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Abstract
We initiate the study of effective pointwise ergodic theorems in resource-bounded settings. Classically,
the convergence of the ergodic averages for integrable functions can be arbitrarily slow [14]. In
contrast, we show that for a class of PSPACE L1 functions, and a class of PSPACE computable
measure-preserving ergodic transformations, the ergodic average exists and is equal to the space
average on every EXP random. We establish a partial converse that PSPACE non-randomness can
be characterized as non-convergence of ergodic averages. Further, we prove that there is a class
of resource-bounded randoms, viz. SUBEXP-space randoms, on which the corresponding ergodic
theorem has an exact converse - a point x is SUBEXP-space random if and only if the corresponding
effective ergodic theorem holds for x.
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1 Introduction

In Kolmogorov’s program to found information theory on the theory of algorithms, we
investigate whether individual “random” objects obey probabilistic laws, i.e., properties
which hold in sample spaces with probability 1. Indeed, a vast and growing literature
establishes that every Martin-Löf random sequence (see for example, [4] or [19]) obeys the
Strong Law of Large Numbers [24], the Law of Iterated Logarithm [25], and surprisingly,
the Birkhoff Ergodic Theorem [26, 17, 10, 1] and the Shannon-McMillan-Breiman theorem
[8, 9, 21]. In effective settings, the theorem for Martin-Löf random points implies the classical
theorem since the set of Martin-Löf randoms has Lebesgue measure 1, and hence is stronger.

In this work, we initiate the study of ergodic theorems in resource-bounded settings. This
is a difficult problem, since classically, the convergence speed in ergodic theorems is known to
be arbitrarily slow (e.g. see Bishop [3], Krengel [14], and V’yugin [26]). However, we establish
ergodic theorems in resource-bounded settings which hold on every resource-bounded random
object of a particular class. The main technical hurdle we overcome is the lack of sharp tail
bounds. The only general tail bound in ergodic settings is the maximal ergodic inequality.
This yields only an inverse linear bound in the error bound, in contrast to the inverse
exponential bounds in the Chernoff and the Azuma-Hoeffding inequalities.
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80:2 Ergodic Theorems and Converses for PSPACE Functions

We first establish an unconditional result. – For the entire class of PSPACE L1 functions
on Bernoulli systems, the ergodic average exists and is equal to the space average on all
EXP randoms. We utilize a non-trivial connection with the theory of uniform distribution of
sequences modulo 1 [15, 16, 20, 18] to prove this result.

In the general case, rapid L1 convergence of subsequences of ergodic averages suffices
to establish the same consequence that the ergodic average exists and is equal to the
space average on all EXP randoms. In general, such assumptions are unavoidable since
an adaptation of V’yugin’s counterexample [26] shows that there are PSPACE computable
ergodic Markov systems where the convergence rate to the ergodic average is not even
computable.

Conversely, we ask whether we can characterize non-randomness using the failure of the
PSPACE ergodic theorem. Franklin and Towsner [5] show that for every non-Martin-Löf
random x, there is an effective ergodic system where the ergodic average at x does not
converge to the space average. We first show that our PSPACE effective ergodic theorem
admits a partial converse of this form. PSPACE non-randoms can be characterized as points
where the PSPACE ergodic theorem fails.

We know that the set of EXP randoms is a subset of the set of PSPACE randoms. Since
the forward direction holds on the smaller set of randoms, it is important to know whether
there is a class of resource-bounded randoms on which an effective ergodic theorem holds
with an exact converse. We show that the class of SUBEXP-space randoms is one such. We
summarize our results in Table 1.

The proofs of these results are adapted from the techniques of Rute [21], Ko [13], Galatolo,
Hoyrup & Rojas [7, 11], and Huang & Stull [12].1 Our proofs involve several new quantitative
estimates, which may of general interest.

Table 1 Summary of the results involving PSPACE/SUBEXP-space systems.

Class of functions Convergence of ergodic averages (Theorems)
∀f(Af

n →
∫

fdµ) ∃f(Af
n ̸→

∫
fdµ)

PSPACE L1 EXP randoms (6.2) PSPACE nonrandoms (7.1)
SUBEXP-space L1 SUBEXP-space randoms (8.11) SUBEXP-space nonrandoms (8.12)

2 Preliminaries

Let Σ = {0, 1} be the binary alphabet. Denote the set of all finite binary strings by Σ∗

and the set of infinite binary strings by Σ∞. For σ ∈ Σ∗ and y ∈ Σ∗ ∪ Σ∞, we write
σ ⊑ y if σ is a prefix of y. For any infinite string y and any finite string σ, σ[n] and y[n]
denotes the character at the nth position in y and σ respectively. For any infinite string y

and any finite string σ, σ[n, m] and y[n, m] represents the strings σ[n]σ[n + 1] . . . σ[m] and
y[n]y[n + 1] . . . y[m] respectively. We denote finite strings using small Greek letters like σ, α

etc. The length of a finite binary string σ is denoted by |σ|.

1 There are alternative approaches to the proof in Martin-Löf settings, like that of V’yugin [26]. However,
the tool he uses for establishing the result is a lower semicomputable test defined on infinite sequences -
this is difficult to adapt to resource-bounded settings requiring the output value within bounded time
or space. Moreover, the functions in V’yugin’s approach are continuous. We consider the larger class of
L1 functions, which can be discontinuous in general.
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For σ ∈ Σ∗, the cylinder [σ] is the set of all infinite sequences with σ as a prefix. χσ

denotes the characteristic function of [σ]. For any set of strings S ⊆ Σ∗, [S] is the union
of [σ] over all σ ∈ S. Extending the notation, χS denotes the characteristic function of [S].
The Borel σ-algebra generated by the set of all cylinders is denoted by B(Σ∞).

Unless specified otherwise, any n ∈ N is represented in the binary alphabet. As is typical
in resource-bounded settings, some integer parameters are represented in unary. The set of
unary strings is represented as 1∗, and the representation of n ∈ N in unary is 1n, a string
consisting of n ones. For any n1, n2 ∈ N, [n1, n2] represents the set {n ∈ N : n1 ≤ n ≤ n2}.

Throughout the paper we take into account the number of cells used in the output tape
and the working tape when calculating the space complexity of functions. We assume a finite
representation for the set of rational numbers Q satisfying the following: there exists a c ∈ N
such that if r ∈ Q has a representation of length l then r ≤ 2lc . Following the works of
Hoyrup, and Rojas [11], we introduce the notion of a PSPACE-probability Cantor space by
endowing the Cantor space with a PSPACE-computable probability measure.

▶ Definition 2.1. Consider the Cantor space (Σ∞, B(Σ∞)). A Borel probability measure
µ : B(Σ∞) → [0, 1], is a PSPACE-probability measure if there is a PSPACE machine M :
Σ∗ × 1∗ → Q such that for every σ ∈ Σ∗, and n ∈ N, we have that |M(σ, 1n) − µ([σ])| ≤ 2−n.

In order to define PSPACE (EXP) randomness using PSPACE (EXP) tests we require
the following method for approximating sequences of open sets in Σ∞ in polynomial space
(exponential time).

▶ Definition 2.2 (PSPACE/EXP sequence of open sets [12]). A sequence of open sets
⟨Un⟩∞

n=1 is a PSPACE sequence of open sets if there exists a sequence of sets
〈
Sk

n

〉
k,n∈N,

where Sk
n ⊆ Σ∗ such that

1. Un = ∪∞
k=1[Sk

n], where for any m > 0, µ
(
Un − ∪m

k=1[Sk
n]
)

≤ 2−m.
2. There exists a controlling polynomial p such that max{|σ| : σ ∈ ∪m

k=1Sk
n)} ≤ p(n + m).

3. The function g : Σ∗ × 1∗ × 1∗ → {0, 1} such that g(σ, 1n, 1m) = 1 if σ ∈ Sm
n , and 0

otherwise, is decidable by a PSPACE machine.
The definition of EXP sequence of open sets is similar but the bound in condition 2 is replaced
with 2p(n+m) and the machine in condition 3 is an EXP-time machine.

Henceforth, we study the notion of resource bounded randomness on (Σ∞, µ).

▶ Definition 2.3 (PSPACE/EXP randomness [23]). A sequence of open sets ⟨Un⟩∞
n=1 is a

PSPACE test if it is a PSPACE sequence of open sets and for all n ∈ N, µ(Un) ≤ 2−n.
A set A ⊆ Σ∞ is PSPACE null or PSPACE non-random if there is a PSPACE test

⟨Un⟩∞
n=1 such that A ⊆ ∩∞

n=1Un, and is PSPACE random otherwise. The EXP analogues of
the above concepts are defined similarly except that ⟨Un⟩∞

n=1 is an EXP sequence of open sets.

By considering the sequence
〈
∪k

i=1Si
n

〉
k,n∈N instead of

〈
Sk

n

〉
k,n∈N, without loss of general-

ity, we can assume that for each n,
〈
Sk

n

〉∞
k=1 is an increasing sequence of sets. Since every

PSPACE test is an EXP test, every EXP random is PSPACE random.
In order to establish our ergodic theorem, it is convenient to define a PSPACE version of

Solovay tests, where the relaxation is that the measures of the sets Un can be any sufficiently
fast convergent sequence. We later show that this captures the same set of randoms as
PSPACE tests.

MFCS 2021
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▶ Definition 2.4 (PSPACE Solovay test). A sequence of open sets ⟨Un⟩∞
n=1 is a PSPACE

Solovay test if it is a PSPACE sequence of open sets and there is a polynomial p such that∑∞
n=p(m)+1 µ(Un) ≤ 2−m for all m ∈ N \ {0} 2. A set A ⊆ Σ∞ is PSPACE Solovay null

or PSPACE Solovay non-random if there exists a PSPACE Solovay test ⟨Un⟩∞
n=1 such that

A ⊆ ∩∞
i=1 ∪∞

n=i Un, and is PSPACE Solovay random otherwise.

▶ Theorem 2.5. A set A ⊆ Σ∞ is PSPACE null if and only if A is PSPACE Solovay null.

The set of PSPACE Solovay randoms and PSPACE randoms are equal, hence to prove
PSPACE randomness results, it suffices to form Solovay tests.

3 PSPACE L1 computability

The resource-bounded ergodic theorems in our work hold for PSPACE-L1 functions, the
PSPACE analogue of integrable functions. In this section, we briefly recall standard defini-
tions for PSPACE computable L1 functions and measure-preserving transformations. The
justifications and proofs of equivalences of various notions are present in Stull’s thesis [22]
and [23]. We initially define PSPACE sequence of simple functions, and define PSPACE
integrable functions based on approximations using these functions.

▶ Definition 3.1 (PSPACE sequence of simple functions [23]). A sequence of simple functions
⟨fn⟩∞

n=1, where each fn : Σ∞ → Q, is a PSPACE sequence of simple functions if
1. There is a controlling polynomial p such that for each n, there exists k(n) ∈ N,

{d1, d2, . . . , dk(n)} ⊆ Q and {σ1, σ2, . . . , σk(n)} ⊆ Σp(n) satisfying fn =
∑k(n)

i=1 diχσi
.

2. There is a PSPACE machine M such that for each n ∈ N, and σ ∈ Σ∗, M(1n, σ) outputs
fn(σ0∞) if |σ| ≥ p(n) and ? otherwise.

Note that since M is a PSPACE machine, {d1, d2 . . . dk(n)} is a set of PSPACE repre-
sentable numbers. Now, we define PSPACE L1-computable functions in terms of limits of
convergent PSPACE sequence of simple functions.

▶ Definition 3.2 (PSPACE L1-computable functions [23]). A function f ∈ L1(Σ∞, µ) is
PSPACE L1-computable if there exists a PSPACE sequence of simple functions ⟨fn⟩∞

n=1
such that for every n ∈ N, ∥f − fn∥ ≤ 2−n. The sequence ⟨fn⟩∞

n=1 is called a PSPACE
L1-approximation of f .

A sequence of L1 functions ⟨fn⟩∞
n=1 converging to f in the L1-norm need not have

pointwise limits. Hence the following concept ([21]) is important in studying the pointwise
ergodic theorem in the setting of L1-computability

▶ Definition 3.3 (f̃ for PSPACE L1-computable f). Let f ∈ L1(Σ∞, µ) be PSPACE L1-
computable and with a PSPACE L1 approximation ⟨fn⟩∞

n=1. Define f̃ : Σ∞ → R∪{undefined}
by f̃(x) = limn→∞ fn(x) if this limit exists, and is undefined otherwise.3

To define ergodic averages, we restrict ourselves to the following class of transformations.

2 This implies that
∞∑

n=1
µ(Un) < ∞.

3 The definition of f̃ is dependent on the choice of the approximating sequence ⟨fn⟩∞
n=1. However, due to

Lemma 4.3, we use f̃ in a sequence independent manner.
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▶ Definition 3.4 (PSPACE simple transformation). A measurable function T : (Σ∞, µ) →
(Σ∞, µ) is a PSPACE simple transformation if there is a controlling constant c and a
PSPACE machine M such that such that for any σ ∈ Σ∗, T −1([σ]) = ∪k(σ)

i=1 [σi] where the
following properties hold.
1. {σi}k(σ)

i=1 is a prefix free set and for all 1 ≤ i ≤ k(σ), |σi| ≤ |σ| + c

2. For each σ, α ∈ Σ∗,

M(σ, α) =


1 if |α| ≥ |σ| + c and α0∞ ∈ T −1([σ])
0 if |α| ≥ |σ| + c and α0∞ ̸∈ T −1([σ])
? otherwise

PSPACE computability as defined above, relates naturally to convergence of L1 norms.
But the pointwise ergodic theorem deals with almost everywhere convergence, and its resource-
bounded versions deal with convergence on every random point. We introduce the modes of
convergence we deal with in the present work.

▶ Definition 3.5 (PSPACE-rapid limit point). A real number a is a PSPACE-rapid limit
point of the real number sequence ⟨an⟩∞

n=1 if there exists a polynomial p such that for all
m ∈ N, ∃k ≤ 2p(m) such that |ak − a| ≤ 2−m.

Note that this requires rapid convergence only on a subsequence, which may not be a
computable subsequence of the full sequence. The following definition is the L1 version of
the above.

▶ Definition 3.6 (PSPACE-rapid L1-limit point). A function f ∈ L1(Σ∞, µ) is a PSPACE-
rapid L1-limit point of a sequence ⟨fn⟩∞

n=1 of functions in L1(Σ∞, µ) if 0 is a PSPACE-rapid
limit point of ∥fn − f∥1.

Now we define PSPACE analogue of almost everywhere convergence ([21]).

▶ Definition 3.7 (PSPACE-rapid almost everywhere convergence). A sequence of measurable
functions ⟨fn⟩∞

n=1 is PSPACE-rapid almost everywhere convergent to a measurable function
f if there exists a polynomial p such that for all m1 and m2,

µ

({
x : sup

n≥2p(m1+m2)
|fn(x) − f(x)| ≥ 2−m1

})
≤ 2−m2 .

Notation. Let Af,T
n = f+f◦T +f◦T 2+...f◦T n−1

n denote the nth Birkhoff average for any func-
tion f and transformation T . We prove the ergodic theorem in measure preserving systems
where

∫
fdµ is a PSPACE-rapid L1-limit point of Af,T

n . In the rest of the paper we denote
Af,T

n simply by Af
n. The transformation T involved in the Birkhoff sum is implicit.

PSPACE rapidity of Af
n is a stronger version of ln2-ergodicity introduced in [6].

▶ Lemma 3.8. Let T : Σ∞ → Σ∞ be any measurable transformation and f ∈ L∞(Σ∞, µ).∫
fdµ is a PSPACE-rapid L1-limit point of Af

n if and only if there exists c > 0 and k ∈ N
such that for all n > 0,∣∣∣∣∣ 1n

n−1∑
i=0

∫
f ◦ T i.f −

(∫
f

)2
dµ

∣∣∣∣∣ ≤ c

2(ln n)
1
k

.

MFCS 2021
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4 PSPACE-rapid almost everywhere convergence of ergodic averages

We present PSPACE versions of Theorem 2 and Proposition 5 from [7], relating the L1

convergence of Af
n to

∫
f to its almost everywhere convergence. The main estimate which

we require in this section is the maximal ergodic inequality, which we now recall.

▶ Lemma 4.1 (Maximal ergodic inequality [2]). If f ∈ L1(Σ∞, µ) and δ > 0 then
µ
({

x : supn≥1 |Af
n(x)| > δ

})
≤ (∥f∥1)δ−1.

Using this lemma, we now prove the almost everywhere convergence of ergodic averages.

▶ Theorem 4.2. Let f be any function in L1(Σ∞, µ) and let T be a measure preserving
transformation. If

∫
fdµ is a PSPACE-rapid L1-limit point of Af

n then Af
n is PSPACE-rapid

almost everywhere convergent to
∫

fdµ.

If f ∈ L∞, the converse of Theorem 4.2 can be easily obtained by expanding ∥Af
n−
∫

fdµ∥1.
Now, we prove some auxiliary results that are useful in the proof of the PSPACE ergodic

theorem. The following fact was shown in [12]. However, for our ergodic theorem we require
an alternate proof of this fact using techniques from [21].

▶ Lemma 4.3. Let ⟨fn⟩∞
n=1, ⟨gn⟩∞

n=1 be PSPACE sequence of simple functions which con-
verges PSPACE-rapid almost everywhere to f ∈ L1(Σ∞, µ). Then, for all EXP random x,
limn→∞ fn(x) and limn→∞ gn(x) exist, and are equal.

The following immediately follows from the above lemma.

▶ Corollary 4.4. Let f ∈ L1(Σ∞, µ) be a PSPACE L1-computable function with L1 approx-
imating PSPACE sequences of simple functions ⟨fn⟩∞

n=1 and ⟨gn⟩∞
n=1. Then, for all EXP

random x limn→∞ fn(x) and limn→∞ gn(x) exist, and are equal.

The following properties satisfied by PSPACE simple transformations and PSPACE
L1-computable functions are useful in our proof of the PSPACE ergodic theorem.

▶ Lemma 4.5. Let f be a PSPACE L1-computable function over the Bernoulli space. Let
If : Σ∞ → Σ∞ be the constant function taking the value

∫
fdµ over all x ∈ Σ∞. Then, If is

PSPACE L1-computable and Ĩf (x) =
∫

fdµ for all EXP random x.

▶ Lemma 4.6. Let f be a PSPACE L1-computable function with an L1 approximating
PSPACE sequence of simple functions ⟨fn⟩∞

n=1. Let T be a PSPACE simple transformation
and p be a polynomial. Then,

〈
A

fp(n)
n

〉∞

n=1
is a PSPACE sequence of simple functions.

5 Unconditional PSPACE ergodic theorem for the Bernoulli space

We now prove an unconditional version of our main result, namely, that for PSPACE L1

computable functions, the ergodic average exists, and is equal to the space average, on
every EXP random in the canonical setting of the Bernoulli space. We utilize the almost
everywhere convergence results proved in the previous section, to prove the convergence on
every PSPACE/EXP random. We first show that in the Bernoulli space, every PSPACE
L1 function exhibits PSPACE rapidity of Af

n. The proof of this theorem is a non-trivial
application of techniques from uniform distribution of sequences modulo 1 [15, 20, 16, 18].
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▶ Theorem 5.1. Let f ∈ L1(Σ∞, B(Σ∞), µ) where µ is the Bernoulli measure µ(σ) = 1
2|σ|

and let T be the left shift transformation. If f is PSPACE L1-computable, then there exists a
polynomial q satisfying the following: given any m ∈ N, for all n ≥ 2q(m), ∥Af

n −
∫

fdµ∥1 ≤
2−m.

An equivalent statement is the following: The left-shift transformation on the Bernoulli
probability measure is PSPACE ergodic4. Theorem 5.1 gives an explicit bound on the
speed of convergence in the L1 ergodic theorem for an interesting class of functions over
the Bernoulli space. Such bounds do not exist in general for the L1 ergodic theorem as
demonstrated by Krengel in [14].

The above theorem can be obtained from the following assertion regarding PSPACE-rapid
convergence of characteristic functions of long enough cylinders.

▶ Lemma 5.2. Let T be the left shift transformation T : (Σ∞, B(Σ∞), µ) → (Σ∞, B(Σ∞), µ)
where µ is the Bernoulli measure µ(σ) = 2−|σ|. There exist polynomials q1, q2 such that for
any m ∈ N and σ ∈ Σ∗ with |σ| ≥ q1(m) we get ∥Aχσ

n − µ(σ)∥1 ≤ 2−m for all n ≥ |σ|32q2(m).

Proof sketch. The major difficulty in directly approximating ∥Aχσ
n − µ(σ)∥1 is that for

any n, m ∈ N, Aχσ
n and Aχσ

m may not be independent. In order to overcome this, we use
constructions similar to those used in proving Pillai’s theorem (see [20], [16] for normal
numbers, [18] for continued fractions) in order to approximate each Aχσ

n with sums of disjoint
averages as follows.

Aχσ
n (x) =

⌊ n
k ⌋∑

i=1
X1,1

i (x)

n
+

⌊log2( n
k )⌋∑

p=2

k−1∑
j=1

⌊ n

2p−1k
⌋∑

i=1
Xp,j

i

n
+ (k − 1).O(log n)

n
, where

X1,1
i (x) =

{
1 if x[ik + 1, (i + 1)k] = σ

0 otherwise,
and

Xp,j
i (x) =

{
1 if x[2p−2k − j + 1, 2p−2k − j + k] = σ

0 otherwise

The first two terms on the right of the equation turns out to be averages of independent
Bernoulli random variables. Hence, elementary results from probability theory regarding
independent Bernoulli random variables can be used to show that Aχσ

n converges to
∫

fdµ

sufficiently fast. ◀

We remark that since Lemma 5.2 is true with the L1-norm replaced by the L2-norm,
Theorem 5.1 is also true in the L2 setting. i.e, if a function f is PSPACE L2-computable
(replacing L1 norms with L2 norms in definition 3.2) then there exists a polynomial q

satisfying the following: given any m ∈ N, for all n ≥ 2q(m), ∥Af
n −

∫
fdµ∥2 ≤ 2−m. Hence,

for PSPACE L2-computable functions and the left shift transformation T , we get bounds on
the convergence speed in the von-Neumann’s ergodic theorem.

It is easy to verify that if T is a PSPACE simple transformation then for any n ≥ 2, T n

is also a PSPACE simple transformation. We need the following stronger assertion in the
proof of the ergodic theorem.

4 Equivalently, there exists a constant c such that for all n > 0, ∥Af
n −
∫

fdµ∥1 ≤ 2−⌊log(n)
1
c ⌋.

MFCS 2021
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▶ Lemma 5.3. Let T : (Σ∞, µ) → (Σ∞, µ) be a PSPACE simple transformation with
controlling constant c. There exists a PSPACE machine N such that for each n ∈ N and
σ, α ∈ Σ∗,

N(1n, σ, α) =


1 if |α| ≥ |σ| + cn and α0∞ ∈ T −n([σ])
0 if |α| ≥ |σ| + cn and α0∞ ̸∈ T −n([σ])
? otherwise

Proof of Lemma 5.3. Let M be the machine witnessing the fact that T is a PSPACE simple
transformation with the polynomial space complexity bound p(n). Let the machine N do
the following on input (1n, σ, α):
1. If α < |σ| + cn, then output ?.
2. If n = 1 then, run M(σ, α) and output the result of this simulation.
3. Else:

a. For all strings α′ of length |σ| + c(n − 1) do the following:
i. If N(1n−1, σ, α′) = 1 then, output 1 if M(α′, α) = 1.

4. If no output is produced in the above steps, output 0.

When n = 1, N uses at most p(|σ|+ |α|+cn)+O(1) space. Inductively, assume that for n = k,
N uses at most (2k −1)p(|σ|+ |α|+cn)+O(1) space. For n = k +1, the storage of α′ and the
two simulations inside step 3a can be done in 2p(|σ|+|α|+cn)+(2k−1)p(|σ|+|α|+cn)+O(1) =
(2(k + 1) − 1)p(|σ| + |α| + cn) + O(1) space. Hence, N is a PSPACE machine. ◀

Now, we prove the unconditional ergodic theorem for PSPACE L1 functions over the
Bernoulli space. The proof involves adaptations of techniques from Rute [21], together with
new quantitative bounds which yield the result within prescribed resource bounds.

▶ Theorem 5.4. Let T be the left shift transformation T : (Σ∞, B(Σ∞), µ) → (Σ∞, B(Σ∞), µ)
where µ is the Bernoulli measure µ(σ) = 2−|σ|. Then, for any PSPACE L1-computable f ,
lim

n→∞
Ãf

n =
∫

fdµ on EXP randoms.

Proof of Theorem 5.4. Let ⟨fm⟩∞
m=1 be any PSPACE sequence of simple functions L1

approximating f . We initially approximate Af
n with a PSPACE sequence of simple functions

⟨gn⟩∞
n=1 which converges to

∫
fdµ on EXP randoms. Then we show that Ãf

n has the same
limit as gn on PSPACE randoms and hence on EXP randoms.

For each n, it is easy to verify that
〈
Afm

n

〉∞
m=1 is a PSPACE sequence of simple functions

L1 approximating Af
n with the same rate of convergence. Using techniques similar to those

in Lemma 4.3 and Corollary 4.4, we can obtain a polynomial p such that

µ

({
x : sup

m≥p(n+i)
|Afm

n (x) − A
fp(n+i)
n (x)| ≥ 1

2n+i+1

})
≤ 1

2n+i+1 .

For every n > 0, let gn = A
fp(n)
n . We initially show that ⟨gn⟩∞

n=1 converges to
∫

fdµ on EXP
randoms. Let m1, m2 ≥ 0. From Theorem 4.2, Af

n is PSPACE-rapid almost everywhere
convergent to

∫
fdµ. Hence there is a polynomial q such that

µ

({
x : sup

n≥2q(m1+m2)
|Af

n(x) −
∫

fdµ| ≥ 1
2m1+1

})
≤ 1

2m2+1 .
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Let N(m1, m2) = max{2m1, 2m2, 2q(m1+m2)}. Then,

∑
n≥N(m1,m2)

1
2k+1 = 1

2N(m1,m2) ≤ min
{

1
2m1+1 ,

1
2m2+1

}
.

Let

Gn =
{

x : sup
n≥N(m1,m2)

|gn −
∫

fdµ| >
1

2m1

}
.

Now, we have

µ (Gn) ≤
∑

n≥N(m1,m2)

µ

({
x : |gn − Af

n(x)| >
1

2m1+1

})

+ µ

({
x : sup

n≥2q(m1+m2)
|Af

n(x) −
∫

fdµ| ≥ 1
2m1+1

})

≤
∑

n≥N(m1,m2)

1
2n+1 + 1

2m2+1

≤ 1
2m2

.

Note that N(m1, m2) is bounded by 2(m1+m2)c for some c ∈ N. Hence, gn is PSPACE-
rapid almost everywhere convergent to

∫
fdµ. From Lemma 4.6 it follows that ⟨gn⟩∞

n=1 =〈
A

fp(n)
n

〉∞

n=1
is a PSPACE sequence of simple functions (in parameter n). Let If : Σ∞ → Σ∞

be the constant function taking the value
∫

fdµ over all x ∈ Σ∞. From the above observations
and Lemma 4.3 we get that lim

n→∞
gn(x) = Ĩf (x) for any x which is EXP random. From

Lemma 4.5, we get that lim
n→∞

gn(x) =
∫

fdµ for any x which is EXP random.

We now show that lim
n→∞

Ãf
n = lim

n→∞
gn on PSPACE randoms. Define

Un,i =
{

x : max
p(n+i)≤m≤p(n+i+1)

|Afm
n (x) − A

fp(n+i)
n (x)| ≥ 1

2n+i+1

}
.

We already know µ(Un,i) ≤ 1
2n+i+1 . Un,i can be shown to be polynomial space approximable

in parameters n and i in the following sense. There exists a sequence of sets of strings
⟨Sn,i⟩i,n∈N and polynomial p satisfying the following conditions:
1. Un,i = [Sn,i].
2. There exists a controlling polynomial r such that max{|σ| : σ ∈ Sn,i)} ≤ r(n + i).
3. The function g : Σ∗ × 1∗ × 1∗ → {0, 1} such that

g(σ, 1n, 1i) =
{

1 if σ ∈ Sn,i

0 otherwise,

is decidable by a PSPACE machine.
The above claims can be established by using techniques similar to those in Lemma 4.6 and
Lemma 4.3. We show the construction of a machine N computing the function g above. Let
Mf be a computing machine and let q be a controlling polynomial for ⟨fn⟩∞

n=1. Let c be a
controlling constant for T . Let M ′ be the machine from Lemma 5.3. Machine N on input
(σ, 1n, 1i) does the following:

MFCS 2021
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1. If |σ| > q(p(n + i + 1)) + cn, then output 0.
2. Compute A

fp(n+i)
n (σ0∞) as in Lemma 4.6 by using Mf and M ′ and store the result.

3. For each m ∈ [p(n + i), p(n + i + 1)] do the following:
a. Compute Afm

n (σ0∞) as in Lemma 4.6 by using Mf and M ′ and store the result.
b. Check if |Afm

n (σ0∞) − A
fp(n+i)
n (σ0∞)| ≥ 1

2n+i+1 . If so, output 1.
4. Output 0.

It can be easily verified that N is a PSPACE machine. r(n + i) = q(p(n + i + 1)) + cn is a
controlling polynomial for ⟨Un,i⟩n,i∈N. Define

Vm =
⋃

n,i≥0
n+i=m

Un,i.

Note that

µ(Vm) ≤ m

2m
.

It can be shown that for any j,∑
n>j

m

2m
= 1

2j−1 + j

2j
.

Given any k ≥ 0, let p(k) = 3(k + 1). Hence, we have
∞∑

n=p(k)+1

m

2m
= 1

23(k+1) + 3(k + 1)
23(k+1) <

1
2k+1 + 1

2k+1
3(k + 1)
22(k+1) <

2
2k+1 = 1

2k
.

The last inequality holds since 3(k + 1) < 22(k+1) for all k ≥ 0. Since each Vm is a finite
union of sets from ⟨Un,i⟩n,i∈N, the machine computing ⟨Un,i⟩n,i∈N can be easily modified
to construct a machine witnessing that ⟨Vm⟩∞

m=1 is a PSPACE approximable sequence of
sets. From these observations, it follows that ⟨Vm⟩∞

m=1 is a PSPACE Solovay test. Let x

be a PSPACE random. x is in at most finitely many Vm and hence in at most finitely
many Un,i. Hence for some large enough N for all n ≥ N , i ≥ 0 and for all m such that
p(n + i) ≤ m ≤ p(n + i + 1), we have |Afm

n (x) − A
fp(n+i)
n (x)| < 1

2n+i+1 . It follows that for all
n ≥ N and for all m ≥ p(n) that

|Afm
n (x) − gn(x)| = |Afm

n (x) − A
fp(n)
n (x)| ≤

∞∑
i=0

1
2n+i+1 ≤ 2−n.

Therefore, lim
n→∞

Ãf
n(x) = lim

n→∞
gn(x) on all PSPACE random x and hence on all x which is

EXP random.
Hence, we have shown that lim

n→∞
Ãf

n =
∫

fdµ on EXP randoms which completes the proof
of the theorem. ◀

6 General PSPACE ergodic theorem

We now extend Theorem 5.4 into the setting of PSPACE-probability Cantor spaces.
V’yugin [26] shows that the speed of a.e. convergence to ergodic averages in computable
ergodic systems is not computable in general. This leads us to consider some assumption
on the rapidity of convergence in resource-bounded settings. We show that the requirement
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on L1 rapidity of convergence of Af
n is sufficient to derive our result. Several probabilistic

laws like the Law of Large Numbers, Law of Iterated Logarithm satisfy this criterion, hence
the assumption is sufficiently general. Moreover, Theorem 5.1 shows that in the canoni-
cal example of Bernoulli systems with the left-shift, every PSPACE L1 function exhibits
PSPACE rapidity of Af

n, showing that the latter property is not artificial. We prove the
general PSPACE ergodic theorem for transformations which satisfy PSPACE ergodicity.

▶ Definition 6.1 (PSPACE ergodic transformations). A measurable function T : (Σ∞, µ) →
(Σ∞, µ) is PSPACE ergodic if T is a PSPACE simple measure preserving transformation
such that for any PSPACE L1-computable f ∈ L1(Σ∞, µ),

∫
fdµ is a PSPACE-rapid L1

limit point of Af
n.

Now, we prove the main result of our work.

▶ Theorem 6.2. Let (Σ∞, B(Σ∞), µ) be a PSPACE-probability Cantor space. Let T :
(Σ∞, B(Σ∞), µ) → (Σ∞, B(Σ∞), µ) be a PSPACE ergodic measure preserving transformation.
Then, for any PSPACE L1-computable f , lim

n→∞
Ãf

n =
∫

fdµ on EXP randoms.

Proof. Observe that Lemma 4.3, Corollary 4.4 and Lemma 4.6 are true in the setting of
PSPACE-probability Cantor spaces. The proof of Lemma 4.5 can be extended to the setting
of PSPACE-probability Cantor spaces in a straightforward manner. Since T is PSPACE
ergodic, we get that we get that

∫
fdµ is a PSPACE-rapid L1-limit point of Af

n. Now,
the theorem follows from these observations and the same techniques as in the proof of
Theorem 5.4. ◀

The convergence notions involved in proving the PSPACE/SUBEXP-space ergodic theo-
rems and their interrelationships are summarized in Figure 1.

PSPACE ergodic theorem(6.2)

Af
n 99K

∫
fdµ Af

n
PSPACE−−−−−→

a.e

∫
fdµ

SUBEXP ergodic theorem(8.11)

Theorem 4.2

f∈L∞

f∈PSPACE L
1

f∈SUBEXP L 1

Figure 1 Relationships between the major convergence notions involving PSPACE simple measure
preserving transformations. Af

n 99K
∫

fdµ denotes that
∫

fdµ is a PSPACE-rapid L1-limit point of
Af

n. PSPACE/SUBEXP-space ergodicity is required only for obtaining the ergodic theorems from
PSPACE a.e convergence.

7 A partial converse to the PSPACE Ergodic Theorem

In this section we give a partial converse to the PSPACE ergodic theorem (Theorem 6.2). We
show that for any PSPACE null x, there exists a function f and transformation T satisfying
all the conditions in Theorem 6.2 such that Ãf

n(x) does not converge to
∫

fdµ.
Let us first observe that due to Corollary 4.4, Theorem 6.2 is equivalent to the following:

▶ Theorem. Let T be a PSPACE ergodic measure preserving transformation such that
for any PSPACE L1-computable f ,

∫
fdµ is an PSPACE-rapid L1-limit point of Af

n. Let
{gn,i} be any collection of simple functions such that for each n, ⟨gn,i⟩∞

i=1 is a PSPACE
L1-approximation of Ãf

n. Then, lim
n→∞

lim
i→∞

gn,i(x) =
∫

fdµ for any EXP random x.

MFCS 2021
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Hence, the ideal converse to Theorem 6.2 is the following:

▶ Theorem. Given any EXP null x, there exists a PSPACE ergodic measure preserving trans-
formation T and PSPACE L1-computable f ∈ L1(Σ∞, µ) such that the following conditions
are true:
1.
∫

fdµ is an PSPACE-rapid limit point of Af
n.

2. There exists a collection of simple functions {gn,i} such that for each n, ⟨gn,i⟩∞
i=1 is a

PSPACE L1-approximation of Af
n but lim

n→∞
lim

i→∞
gn,i(x) ̸=

∫
fdµ.

But, we show the following partial converse to Theorem 6.2.

▶ Theorem 7.1. Given any PSPACE null x, there exists a PSPACE L1-computable f ∈
L1(Σ∞, µ) such that for any PSPACE simple measure preserving transformation, the following
conditions are true:
1. For all n ∈ N, ∥Af

n −
∫

fdµ∥1 = 0. Hence,
∫

fdµ is an PSPACE-rapid L1-limit point of
Af

n.
2. There exists a collection of simple functions {gn,i} such that for each n, ⟨gn,i⟩∞

i=1 is a
PSPACE L1-approximation of Af

n but lim
n→∞

lim
i→∞

gn,i(x) ̸=
∫

fdµ.
A proof of the above theorem requires the construction in the following lemma.

▶ Lemma 7.2. Let ⟨Un⟩∞
n=1 be a PSPACE test. Then there exists a sequences of sets〈

Ŝn

〉∞

n=1
such that for each n ∈ N, Ŝn ⊆ Σ∗ satisfying the following conditions:

1. µ([Ŝn]) ≤ 2−n.
2. ∩∞

m=1 ∪∞
n=m [Ŝn] ⊇ ∩∞

n=1Un.
3. There exists c ∈ N such that for all n, σ ∈ Ŝn implies |σ| ≤ nc.
4. There exists a PSPACE machine N such that N(σ, 1n) = 1 if σ ∈ Ŝn and 0 otherwise.

Proof of Theorem 7.1. Let ⟨Vn⟩∞
n=1 be any PSPACE test such that x ∈ ∩∞

n=1Vn. From
Lemma 7.2, there exists a collection of sets

〈
Ŝn

〉∞

n=1
such that ∩∞

m=1 ∪∞
n=m [Ŝn] ⊇ ∩∞

n=1Vn.
Let,

Un = {σ : [σ] ∈ Ŝi for some i such that 2n + 1 ≤ i ≤ 2(n + 1) + 1}

Let fn = nχUn
. Since

µ(Un) ≤
2(n+1)+1∑
i=2n+1

1
2i

≤ 1
22n

,

it follows that

∥fn∥1 ≤ n

2n+n
≤ 1

2n
.

Using the properties of
〈

Ŝn

〉∞

n=1
, it can be shown that ⟨fn⟩∞

n=1 is a PSPACE L1-
approximation of f = 0. We construct a machine M computing ⟨fn⟩∞

n=1. The other
conditions are easily verified. Let N be the machine from Lemma 7.2. On input (1n, σ), M

does the following:
1. If |σ| < (2(n + 1) + 1)c then, output ?.
2. Else, for each i ∈ [2n + 1, 2(n + 1) + 1] do the following:

a. For each α ⊆ σ, do the following:
i. If N(1i, α) = 1 then, output n.

3. Output 0.
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M uses at most polynomial space and computes ⟨fn⟩∞
n=1. Define

gn,i = fi + fi ◦ T + · · · + fi ◦ T n−1

n

For any fixed n ∈ N, since T is a PSPACE simple transformation, as in Lemma 4.6 it can
be shown that ⟨gn,i⟩∞

i=1 is a PSPACE L1-approximation of Af
n. We know that there exist

infinitely many m such that x ∈ [Ŝm]. For any such m, let i be the unique number such
that 2i + 1 ≤ m ≤ 2(i + 1) + 1. For this i, fi(x) = i. This shows that there exist infinitely
many i such that fi(x) = i. Since each fi is a non-negative function, it follows that there are
infinitely many i with gn,i ≥ i/n. Hence, if lim

i→∞
gn,i(x) exists, then it is equal to ∞. It may

be the case that lim
i→∞

gn,i(x) does not exist. In either case, lim
n→∞

lim
i→∞

gn,i(x) cannot be equal
to
∫

fdµ = 0. Hence, our construction satisfies all the desired conditions. ◀

8 An ergodic theorem for SUBEXP-space randoms and its converse

In the previous sections, we demonstrated that for PSPACE L1-computable functions and
PSPACE simple transformations, the Birkhoff averages converge to the desired value over
EXP randoms. However, the converse holds only over PSPACE non-randoms. The two major
reasons for this gap are the following: PSPACE-rapid convergence necessitates exponential
length cylinders while constructing the randomness tests, and PSPACE L1-computable
functions are not strong enough to capture all PSPACE randoms. In this section, we
demonstrate that for a different notion of randomness - SUBEXP-space randoms and a
larger class of L1-computable functions (SUBEXP-space L1-computable), we can prove the
ergodic theorem on the randoms and obtain its converse on the non-randoms. Analogous
to Towsner and Franklin [5], we demonstrate that the ergodic theorem for PSPACE simple
transformations and SUBEXP-space L1-computable functions satisfying PSPACE rapidity,
fails for exactly this class of non-random points. We first introduce SUBEXP-space tests
and SUBEXP-space randomness.

▶ Definition 8.1 (SUBEXP-space sequence of open sets). A sequence of open sets ⟨Un⟩∞
n=1

is a SUBEXP-space sequence of open sets if there exists a sequence of sets
〈
Sk

n

〉
k,n∈N, where

Sk
n ⊆ Σ∗ such that

1. Un = ∪∞
k=1[Sk

n], where for any m > 0, µ
(
Un − ∪m

k=1[Sk
n]
)

≤ m− log(m).
2. There exists a controlling polynomial p such that max{|σ| : σ ∈ ∪m

k=1Sk
n)} ≤

2p(log(n)+log(m)).
3. The function g : Σ∗ × 1∗ × 1∗ → {0, 1} such that g(σ, 1n, 1m) = 1 if σ ∈ Sm

n , and 0
otherwise, is decidable by a PSPACE machine.

▶ Definition 8.2 (SUBEXP-space randomness). A sequence of open sets ⟨Un⟩∞
n=1 is a

SUBEXP-space test if it is a SUBEXP-space sequence of open sets and for all n ∈ N,
µ(Un) ≤ n− log(n).

A set A ⊆ Σ∞ is SUBEXP-space null if there is a SUBEXP-space test ⟨Un⟩∞
n=1 such that

A ⊆ ∩∞
n=1Un and is SUBEXP-space random otherwise.5

The slower decay rate of n− log(n) = 2− log(n)2 enables us to obtain an ergodic theorem and
an exact converse in the SUBEXP-space setting .The following result is useful in manipulating
sums involving terms of the form 2−(log(n))k for k ≥ 2.

5 It is easy to see that the set of SUBEXP-space randoms is smaller than the set of PSPACE randoms.
But, we do not know if any inclusion holds between SUBEXP-space randoms and EXP-randoms.
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▶ Lemma 8.3. For any m ∈ N,
∑∞

n=2(2m2+1)
n

nlog(n) ≤ 1
mlog(m) .

A similar inequality holds on replacing n/nlog(n) with 1/nlog(n). Now, we introduce the
Solovay analogue of SUBEXP-space randomness and prove that these notions are analogous.

▶ Definition 8.4 (SUBEXP-space Solovay test). A sequence of open sets ⟨Un⟩∞
n=1 is a

SUBEXP-space Solovay test if it is a SUBEXP-space sequence of open sets and there exists
a polynomial p such that ∀m ≥ 0,

∑∞
n=p(m)+1 µ(Un) ≤ m− log(m). A set A ⊆ Σ∞ is

SUBEXP-space Solovay null if there exists a SUBEXP-space Solovay test ⟨Un⟩∞
n=1 such that

A ⊆ ∩∞
i=1 ∪∞

n=i Un, and is SUBEXP-space Solovay random otherwise.

▶ Lemma 8.5. A set A ⊆ Σ∞ is SUBEXP-space null if and only if A is SUBEXP-space
Solovay null.

Now, we define SUBEXP-space analogues of concepts from Section 3.

▶ Definition 8.6 (SUBEXP-space sequence of simple functions). A sequence of simple functions
⟨fn⟩∞

n=1 where each fn : Σ∞ → Q is a SUBEXP-space sequence of simple functions if
1. There is a controlling polynomial p such that for each n, there exists k(n) ∈ N,

{d1, d2 . . . , dk(n)} ⊆ Q and {σ1, σ2 . . . σk(n)} ⊆ Σ2p(log(n)) such that fn =
∑k(n)

i=1 diχσi
,

where χσi is the characteristic function of the cylinder [σi].
2. There is a PSPACE machine M such that for each n ∈ N, σ ∈ Σ∗, M(1n, σ) outputs

fn(σ0∞) if |σ| ≥ 2p(log(n)) and ? otherwise.

▶ Definition 8.7 (SUBEXP-space L1-computable functions). A function f ∈ L1(Σ∞, µ) is
SUBEXP-space L1-computable if there exists a SUBEXP-space sequence of simple functions
⟨fn⟩∞

n=1 such that for every n ∈ N, ∥f − fn∥ ≤ n− log(n). The sequence ⟨fn⟩∞
n=1 is called a

SUBEXP-space L1-approximation of f .

We require the following equivalent definitions of PSPACE-rapid convergence notions for
working in the setting of SUBEXP-space randomness.

▶ Lemma 8.8. A real number a is a PSPACE-rapid limit point of the real number se-
quence ⟨an⟩∞

n=1 if and only if there exists a polynomial p such that for all m ∈ N,
∃k ≤ 2p(log(m)) such that |ak − a| ≤ m− log(m).

▶ Lemma 8.9. A sequence of measurable functions ⟨fn⟩∞
n=1 is PSPACE-rapid almost every-

where convergent to a measurable function f if and only if there exists a polynomial p such
that for all m1 and m2,

µ

({
x : sup

n≥2p(log(m1)+log(m2))
|fn(x) − f(x)| ≥ 1

m
log(m1)
1

})
≤ 1

m
log(m2)
2

.

The same technique used in the proof of Lemma 8.8 can be used to prove this claim.
Before addressing the main result, let us define SUBEXP-space ergodicity.

▶ Definition 8.10 (SUBEXP-space ergodic transformations). A measurable function T :
(Σ∞, µ) → (Σ∞, µ) is SUBEXP-space ergodic if T is a PSPACE simple transformation such
that for any SUBEXP-space L1-computable f ∈ L1(Σ∞, µ),

∫
fdµ is a PSPACE-rapid L1

limit point of Af,T
n .

Lemma 4.3, Corollary 4.4 and Lemma 4.6 have analogous results in the SUBEXP-space
setting. We prove the SUBEXP-space ergodic theorem below.
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▶ Theorem 8.11. Let T : (Σ∞, B(Σ∞), µ) → (Σ∞, B(Σ∞), µ) be a SUBEXP-space er-
godic measure preserving transformation. Then, for any SUBEXP-space L1-computable f ,
lim

n→∞
Ãf

n =
∫

fdµ on SUBEXP-space randoms.

An important reason for investigating SUBEXP-space randomness is that the SUBEXP-space
ergodic theorem has an exact converse unlike the PSPACE ergodic theorem which only seems
to have a partial converse (Theorem 7.1).

▶ Theorem 8.12. Given any SUBEXP-space null x, there exists a SUBEXP-space L1-
computable f ∈ L1(Σ∞, µ) such that for any PSPACE simple measure preserving transfor-
mation, the following conditions are true:
1. For all n ∈ N, ∥Af

n −
∫

fdµ∥1 = 0. Hence,
∫

fdµ is an PSPACE-rapid L1-limit point of
Af

n.
2. There exists a collection of simple functions {gn,i} such that for each n, ⟨gn,i⟩∞

i=1 is a
SUBEXP-space L1-approximation of Af

n but lim
n→∞

lim
i→∞

gn,i(x) ̸=
∫

fdµ.
The proofs of both Theorem 8.11 and Theorem 8.12 are similar to those of Theorem 6.2 and
Theorem 7.1, but requires Lemma 8.3 for minimizing summations of the form

∑
n− log(n)

appearing in the error bounds.
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A Proof of Theorem 5.1

Proof of Theorem 5.1. Let ⟨fn⟩∞
n=1 be a PSPACE sequence of simple functions witnessing

the fact that f is PSPACE L1-computable. Let p be a controlling polynomial and let t be a
polynomial upper bound for the space complexity of the machine associated with ⟨fn⟩∞

n=1.
Let q1,q2 be the polynomials from Lemma 5.2. Let c ∈ N be any number such that if a r ∈ Q
has a representation of length l then r ≤ 2lc (see Section 2). Observe that for any m ∈ N,

∥Af
n −
∫

fdµ∥1 ≤ ∥Af
n − A

fq1(m+3)
n ∥1 + ∥A

fq1(m+3)
n −

∫
fq1(m+3)dµ∥1 + ∥

∫
fq1(m+3)dµ −

∫
fdµ∥1

≤ 1
2q1(m+3) + ∥A

fq1(m+3)
n −

∫
fq1(m+3)dµ∥1 + 1

2q1(m+3) .

≤ 1
2m+3 + ∥A

fq1(m+3)
n −

∫
fq1(m+3)dµ∥1 + 1

2m+3 .

We know that there exist {σ1, σ2 . . . σk} ⊆ Σp(q1(m+3)) such that A
fq1(m+3)
n =

k(q1(m+3))∑
i=1

diχσi

where each di ≤ 2t(q1(m+3)+p(q1(m+3)))c . Hence,

∥A
fq1(m+3)
n −

∫
fq1(m+3)dµ∥1 ≤ 2t(q1(m+3)+p(q1(m+3)))c

k(q1(m+3))∑
i=1

∥A
χσi
n − µ(σi)∥1

Since |σi| ≥ p(q1(m + 3)) ≥ q1(m + 3), using Lemma 5.2, for

n ≥ p(q1(m + 3))32q2(t(q1(m+3)+p(q1(m+3)))c+p(q1(m+3))+m+3)

we get that,

∥A
fq1(m+3)
n −

∫
fq1(m+3)dµ∥1 ≤ 2t(q1(m+3)+p(q1(m+3)))c+p(q1(m+3))

2t(q1(m+3)+p(q1(m+3)))c+p(q1(m+3))+m+3

≤ 1
2m+3 .

Hence, for all n ≥ p(q1(m + 3))32q2(t(q1(m+3)+p(q1(m+3)))c+p(q1(m+3))+m+3) we have ∥Af
n −∫

fdµ∥1 ≤ 3.2−(m+3) < 2−m. ◀
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Proof of Lemma 5.2. The major difficulty in directly approximating ∥Aχσ
n − µ(σ)∥1 is that

for any n, m ∈ N, Aχσ
n and Aχσ

m may not be independent. In order to overcome this, we
use constructions similar to those used in proving Pillai’s theorem (see [20], [16] for normal
numbers, [18] for continued fractions) in order to approximate each Aχσ

n with sums of disjoint
averages. These disjoint averages turns out to be averages of independent random variables.
Hence, elementary results from probability theory regarding independent random variables
can be used to show that Aχσ

n converges to
∫

fdµ sufficiently fast.
Observe that for any x ∈ Σ∞

Aχσ
n (x) = |{i ∈ [0, n − 1] | T ix ∈ [σ]}|

n

Let k = |σ|. As in the proof of Theorem 3.1 from [18], the following is a decomposition of
the above term as disjoint averages,

|{i ∈ [0, n − 1] | T ix ∈ [σ]}|
n

= g1(n) + g2(n) + · · · + g(1+⌊log2
n
k ⌋)(n) + (k − 1).O(log n)

n

where

gp(n) =


|{i | T kix ∈ [σ] , 0 ≤ i ≤ ⌊n/k⌋}|

n
if p = 1∑k−1

j=1 |{i | T (2p−1)kix ∈ [Sj ], 0 ≤ i ≤ ⌊n/2p−1k⌋}|
n

if 1 < p ≤ (1 + ⌊log2(n/k)⌋)
0 otherwise,

and Sj is the finite collection of 2(p−1)k length blocks s.t σ occurs in it at starting position
(2(p−2)k − j + 1)th position i.e Sj is the set of strings of the form, u a1a2 . . . ak v where u is
some string of length 2p−2k − j, and v is some string of length 2p−2k − k + j.

When p = 1,

g1(n) =

⌊ n
k ⌋∑

i=1
X1,1

i

n

where

X1,1
i (x) =

{
1 if x[ik + 1, (i + 1)k] = σ

0 otherwise

When 1 < p ≤ ⌊log2(n/k)⌋,

gp(n) =

⌊ n

2p−1k
⌋∑

i=1

k−1∑
j=1

Xp,j
i

n

where,

Xp,j
i (x) =

{
1 if x[2p−2k − j + 1, 2p−2k − j + k] = σ

0 otherwise

Hence,

Aχσ
n (x) =

⌊ n
k ⌋∑

i=1
X1,1

i (x)

n
+

⌊log2( n
k )⌋∑

p=2

k−1∑
j=1

⌊ n

2p−1k
⌋∑

i=1
Xp,j

i

n
+ (k − 1).O(log n)

n
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An important observation that we use later in the proof is that for any fixed p and j, {Xp,j
i }∞

i=1
is a collection of i.i.d Bernoulli random variables such that µ({x : Xp,j

i (x) = 1}) = 2−|σ|. We
will show that the conclusion of the lemma holds when q1(m) = 2(m+6) and q2(m) = 5(m+6).
For any m ∈ N,∥∥∥∥∥∥

∞∑
p=m+5+2

k−1∑
j=1

1
n

⌊ n

2p−1k
⌋∑

i=1
Xp,j

i

∥∥∥∥∥∥
2

≤
∞∑

p=m+5+2

1
2p−1 ≤ 1

2m+5

(1)

And for n ≥ |σ|32q2(m) > |σ|222(m+5),∥∥∥∥ (k − 1)O(log(n))
n

∥∥∥∥
2

=
∥∥∥∥ (k − 1)O(log(n))√

n
√

n

∥∥∥∥
2

≤
∣∣∣∣k − 1√

n

∣∣∣∣ ≤
∣∣∣∣ k − 1
k2m+5

∣∣∣∣ ≤ 1
2m+5 (2)

Let,

Dσ
n,m(x) =

⌊ n
k ⌋∑

i=1
X1,1

i (x)

n
+

m+5+2∑
p=2

k−1∑
j=1

⌊ n

2p−1k
⌋∑

i=1
Xp,j

i

n

From (1) and (2), we get that

∥Aχσ
n − Dσ

n,m∥2 ≤ 2
2m+5 .

Let,

Eσ
n,m(x) =


⌊ n

k ⌋∑
i=1

X1,1
i (x)

⌊ n
k ⌋

− 1
2k

 ⌊ n
k ⌋
n

+
m+5+2∑

p=2

k−1∑
j=1


⌊ n

2p−1k
⌋∑

i=1
Xp,j

i

⌊ n
2p−1k ⌋

− 1
2k

 ⌊ n
2p−1k ⌋

n

Now,

Dσ
n,m(x) − Eσ

n,m(x) = 1
2kk

+
m+5+2∑

p=2

k−1∑
j=1

1
2k

⌊ n
2p−1k ⌋

n

It follows that,

∥Dσ
n,m(x) − Eσ

n,m∥2 ≤ 1
2k

+
m+5+2∑

p=2

k−1∑
j=1

1
2k2p−1k

≤ 1
2k

+
m+5+2∑

p=2

1
2k2p−1

≤ 1
2k

+
m+5+2∑

p=2

1
2k

≤ m + 5 + 2
2k
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Hence, if |σ| = k ≥ q1(m) = m + 5 + 2 + m + 5 then,

∥Dσ
n,m(x) − Eσ

n,m∥2 ≤ 1
2m+5

and,

∥Aχσ
n − µ(σ)∥2 ≤ ∥Aχσ

n − Dσ
n,m∥2 + ∥Dσ

n,m(x) − Eσ
n,m∥2 + ∥Eσ

n,m∥2 + 1
2k

≤ 3
2m+5 + ∥Eσ

n,m∥2 + 1
22m+12

≤ 4
2m+5 + ∥Eσ

n,m∥2.

Hence, in order to show that for all n ≥ |σ|32q2(m), ∥Aχσ
n − µ(σ)∥1 ≤ ∥Aχσ

n − µ(σ)∥2 ≤ 2−m,
it is enough to show that for all n ≥ |σ|32q2(m), ∥Eσ

n,m∥2 ≤ 2−(m+5). Observe that

∥Eσ
n,m∥2 ≤

∥∥∥∥∥∥ 1
⌊ n

k ⌋

⌊ n
k ⌋∑

i=1
X1,1

i (x) − 1
2k

∥∥∥∥∥∥
2

+
m+5+2∑

p=2

k−1∑
j=1

∥∥∥∥∥∥ 1
⌊ n

2p−1k ⌋

⌊ n

2p−1k
⌋∑

i=1
Xp,j

i − 1
2k

∥∥∥∥∥∥
2

.

Let Y1, Y2, . . . Yn be i.i.d Bernoulli random variables,∥∥∥∥∥ 1
n

n∑
i=1

Yi − E(Y1)

∥∥∥∥∥
2

=

√√√√√E

( 1
n

n∑
i=1

Yi − E(Y1)
)2


=

√√√√Var
(

1
n

n∑
i=1

Yi

)

=
√

1
n2 nVar(Y1)

≤
√

Var(Y1)√
n

≤ 1
2
√

n

The last inequality follows from the fact that the variance of Bernoulli random variables are
always bounded by 1

4 . Hence, if n ≥ |σ|32q2(m) = |σ|325(m+6) then,⌊n

k

⌋
> k224(m+6)

and⌊ n

2p−1k

⌋
≥ k325(m+6)

2m+5+1k
> k224(m+6).

Hence for all n ≥ |σ|32q2(m) = |σ|325(m+6),

∥Eσ
n,m∥2 ≤ 1

2k22(m+6) + (m + 6)k 1
2k22(m+6)

<
1

2m+6 + 1
2m+6

≤ 1
2m+5 .

Hence we obtain the desired conclusion. ◀
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