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—— Abstract

Gauge symmetries play a fundamental role in Physics, as they provide a mathematical justification
for the fundamental forces. Usually, one starts from a non-interactive theory which governs “matter”,
and features a global symmetry. One then extends the theory so as make the global symmetry into
a local one (a.k.a gauge-invariance). We formalise a discrete counterpart of this process, known as
gauge extension, within the Computer Science framework of Cellular Automata (CA). We prove that
the CA which admit a relative gauge extension are exactly the globally symmetric ones (a.k.a the
colour-blind). We prove that any CA admits a non-relative gauge extension. Both constructions yield
universal gauge-invariant CA, but the latter allows for a first example where the gauge extension
mediates interactions within the initial CA.
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1 Introduction

Symmetries are an essential concept, whether in Computer science or in Physics. In this paper
we explore the Physics concept of gauge symmetry by taking it into the rigorous, Computer
Science framework of Cellular Automata (CA). Implementing gauge-symmetries within
CA may prove useful in the fields of numerical analysis; quantum simulation; and digital
Physics — as these are constantly looking for discrete schemes that simulate known Physics.
Quite often, these discrete schemes seek to retain the symmetries of the simulated Physics;
whether in order to justify the discrete scheme as legitimate or as numerically accurate
(e.g. by doing the Monte Carlo-counting right [12]). More specifically, the introduction of
gauge-symmetries within discrete-time lattice models has proven useful already in the field
of Quantum Computation, where gauge-invariant Quantum Walks and Quantum Cellular
Automata [1] provide us with concrete digital quantum simulation algorithms for particle
Physics. These come to complement the already existing continuous-time lattice models
of particle Physics [9, 15]. Another field where this has played a role is Quantum error
correction [13, 14], where it was noticed that gauge-invariance amounts to invariance under
certain local errors. This echoes the fascinating albeit unresolved question of noise resistance
within Cellular Automata [7, 8, 11, 18].
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In [16] the authors study G-blind cellular automata, where G is a group of permutation
acting on the state space of cells. Blind cellular automata are globally symmetric under
G, i.e. the global evolution commutes with the application of the same g € G at once on
every cell. They show the surprising result that any CA can be simulated by such a globally
symmetric CA, when G is the symbol permutations. Globally symmetric CA are therefore
universal. Local symmetry, aka gauge symmetry, is way more stringent however: a different
g* can now be chosen for every cell x. Still, in this paper, we prove that any CA can be
extended into a gauge-invariant CA. Gauge-invariant CA are therefore universal.

From a Physics perspective one usually motivates the demand for a certain gauge

symmetry, from an already existing global symmetry. From a mathematical perspective,
the gauge field that then gets introduced for that purpose is often seen as a connection
between two gauge choices at neighbouring points. This raises questions however, because
there is no immediate reason why a gauge symmetry should necessarily arise from an already
existing global symmetry (one could ask for a certain ad hoc gauge symmetry from scratch).
Nor is there an immediate reason why a gauge field should necessarily be interpretable as
a connection (a gauge field could be made to hold absolute instead of relative information
about gauge choices).
In this paper, we prove an original result relating these two folklore perspectives about gauge
theories using purely combinatorial definitions. Namely, we prove that the CA that admit
relative gauge extension are exactly those that have the corresponding global symmetry in
the first place.

Although the gauge field was initially introduced in order to obtain gauge symmetry,
it allows for new dynamics. Amongst those dynamics, one could ask for the matter field
to influence the dynamics of the gauge field, as is the case in Physics. In this paper, we
provide a first a Gauge-invariant CA where this is happening. This CA is obtained through
a non-relative gauge extension. We leave it as an open question whether the same can be
achieved though a relative gauge extension.

The present work builds upon two previous papers by a subset of the authors, which laid
down the basic definitions of gauge-invariance for CA and provided a first set of examples, in
both the abelian [2] and the non-abelian [3] cases. Sec. 2 first recalls these basic definitions,
but it also formalises the notions of general and relative gauge extensions, which were still
missing. Sec. 3 shows that CA admit a relative gauge extension if and only if they are globally
symmetric. Sec. 4 shows that any CA admits a general gauge extension. Sec. 5 draws the
consequences upon universality. Sec. 6 provides a first example of a gauge-extended CA
whose gauge field is sourced by the matter field.

2 Definitions

2.1 Cellular Automata

A cellular automaton (CA) consist in an array of identical cells, each of which may take
one in a finite number of possible states. The whole array evolves in discrete time steps by
iterating a function F'. Moreover this global evolution F' is shift-invariant (it acts everywhere
the same) and causal (information cannot be transmitted faster than some fixed number of
cells per time step). Let us make this formal.

» Definition 2.1 (Configuration). A configuration ¢ over an alphabet ¥ and a space 72 is a
function that associates a state to each point:

c: 7% — %

The set of all configurations will be denoted nz,
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A configuration should be seen as the state of the CA at a given time. We use the
short-hand notation ¢, = ¢(z) for z € Z¢ and ¢r for the configuration c restricted to the set
I,ie. c¢: 1 — %, for I CZ% The association of a position and its state is called a cell.

The way to describe a global evolution F' that is causal, is via the provision of a local
rule. A local rule takes as input a configuration restricted to x + A/, and outputs the next
value of the cell z, i.e. f : ¥V — %, where N is a finite subset of Z¢ referred to as “the
neighbourhood”. Applying f at every position = simultaneously, implements F'.

» Definition 2.2 (Cellular automata). The CA F having neighbourhood N and local function
f: 3N — % is the function F - 22— Y2 such that for all x € 74,

F(e)z = f(Clatn)-

We sometimes denote by ¢, the value of a cell at position = and time ¢, where ¢;11 = F(cy).

2.2 Global versus gauge symmetry
Global symmetry

We say that a CA is globally symmetric whenever its global evolution is invariant under the
application of the same alphabet permutation at every position at once. Globally symmetric
CA are also known as G-blind CA [16] with G a group of permutations over X.

» Definition 2.3 (Globally symmetric). Let F : X" — %2" be a CA and G be a group
of permutations over %. For all g € G, let g denote its application at every position
simultaneously: g(c); = g(c;). We say that F is globally G-symmetric if and only if, for any
g in G, we have Fog=goF.

Local/gauge symmetry

We say that a CA is locally symmetric whenever its global evolution is invariant under
the application of a local permutation at every position. The first difference with globally

symmetric CA is the permutation is now allowed to differ from one position to the next.
The second difference is that the permutation is now allowed to act on the surrounding cells.

Locally symmetric CA are referred to as gauge-invariant CA [2, 3, 4].

» Definition 2.4 (Local gauge-transformation group). Let g be a permutation over $(2s+D",
with s € N. We denote by g* : Y2 5 327 the function that acts as g on the cells at
[z —s,z+5s]%, and trivz’aldly everywhere else. A local gauge-transformation group G is a group
of bijections over 225t such that for any g,h € G and any x #y € Z%, g° o h¥ = h¥ 0 g*.

This permutation condition makes it irrelevant to consider which local gauge-transformation
gets applied first, so that the product g*hY be defined. The condition is decidable, checking
it over the [—2s, +2s]¢ suffices.

» Definition 2.5 (Gauge-transformation). Consider G a group of local gauge-transformations.
A gauge-transformation is then specified by a function vy : Z¢ — G. It is interpreted as
acting over ¢ € Y2 gs follows:

(@)= (TT 7)),

€74

where v* is short for v(x)*. We denote by T' the set of gauge-transformations.

9:3
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Notice how an element v € I' may be thought of as a configuration over the alphabet G.
Thus 7, is an element of G which can be applied on a finite configuration, while * is its
natural extension which can be applied onto a full configuration.

Gauge-invariant CA are “insensitive” to gauge-transformations: performing ~ before F’
amounts to performing some ' after F.

» Definition 2.6 (Gauge-invariant CA). Let F be a CA, G be a local gauge-transformation
group, and I' be the corresponding set of gauge-transformations. F is I'-gauge-invariant if
and only if there exists a CA Z over the alphabet G, such that for all v € T':

Z(y)oF =Fon.

The reason why ' must result from a CA Z, instead of being left fully arbitrary, is because
F is deterministic, shift-invariant and causal — from which it follows that ~/, if it exists, can
be computed deterministically, homogeneously and causally from the v applied before. Thus,
the above is demanding a weakened commutation relation between the evolution F' and
the set of gauge-transformations I'. In practice in Physics Z is often the identity, making
gauge-invariance a commutation relation. This will be the case in our constructions.

2.3 (Relative) gauge extensions

In Physics, one usually begins with a theory that explains how matter freely propagates, i.e.
in the absence of forces. This initial theory solely concerns the “matter field”, and is not
gauge-invariant. For instance, the Dirac equation, which dictates how electrons propagate, is
not U(1)-gauge-invariant. Next, one enriches the initial theory with a second field, the so-
called gauge field, so as to make the resulting theory gauge-invariant. For instance, the case of
the electron, U(1)-gauge-invariance is obtained thanks to the addition of the electromagnetic
field. The resulting theory can still account for the free propagation of the matter field, but
the presence of the gauge field also allows for richer behaviours, e.g. electromagnetism. Quite
surprisingly three out of the four fundamental forces can be introduced mathematically, and
thereby justified by gauge symmetry requirements, through this process of “gauge extension”.

But when is it the case that a theory is a gauge extension of another, exactly? In Physics
this is left informal. One of the contributions of this paper is the provide a first rigorous
definition of the notion of gauge extension, and of its relative subcase, in the discrete context

of CA.

General gauge extension

A gauge extension must simulate the initial CA, extend the required gauge-transformations,
and achieve gauge-invariance overall:

» Definition 2.7 (Gauge extension). Let F be a CA over alphabet X. Let T’ be a gauge-
transformation group over . Let A be a finite set which will serve as the gauge field alphabet.
A gauge extension of (F,T) is a tuple (F',T") with F' a CA over alphabet ¥ x A and T" a
gauge-transformation group over ¥ X A, such that:

(Simulation) there exists € € A such that F' simulates one step of F when the gauge field
value is set € everywhere. In other words for any c € Ezd, there exists ¢’ € AZd,

F'(c,e) = (F(e),€)

where e is the constant gauge field configuration (x +— ¢€).
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(Extension) I extends T': there exists a bijection B : T — T such that for any v € TV,
there exists a CA L. over alphabet A, such that for any c, A € $2% x AZd,

7' (e, A) = (v(¢), Ly (V) (1)

where v = B(v').
(Gauge-invariance) F’ is IV -gauge-invariant.
We used implicitly the canonical bijection between (X X A)Zd and $Z° x AZ*

Notice that when the gauge field does not evolve in time, we can rewrite the simulation
condition as F’(c,e) = (F(c),e). Then F' is a sub-automaton of F’ [10], whenever the gauge
field is set to e.

Intuitively, the gauge field’s role is to keep track of which gauge-transformation got
applied where, so as to hold enough information to insure gauge-invariance. There are
different ways to do this; for instance one could indeed store the “gauge” at each point, i.e.
which gauge-transformation has happened at the specific point. But one could be more
parsimonious and store just the “relative gauge”, i.e. which gauge-transformation relates
that which has happened at every two neighbouring points.

Relative gauge extension

The standard choice in the Physics literature is to place the gauge field between the matter
cells only — i.e. on the links between two cells. This choice of layout is sometimes referred
to as the “quantum link model” [6, 17]. The mathematical justification for this choice, is
precisely that the gauge field may be interpreted as relative information between neighbouring
matter cells. Geometrically speaking, it may be understood as a “connection” relating two
closeby “tangent spaces” on a manifold.

Our previous definition of general gauge extensions does allow for such relative gauge
extensions as a particular case, up to a slight recoding, as shown in Fig-1, i.e. the link model
is simulated by transferring the value of a gauge field on a link, to the vertex at the tip of
the link.

y y o
oo JorC 1o (T '/ \
O /73N 0 O / \
O Cde IO Jun} N ) I o) R )
0\ / O \ /
Do oo O [ AT
+ + + x + —t— + x
(a) The link model layout. ... (b) ...encoded in the general gauge extension layout.

Figure 1 Capturing the link model used for relative gauge extensions with the general definition.

The following specialises the previous, mathematical notion of gauge extension, to the
restricted way in which it is understood in Physics:

» Definition 2.8 (Relative gauge extension). Given a CA F and a local gauge-transformation

group T' of radius s = 0, we say that a gauge extension (F',T") is relative when:

(a) the gauge field is positioned on the links (x,x + eq), where eq takes values in
{(100..),(010 ...),...}.

(b) the gauge field takes values in G and the € from Definition 2.7 is the identity — i.e. A =G
and e =1

MFCS 2021
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(c) for every position x a gauge-transformations v € TV act both on the matter field at x
according to v, € G, and on the gauge field a of its links, as follows:

{’Ym(a)(x—ed,x) = Vz O Q(z—eq,z) (2)
’Yw (a) (z,x4eq) = Az,x4eq) © ’795_1

Thus relative extension keeps track of the difference of gauge between two neighbouring cells.

The above definitions were given for the Z% grid, in order to establish the notion of gauge
extension in full generality. The next section, however, will be given just in one dimension
(d = 1) for clarity. We have established it in arbitrary dimension d in a private manuscript.

3 Globally symmetric CA admit a relative gauge extension

From a Physics perspective, the gauge symmetry one seeks to impose usually comes from
an already existing global symmetry. We show here that there is an equivalence between
being globally G-symmetric and having a gauge extension with respect to G a subgroup of
the permutations of X.

» Theorem 3.1 (Global symmetry and relative gauge extension). Let F' be a CA over alphabet
3, G a subgroup of the permutations of 3 and T the set of gauge-transformations defined
using G as the group of local gauge-transformations. Then the following two properties are
equivalent:
(i) F is globally G-symmetric
(ii) (F,T) admits a relative gauge extension (F',T") with the identity for the gauge field
evolution, such that F' commutes with any element of T (stronger than gauge-invariance
because it does not require a Z-map).

Proof.

(i = ii). Let f be the local rule of F with radius r. Let F’ be a CA of radius r over the
extended configurations — containing a gauge field in between neighboring cells — such that
the gauge field evolution is the identity and the local rule f’ for the evolution of the matter
field is defined as follows:

f/(C_’,«,Cl(,,,u‘,l’,r), -+ €0, Q(0,1)5 +++» CT) =

f ( H a(i,i+l)(c—7')a"'aa(fl,o)(c—l)a Co, a’(_oh)(cl)a"'aHa(_il_171')(c1")> (3)
i=1

i=—1
where a is the gauge field and

—j

I acivny(c—s) =acro o 0a i1, —jia) 0 acj—jin(e—;)
i=—1

J
-1 -1 -1 -1
Hl Uir(€) = A1) © - 0Oz © A, (€)-

f' is defined so as to apply f on a configuration that is on the same gauge basis — i.e. where
relative gauge-transformations are cancelled and every cell is looked through the eyes of the
gauge at position 0.

We shall now prove that (F',T") — with T defined through Eq.(2) — is a relative gauge
extension of (F,T").

The fact that this extension is relative is immediate from the definition. We therefore
need to prove that this extension has the 3 required properties from definition 2.7.
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(Simulation) The fact that F’ simulates F' when the gauge field is the identity is immediate
from the definition of f’.
(Extension) Because I" is defined through definition 2.8, it is also immediate that it
verifies the extension property.
(Gauge-invariance) For any 7' € TV we will check that v/ o F/ = F' o/,
For j between 1 and r, we apply the gauge-transformation on the inputs (¢ and a) —
using Eq.(2) — and obtain by simple computation the following, where v = B(y’) through
definition 2.7:
; _1q-1 i

[Ty [vioag-romta]  ule) =0 I, a(ilfl,i)(cj):|

IT2- [y 0 agiirny 07 ] (e) =00 [TL2-) agivn(e))
where 7; € G. Therefore using this and Eq.(3) we have that

| | P agii+1)(c—r)

a—1,0)(c-1)
(F oy (ea))y = | 7o ()
a(fo)l)(cl)

I, C‘@l—l,i) (cr) 0
where g is here applied to every element of the tuple. Since F' is globally G-symmetric,
we have that f o~y = oo f and therefore (F' o+/(c,a)), = 70 © (F'(c, a)), which finishes
the proof that F/ o' =4’ o F’ through translation invariance and because the gauge
field evolution is the identity.

(it = i). Suppose that (F’,T") is a relative gauge extension of (F,T'), such that F’ commutes
with any element of T, we shall prove that F' is globally G-symmetric (with T' the gauge-
transformation group based on G). Let ¢ be a configuration and e denote the empty
configuration of the gauge field. For any local gauge-transformation g, we write g the global
gauge-transformation applying g everywhere — g denotes both the element of G and G’
depending on the context:

go F'(c,e) = g(F(c),a) (Simulation 2.7)
= (9(F(c)),a’) (Extension 2.7)
where a and o’ can be any gauge field configuration depending on F’ and 5. And
F'og(c,e) = F'(g(c),goeog™™) (Extension 2.8)
= F'(g(c),e)
= (F(g(c)),a’) (Simulation 2.7)

where a and ¢’ can be any gauge field configuration depending on F’ and g. The
G'-gauge-invariance of F’ give us go F'(c,e) = F’ o g(c,e) and thus

9(F(c)) = F(g(c))-
Therefore F' is globally G-symmetric. |

This theorem proves useful when looking for relative gauge extensions: first search for
a global symmetry. The construction will be used in Sec. 5 to prove that relative gauge
extensions of CA are universal.

9:7

MFCS 2021



9:8

Universal Gauge-Invariant Cellular Automata

4 Non-globally symmetric CA still admit an absolute gauge extension

We now prove that any CA can be intrinsically simulated by a gauge-invariant one, with
respect to any gauge-transformation group, of any radius. The construction of this section
uses non-relative gauge extensions, but it allows us to get rid of the prior requirements that
there be a global symmetry or that the gauge-transformations be of radius 0.

» Theorem 4.1 (Every CA admits a gauge extension). For any CA F and gauge-transformation
group T there exists for some gauge field alphabet a gauge extension (F',T). Furthermore
the local Tule of F' acts as the identity over the gauge field.

Proof. We give here a constructive proof for any CA over Z%.

Let F be a CA of radius s’ and G be a local gauge-transformation group of radius s. We
denote r the highest radius between s and s’. In the following we will consider neighbourhoods
RF =[x —k-r,z+k-7]? of each point z € Z4, with [a,b] = {n € Z | a < n < b}.

First we choose G as gauge field alphabet and define the effect of a global gauge-
transformation v* as 7%(a); = vz © @y, where a denotes a gauge field configuration. The
definition is so that the gauge field simply keeps track of every gauge-transformation applied
around z. For any other cell of the gauge field, v* has no impact. This condition along with
the extension property of Definition 2.7 fully defines the new gauge-transformation group I'.

Next we define a new local rule f’ over the neighbourhood R2. The definition below just
states that the local rule applies [ ], R2 a; ! to undo all previous gauge-transformations, it
then computes the evolution of f, and finally reapplies all the gauge-transformations, i.e.

7 (enzsains) = (TT aio fims (T o7 (cin)ing) + az)

i1€ERL i€ERY

where figz denotes the function from R3 to R2 which calculates the temporal evolution of
our automaton.

We can rewrite this local rule globally, using the notation a to denote either the gauge
field or a gauge-transformation which applies a, around each position x:

F'(¢c,a), = (aOFoa_l(c),a)

x

Let us check that (F’,I”) is a gauge extension:

(Simulation) When the gauge field is the identity f’ acts the same as f over the matter
field, and as the identity over the gauge field.

(Extension) We used this property to define G'.

(Gauge-invariance) For any 7/ € TV — where I" is built from G’ through definition 2.5 —
we must check that 4/ o F' = F’ o 4’. We reason globally to simplify notations:

F' ov/(c,a) = F'(y(c),v(a)) (Extension 2.7)
- (7(@ o Fory(a)~Y(v(c)), ’y(a)) (Definition of F”)
_ (7 caoFoa oyt onq(c), 7((1)) (Definition 2.4)
- (7 oaoFoa™l(c), *y(a)) (Definition 2.4)
N o F'(c,a) =~ (a o Foa~l(e), a) (Definition of F)
- (ry ocaoFoa'(c), 'y(a)) (Extension 2.7)

<
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5 (Relative) gauge-invariant CA are universal

Results in this section are only given for dimension 1.

In [16], the authors prove that for any alphabet ¥ containing 2 symbols or more, there
exists an intrinsically universal globally G-symmetric cellular automaton on ¥%, where G
is the group of all permutations of o. The proof involves an extension which encodes the
information in the structure of the configuration rather than the states, the idea being that
a global transformation will conserve the structure — thus the information. Combining this
result and Th. 3.1, we can easily prove the following corollary:

» Corollary 5.1 (Relative gauge-invariant cellular automata are universal). For any alphabet X
with |S| > 2, any gauge transformation group G and any cellular automaton F on X%, there
exists a G'-gauge-invariant CA F' which intrinsically simulates F, with G’ the extended
gauge-transformation based on G. Moreover, F' arises as the relative gauge extension of a

CA.

Proof. Let F” be a globally G-symmetric CA on %% that intrinsically simulates F using
[16, Theorem 1]. From Th. 3.1, (F”,G) admits a relative gauge extension (F’,G’) with
the evolution of the gauge field being the identity. Thus F” intrinsically simulates F"/, from
which it follows that F’ is a G’-gauge-invariant CA which intrinsically simulates F. <

Such result is interesting on two accounts: (i) it shows that universality only requires
relative gauge information and does not need any absolute information stored in the gauge
field; (ii) it shows that relative gauge extensions, which are the ones usually appearing in
Physics, are universal. Still, the universality of gauge-invariant CA is an even more direct
corollary of Th. 4.1. With that construction we can just pick any universal CA F', any local
transformation group G of any radius, and gauge-extend F' into F’. F acts trivially on the
gauge field in this construction, it thus intrinsically simulates F' and is therefore universal.

6 Sourcing the gauge field with the matter field

In both the construction of Th. 3.1 and Th. 4.1, the evolution rule of the gauge field is the
identity, meaning that it does not evolve with time. It is often the case in Physics that a

further twist is then introduced, so that the the matter field now influences the gauge field.

We wish to do the same and find a gauge-extended CA whose gauge field influences the
matter field, and whose matter field backfires on the gauge field.

We use here the general definition of a gauge extension (Definition 2.7) to search a gauge
extension F” of a non gauge-invariant CA F. Without loss of generality, F’ = (F}, F), where
F| takes (c,a) as input and returns the matter field after one time-step, and F} does the
same for the gauge field. We impose that the gauge (resp. matter) field be sourced by the
matter (resp. gauge) field, in the strongest possible manner, i.e. we ask for F} (resp. F}) to
be injective in its first (resp. second) parameter.

We begin by choosing the alphabet ¥ = {0,1,2}? and the space Z and we denote by cé
and c] respectively the left and the right part of the cell. In the following definitions we
consider that all the additions and all the subtractions are modulo 3.

We define the initial automaton by the local rule: F(c); = (ci_; — ¢}, ¢ + ¢f ), cf. Fig.2.

1

We consider a local group of gauge-transformation containing three elements, namely:
G = {0-07 g1, 02}

where o; is the function of radius 0 that adds ¢ to each part of the cell.

9:9
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Figure 2 The local rule of F.

We can check that F' is not gauge-invariant for I' (as defined from G), by considering a
configuration ¢ which associates (1, 1) to position ¢ and (0, 0) to all other positions. Let v be
a gauge-transformation which applies o9 over i, v(c) is then the fully empty configuration e.

Since F' preserves emptiness we have:

Foy(e)=v(c)=e

But when we apply F' to ¢ we obtain non-empty cells in ¢ 4+ 1 and ¢ — 1, this contradicts the
gauge-invariance definition. This idea is illustrated in sub-Figs 3a and 3b.
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(c) F’ over (c,e).

L0 o o e o e o e e
L0 o o e o e o e e
I T T A L
I T T A L
MMM M M 0 0 0 01 0
MMM O o O 0 0 01 01 01
MMM O o O 0 0 01 01 01
L0 o o e o e o e e
L0 o o e o e o e e
I T T A L
0 I I A R O I I I B R

(b) F over y(c).
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(d) F’ over v(c, e).

Figure 3 Space-time representation of F' and F’ over the same initial configurations ¢ and v(c),
where ¢ is the configuration at the bottom line of 3a 3c. The values 1 and 2 are respectively
represented by orange and red, while 0 is just an empty cell. Only the matter field is represented
here.
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We now provide a gauge extension for (F,T"). We begin by choosing the gauge field
alphabet A = ¥ and placing the gauge field between each cell.

Next we engineer the injective influence of the gauge field over the matter field in the
simplest possible way. We simply add, to each sub-cell of the matter field, the value of the
nearest sub-cell of the gauge field during each evolution. See Fig. 4b.

Finally we extend gauge-transformations to the gauge field (Fig. 4a) and choose the
evolution of the gauge field (green cells of Fig. 4b) to make sure that F’ is a reversible gauge-
invariant dynamics. Notice that the figures where chosen so that all cases are given. The
proof of gauge-invariance for this example is given in appendix-A, and can be visually seen
from Figs. 3c and 3d where a gauge-transformation does not impact the overall dynamics.

SN B e as lai + ad Il B
ffffff ;P
......... il ! r R S
ch ch
C ] )
(a) The new gauge-transformation group I". (b) The new local rule f’.

Figure 4 Description of the gauge extension (F’,T”). Green circles represent the gauge field and
black rectangles the matter field.

Overall, starting from a CA F we have defined a gauge extension F’ which features a
strong interaction between the gauge and the matter field. In the world of CA this is the
first example of the kind [5, 3]. Building this example required the choice of a very specific
extension of the gauge-transformation over the gauge field (cf Fig.4a) so as to obtain gauge-
invariance whilst preserving reversibility and injectivity. Under a relative gauge extension
this extension of the gauge-transformation is forced upon us, it seems hard to find such an
example.

Notice that since the gauge field is sourced by the matter field it typically does not
remain empty during the evolution. Thus I’ can only simulate I for one time step. This
may seem strange from a mathematical point of view, as we may expect from an extension
that it preserves the original dynamics over several steps, too. But in Physics the initial non
gauge-invariant theory is indeed used to inspire a more complex dynamics, which enriches
and ultimately diverges from the original one. Fig.5 shows how starting from the same
configuration, one obtains very different evolutions.

7 Conclusion

In order to obtain a gauge-invariant theory, starting from a non-gauge-invariant one, the
usual route is to extend the theory by means of a gauge field. As discussed in the introduction,
the gauge field usually turns out to be a connection between gauge choices at neighbouring
points, but there is no immediate reason why this should be the case. In the first part, we
formalised, in the framework of Cellular Automata (CA), the notions of gauge extension and
relative gauge extension. The latter forces the gauge field to act as a connection.
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(a) Evolution of F. (b) Evolution of F’.

Figure 5 Evolution of F and its gauge extension F’ over 9000 temporal step.

Again in Physics one usually starts from a theory featuring a global symmetry, before
“making it local” through the gauge extension. Again there is no immediate reason why this
should be the case. In our framework, we were able to establish a logical relation between
global symmetry and relative gauge-invariance. Namely we proved that the CA that admit a
relative gauge extension are exactly those that have the corresponding global symmetry. To
the best of our knowledge, no continuous equivalent of that theorem exists in the literature;
perhaps the discrete offers better opportunities for formalisation.

We also proved that any CA can be extended into a gauge-invariant one. Thus, gauge-
invariant CA are universal. Two different constructions were provided. One construction
uses the gauge field to store, at each location, the value of the gauge-transformation which
the matter field has undergone at that location, thereby allowing for the action of the
transformation to be counteracted. This path uses a non-relative gauge extension. Another
construction puts together the fact that any CA can be made globally-symmetric [16], with
the fact that any globally-symmetric CA admits a relative gauge extension. Thus, relative
gauge-extended CA are universal.

Whilst the introduction of the gauge field is initially motivated by the gauge symmetry
requirement, the gauge field ends up triggering new, richer behaviours as it influences the
matter field. However, in order for it to mediate the interactions within the matter field, as is
the case in Physics, it should be the case that the matter field also influences the gauge field
— and back. In this paper, we provided a first example of a gauge-extended CA whose matter
field injectively influences gauge field, whilst preserving reversibility. This was done through
a general gauge extension, we leave it open whether this can be achieved through a relative
gauge extension. The difficulty here is that relative gauge extensions seem to store just the
minimal amount of information required for gauge-invariance, and any further influence upon
the gauge field runs the risk of jeopardising that.

This difficulty can be circumvented in the quantum setting: the Quantum Cellular
Automaton of [1] arises from a relative gauge extension, and yet features and a gauge field
which is “sourced” by the matter field. The construction directly yields a quantum simulation
algorithm for one-dimensional quantum electrodynamics. This should serve us a reminder
that whilst this work is theoretical, it is not merely of theoretical interest. Gauge extensions
is exactly what one needs to do in order to capture physical interactions within discrete
quantum models. This may lead for instance to digital quantum simulation algorithms,
with improved numerical accuracy, as fundamental symmetries are preserved throughout the
computation.
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A  Proof of gauge-invariance for Sec. 6

In order to prove that the example illustrated in Fig. 4 is gauge-invariant, we will show that
v o F' = F' o+ for any v/ € I'. It is sufficient to prove this locally, we do so using the
notations of the figure and we denote by f’ and ¢’ the local application of the evolution and
a gauge-transformation:

e +ch+ay + ki,
a2+cl1—k2,

a4+ a2 +ch — k1 — ko,
el — b+ ag + ko

flog/(cl17a’17a’27cg) =

= g/of,(cl17a17a27cg)

Therefore F’ is I'-gauge-invariant.
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