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—— Abstract

In recent work, Gourves, Lesca, and Wilczynski (IJCAI 17) propose a variant of the classic housing
markets model in which the matching between agents and objects evolves through Pareto-improving
swaps between pairs of agents who are adjacent in a social network. To explore the swap dynamics
of their model, they pose several basic questions concerning the set of reachable matchings, and
investigate the computational complexity of these questions when the graph structure of the social
network is a star, path, or tree, or is unrestricted.

We are interested in how to direct the agents to swap objects with each other in order to arrive
at a reachable matching that is both efficient and most agreeable. In particular, we study the
computational complexity of reaching a Pareto-efficient matching that maximizes the number of
agents who prefer their match to their initial endowments. We consider various graph structures of
the social network: path, star, tree, or being unrestricted. Additionally, we consider two assumptions
regarding preference relations of agents: strict (ties among objects not allowed) or weak (ties among
objects allowed). By designing two polynomial-time algorithms and two NP-hardness reductions, we
resolve the complexity of all cases not yet known. Our main contributions include a polynomial-time
algorithm for path networks with strict preferences and an NP-hardness result in a star network
with weak preferences.
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1 Introduction

Model. Matching indivisible objects to agents is a fundamental problem in both computer
science and economics. In a seminal work, Shapley and Scarf [22] introduced the notion of a
housing market, which corresponds to the special case of one-sided matching in which there
are an equal number of agents and objects, each agent is initially endowed with a distinct
object, and each agent is required to be matched to exactly one object. Fruitful applications
have arisen from the housing market problem: assigning virtual machines to servers in cloud
computers, and allocating graduates to trainee positions. There are two different assumptions
regarding preference relations of agents. One is strict, which is a full ordinal list of all objects,
and the other one is weak, where agents are allowed to be indifferent between objects. Both
preference relations have been widely studied.

However, in practice, assuming that any agent is able to trade with any other agent is a
quite strong assumption. Agents tend to trade with agents that they know and trust, and it
is hard to let two agents who do not trust each other exchange their objects even if they
can mutually get benefits. So Gourves et al. [13] initiated the line of research on the house
market problem where the agents are embedded in a social network. A pair of agents are
allowed to swap objects with each other only if (1) both of them will be better off after the
swap and (2) they are directly connected (socially tied) via the network. The underlying
social network is modeled as an undirected graph. They investigate the swap dynamics of
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the housing market problem in this model by considering the following three computational
problems. The first problem, Reachable Object (RO), asks whether there is a sequence of
swaps that results in matching a given agent to a given target object. The second problem,
Reachable Matching (RM), asks whether there is a sequence of swaps that results in a given
target matching. The third problem, Pareto Efficiency (PE), asks how to find a sequence
of swaps that results in a Pareto-efficient matching with respect to the set of reachable
matchings. Of particular relevance to the present paper is the last problem. We remark that
like Gourves et al., our focus is on Pareto-efficient matchings among reachable matchings
(to be formally defined in Section 2). In particular, we focus on reachable matchings that
are not Pareto-dominated by a reachable matching, rather than by an arbitrary matching
as in the standard meaning. Specifically, we are interested in finding a sequence of swaps
that yields a Pareto-efficient matching that maximizes the number of agents who prefer their
match to their initial endowments.

Maximum Votes Pareto-Efficient Matching. In housing markets, we typically seek a
matching between houses and agents that optimizes some social objects. Pareto efficiency
has been widely considered in the context of housing allocation [2, 4, 22], which appears
to be the minimal requirement for an allocation to be socially acceptable. However, in the
context of social network, Pareto efficiency among reachable matchings is not sufficient to
be socially acceptable. In the example of Fig. 1, there is a Pareto-efficient matching that
improves only two agents, while there is another Pareto-efficient matching that improves
everyone, as shown in Fig. 1.

a1:b2>bg> a2:1)1>b3>
VWV VYV e a3:b4>b2> a4:b5>b2>
a5:b6>b2> CL62b2>

Figure 1 Consider an instance with six agents in {a1,as2,as,as,as,a6} and six objects in
{b1,b2,b3,ba,bs,bs}. The boxed objects represent the initial endowments. Initially, only the swaps
between agents a1 and a2, and a2 and as are possible. If we let agents a1 and a2 swap their objects
first, then we obtain a Pareto-efficient matching in which a1, a2 get their best objects. If we let az
and a3 swap their objects first, then additional swaps between pairs (a1, a2) and (as, as) become
possible. Indeed, the sequence of swaps, {az,as}, {a1,a2}, {as, a4}, {as,a5}, and {as,as}, yields a
different Pareto-efficient matching that improves all agents.

There is a vast literature on refining Pareto-efficiency in object allocation with endowments.
Various refining directions are considered, such as fairness ([6, 12]), welfare-maximization
([1, 10]), and stability ([22]). In this work, we propose to refine Pareto-efficiency in the
direction of popularity. The notion of popularity was introduced by Abraham et al. [5] for
object allocation without endowments. Popularity has gained a lot of attention in the recent
past (we refer to the survey by Cseh [11] on this topic). Popular matchings are defined based
on comparisons of two matchings with respect to the votes of the agents. Consider an election
between two matchings M and M’ where vertices are voters. In this M versus M’ election,
each agent a votes for the matching in {M, M’} that agent a prefers, i.e., where agent a gets
a better assignment. We say a matching is popular if it never loses a head-to-head election
against any matching in the voting instance where matchings are candidates and vertices
are voters. However, popular matchings do not always exist: Abraham et al. construct an
instance with three agents for which there is no popular matching.
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To adapt the popularity notion to housing markets, we introduce the notion of maximum
votes matching. We consider the same voting scheme, but focus on the comparison with the
initial endowments. Given a reachable matching p, an agent a votes for the matching if it
prefers the object assigned by this matching to its initial object. We refer to the number of
agents that prefer u to the initial matching as the voting number of u. We define a maximum
votes matching to be a reachable matching with the maximum voting number. We remark
that maximum votes matchings always exist.

Clearly, not all Pareto efficient matchings have the same voting number. Also, a maximum
votes matching is not necessarily a Pareto-efficient matching. Consider the example shown in
Fig. 2. Part (a) shows a sequence of swaps that gives a Pareto-efficient matching improving
all agents. Part (b) shows a sequence of swaps that also yields a matching that improves all
agents, but is not Pareto-efficient. Thus, it is natural to consider the problem of finding a
Pareto-efficient matching that has the largest voting number. We refer to this problem as the
maximum votes Pareto-efficient (MVPE) matching problem. In particular, the set of MVPE
matchings is precisely the intersection of the following two sets: (1) the set of matchings that
are Pareto efficient among reachable matchings; (2) the set of reachable matchings with the
maximum voting number.

iy L -y | - | y "
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(@) A sequence of swaps that results in each  (b) A sequence of swaps that yields a non-Pareto-
agent getting its favorite object. efficient matching improving all agents. Agent a2
obtains object b, by swapping with agent . Then
agent a1 gets object b, by swapping with as. Simil-
arly, agent as gets object by by the following two
swaps: (y,a3), (a3,as). Clearly, this matching is
Pareto-dominated by the matching obtained in part

(a).

Figure 2 An example in which a non-Pareto-efficient matching improves the most agents.
Consider an instance with six agents in {a1, a2, z,y, as,as} and six objects in {b1, b2, bz, by, bs, ba}.
The preferences of the agents and the initial endowments (represented as boxed objects) are given
below. The arrows in the figures show where the initial object of each agent goes.

al:b2>bz> x:by>b2> a3:b4>by>
azzbl>bz> y:bl.>b3> a4:b3>by>

Related work. Gourves et al. [13] study these three problems, RO, RM and PE, in four
different graph classes, paths, stars, trees, and general graphs. They only consider strict
preferences, and thus they consider twelve problems in total. They study these twelve
problems with the goal of either exhibiting a polynomial-time algorithm or establishing
NP-completeness. For some of these problems, it is a relatively straightforward exercise to
design a polynomial-time algorithm (even for the search version). In particular, this is the
case for all three problems on stars, for PE on paths, and for RM on trees (which subsumes
RM on paths). Gourves et al. [13] present an elegant reduction from 2PIN-SAT [23] to
establish the NP-completeness of RO on trees. They leverage this result to establish the
NP-completeness of RM on general graphs via a reduction from RO on trees. Then, they
make use of the latter reduction to establish the NP-hardness of PE on general graphs. The
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work of Gourves et al. [13] left two of the twelve problems open: RO on paths and PE on
trees. Subsequently, two sets of authors independently presented polynomial-time algorithms
for RO on paths [14, 7]. To the best of our knowledge, PE on trees remains open.

Huang and Xiao [15] study RO and PE with weak preferences. They establish NP-
hardness for RO on paths with weak preferences and give a polynomial-time algorithm for
RO on stars with weak preferences. Then, they establish NP-hardness for PE on paths with
weak preferences via a reduction from RO on paths with weak preferences. They left PE on
stars with weak preferences open. Furthermore, they show that finding a reachable matching
maximizing total social welfare is NP-hard for a star or a path with weak preferences.

Bentert et al. [7] consider the case where the preference lists have bounded length.
Saffidine and Wilczynski [21] propose an alternative version of RO where an agent can be
guaranteed a certain level of satisfaction regardless of the actual exchanges. Miiller and
Bentert [20] study RM on cliques and cycles. Aspects related to social connectivity are also
addressed in recent work on envy-free allocations [8, 9] and on a trade-off between efficiency
and fairness [16].

There are several works on ensuring popularity. For settings where a popular matching
does not exist, Kavitha et al. [18] study how to minimally augment the preferences to
guarantee the existence of a popular matching. This problem has been shown to be NP-
hard. Another way to ensure popularity is to consider mixed matchings, i.e., lotteries over
matchings; and the popularity property is straightforward to carry over; Kavitha et al. [17]
show that a popular mixed matching always exists and propose an efficient algorithm to
find one. McCutchen [19] proposes a least-unpopularity criterion to find the “most” popular
matching; finding this least-unpopular matching is NP-hard.

Our results. Our main contributions are summarized in Table 1. Our main positive result
is a polynomial-time algorithm for finding a maximum votes Pareto-efficient matching in a
path network with strict preferences. To achieve this result, we first present an algorithm for
finding a maximum votes matching by studying the structure of a reachable matching in a
path network. Specifically, we show that the improved agents in any reachable matching can
be decomposed into a set of agent intervals, where each agent interval is a set of consecutive
agents in the path and all agents in this interval can improve their allocation by swapping
objects within the interval. Moreover, given a disjoint union of such agent intervals, we can
recover a sequence of swaps improving agents in this disjoint union. Thus, we reduce the
problem of computing the maximum votes number to the problem of finding the disjoint
union of such agent intervals that covers the most agents; polynomial-time algorithms are
known for the latter problem.

To find a maximum votes Pareto-efficient matching, observe that there is a maximum
votes matching that is also Pareto-efficient. Thus, to find a maximum votes Pareto-efficient
matching, it is enough to find a Pareto-efficient matching among maximum votes matchings.
To achieve that, we carefully adapt the serial dictatorship algorithm [3] to ensure that each
time a dictator agent a is assigned to an object b, where the current partial assignment
remains consistent with a maximum votes matching. In particular, we present a subroutine
to find the most favorite object b that can be assigned to agent a such that there is a sequence
of swaps letting a get b and improving the most agents. In Section 3.4, we use a delicate
induction argument to prove the correctness of this subroutine.

In Section 4, we present a simple polynomial-time algorithm for finding a maximum votes
Pareto-efficient matching on stars with strict preferences shown
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Table 1 Our results and related work. Results in parentheses are implied by other table entries.

Strict Weak
Path poly-time [Section 3] NP-hard ([15])
Star poly-time [Section 4] | NP-hard [Section 4]
Tree NP-hard [Section 5] (NP-hard)
General (NP-hard) (NP-hard)

In terms of negative results, in Section 4, we show that the MVPE problem in star networks

with weak preferences is NP-hard by designing a novel reduction from the 3-SAT problem.

In Section 5, we prove that the MVPE problem in tree networks with strict preferences is
NP-hard by reducing from the RO problem in tree networks with strict preferences, which is
known to be NP-complete [13].

Due to space restrictions, some of the proofs are omitted, or are merely sketched. Complete
proofs will be provided in the full version of this paper.

2 Preliminaries

We define an object allocation framework (OAF) on a social network as a triple F' = (4, B,
>, FE) where A is a set of agents, B is a set of objects such that |A| = |B|, > is a collection
of linear orderings {>,}sca over B such that >, specifies the preferences (including ties) of
agent a over B, and F is the edge set of a social network between agents in A, i.e., the social
network is the undirected graph (4, E).

We define a matching p of a given OAF F = (A, B, >, E) as a subset of A x B such that
no agent or object belongs to more than one pair in p. (Put differently, p is a matching in
the complete bipartite graph of agents and objects.) We say that such a matching is perfect
if |u| = |A|. For any matching p, we define agents(u) (resp., objects(u)) as the set of all
matched agents (resp., objects) with respect to p. For any matching x4 and any agent a that
is matched in p, we use the shorthand notation p(a) to refer to the object matched to agent
a. For any matching p and any object b that is matched in u, we use the notation p=1(b) to
refer to the agent matched to object b.

For any OAF F = (A, B, >, E), any perfect matching u of F, and any edge ¢ = (a, a’)
in E, we define an exchange operation on edge e as ¢/ = pu\ {(a,u(a)),(a’,u(a’))} U
{(a,u(a")), (a’,u(a))}, where u' is the new matching obtained by applying the exchange
operation on edge e. We say the exchange is rational if u(a’) >, p(a) and u(a) >4 p(a’),
denoted as y —p. p/. We call a rational exchange a swap. We use yu —p p to denote
that 4 —p. o' for some edge e. We write p ~»p p' if there exists a sequence of matchings
W= g, ..., g = ' of matchings of F' such that p;_1 —p p; for 1 <i < k.

We define a configuration as a pair xy = (F,u) where F is an OAF and p is a perfect
matching of F'. We say that y is a path or star or tree configuration if the social network in
F' is a path or star or tree. For any configuration x = (F, ), we define reach(x) as the set of
all perfect matchings p’ of F such that y ~p p'.

A matching p Pareto-dominates a matching g/ if p(a) >, 1/ (a) for all agents a in A, and
there is at least one agent b in B such that u(b) >, ' (b). A matching is Pareto-efficient if it is
not Pareto-dominated by another matching. Throughout this paper, we restrict the definition
of Pareto-efficiency to the set of reachable matchings. A matching p is Pareto-efficient with
respect to a configuration x if p belongs to reach(x) and p is not Pareto-dominated by
another matching in reach(x).
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Maximum Votes Pareto-Efficient Matching Problem. Given a configuration x = (F, )
and a matching p’, we use votesp(u, 1) to denote the number of agents who prefer '
to p. We say votesp (', ) is the voting number of matching p/. The maximum votes
Pareto-efficient matching problem is equivalent to the following optimization problem:

argmax votesg (T, i).
7 € reach(x) A 7 is Pareto-efficient

For a given configuration x, we use mv(x) to denote the largest voting number of a matching
in reach(x). We refer to mv(y) as the voting number of .

3 Path Network

In this section, we study the maximum votes Pareto-efficient matching problem in a path
configuration. We begin by introducing some notations. For any nonnegative integer n, we
define [n] as {1,...,n}. Without loss of generality, in this subsection we restrict attention
to OAFs of the form F = ([n],[n],>,{(b,b+ 1) | 1 < b < n}) for some positive integer
n. We use [i,j] to denote the set of agents between agent ¢ and agent j (inclusive). Let
II = po, i1, ..., g denote a sequence of matchings where p; —p pi41 for 0 <i <k —1, ie.,
141 is obtained from p; by a swap. We have the following observations.

» Observation 1. Each object only moves in one direction or stays at its initial position
in II.

We say an object is right-moving (left-moving) in IT if it moves to the right (left). The
following observation says that while implementing the sequence of swaps II, the relative
location of any two objects moving in the same direction on the path does not change, i.e., if
an object b is located to the left (right) of another object o', then object b will always be to
the left (right) of object b'.

» Observation 2. Let 11 = pug, p, ..., b denote a sequence of matchings. For any two
objects b and b where gt (b) < pg (') that move along the same direction in T, we have
u=t(b) < p= L) for all p in 11

Let (4, k) denote a canonical sequence of exchanges that assigns object j to agent
k by directly moving it along the dipath from j to k. Formally, if j < k, k(j,k) =
(G, 7+, G+1,7+2),.(k—1,k). Ifj >k c(j,k)=0G,7—-1,0—1,7—2),....,(k+1,k).
A sequence of exchanges II is said to be a sequence of swaps if all its exchanges are rational,
denoted as rational(IT). We remark that x(j, k) was defined, and some associated properties
were proved, by Gourves et. al [13]. The following lemma presents a useful structural property.

» Lemma 3. Let x = (F, ) denote a path configuration, let a denote a leaf agent in x, and let
a’ denote an agent in x. If there is a matching p' in reach(x) such that u”(a) = u(a’), then
(1) rational(k(a’,a)) holds, and (2) p" belongs to reach((F, '), where p' is the matching
reached from p via k(a’,a).

3.1 Maximum Votes Pareto-Efficient Matching

In this section, we present a polynomial-time algorithm for finding a maximum votes Pareto-
efficient matching given a path configuration. In order to find an MVPE matching, we first
present an algorithm for computing the maximum voting number of a given configuration
x = (F, ), i.e., for computing mv(x). We then compute an MVPE matching by combining



F. Li and X. Zheng

this algorithm with the serial dictatorship algorithm [3]. In the serial dictatorship algorithm,

we let agents pick whatever best object they are left with in an arbitrary sequential order.

In our case, agents pick objects according to the order of their IDs, i.e., the smallest agent
picks first and the largest agent picks last. Assuming that agent a picks object b, we need to
meet three additional requirements. First, object b can be assigned to agent a via a sequence
of swaps. Second, after object b is assigned to agent a via a sequence of swaps, we obtain a
new matching ' and a new configuration x’ = (F, u’'). We need to maintain the invariant
that there exists a matching 7 in reach(x’) such that votesg(7, ) = mv(x). Third, object b
is the most preferred object of agent a subjects to the first two constraints.

The above three constraints along with the property of serial dictatorship are sufficient
for us to prove that the eventual matching we obtain is an MVPE matching. Now, let us
first present our algorithm for computing the maximum votes matching of reach(x).

3.2 Maximum Number of Votes

Throughout this section, let x = (F,u) denote a path configuration. Below we present
Algorithm 1, which computes the largest voting number of matching in reach(y).

» Definition 4 (Directional sequence). A directional sequence is a sequence of R, L, or S
symbols. For any agent i, the ith symbol represents the final moving state of its initial object.
Symbol R indicates that it moves to the right. Symbol L indicates that it moves to the left.
Symbol S indicates that it does not mowve.

For any matching v in reach(y), we define an associated directional sequence as follows.

For agent i, if its initial object (i) moves to the left in v (i.e., the position v~!(u) of object
;i is smaller than the initial position ¢ in u), then the ith symbol in the directional sequence
is L, i.e., the object is left-moving. If it is moved to the right, then the ith symbol is R, i.e.,
the object is right-moving. If it is stationary, then the ith symbol is S. We use DS(v) to
denote the directional sequence of v and DS(v(]i,j])) to denote the subsequence DS (v)][3, j]
with respect to agents in [¢, j] only.

» Definition 5 (RL-block). We define an RL-block as a directional sequence of the form
R™L™ = RRR..RLLL....L where m,n are positive.

Remark: Any agent with symbol S in DS(v) does not get a better allocation in v; any
agent with symbol R or L gets improved by v due to the definition of swaps. Therefore,
given a matching v in reach(x), we can decompose [n] into a set of maximal intervals such
that all agents in each interval get moved or improved. Let Decompose(r) denote the set of
maximal intervals decomposed from [n] according to v.

» Observation 6. Given a matching v in reach(x), DS(v) can be uniquely decomposed into
a disjoint union of RL-blocks and S symbols.

Given a matching v in reach(x), by applying Observation 6 on the directional sequence
DS(v), we observe that for any interval [¢,j] in Decompose(v), the interval [¢,j] can be
uniquely partitioned as a set of sub-intervals such that for each sub-interval [¢’, j'], DS(v)[i’, j']
is an RL-block. We refer to this partition as the RL-decomposition of interval [, j].

Given a maximal interval [¢, j] in Decompose(v), let RLD([i, j]) denote the set {[¢’, '] C
[i,9] | DS(v)[¢’,J'] is an RL-block} that contains those subintervals of [i, j] that are also
RL-blocks. Let RLD(v) denote the set [J; RLD([i, 4]).

i,j]€Decompose(v)
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» Definition 7 (RL-interval). We say that an interval [i, 7] is an RL-interval if at least one
of the following condition holds: (1) rational(k(j,4)); (2) rational(k(i,5)); (3) there exists
an integer k such that i < k < j, rational(k(k + 1,7)), and rational(k(k,7)).

From the above definition, we can obtain the following observation.

» Observation 8. For any RL-interval [i, ], there exists a sequence of swaps between agents
in [i,j] that improves all agents in the interval.

» Lemma 9. Let v be a matching in reach(x) and let [i, j] be in RLD(v), interval [i, j] is an
RL-interval.

Proof. Let R™L/~"+1=™ denote the RL-block DS(v)[i,j]. Let by and by denote the initial
endowment of agent ¢ +m — 1 and agent ¢ + m in y, respectively. Then, b; is the rightmost
right-moving object and by is the leftmost left-moving object. Then, from Observations 1
and 2, we have v=1(by) = j and v~!(bg) = i; otherwise the initial endowments of agent i
and agent j are stationary. Thus, we have a reachable matching v mapping b; to leaf agent
j, and mapping by to leaf agent i. By Lemma 3, k(i +m — 1,7) and k(i + m, i) are both
rational. |

Let Z denote the set of all RL-intervals in x. Let ¥(Z) denote the set {X C T |
all intervals in X are disjoint}.

» Lemma 10. For any matching v in reach(y), the set of intervals RLD(v) is an element
in (T).

Proof. Since Z contains all RL-intervals in x and each interval in RLD(v) is an RL-interval
(Lemma 9), the set of intervals RLD(v) is a subset of Z. Also, all intervals in RLD(v) are
clearly disjoint. <

» Lemma 11. For any set of intervals D in VU(I), there exists a matching v in reach(x)
such that RLD(v) = D.

Proof. We explicitly construct such a matching as follows. For each RL-interval [i, j] in D,
from Observation 8, we know there exists a sequence of swaps that improves all agents in
[i,7]. Thus, matching v can be constructed by applying such a sequence of swaps for each
interval [, j] in D on the initial matching pu. <

Let MCDI(Z) denote the maximum coverage of some disjoint intervals in Z, i.e., the
maximum size of the union of disjoint intervals in Z.

» Lemma 12. mv(x) = MCDI(T).

Proof. Lemma 10 implies that mv(y) < MCDI(Z). Assume by contradiction that mv(y) <
MCDI(Z). Then, there exists a set D in ¥(Z) such that mv(x) < Y. j—i+1. By Lemma

li.jleD
11, there exists a matching v in reach(x) such that RLD(v) = D. For matching v, we have
votesp (v, 1) = > j—i+1= > j—i+1>mv(x), acontradiction. <

[i,j]€RLD(v) [i,j]€D

Using the above lemma, to compute the maximum votes of a configuration, we only need
to compute the maximum coverage of disjoint intervals in Z. Algorithm 1 has two steps. The
nested for loops compute all the RL-intervals Z for a given x. The second step invokes the
maximum disjoint interval algorithm on Z.
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Algorithm 1 MV (x).

Input: A configuration x = (F, o)
Output: The maximum votes number of y
T+0
fori< 1ton—1do
for j < i+ 1tondo
if 3k € [4,4] s.t. rational(k(k, j)) A rational(k(k + 1,4)) then
| T« Zu{[i,jl}
end
end
end
Return MCDI(Z)

3.3 Weighted Version of Maximum Votes Matching

We remark that there is a polynomial-time algorithm solving a weighted version of finding
a maximum votes matching. Formally, let W : [n] — R denote a weight function assigning
each agent a in [n] a real value W (i). For any matchings p/, u of F', let votesp(u/, p, W) =
Zue[n]w/(a)%u(a) W (a), i.e., the total weight of the agents that prefer p’ to p. In addition,
let mv(x, W) = max,,screach(y) Votesw (i’ 11).

To allow for the weight function W, we reduce the problem of computing mv(x, W) to
compute the maximal sum of weights of disjoint intervals in Z, where each interval [i, j] in Z
has weight > kelij] W (k). To compute the maximum weighted coverage of disjoint intervals
in Z, we construct a directed graph G = (Z, E) as follows. Each node in G is a interval [4, j]
in Z. For every two nodes [i, j] and [¢’, j], there is a directed edge from node [z, j] to node
[i/,7'] if 7 < 4'. Moreover, each node has a cost equal to the weight of the corresponding
interval. Note that this graph is acyclic, and it takes O(n?) time to find a most weighted
path in an acyclic graph.

3.4 MVPE algorithm

In this section, we present Algorithm 3 for finding an MVPE matching given a path
configuration. Our main idea is to apply a serial dictatorship procedure. To simplify the
presentation, we focus on the leftmost agent a in any path configuration x = (F, u) on agents
[a,n]. We seek the best possible object b for the leftmost agent a such that there exists a
maximum votes matching 7 in reach(y) with 7(a) = b. Note that Lemma 3 implies that

rational(k(u~1(b),a)) holds. We then apply x(u~1(b),a) in x to let agent a match object b.

Hence, we get a new configuration x’ on agents [a 4+ 1,n] by truncating the leftmost agent a
along with its assigned object b. We then recurse on the leftmost agent a + 1 in x'.

However, when we recurse on X', the situation is a bit different than in x. The applied
sequence of swaps k(" 1(b),a) has improved agents between agent a and p~*(b) in x, and
also in x’. These agents will vote when this serial dictatorship procedure ends. Thus, when
we recurse on ', in order to ensure that the resulting matching is a maximum vote matching,
we need to find a matching maximizing votes among agents on the right side of p=1(b) in x/,
rather than all agents.

Formally, we introduce some notations. For any agent interval [i, j] that is a subset of [n],
let x[4, j] and u[i, j] denote the truncated configuration and truncated matching induced by
agents in [, j], respectively. Let mv(y, [¢,j]) denote the maximum number of agents in [¢, j]
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that can be improved by any reachable matching in reach(x), votesg (1, p, [i, j]) denote the
number of agents in [i, j] that prefer u’ to u, and MVM(x, [¢, j]) denote the set of reachable
matchings achieving mv(y, [4, j]).

We are prepared to introduce our recursive subroutine called BOLA (best object for the
leftmost agent), shown as Algorithm 2. Given a configuration y = (F, u) on agents [a,n]
and an agent a’ > a, Algorithm 2 finds the leftmost agent a’s most preferred object b* such
that there exists a u’ in MVM(x, [a’,n]) with p/(a) = b*. In Algorithm 2, agent o’ is used to
limit the objects that agent a can be possibly matched with. Specifically, Algorithm 2 only
considers objects that are initially owned by agents in [a/,n]. In Algorithm 2, we need to
compute mv(x, [a,n]) for a given x on the agents in [a,n]. This can be done by applying the
weighted version of Algorithm 1 as discussed in Section 3.3.

Fig. 4 shows a possible execution of Algorithm 2. Here, Algorithm 2 runs with a
configuration x on the agents in [a,n] and an agent o’ in [a,n], and it finds an object b*
initially owned by agent i that satisfies the two if conditions.

Figure 4 A demo example for Algorithm 2.

Algorithm 2 BOLA(x, a').

Input: A configuration xy = (F, ) with agents [a, n], an agent a’ € [a, n]
Output: The most preferred object b* of the leftmost agent, where there is a
matching ¢’ in MVM(x, [@’, n]) assigning b* to a
// Remark: a is the leftmost agent in x
b*,V  p(a), mv(x, [a’,n])
for i < a ton do
if p(i) >4 b* A rational(k(i,a)) then
// Remark: i denotes an agent
1* < the matching that results from applying (i, a) to u
X (F,p)
a” < max(i+ 1,a’)
if votes(u*, p, [a',a” —1]) + mv(x*, [a”,n]) =V then
| 0"« p(@)
end

end
end
return b*

Lemma 13 characterizes all possible maximum votes matchings in terms of the two if
conditions used in Algorithm 2. Next we use Lemma 13 to prove Lemma 14, which is our
main correctness lemma. It implies that to find the leftmost agent a’s most preferred object
b* such that 3’ € MVM(x, [@’,n]) : p/(a) = b*, we can iterate through all objects that
satisfy the two if conditions and find the best one for agent a.

» Lemma 13. Let x = (F,u) denote an configuration, let [a,n] denote the set of agents in
X, and let a’ denote an agent in [a,n]. Let T denote a matching in reach(x). Let b = 7(a),
and @’ = max(u~t(b) + 1,a’). Then, the matching T belongs to MVM(x, [a’,n]) if and only
if the following two conditions hold:
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(1) rational(k(u=1(b),a));
(2) votes(p/, u, [@',a” —1]) + mv(x'[a + 1,n],[a”,n]) = mv(x, [@',n]), where ' is obtained
from applying k(=1 (b),a) to p and x' = (F,1/).

» Lemma 14. Algorithm 2 with an input x on agents [a,n] and an agent a’ in [a,n] returns
the most preferred object b* of agent a’s such that there exists a matching ' in MVM(x, [a’, n])
with u'(a) = b*.

Proof. It straightforward to verify that the returned b* satisfies two conditions (1) and (2) in
Lemma 13. Therefore, Lemma 13 implies that there exists a matching ' in MVM(x, [@/,n])
with p/(a) = b*.

Then we prove that b* is the agent a’s most preferred object. Assume by contradiction
that there is another b is more most preferred to agent a than v* and 3’ € MVM(y, [@/, n]) :
'(a) = b. By Lemma 13, two conditions (1) and (2) in Lemma 13 holds and thus the
algorithm will return b instead, a contradiction. |

We now present Algorithm 3 that uses Algorithm 2 as a building block to find an MVPE
matching. In Algorithm 3, we maintain a partial matching 7;, which is a matching involving
only agents in [1,¢]. At the ith iteration, we invoke the BOLA subroutine to find the agent
©’s most preferred object b* that satisfies the condition in Lemma 14. Then we apply x(b*, )
to assign object b* to agent 7 and remove agent ¢ from the configuration afterwards.

Let P(i) denote the predicate: there exists v in MVM(x, [1,n]) such that 7; is a subset
of v. Algorithm 3 maintains the invariant: P(i) holds for all 7 in [n]. This invariant ensures
that the final matching 7, returned by Algorithm 3 is a matching in MVM(x, [1, n]). The
serial dictatorship mechanism ensures that 7, is also a Pareto-efficient matching.

Algorithm 3 MVPEM(x).

Input: A configuration x = (F, u)

Output: An MVPE matching of x

H1,a1, X1, To 4= s 1,0

for i+ 1tondo

/* i is the index of an agent */

bi <— BOLA(XZ,az)

aj « p; " (b)

ai+1 < max(a, +1,a;)

u' < the matching that results from applying x(al,4) to p;
/* Assign b; to agent i and truncate it from y */
Tis Wit 15 Xi+1 4 Tim1 + (4,05), [0 + 1, 0], (F, pig1)
end

return 7,

» Theorem 15. The matching T,, returned by Algorithm 3 is an MVPE matching.

4  Star Network

In this section, we consider the case when the social network is a star. Our results are
twofold. We first present a polynomial-time algorithm for finding an MVPE matching in a
star network when preferences are strict. We then show that finding an MVPE matching in
a star network with weak preferences is NP-hard.
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For the case of strict preferences, we present a simple polynomial-time algorithm for
finding an MVPE matching. The main idea of the algorithm is to use the fact that any swap
involves a center agent and a non-center agent to reduce the MVPE problem to the problem
of finding a longest path in a directed acyclic graph.

» Theorem 16. There is a polynomial-time algorithm finding an MVPE matching in a star
network with strict preferences.

Proof. Let O denote the center agent, and let [n] denote the set of leaf agents. Let p denote
the initial matching. Note that every swap in a star network always involves the center agent.
Moreover, notice that any leaf agent can change its object at most once in any valid sequence
of swaps. To see this, observe that once an object moves from the center to a leaf, it can
never return to the center. Thus, any sequence of swaps can be represented as an ordered
list of leaf agents. Let L = (i1, 12, ...,ix) denote such an list, where k belongs to [n]. Note
that p(i;) <o p(ij41) for all j in [k — 1], where O is the center agent.

We first show how to find a maximum votes matching, and then prove that any maximum
votes matching is also Pareto-efficient.

To find a maximum votes matching in star networks, it is equivalent to find a longest
ordered list of leaves corresponding to a sequence of swaps, since a leaf agent gets improved
if and only if it is included in the list. This problem reduces to the search of a longest path
in a directed acyclic graph G = ({O} U [n], E’). The edge set E’ contains a directed edge
from a to @’ if and only if agent a’ belongs to [n], u(a’) >0 p(a), and p(a) >4 p(a’). There
is a path from O to o’ in the digraph if and only if the center can get the initial endowment
of agent a’. It is straightforward to see that there exists a polynomial-time algorithm solving
this longest path problem in G.

Next we prove that any maximum votes matching v is Pareto-efficient. Assume for the
sake of contradiction that reachable matching v/ Pareto-dominates v. Consider the ordered
lists of agents L and L’ corresponding to the sequences of swaps for reaching v and v/,
respectively. Since v/ Pareto-dominates v, any agent in L that gets a better allocation in v
also gets a better allocation in v/, i.e., belongs to L’. Furthermore, since v is a maximum
votes matching, the ordered list L is the longest ordered list of agents. Therefore, the list
L’ is contained in L. (Otherwise, L' contains all agents in L and is longer than L, which
contradicts the assumption that L is the longest ordered list of agents.) That is, L’ has the
same agents as in L, and hence L' = L as all agents in the ordered lists are sorted by the
preferences of center agent O. Therefore, we have v/ = v, a contradiction. <

4.1 Weak Preference

IN this section, we show that finding an MVPE matching is NP-hard in a star network with
weak preferences. We first introduce the notion of a center object sequence. For all sequences
of matchings IT = py, . . ., pg, we define the corresponding center object sequence 7 as the list
of objects owned by the center agent O, i.e., m = [9(O), ..., ur(O)]. We use 7[i] to denote
1;(0), and for any object b, we use m(b) to denote the index of first occurrence of b in m,
and 7(b) = —1 if b does not belong to 7. We have the following observations for the center
object sequence.

» Observation 17. Let X be a non-center agent with initial endowment x such that x belongs
tow. Then, wir(z) — 1] >x =.

Notice that «[m(z) — 1] is the object used by center agent O to swap z from agent X.
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» Observation 18. Let X be an agent with initial object x. Then, agent X is improved by 11
if and only if x belongs to m.

We now establish NP-hardness by proving that it is NP-hard to find a maximum votes
matching.

Construction. We use a reduction from the 3-SAT. In an instance of 3-SAT, we are given a
propositional formula ¢ that is the conjunction of m clauses C1,...,C,,. Each clause C; is
the disjunction of three literals, where each literal is either a variable or the negation of a
variable. The set of variables is x1, ..., z,. Given a formula ¢, we construct a corresponding
star configuration x4 = (F, 1) with 3n 4+ 3m + 1 agents such that for any 3-SAT formula ¢
with n variables and m clauses, ¢ is satisfiable if and only if x4 has largest voting number
2n 4+ 3m.

We begin by creating the set of agents A. For each variable index 7, there are three agents
in A: 8,15, F;. For each clause C; =10 Ul; 1 Ul; 2, there are three agents Pj g, Pj1,Pj2 in
A. There is also a center agent O. Thus there are a total of 3m + 3n + 1 agents in A.

For each agent in A, we use the corresponding lower case letter to denote its initial
object. For example, agent P; » initially holds object p; 2. For agents T; and F; in a variable
gadget with ¢ € [n], their initial objects are ¢; and f;, representing whether the corresponding
variable z; is true or false. Furthermore, for each literal [;; of variable z,,, we associate

instance an object a; ; defined as follows. If I, = x4, then a; i = ty; otherwise, a;r = fu.

For example, if [, = 15, then a;j, = t15, and if I, = Z7, then a;, = f7.

For agent preferences, we only consider the objects that each agent prefers at least as its
initial object; other objects can be put behind its initial endowment in any order. The center
agent O is indifferent to all objects. We use boxed objects to indicate the initial endowments,
and objects in a bracket are indifferent to an agent. For agents S;, T;, F;, their preferences

from most preferred to least preferred are S; : (¢, f;), (0,), T : si,, E; : si,. For
each k in {0,1,2}, P :pj’k,l,aj7k7, where p; _1 = p; 2.
We now present some properties of our gadgets.

» Lemma 19. Let S;,T;, F; be the three agents in the variable gadget corresponding to a
variable x;, I = pg, ..., ur be a sequence of matchings, and ® denote the corresponding
center object sequence of II. Then at most two agents in {S;, T;, F;} are improved by I1. If
exactly two agents of {S;, T;, F;} are improved, then exactly one of {t;, fi} belongs to .

Proof. Notice that if agent T; or F; is improved, then either T; or F; gets object s; by the
preferences of T; and F;. However, in a matching, s; can be matched to one agent. Therefore,
IT cannot improve T; and F;. That is, at most two agents in {S;, T}, F;} are improved by
II. If exactly two agents of {S;, T;, F;} get improved, then exactly one agent in {7}, F;} is
improved, and hence exactly one of {¢;, f;} belongs to = by Observation 18. |

» Lemma 20. Let C; = ljoUl;1 Ul denote a clause. For each k in {0,1,2}, let P
denote the agent corresponding to literal l; ., let p; . denote the initial object of Pj, and let
ajr i {t;, fi | i € [n]} denote the object associated with literal l; . Let II = po, ..., u, be a
sequence of matchings, and m denote the corresponding center object sequence of I1. If none
of aj0,a;j1,a;2 15 in w, then none of p;o,pj1,Dj2 IS 7.

Proof. We prove the contrapositive. Assume that there is an object in {p;o,pj1,pj2} that

belongs to m. Let p; ;, denote the object with minimum = (p; ) where k belongs to {0,1,2}.

By Observation 17, w[(p; ) — 1] >p, , pjr. By the preferences of Pjy, m[m(p; ) — 1] belongs

71:13

MFCS 2021



71:14

Maximum Votes Pareto-Efficient Allocations via Swaps on a Social Network

to {a;k,pjk—1} with p; _1 = pj2. Moreover, by the assumption p;; is the object with
minimum 7(p; ), 7[7(p; ) — 1] does not belong to {p;.0,p;1,p;2}. Therefore, m[m(p; i) — 1]
is a; 1, and hence 7 contains object a; 1. <

Using the above properties of our gadgets, it is not hard to verify the correctness of our
reduction. Formally, we prove following two lemmas, one for each reduction direction.

» Lemma 21. If mv(xy) = 2n + 3m, then ¢ is satisfiable.

Proof. By Lemma 19, there are at least n agents that are not improved. Moreover, the
center agent O initially holds one of most preferred objects, and hence cannot be improved.
Therefore, there are at most 2n + 3m agents that are improved. If x4 achieves the largest
voting number 2n + 3m, then there are exactly two agents that are improved in each variable
gadget and all three agents that are improved in each clause gadget.

By Lemma 19, for all ¢ in [n], there is exactly one object in {¢;, f;} in 7. If ¢; is in
m, then let variable z; be true, otherwise let z; be false. Therefore, we get an assignment
Ax from 7. We then show that A is a satisfiable assignment, i.e., each clause C; in ¢
is true with respect to assignment A,. For the sake of contradiction, assume that there
exists a clause C; that is false. Hence, all of the literals 50,1, 1,/;2 in C; are false under
assignment Ay. Let ajo,a;1,a;2 € {ti, fi | i € [n]} be the objects associated with literals
Li 0,051,152, respectively. We deduce that none of a;,a;1,a;2 is in 7. By Lemma 20, 7
does not contain {p; 0, p;1,pj2}. That is, agents P o, Pj1,P; 2 is not improved by 7 due to
Observation 18. |

» Lemma 22. If there is a satisfiable assignment for ¢, then mv(xe) = 2n + 3m.

Proof. Let A4 be a satisfiable assignment for ¢. For each i in [n], if ; is true in assignment
Ay, then let b; denote object ¢;; otherwise, let b; denote object f;.
Now we show how to obtain a sequence of swaps according to objects (b1,...,b,). Let
C denote a temporary set, which is initialized to be the set of all clauses {C1,Cs,...,Cp}.
For each i in [n], let B; denote the initial owner of b;, i.e., B; = T; if b; = t; and B; = F;
otherwise. We construct the sequence of swaps as follows. For each object b;, we do the
following swaps:
1. Perform two swaps (O, S;), (O, B;) to let center agent O get b; and S; get object o.
2. If there are a clause C; in C and a literal [; ; in C; such that object b; is the associated
object a; 1, then we preform the following steps:
Perform these swaps in sequence: (O, P; k), (O, Pj ke1), (O, Pj ra2), (O, Pj ), where &
denotes the addition module 3. Remark that by doing so, agent P;; gets its most
preferred object for all k in {0,1,2} and center agent O still holds b;.
Remove the clause C; from C.
3. In the end, perform the swap (O, S;). Remark: After this swap, agent O gets object o
and S; get one of its most preferred object b;. We then proceed to consider object b;1.

We now show that the sequence of swaps constructed above improves 2n + 3m agents. First of
all, by applying the above sequence of swaps, for all 7 in [n], agent .S; is matched to object b;
and agent B; is matched to object s;. Thus, the above sequence of swaps improves 2n agents
in variable gadgets. Then, we consider agents in clause gadgets. Since Ay is a satisfiable
assignment for ¢, for all clause C there exists some literal [; ;, of variable x; such that I; ;, is
true under assignment Ay. Therefore, by the definition of object a; ;, we deduce that a; j, is
b;. Thus, all agents associated with clause C; are improved. That is, the above sequence of
swaps improves all agents in clause gadgets. There are 3m agents in clause gadgets. To sum
up, there are 2n 4+ 3m agents that are improved in total. <

» Theorem 23. Finding an MVPE matching on stars with weak preferences is NP-hard.
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5 Tree Network

» Theorem 24. Finding an MVPE matching on trees with strict preferences is NP-hard.

We establish Theorem 24 by proving that it is NP-hard to find a maximum votes matching.
The latter result is obtained via a reduction to reachable object problem on trees, which was
shown to be NP-complete by Gourves et al. [13].

6 Conclusion

To refine Pareto-efficiency, we study the complexity of finding a maximum votes Pareto-
efficient matching when a group of agents exchange their objects along a social network.
By presenting two polynomial-time algorithms and two NP-hardness results, we shed light
on the frontiers between tractable and intractable cases in terms of the structures of the
social network and whether ties in preference are allowed. A challenging open question is to
completely characterize the social network structures for which case the MVPE problem is
polynomial-time solvable.
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