\L. (The next claim is valid for any non-regular L.)

▷ Claim 6. We can fix an infinite word a1a2a3 · · · in Σω (ai ∈ Σ) such that a1a2 · · · ai\L ̸=
a1a2 · · · aj\L for all i ̸= j.

Proof. Let us consider the labelled transition system T = (LQ(L), Σ, (a−→)a∈Σ) where
LQ(L) = {u\L | u ∈ Σ∗} and a−→ = {(L′, a\L′) | L′ ∈ LQ(L)}. (We recall that L′ = u\L

entails a\L′ = ua\L.) Since L is non-regular, the set of states reachable from L = ε\L in
T is infinite. The out-degree of states in T is finite (in fact, bounded by |Σ|), hence an
application of König’s lemma yields an infinite acyclic path L

a1−→ L1
a2−→ L2

a3−→ · · · . ◁

We call a configuration pα of M unstable if α = Y β and R contains a rule pY
ε−→ q (we

recall that ε-steps are only popping); otherwise pα is stable. Since M is a deterministic PDA,
for each unstable pα we can soundly define the stable successor of pα as the unique stable

P. Jančar and J. Šíma 63:9

configuration p′α′ where pα
ε−→ p′α′ (α′ being a suffix of α). If the path pα

ε−→ p′α′ does not go
via an accepting state (in F), then L(pα) = L(p′α′); otherwise L(pα) = {ε} ∪ L(p′α′). (We
note that the configurations in the computation (2) that start with pX are necessarily stable:
since we have pX

x−→ pXγ for x ∈ Σ+, we cannot have pX
ε−→ p′.)

▷ Claim 7. Each configuration is visited at most twice by

the computation of M from p0X0 on a1a2a3 · · · that is fixed by Claim 6. (3)

Proof. The computation (3) is infinite, stepwise reading the whole word a1a2a3 · · · , and it
can be presented as

r0γ0
a1−→ r1γ1

a2−→ r2γ2
a3−→ · · · (for r0γ0 = p0X0)

where each riγi is stable; each segment riγi
ai+1−−−→ ri+1γi+1 starts with a (visible) ai+1-step

that is followed by a (maybe empty) sequence of (popping) ε-steps via unstable configurations.
Since such an ε-sequence might go through an accepting state, we can have riγi = rjγj for
i ̸= j though a1a2 · · · ai\L ̸= a1a2 · · · aj\L; in this case L contains precisely one of the words
a1a2 · · · ai and a1a2 · · · aj , and the languages a1a2 · · · ai\L and a1a2 · · · aj\L differ just on
ε. Nevertheless, this reasoning entails that we cannot have riγi = rjγj = rℓγℓ for pairwise
different i, j, ℓ.

Since each segment riγi
ai+1−−−→ ri+1γi+1 visits any unstable configuration at most once and

ri+1γi+1 is the stable successor for all unstable configurations in the segment, we deduce that
also each unstable configuration can be visited at most twice in the computation (3). ◁

▷ Claim 8. The computation (3) on a1a2a3 · · · can be “stair-factorized”, that is, written

p0X0
v0−→ p1X1α1

v1−→ p2X2α2α1
v2−→ p3X3α3α2α1

v3−→ · · · (4)

so that for each i ∈ N we have vi ∈ Σ+ and piXi
vi−→ pi+1Xi+1αi+1 where αi+1 is a nonempty

suffix of the right-hand side of a rule in R (i.e., a nonempty suffix of γ in a rule pX
a−→ qγ).

Proof. We consider the computation (3), and call a stable configuration pXβ a level, with
position i ∈ N, if p0X0

a1···ai−−−−→ pXβ and all configurations visited by the computation
pXβ

ai+1ai+2···−−−−−−−→ after pXβ have the stack longer than |Xβ|; each level pXβ has thus a
unique position which we denote pos(pXβ). Since each configuration is visited at most twice
in (3), and the set of configurations with a fixed length is finite, we get that the set of levels is
infinite, with elements p′

0X ′
0, p1X1β1, p2X2β2, . . . where 0 ≤ pos(p′

0X ′
0) < pos(p1X1β1) <

pos(p2X2β2) < · · · . The computation (3) can be thus presented as

p0X0
v′

0−→ p′
0X ′

0
v′′

0−→ p1X1β1
v1−→ p2X2β2

v2−→ p3X3β3
v3−→ · · ·

where |v′
0| = pos(p′

0X ′
0), and |v0v1 · · · vj−1| = pos(pjXjβj) for j ≥ 1, putting v0 = v′

0v′′
0 .

Each segment pXβ
v−→ p′X ′β′ between two neighbouring levels can be obviously written as

pXβ
a−→ qγ1γ2β

v′

−→ p′X ′γ2β where pX
a−→ qγ1γ2 is a rule in R, both γ1 and γ2 are nonempty,

v = av′, and qγ1
v′

−→ p′X ′. Hence the validity of the claim is clear. ◁

We define the natural equivalence relation ∼ on the set of configurations of M: we put
pα ∼ qβ if L(pα) = L(qβ).

We fix the presentation (4), calling piXiαiαi−1 · · · α1 the level-configurations (for all
i ∈ N). Since we have L(piXiαiαi−1 · · · α1) ∖ {ε} = (v0v1 · · · vi−1\L) ∖ {ε}, there cannot be
three level-configurations in the same ∼-class (i.e., in the same equivalence class w.r.t. ∼).

MFCS 2021

63:10 The Simplest Non-Regular Deterministic Context-Free Language

Hence any infinite set of level-configurations represents infinitely many ∼-classes. Now we
show a congruence-property that might enable to shorten a level-configuration while its
∼-class is preserved. We use the notation DS(pα) (the “down-states” of pα), putting

DS(pα) = {q | pα
u−→ q for some u ∈ Σ∗}.

▷ Claim 9. If qγ ∼ qγ′ for each q ∈ DS(pβ), then pβγ ∼ pβγ′.

Proof. Let us consider u ∈ Σ∗. If u ∈ L(pβ), then u ∈ L(pβµ) for all µ ∈ Γ∗. If u ̸∈ L(pβ)
and there is no prefix u′ of u such that pβ

u′

−→ q, then u ̸∈ L(pβµ) for all µ ∈ Γ∗. If u ̸∈ L(pβ)
and u = u′u′′ where pXβ

u′

−→ q (necessarily for some q ∈ DS(pXβ)), then u ∈ L(pβµ) iff
u′′ ∈ L(qµ). Hence the claim is clear. ◁

The next claim is an immediate corollary.

▷ Claim 10. Any computation p0X0
w1−−→ pXβ1

w2−−→ pXβ2β1
w3−−→ p′X ′β3β2β1 where

pX
w2−−→ pXβ2 (w2 ∈ Σ+), pX

w3−−→ p′X ′β3, and qβ2β1 ∼ qβ1 for each q ∈ DS(p′X ′β3) can be
shortened to p0X0

w1−−→ pXβ1
w3−−→ p′X ′β3β1 where p′X ′β3β1 ∼ p′X ′β3β2β1.

The i-th level-configuration in (4) is reached by the computation p0X0
v0v1···vi−1−−−−−−−→

piXiαiαi−1 · · · α1. It can happen that there are j1, j2, 0 ≤ j1 < j2 ≤ i such that pj1Xj1 =
pj2Xj2 and qαj2αj2−1 · · · α1 ∼ qαj1αj1−1 · · · α1 for all q ∈ DS(piXiαiαi−1 · · · αj2+1). In this
case we can shorten the computation as in Claim 10, where vj1vj1+1 · · · vj2−1 corresponds
to the omitted w2. The resulting shorter computation might be possible to be repeatedly
shortened further (if it can be presented so that the conditions of Claim 10 are satisfied).
Now for each i ≥ 1 we fix a (stair-factorized) computation

pi,0Xi,0
vi,0−−→ pi,1Xi,1αi,1

vi,1−−→ pi,2Xi,2αi,2αi,1 · · ·
vi,ni−1−−−−−→ pi,niXi,niαi,niαi,ni−1 · · · αi,1 (5)

that has arisen by a maximal sequence of the above shortenings of the prefix

p0X0
v0v1···vi−1−−−−−−−→ piXiαiαi−1 · · · α1 of (4).

Hence pi,0Xi,0 = p0X0, pi,ni
Xi,ni

= piXi, αi,ni
, αi,ni−1, . . . , αi,1 is a subsequence of

αi, αi−1, . . . , α1, and pi,niXi,niαi,niαi,ni−1 · · · αi,1 ∼ piXiαiαi−1 · · · α1.

▷ Claim 11. For each ℓ ∈ N there is i such that ni > ℓ (where ni is from (5)).

Proof. As already discussed, the set of level-configurations represents infinitely many ∼-
classes. The last configurations of computations (5) represent the same infinite set of ∼-classes,
and their lengths thus cannot be bounded; since the lengths of all αi,j are bounded (they are
shorter than the longest right-hand sides of the rules in R), the claim is clear. ◁

Now we come to a crucial claim in our proof of Lemma 5. Besides the notation DS(pα)
we also introduce ES(pα) (the by-ε-reached down-states of pα), by putting

ES(pα) = {q | pα
ε−→ q}.

Hence ES(pα) ⊆ DS(pα), and |ES(pα)| ≤ 1 (due to the determinism of the DPDA M).
We recall that pα ∼ qβ means L(pα) = L(qβ). To handle the special case of the empty

word ε, we also define a (much) coarser equivalence ∼0: we put pα ∼0 qβ if ε either belongs
to both L(pα) and L(qβ), or belongs to none of them.

P. Jančar and J. Šíma 63:11

The next claim is rather technical but it captures some straightforward combinatorial
observations that are handled by a simple use of Ramsey’s theorem. Informally speaking, if
ni in the final configuration in (5) is sufficiently large, then we can find a convenient pumping
segment in this configuration. (All this should be easily understandable after reading the
informal overview with figures in Appendix.)

▷ Claim 12. There is a constant B ∈ N determined by the DPDA M such that for all i ∈ N
where ni > B the final configuration in (5) can be written as

pi,ni
Xi,ni

αi,ni
αi,ni−1 · · · αi,1 = p̄X̄βγδ

where the following conditions hold:
1. γ = αi,jαi,j−1 · · · αi,j′+1 where ni ≥ j > j′ ≥ ni−B and pi,jXi,j = pi,j′Xi,j′

(and β = αi,ni
αi,ni−1 · · · αi,j+1, δ = αi,j′αi,j′−1 · · · αi,1);

2. the sets DS(p̄X̄β) and DS(p̄X̄βγ) are equal, further being denoted by Q̄;
3. for each q ∈ Q̄, if ES(qγ) = {q′}, then ES(q′γ) = {q′} (and q′ ∈ Q̄);
4. each q′ ∈ Q̄ belongs to DS(qγ) for some self-containing q ∈ Q̄, where q ∈ Q̄ is self-

containing if q ∈ DS(qγ);
5. there is a state q′ ∈ Q̄ for which q′γδ ̸∼ q′δ and q′γδ ∼0 q′δ.

Proof. We fix some i with ni larger than a constant B determined by M as described below
(there are such i by Claim 11). For convenience we put pi,ni

Xi,ni
= p̄X̄, ni = n, and αi,j = ᾱj ,

hence the final configuration in (5) is pi,ni
Xi,ni

αi,ni
αi,ni−1 · · · αi,1 = p̄X̄ᾱnᾱn−1 · · · ᾱ1. We

view the n+1 prefixes

p̄X̄, p̄X̄ᾱn, p̄X̄ᾱnᾱn−1, p̄X̄ᾱnᾱn−1ᾱn−2, . . . , p̄X̄ᾱnᾱn−1 · · · ᾱ1

as the vertices of a complete graph with coloured edges.
For p̄X̄ᾱnᾱn−1 · · · ᾱ1 = p̄X̄µνρ, where µ = ᾱnᾱn−1 · · · ᾱj+1, ν = ᾱjᾱj−1 · · · ᾱj′+1, and

ρ = ᾱj′ ᾱj′−1 · · · ᾱ1, n ≥ j > j′ ≥ 0, the edge between the vertices p̄X̄µ and p̄X̄µν has the
following tuple as its colour :(

pi,jXi,j , pi,j′Xi,j′ , DS(p̄X̄µ), DS(p̄X̄µν), (DS(qν), ES(qν))q∈DS(p̄X̄µ), Q ̸∼, Q0

)
where Q̸∼ = {q′ ∈ DS(p̄X̄µ) | q′νρ ̸∼ q′ρ} and Q0 = {q′ ∈ Q ̸∼ | q′νρ ∼0 q′ρ} (and
pi,jXi,j , pi,j′Xi,j′ are taken from (5)).

Since the set of colours is bounded (by a constant determined by M), Ramsey’s theorem
yields a bound B guaranteeing that there is a monochromatic clique of size 3 among the
vertices p̄X̄, p̄X̄ᾱn, p̄X̄ᾱnᾱn−1, . . . , p̄X̄ᾱnᾱn−1 · · · ᾱn−B. (We have soundly chosen i so that
n = ni is bigger than B.) We fix such a monochromatic clique MC, denoting its 3 vertices as

p̄X̄β, p̄X̄βγ, p̄X̄βγγ̄, and its colour as C = (p′X ′, p′X ′, Q̄, Q̄, (Dq, Eq)q∈Q̄, Q′, Q′
0).

This is sound, since the fact that both edges {p̄X̄β, p̄X̄βγ} and {p̄X̄βγ, p̄X̄βγγ̄} have
the same colour entails that the first component in this colour is the same as the second
component, and the third component is the same as the fourth component.

We now show that the conditions 1–5 are satisfied for the presentation of p̄X̄ᾱnᾱn−1 · · · ᾱ1
as p̄X̄βγδ, where δ = γ̄ᾱkᾱk−1 · · · ᾱ1 for the respective k.

Conditions 1 and 2 are trivial (due to the colour C).
Condition 3: Let q ∈ Q̄ and ES(qγ) = {q′} (hence also q′ ∈ Q̄). Then Eq = ES(qγ) =

ES(qγγ̄) = {q′} (since MC is monochromatic). This entails ES(q′γ̄) = {q′}, hence Eq′ = {q′},
which in turn entails ES(q′γ) = {q′}.

Condition 4: We first note a general fact: DS(pµν) =
⋃

q∈DS(pµ) DS(qν). Since Q̄ =
DS(p̄X̄β) = DS(p̄X̄βγ) = DS(p̄X̄βγγ̄), for each q′ ∈ Q̄ there is thus q ∈ Q̄ such that
q′ ∈ Dq. We also have the following “transitivity”: if q1, q2, q3 ∈ Q̄, q1 ∈ Dq2 , and q2 ∈ Dq3 ,

MFCS 2021

63:12 The Simplest Non-Regular Deterministic Context-Free Language

then q1 ∈ Dq3 (since MC is monochromatic). For any q′ ∈ Q̄ there is clearly a “chain”
q′ = q1, q2, q3, . . . , qℓ where ℓ > 1, qj ∈ Dqj+1 for all j ∈ [1, ℓ−1], and qj = qℓ for some j < ℓ.
By the above transitivity, qℓ is self-containing (qℓ ∈ Dqℓ

and thus qℓ ∈ DS(qℓγ)) and q′ ∈ Dqℓ

(hence q′ ∈ DS(qℓγ)).
Condition 5: For any three configurations at least two belong to the same ∼0-class. Since

the edges among the vertices p̄X̄β, p̄X̄βγ, p̄X̄βγγ̄ have the same Q′
0 in their colour C, we

get that Q′
0 = Q′, and thus also q′γδ ∼0 q′δ for all q′ ∈ Q̄ such that q′γδ ̸∼ q′δ. Now if for all

q′ ∈ Q̄ we had q′γδ ∼ q′δ (which includes the case Q̄ = ∅), then we would get a contradiction
with our choice of (5) since it could have been shortened as in Claim 10. ◁

Now we state a weaker version of Lemma 5:

▷ Claim 13. There are v ∈ Σ∗, x, w, y, z ∈ Σ+, p, q ∈ Q, X ∈ Γ, γ ∈ Γ+, δ ∈ Γ∗ such that
p0X0

v−→ pXδ, pX
x−→ pXγ, pX

w−→ q, qγ
y−→ q, and

either z ∈ L(qδ) and z ̸∈ L(qγℓδ) for all ℓ > 0,
or z ̸∈ L(qδ) and z ∈ L(qγℓδ) for all ℓ > 0.

Proof. We fix one p̄X̄βγδ guaranteed by Claim 12 (satisfying the respective conditions 1–5).
There are v ∈ Σ∗, x, w, y, z̄ ∈ Σ+, p, q ∈ Q, X ∈ Γ, γ ∈ Γ+, δ ∈ Γ∗, q′ ∈ DS(qγ) such that

p0X0
v−→ pXδ, pX

x−→ pXγ, pX
w−→ q, qγ

y−→ q, and L(q′γδ) and L(q′δ) differ on z̄

(i.e., z̄ ∈ (L(q′γδ) ∖ L(q′δ)) ∪ (L(q′δ) ∖ L(q′γδ)).
Indeed: The respective computation (5) can be written p0X0

v−→ pXδ
x−→ pXγδ

w′

−→ p̄X̄βγδ

where x and γ are nonempty. The claimed q′ and [nonempty] z̄ are guaranteed by 5 in
Claim 12, and q is a respective self-containing state from 4. Since q ∈ DS(p̄X̄β) and
q ∈ DS(qγ), we get pXγδ

w′w′′

−−−→ qγδ
y−→ qδ, where w′′ ̸= ε. We also have y ̸= ε, since

otherwise DS(qγ) = ES(qγ) = {q}, q′ = q, and we could not have qγδ ̸∼ qδ and qγδ ∼0 qδ.
Since q′ ∈ DS(qγ), we can fix z′ such that qγ

z′

−→ q′. Hence the languages L(qγγδ) and
L(qγδ) differ on z = z′z̄; more generally, L(qγℓ+1γδ) and L(qγℓγδ) differ on yℓz for all ℓ ≥ 0.
Now we aim to find out for which ℓ we have z ∈ L(qγℓδ).

We recall that Q̄ = DS(p̄X̄β) = DS(p̄X̄βγ); hence
⋃

q̄∈Q̄ DS(q̄γ) = Q̄. Since q ∈ Q̄, we
get that DS(qγd) ⊆ Q̄ for all d ∈ N (by induction). We now distinguish two cases:
1. For each prefix z1 of z and each d ≤ |z| we have: if qγd z1−→ q̄, then ES(q̄γ) = ∅.
2. There are a prefix z1 of z, d ≤ |z|, and q̄, q′′ ∈ Q̄ such that qγd z1−→ q̄ and ES(q̄γ) = {q′′}.
In the case 1 we clearly have either ∀ℓ > |z| : z ∈ L(qγℓδ) or ∀ℓ > |z| : z ̸∈ L(qγℓδ) (here δ

plays no role). In the case 2 we recall that q̄γ
ε−→ q′′ entails that q̄γkδ

ε−→ q′′δ for all k ≥ 1
(since ES(q′′γ) = {q′′} by 3 in Claim 12). Hence we have either ∀ℓ > |z| + 1 : z ∈ L(qγℓδ) or
∀ℓ > |z| + 1 : z ̸∈ L(qγℓδ).

Since L(qγ2δ) and L(qγ1δ) differ on z, we deduce that there is ℓ0 ≥ 1 such that either
z ∈ L(qγℓ0δ) and z ̸∈ L(qγℓδ) for all ℓ > ℓ0, or z ̸∈ L(qγℓ0δ) and z ∈ L(qγℓδ) for all ℓ > ℓ0.
Hence for δ̄ = γℓ0δ we have either z ∈ L(qδ̄) and z ̸∈ L(qγℓδ̄) for all ℓ > 0, or z ̸∈ L(qδ̄) and
z ∈ L(qγℓδ̄) for all ℓ > 0. Since for v̄ = vxℓ0 we have p0X0

v̄−→ pXδ̄, the claim is proven. ◁

Claim 13 shows that there is L′ ∈ {L, L} such that vxmwymz ∈ L′ and vxmwynz ̸∈ L′

for m > n, which is a weaker version of Lemma 5. To handle the case m < n, we have to
find out for which ℓ we have yℓz ∈ L(qδ). We thus look at the computation from qδ on the
infinite word yω (recalling our convention that this computation is infinite, stepwise reading
the word yyy · · ·), and use the obvious fact that after a prefix this computation becomes
“periodic” (either cycling among finitely many configurations, or increasing the stack forever).

P. Jančar and J. Šíma 63:13

▷ Claim 14. For any configuration qδ and words y, z there are numbers s ≥ 0 (“shift”) and
p > 0 (“period”) such that for all ℓ ≥ s the remainder (ℓ mod p) determines whether or not
L(qδ) ∋ yℓz.

Proof. We assume y ̸= ε (otherwise the claim is trivial). For the infinite computation from
qδ on yyy · · · there are obviously k1 ≥ 0, k2 > 0, q̄ ∈ Q, and ρ, µ, ν ∈ Γ∗ such that the
computation can be written qδ

yk1
−−→ q̄ρν

yk2
−−→ q̄ρµν

yk2
−−→ q̄ρµµν

yk2
−−→ q̄ρµµµν

yk2
−−→ · · · where

q̄ρ
yk2
−−→ q̄ρµ. (We have µ = ε if the computation visits only finitely many configurations, and

otherwise we consider the stair-factorization of the computation.)

For each j ∈ [0, k2−1] we put q̄ρ
yj

−→ q̄jρj , and we have two possible cases:
1. There is d0 ≥ 0 such that for all d ≥ d0 performing z from q̄jρjµdν does not reach ν at

the bottom.
2. There are d0 ≥ 0, a prefix z′ of z, q′ ∈ Q, and d̄ ∈ [1, |Q|] such that q̄jρjµd0 z′

−→ q′ and
q′µd̄ ε−→ q′.

In the case 1 either L(qδ) ∋ yd·k2+jz for all d ≥ d0, or L(qδ) ̸∋ yd·k2+jz for all d ≥ d0.
In the case 2, for each d ≥ 0 we have q′µd ε−→ qd where qd1 = qd2 if d1 ≡ d2 (mod d̄). Hence
for each d ≥ d0, the (non)membership of yd·k2+jz in L(qδ) is determined by (d mod d̄).

The claim is thus clear. ◁

Now we finish the proof of Lemma 5. We take the notation from Claim 13; for the
respective qδ, y, z we add s, p from Claim 14. Let k0 be a multiple of p that is bigger than
s. We now view xk0 , yk0 , γk0 as new x, y, γ, respectively. Claims 13 and 14 now yield the
statement of Lemma 5.

4 Conclusion and Open Problems

In this paper, we have introduced a new notion of the C-simple problem that reduces to each
problem in C, being thus a conceptual counterpart to the C-hard problem to which each
problem in C reduces. We have illustrated this concept on the definition of the DCFL′-simple
problem that reduces to each DCFL′ language under the truth-table reduction by Mealy
machines. We have proven that the DCFL′ language L# = {0n1n | n ≥ 1} is DCFL′-
simple, and thus represents the simplest languages in the class DCFL′. This result finds
its application in expanding the known lower bound for L#, namely that L# cannot be
recognized by the neural network model 1ANN, to all DCFL′ languages. Moreover, the class
DCFLS of DCFL′-simple problems containing the regular languages is a strict subclass of
DCFL and has similar closure properties as DCFL.

We note that the hardest context-free language L0 by Greibach [3], where each L in
CFL is an inverse homomorphic image of L0 or L0 ∖ {ε}, can be viewed as CFL-hard w.r.t.
a many-one reduction based on Mealy machines realizing the respective homomorphisms.
Our aims in the definition of DCFL′-simple problems cannot be achieved by such a many-one
reduction, hence we have generalized it to a truth-table reduction. We can alternatively
consider a general Turing reduction that is implemented by a Mealy machine which queries
the oracle at special query states, each associated with a corresponding query suffix, while its
next transition from the query state depends on the given oracle answer. The oracle Mealy
machine then accepts an input word if it reaches an accept state after reading the input.
The language L# proves to be DCFL′-simple under this Turing reduction allowing for an
unbounded number of online oracle queries; this can be shown by Claim 13 (a weaker version
of Lemma 5).

MFCS 2021

63:14 The Simplest Non-Regular Deterministic Context-Free Language

It is natural to try extending our result to non-regular nondeterministic (or at least
unambiguous) context-free languages, by possibly showing that L# is CFL′-simple. Another
important challenge for further research is looking for C-simple problems for other complexity
classes C and suitable reductions. This could provide an effective tool for strengthening
lower-bounds results known for single problems to the whole classes of problems, which
deserves a deeper study.

References
1 M. Anabtawi, S. Hassan, Christos A. Kapoutsis, and M. Zakzok. An oracle hierarchy for small

one-way finite automata. In Proceedings of LATA 2019, LNCS 11417, pages 57–69. Springer,
2019. doi:10.1007/978-3-030-13435-8_4.

2 Jean Berstel and Luc Boasson. Context-free languages. In Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science, Volume B: Formal Models and Semantics, pages 59–102.
Elsevier and MIT Press, 1990. doi:10.1016/b978-0-444-88074-1.50007-x.

3 Sheila A. Greibach. The hardest context-free language. SIAM J. Comput., 2(4):304–310, 1973.
doi:10.1137/0202025.

4 John E. Hopcroft and Jeffrey D. Ullman. Formal languages and their relation to automata.
Addison-Wesley, 1969. URL: https://www.worldcat.org/oclc/00005012.

5 Petr Jančar. Deciding semantic finiteness of pushdown processes and first-order grammars
w.r.t. bisimulation equivalence. J. Comput. Syst. Sci., 109:22–44, 2020. doi:10.1016/j.jcss.
2019.10.002.

6 Petr Jančar, František Mráz, Martin Plátek, and Jörg Vogel. On monotonic automata with a
restart operation. J. Autom. Lang. Comb., 4(4):287–311, 1999. doi:10.25596/jalc-1999-287.

7 František Mráz, Dana Pardubská, Martin Plátek, and Jiří Šíma. Pumping deterministic
monotone restarting automata and DCFL. In Proceedings of ITAT 2020, CEUR Workshop
Proceedings 2718, pages 51–58, 2020. URL: http://ceur-ws.org/Vol-2718/paper13.pdf.

8 Klaus Reinhardt. Hierarchies over the context-free languages. In Proceedings of IMYCS 1990,
LNCS 464, pages 214–224. Springer, 1990. doi:10.1007/3-540-53414-8_44.

9 Hava T. Siegelmann. Neural networks and analog computation – Beyond the Turing limit.
Birkhäuser, 1999.

10 Jiří Šíma. Analog neuron hierarchy. Neural Netw., 128:199–215, 2020. doi:10.1016/j.neunet.
2020.05.006.

11 Jiří Šíma. Stronger separation of analog neuron hierarchy by deterministic context-free
languages, 2021. (submitted to a journal). arXiv:2102.01633.

12 Jiří Šíma and Pekka Orponen. General-purpose computation with neural networks: A survey
of complexity theoretic results. Neural Comput., 15(12):2727–2778, 2003. doi:10.1162/
089976603322518731.

13 Jiří Šíma and Martin Plátek. One analog neuron cannot recognize deterministic context-free
languages. In Proceedings of ICONIP 2019, Part III, LNCS 11955, pages 77–89. Springer,
2019. doi:10.1007/978-3-030-36718-3_7.

14 Tomoyuki Yamakami. Oracle pushdown automata, nondeterministic reducibilities, and
the hierarchy over the family of context-free languages. In Proceedings of SOFSEM
2014, LNCS 8327, pages 514–525. Springer, 2014. (full version arXiv:1303.1717). doi:
10.1007/978-3-319-04298-5_45.

A Informal overview of Lemma 5 and of its proof

Given a DPDA M accepting a non-regular language L = L(M) = L(p0X0) ⊆ Σ∗, Lemma 5
claims that there is a word v ∈ Σ∗ and nonempty words x, w, y, z ∈ Σ+ with the properties
depicted in Figure 1, which entail the following conditions:

https://doi.org/10.1007/978-3-030-13435-8_4
https://doi.org/10.1016/b978-0-444-88074-1.50007-x
https://doi.org/10.1137/0202025
https://www.worldcat.org/oclc/00005012
https://doi.org/10.1016/j.jcss.2019.10.002
https://doi.org/10.1016/j.jcss.2019.10.002
https://doi.org/10.25596/jalc-1999-287
http://ceur-ws.org/Vol-2718/paper13.pdf
https://doi.org/10.1007/3-540-53414-8_44
https://doi.org/10.1016/j.neunet.2020.05.006
https://doi.org/10.1016/j.neunet.2020.05.006
http://arxiv.org/abs/2102.01633
https://doi.org/10.1162/089976603322518731
https://doi.org/10.1162/089976603322518731
https://doi.org/10.1007/978-3-030-36718-3_7
https://arxiv.org/abs/1303.1717
https://doi.org/10.1007/978-3-319-04298-5_45
https://doi.org/10.1007/978-3-319-04298-5_45

P. Jančar and J. Šíma 63:15

Figure 1 DPDA computation scheme where either vxmwynz is (or is not) accepted iff m = n, or
vxmwynz is (or is not) accepted iff m ≤ n.

1. (the pumping condition)
p0X0

v−→ pXδ
xm

−−→ pXγmδ
w−→ qγmδ

ym

−−→ qδ for all m ≥ 0 (since pX
x−→ pXγ and qγ

y−→ q);
hence z ∈ L(qδ) entails vxmwymz ∈ L for all m ≥ 0, and z ̸∈ L(qδ) entails vxmwymz ̸∈ L

for all m ≥ 0;
2. (the prefix condition)

the prefix differs from qδ on z in the sense that the languages of all configurations reachable
by vxmwyn where m > n differ from L(qδ) on z; referring to Figure 1, z ∈ L(qγkδ) △ L(qδ)
for all k > 0, where A △ B denotes (A ∖ B) ∪ (B ∖ A);

3. (the suffix condition)
the suffix (all configurations reachable by vxmwyn where m < n) either differs from, or
coincides with, qδ on z; referring to Figure 1, either z ∈ L(qδ) △ L(p′ξ(γ′)kδ′) for all
k ≥ 0, or z ∈ L(qδ) ∩ L(p′ξ(γ′)kδ′) for all k ≥ 0.

The prefix condition 2 implies that the stack segment γ is nonempty (while γ′ might be
empty). The conditions also imply that q ∈ DS(qγ) and ES(qγ) = ∅, when we use the
following definitions: DS(rα) = {r′ | rα

u−→ r′ for some u ∈ Σ∗} (the “down-states” of rα)
and ES(rα) = {r′ | rα

ε−→ r′} (which is either the empty set or a singleton containing the
down-state reached by a sequence of ε-poppings from rα). Hence ES(rα) ⊆ DS(rα), and
ES(rα) ̸= ∅ entails ES(rα) = DS(rα) = {r′} for some r′. Figure 2 depicts an example of
DS(pXγ5), using the obvious compositional approach based on DS(pX) and DS(qiγ) and
ES(qiγ) where i ∈ {1, 2, 3, 4, 5}, assuming that the state set of M is Q = {q1, q2, q3, q4, q5}
and p = q2. (Here the stack is presented horizontally.)

Figure 2 Each directed path from the leftmost black point to the rightmost upper point shows that
q1 ∈ DS(q2Xγ5). The completely-dashed paths correspond to ε-sequences; e.g. ES(q5γγ) = {q5}.

Getting tuples (v, x, w, y, z) satisfying the pumping condition 1

Since L = L(p0X0) is not regular, it is clear that from p0X0 the computations of M can reach
configurations with arbitrary stack-heights, more precisely configurations with arbitrarily
long erasable stack-tops. (The stack-top α in a configuration pαβ is erasable if DS(pα) ̸= ∅.)

MFCS 2021

63:16 The Simplest Non-Regular Deterministic Context-Free Language

Figure 3 Stair-factorization.

Moreover, such long stack-tops must be also erasable by using many “solid-line” segments
that use visible (i.e. non-ε) steps. Indeed: if all possible stack-erasings would in principle
go along the dashed lines, i.e. by ε-popping, like from q1γk in Figure 2, then this would
also entail regularity of L, since even long (erasable) stacks could be replaced with their
equivalents of bounded lengths in such cases.

Using the above observations, it is standard to derive the existence of various tuples
(v, x, w, y, z) satisfying the pumping condition 1. A crucial fact is that any computation
p0X0

u−→ rα where the stack-content α is long can be stair-factorized into a long sequence
of “stairs”, as depicted on the left in Figure 3: here piXi

vi−→ pi+1Xi+1αi+1 and αi+1 is a
nonempty suffix of the right-hand side of a rewriting rule of M (for i = 0, 1, 2, . . .). If a
(long) stack αkαk−1 · · · α1 is first built and then its (long) top αkαk−1 · · · αj+1 gets erased,
we let p′

i denote the state in which αiαi−1 · · · αjαj−1 · · · α1 is exposed during this erasing
(for i = k, k−1, . . . , j); such p′

i are depicted on the right in Figure 3, assuming j = 1. By
the pigeonhole principle, a triple (p, X, p′) repeats in a sufficiently long sequence (pj , Xj , p′

j),
(pj+1, Xj+1, p′

j+1), . . . , (pk, Xk, p′
k), which naturally yields a “pumping tuple” (v, x, w, y, z).

Pumping-operation on (v, x, w, y, z) (preserving the conditions 1, 2, 3 that hold)

Looking at Figure 1, we observe that if the pumping condition 1 holds for a tuple (v, x, w, y, z),
then it is preserved by the pumping-operation on (v, x, w, y, z) that consists in replacing
x and y with their “multiples” xk0 and yk0 , for any k0 ≥ 1. Moreover, if (v, x, w, y, z)
also happens to satisfy the prefix condition 2, then also this condition is preserved by the
pumping-operation (for any k0 ≥ 1). The same is true for the suffix condition 3.

Establishing the suffix condition 3 (by the pumping-operation for suitable k0)

Given (v, x, w, y, z) that satisfies the pumping condition 1, we now show that the pumping-
operation (for an appropriate number k0) establishes the suffix condition 3. First we observe
that if M starts in qδ and processes yω = yyy · · · , then the respective infinite computation
necessarily enters a “cycle” after a “prelude”. This is depicted in Figure 1, but there both the
prelude and the cycle process the word y. Generally, we would get a prelude qδ

yk1
−−→ p′ξδ′

and a cycle p′ξδ′ yk2
−−→ p′ξγ′δ′ (where p′ξ

yk2
−−→ p′ξγ′ and γ′ might be empty) for some numbers

k1, k2 (where k2 > 0). We now show that the set

A = {ℓ ∈ N | z ∈ L(cℓ)} where cℓ are the configurations satisfying qδ
yℓ

−→ cℓ (6)

P. Jančar and J. Šíma 63:17

is ultimately periodic; i.e., for a shift s ≥ 0 and a period p > 0 we have that for all ℓ ≥ s
the remainder (ℓ mod p) determines whether or not ℓ ∈ A. Generally we cannot simply
take p = k2 as a suitable period, since z might “embark” on popping the γ′-segments along
“dashed paths”: processing a prefix z1 of z from p′ξγ′γ′ · · · γ′δ′ might reach a configuration
q′γ′γ′ · · · γ′δ′ like q1γγγ · · · in Figure 2, in which case we have q′γ′γ′ · · · γ′δ′ ε−→ rδ′, and it is
the state r in which the bottom δ′ is reached that determines whether z is accepted or not
(i.e., whether z2 ∈ L(rδ′) when z = z1z2). We thus might need to choose p as a multiple of
k2, guaranteeing that the above mentioned state r (in which δ′ is reached) is also repeating
with the period p.

Having a shift s and a period p characterizing the ultimate periodicity of the set A defined
by (6), we choose k0 ≥ s that is a multiple of p. Then replacing x and y with xk0 and yk0

indeed guarantees the suffix condition 3; an important point is that the “suffix” might differ
from, or coincide with, qδ on z.

Establishing the prefix condition 2

Given a tuple (v, x, w, y, z) satisfying the pumping condition 1, if we aim to establish the prefix
condition 2 by the pumping-operation, then it is natural to consider the “prefix-counterpart”
of (6), namely the set

A′ = {ℓ ∈ N | z ∈ L(qγℓδ)} (7)

(recall Figure 1). It is again clear that A′ is ultimately periodic, but a problem is that we
have to guarantee that the “prefix” has to differ from qδ on z (unlike the “suffix” that can
also coincide).

We now show that if A′ is nontrivial (∅ ⊊ A′ ⊊ N), then we can establish the prefix
condition 2 easily. Let s be the shift and p the period of a presentation of A′ as an ultimately
periodic set, and let i0 ∈ A′ and i1 ̸∈ A′. Let k0 ≥ max{i0, i1, s} be a multiple of p, and let
j ∈ {0, 1} be such that ij differs from k0 on the membership in A′. Instead of (v, x, w, y, z)
we now take (v′, x′, w, y′, z) where v′ = vxij , x′ = xk0 , y′ = yk0 . Referring to Figure 1,
by this change δ is replaced with δ = γij δ, and γ is replaced with γ = γk0 . We have
z ∈ L(qδ) △ L(q(γ)kδ) for all k > 0; hence the prefix condition 2 is indeed established.

It remains to explore if we can have the case that for each tuple (v, x, w, y, z) satisfying
the pumping condition 1 the “prefix” set A′ defined by (7) (when referring to the notation
of Figure 1) is trivial. Since we can choose z freely, this case would, in fact, entail that
qδ ∼ qγδ ∼ qγγδ ∼ · · · , where c ∼ c′ stands for L(c) = L(c′) for any configurations c, c’.
We now show that this case cannot happen since the language L = L(q0X0) is non-regular.

First, it is straightforward to derive that we can fix a crucial infinite computation of
M from p0X0, processing some word a1a2a3 · · · , whose stair-factorization has infinitely
many stairs and each stair represents its own equivalence class of ∼. We can view the left
part of Figure 3 as a prefix of this crucial computation; we thus have piXiαiαi−1 · · · α1 ̸∼
pjXjαjαj−1 · · · α1 for all i ̸= j. (The existence of such an infinite computation follows by
the fact that the set of left quotients {u\L | u ∈ Σ∗}, where u\L = {u′ ∈ Σ∗ | uu′ ∈ L}, is
infinite since L is non-regular, and by König’s lemma since the tree of all computations of
M from p0X0 is finitely branching.)

We are not done, since even in this crucial infinite computation (with pairwise non-
equivalent stairs) a “pumping” tuple (v, x, w, y, z) derived by the above-mentioned pigeonhole
principle might not guarantee that qδ ̸∼ qγδ (and we might have qδ ∼ qγδ ∼ qγγδ ∼ · · ·).
For instance, let us assume that in Figure 3 we have p1X1 = p3X3, and that Q = {q1, q2, q3}
as depicted in Figure 4. We can have q2α1 ∼ q2α3α2α1 (as denoted by the rectangles in

MFCS 2021

63:18 The Simplest Non-Regular Deterministic Context-Free Language

Figure 4 Shortening of configurations (here p1X1 = p3X3).

Figure 4) and q3α1 ∼ q3α3α2α1 (as denoted by the circles), but q1α1 ̸∼ q1α3α2α1 (which
causes that p1X1α1 ̸∼ p3X3α3α2α1). By putting pX = p1X1 = p3X3, δ = α1, x = v1v2
(referring to Figure 3), and γ = α3α2, we get a “pumping” p0X0

v0−→ pXδ
x−→ pXγδ

x−→ pXγγδ

where pXγγδ is depicted as the third configuration in Figure 4. (We have omitted unreachable
“black points”.) Here we indeed have qδ ∼ qγδ ∼ qγγδ ∼ · · · , as is highlighted by the fourth
configuration in Figure 4.

In our example we can also note that some configurations in the crucial infinite com-
putation might be safely shortened while their equivalence classes are preserved. This is
depicted on the right in Figure 4: we have p0X0

v0v1v2v3−−−−−−→ p4X4α4α3α2α1, but we obvi-
ously have p4X4α4α3α2α1 ∼ p4X4α4α1; this shorter representant of the equivalence class of
p4X4α4α3α2α1 is reachable by omitting v1v2, i.e., p0X0

v0v3−−−→ p4X4α4α1.
Nevertheless, the crucial computation visits infinitely many equivalence classes, so the

sizes of the stair-configurations piXiαiαi−1 · · · α1 must grow above any bound even when
we first shorten them maximally in the (repeated) described way. Let us now fix a stair-
configuration that has been maximally shortened in the above way and is still sufficiently
long. By straightforward combinatorial arguments (that can presented as an application
of Ramsey’s theorem to avoid tedious technicalities) we can derive that this (shortened)
configuration can be written as p̄X̄βγδ where γ is nonempty, and

γ can be pumped (having the same “lower” pjXj and “upper” pj′Xj′ , like γ = α3α2 in
Figure 4);
the sets DS(p̄X̄β) and DS(p̄X̄βγ) are equal, further being denoted by Q̄ (e.g., in Figure 4
p4X4α4α3α2α1 = p̄X̄βγδ where Q̄ = {q2, q3});
there is q′ ∈ Q̄ for which L(q′γδ) and L(q′δ) differ on a nonempty word z̄ (e.g., now let
the circled q3γδ and q3δ in Figure 4 differ in this way, hence we can choose q′ = q3);
moreover, this q′ ∈ Q̄ belongs to DS(qγ) for some self-containing q ∈ Q̄, where q ∈ Q̄ is
self-containing if q ∈ DS(qγ) (let q = q2 in our example, though here also q3 is possible).

It is then clear that qγ
y−→ q and qγ

z′

−→ q′ for some nonempty y, z′; this entails qγγδ ̸∼ qγδ

since they differ on z = z′z̄. (This is sufficient for us even if we cannot deduce that qγδ ̸∼ qδ.)
A formal proof is given in the main part of the paper.

	1 Introduction
	2 DCFL'-Simple Problem Under Truth-Table Mealy Reduction
	3 Proof of the Main Result (Theorem 1)
	4 Conclusion and Open Problems
	A Informal overview of Lemma 5 and of its proof

