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Abstract
What payoffs are positionally determined for deterministic two-player antagonistic games on finite
directed graphs? In this paper we study this question for payoffs that are continuous. The main
reason why continuous positionally determined payoffs are interesting is that they include the
multi-discounted payoffs.

We show that for continuous payoffs positional determinacy is equivalent to a simple property
called prefix-monotonicity. We provide three proofs of it, using three major techniques of establishing
positional determinacy – inductive technique, fixed point technique and strategy improvement
technique. A combination of these approaches provides us with better understanding of the structure
of continuous positionally determined payoffs as well as with some algorithmic results.
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1 Introduction

We study games of the following kind. A game takes place on a finite directed graph. There
is a token, initially located in one of the nodes. Before each turn there is exactly one node
containing the token. In each turn one of the two antagonistic players called Max and Min
chooses an edge starting in a node containing the token. As a result the token moves to the
endpoint of this edge, and then the next turn starts. To determine who makes a move in a
turn we are given in advance a partition of the nodes into two sets. If the token is in a node
from the first set, then Max makes a move, otherwise Min.

Players make infinitely many moves, and this yields an infinite trajectory of the token.
Technically, we assume that each node of the graph has at least one out-going edge so that
there is always at least one available move. To introduce competitiveness, we should somehow
compare the trajectories of the token with each other. For that we first fix some finite set A
and label the edges of the game graph by elements of A. We also fix a payoff φ which is
a function from the set of infinite sequences of elements of A to R. Each possible infinite
trajectory of the token is then mapped to a real number called the reward of this trajectory
as follows: we form an infinite sequence of elements of A by taking the labels of edges along
the trajectory, and apply φ to this sequence. The larger the reward is the more Max is happy;
on the contrary, Min wants to minimize the reward.

For both of the players we are interested in indicating an optimal strategy, i.e., an optimal
instruction of how to play in all possible developments of the games. To point out among all
the strategies the optimal ones we first introduce a notion of a value of a strategy. The value
of a Max’s strategy σ is the infimum of the payoff over all infinite trajectories, consistent
with the strategy. The reward of a play against σ cannot be smaller than its value, but can
be arbitrarily close to it. Now, a strategy of Max is called optimal if its value is maximal over
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10:2 Continuous Positional Payoffs

all Max’s strategies. Similarly, the value of a Min’s strategy is the supremum of the payoff
over all infinite trajectories, consistent with this Min’s strategy. Min’s strategies minimizing
the value are called optimal.

Observe that the value of any Min’s strategy is at least as large as the value of any Max’s
strategy. A pair (σ, τ) of a Max’s strategy σ and a Min’s strategy τ is called an equilibrium
if the value of σ equals the value of τ . Both strategies appearing in an equilibrium must be
optimal – one proves the optimality of the other. In this paper we only study the so-called
determined payoffs – payoffs for which all games on finite directed graphs with this payoff
have an equilibrium.

For general determined payoffs an optimal strategy might be rather complicated (since
the game is infinite, it might even have no finite description). For what determined payoffs
both players always have a “simple” optimal strategy? A word “simple” can be understood
in different ways [2], and this leads to different classes of determined payoffs. Among these
classes we study one for which “simple” is understood in, perhaps, the strongest sense possible.
Namely, we study a class of positionally determined payoffs.

For a positionally determined payoff all game graphs must have a pair of positional
strategies which is an equilibrium no matter in which node the game starts. Now, a positional
strategy is a strategy which totally ignores the previous trajectory of the token1 and only
looks at its current location. Formally, a positional strategy of Max maps each Max’s node
to an edge which starts in this node (i.e., to a single edge which Max will use whenever this
node contains the token). Min’s positional strategies are defined similarly.

A lot of works are devoted to concrete positionally determined payoffs that are of particular
interest in other areas of computer science. Classical examples of such payoffs are parity
payoffs, mean payoffs and (multi-)discounted payoffs [5, 21, 20, 23]. Their applications range
from logic, verification and finite automata theory [6, 12] to decision-making [22, 24] and
algorithm design [3].

Along with this specialized research, in [9, 10] Gimbert and Zielonka undertook a thorough
study of positionally determined payoffs in general. In [9] they showed that all the so-called
fairly mixing payoffs are positionally determined. They also demonstrated that virtually
all classical positionally determined payoffs are fairly mixing. Next, in [10] they established
a property of payoffs which is equivalent to positional determinacy. Despite being rather
technical, this property has a remarkable feature: if a payoff does not satisfy it, then this
payoff violates positional determinacy in some one-player game graph (where one of the
players owns all the nodes). As Gimbert and Zielonka indicate, this means that to establish
positional determinacy of a payoff it is enough to do so only for one-player game graphs.

One could try to gain more understanding about positionally determined payoffs that
satisfy certain additional requirements. Of course, this is interesting only if there are
practically important positionally determined payoffs that satisfy these requirements. One
such requirement studied in the literature is called prefix-independence [4, 8]. A payoff is
prefix-independent if it is invariant under throwing away any finite prefix from an infinite
sequence of edge labels. For instance, the parity and the mean payoffs are prefix-independent.

In [9] Gimbert and Zielonka briefly mention another interesting additional requirement,
namely, continuity. They observe that the multi-discounted payoffs are continuous (they
utilize this in showing that the multi-discounted payoffs are fairly mixing). In this paper
we study continuous positionally determined payoffs in more detail. Continuity of a payoff,

1 In particular, a node in which the game has started.
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loosely speaking, means that its range converges to just a single point as more and more
initial characters of an infinite sequence of edge labels are getting fixed. This contrasts with
prefix-independent payoffs (such as the parity and the mean payoffs), for which any initial
finite segment is irrelevant. Thus, continuity serves as a natural property which separates
the multi-discounted payoffs from the other classical positionally determined payoffs. This is
our main motivation to study continuous positionally determined payoffs in general, besides
the general importance of the notion of continuity.

We show that for continuous payoff positional determinacy is equivalent to a simple
property which we call prefix-monotonicity. Loosely speaking, prefix-monotonicity means the
result of a comparison of the payoff on two infinite sequences of labels does not change after
appending or deleting the same finite prefix. In fact, we prove this result in three different
ways, using three major techniques of establishing positional determinacy:

An inductive argument. Here we use a sufficient condition of Gimbert and Zielonka [9],
which is proved by induction on the number of edges of a game graph. This type of
argument goes back to a paper of Ehrenfeucht and Mycielski [5], where they provide an
inductive proof of the positional determinacy of the Mean Payoff Games.
A fixed point argument. Then we give a proof which uses a fixed point approach due to
Shapley [23]. Shapley’s technique is a standard way of establishing positional determinacy
of Discounted Games. In this argument one derives positional determinacy from the
existence of a solution to a certain system of equations (sometimes called Bellman’s
equations). In turn, to establish the existence of a solution one uses Banach’s fixed point
theorem.
A strategy improvement argument. For Discounted Games the existence of a solution to
Bellman’s equations can also be proved by strategy improvement. This technique goes
back to Howard [16]; for its thorough treatment (as well as for its applications to other
payoffs) we refer the reader to [7]. We generalize it to arbitrary continuous positionally
determined payoffs.

The simplest way to obtain our main result is via the inductive argument (at the cost of
appealing without a proof to the results of Gimbert and Zielonka). We provide two other
proofs for the following reasons.

First, they have applications (and it is unclear how to get these applications within
the framework of the inductive approach). The fixed point approach provides a precise
understanding of what do continuous positionally determined payoffs look like in general. In
the full version of this paper [19] we use this to answer a question of Gimbert [8] regarding
positional determinacy in more general stochastic games. In turn, the strategy improvement
approach has algorithmic consequences. More specifically, we show that a problem of finding
a pair of optimal positional strategies is solvable in randomized subexponential time for any
continuous positionally determined payoff.

Second, as far as we know, these two approaches were never used in such an abstract
setting before. Thus, we believe that our paper makes a useful addition to these approaches
from a technical viewpoint. For example, the main problem for the fixed point approach is
to identify a metric with which one can carry out the same “contracting argument” as in
the case of multi-discounted payoffs. To solve it, we obtain a result of independent interest
about compositions of continuous functions. As for the strategy improvement approach, our
main contribution is a generalization of such well-established tools as “modified costs” and
“potential transformation lemma” [15, Lemma 3.6].
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Organization of the paper. In Section 2 we formalize the concepts discussed in the
introduction. Then in Sections 3–6 we expose our results in more detail. In Section 7
we indicate some possible future directions. Most of the proofs are omitted due to space
constraints. In this version we provide only one of the three proofs of our main result
completely (namely, one by the induction argument). Missing proofs can be found in the full
version of this paper [19].

2 Preliminaries

We denote the function composition by ◦.

Sets and sequences. For two sets A and B by AB we denote the set of all functions from
B to A (sometime we will interpret AB as the set of vectors consisting of elements of A and
with coordinates indexed by elements of B). We write C = A ⊔B for three sets A,B,C if A
and B are disjoint and C = A ∪B.

For a set A by A∗ we denote the set of all finite sequences of elements of A and by Aω

we denote the set of all infinite sequences of elements of A. For w ∈ A∗ we let |w| be the
length of w. For α ∈ Aω we let |α| = ∞.

For u ∈ A∗ and v ∈ A∗ ∪ Aω we let uv denote the concatenation of u and v. We call
u ∈ A∗ a prefix of v ∈ A∗ ∪ Aω if for some w ∈ A∗ ∪ Aω we have v = uw. For w ∈ A∗ by
wAω we denote the set {wα | α ∈ Aω}. Alternatively, wAω is the set of all β ∈ Aω such that
w is a prefix of β.

For u ∈ A∗ and k ∈ N we use a notation

uk = uu . . . u︸ ︷︷ ︸
k times

.

In turn, we let uω ∈ Aω be a unique element of Aω such that uk is a prefix of uω for every
k ∈ N. We call α ∈ Aω ultimately periodic if α is a concatenation of u and vω for some
u, v ∈ A∗.

Graphs notation. By a finite directed graph G we mean a pair G = (V,E) of two finite
sets V and E equipped with two functions source, target : E → V . Elements of V are called
nodes of G and elements of E are called edges of G. For an edge e ∈ E we understand
source(e) (respectively, target(e)) as the node in which e starts (respectively, ends). We allow
parallel edges; i.e., there might be two distinct edges e, e′ ∈ E with source(e) = source(e′),
target(e) = target(e′). We allow self-loops as well (i.e., edges with source(e) = target(e)).

The out-degree of a node a ∈ V is |{e ∈ E | source(e) = a}|. A node a ∈ V is called a
sink if its out-degree is 0. We call a graph G sinkless if there are no sinks in G.

A path in G is a non-empty (finite or infinite) sequence of edges of G with a property
that target(e) = source(e′) for any two consecutive edges e and e′ from the sequence. For a
path p we define source(p) = source(e), where e is the first edge of p. For a finite path p we
define target(p) = target(e′), where e′ is the last edge of p.

For technical convenience we also consider 0-length paths. Each 0-length path is associated
with some node of G (so that there are |V | different 0-length paths). For a 0-length path p,
associated with a ∈ V , we define source(p) = target(p) = a.

When we write pq for two paths p and q we mean the concatenation of p and q (viewed
as sequences of edges). Of course, this is well-defined only if p is finite. Note that pq is not
necessarily a path. Namely, pq is a path if and only if target(p) = source(q).
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2.1 Deterministic infinite duration games on finite directed graphs

Mechanics of the game. By a game graph we mean a sinkless finite directed graph
G = ⟨V,E, source, target⟩, equipped with two sets VMax and VMin such that V = VMax ⊔VMin.

A game graph G = ⟨V = VMax ⊔ VMin, E, source, target⟩ induces a so-called infinite
duration game (IDG for short) on G. The game is always between two players called Max
and Min. Positions of the game are finite paths in G (informally, these are possible finite
trajectories of the token). We call a finite path p a Max’s (a Min’s) position if target(p) ∈ VMax
(if target(p) ∈ VMin). Max makes moves in Max’s positions and Min makes moves in Min’s
positions. We do not indicate any position as the starting one – it can be any node of G.

The set of moves available at a position p is the set {e ∈ E | source(e) = target(p)}. A
move e from a position p leads to a position pe.

A Max’s strategy σ in a game graph G is a mapping assigning to every Max’s position p a
move available at p. Similarly, a Min’s strategy τ in a game graph G is a mapping assigning
to every Min’s position p a move available at p.

Let P = e1e2e3 . . . be an infinite path in G. We say that P is consistent with a Max’s
strategy σ if the following conditions hold:

if s = source(P) ∈ VMax, then σ(s) = e1;

for every i ≥ 1 it holds that target(e1e2 . . . ei) ∈ VMax =⇒ ei+1 = σ(e1e2 . . . ei).
For a ∈ V and for a Max’s strategy σ we let Cons(a, σ) be a set of all infinite paths in G that
start in a and are consistent with σ. We use similar terminology and notation for strategies
of Min.

Given a Max’s strategy σ, a Min’s strategy τ and a ∈ V , we let the play of σ and τ from
a be a unique element of the intersection Cons(a, σ) ∩ Cons(a, τ). The play of σ and τ from
a is denoted by Pσ,τ

a .

Positional strategies. A Max’s strategy σ in a game graph G = ⟨V = VMax ⊔
VMin, E, source, target⟩ is called positional if σ(p) = σ(q) for all finite paths p and q in
G with target(p) = target(q) ∈ VMax. Clearly, a Max’s positional strategy σ can be repres-
ented as a mapping σ : VMax → E satisfying source(σ(u)) = u for all u ∈ VMax. We define
Min’s positional strategies analogously.

We call an edge e ∈ E consistent with a Max’s positional strategy σ if either source(e) ∈
VMin or source(e) ∈ VMax, e = σ(source(e)). We denote the set of edges that are consistent
with σ by Eσ. If τ is a Min’s positional strategy, then we say that an edge e ∈ E is consistent
with τ if either source(e) ∈ VMax or source(e) ∈ VMin, e = τ(source(e)). The set of edges that
are consistent with a Min’s positional strategy τ is denoted by Eτ .

Labels and payoffs. Let A be a finite set. A game graph G = ⟨, V = VMax ⊔
VMin, E, source, target⟩ equipped with a function lab : E → A is called an A-labeled game
graph. If p = e1e2e3 . . . is a (finite or infinite) path in an A-labeled game graph G = ⟨V =
VMax ⊔ VMin, E, source, target, lab⟩, we define lab(p) = lab(e1)lab(e2)lab(e3) . . . ∈ A∗ ∪Aω. A
payoff is a bounded function from Aω to R. Some papers allow A to be infinite and consider
only infinite sequences that contain finitely many elements of A (as any game graph contains
only finitely many labels). So basically we just have to deal with finite subsets of A, and this
can be done with our approach.

CONCUR 2021
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Values, optimal strategies and equilibria. Let A be a finite set, φ : Aω → R be a payoff
and G = ⟨V = VMax ⊔ VMin, E, source, target, lab⟩ be an A-labeled game graph. Take a Max’s
strategy σ in G. The value of σ in a node a ∈ V is the following quantity:

Val[σ](a) = inf φ ◦ lab
(
Cons(a, σ)

)
.

Similarly, if τ is a Min’s strategy in G, then the value of τ in a node a ∈ V is the following
quantity:

Val[τ ](a) = supφ ◦ lab
(
Cons(a, τ)

)
.

A Max’s strategy σ is called optimal if Val[σ](a) ≥ Val[σ′](a) for any a ∈ V and for any
Max’s strategy σ′. Similarly, A Min’s strategy τ is called optimal if Val[τ ](a) ≤ Val[τ ′](a) for
any a ∈ V and for any Min’s strategy τ ′.

Observe that for any Max’s strategy σ, for any Min’s strategy τ and for any a ∈ V we
have:

Val[σ](a) ≤ φ ◦ lab
(
Pσ,τ

a

)
≤ Val[τ ](a).

In particular, this inequality gives us the following. If a pair (σ, τ) of a Max’s strategy σ

and a Min’s strategy τ is such that Val[σ](a) = Val[τ ](a) for every a ∈ V , then both σ and
τ are optimal for their players. We call any pair (σ, τ) with Val[σ](a) = Val[τ ](a) for every
a ∈ V an equilibrium2. In fact, if at least one equilibrium exists, then the following holds:
the Cartesian product of the set of the optimal strategies of Max and the set of the optimal
strategies of Min is exactly the set of equilibria. We say that φ is determined if in every
A-labeled game graph there exists an equilibrium (with respect to φ).

Positionally determined payoffs . Let A be a finite set and φ : Aω → R be a payoff. We
call φ positionally determined if all A-labeled game graphs have (with respect to φ) an
equilibrium consisting of two positional strategies.

▶ Proposition 1. If A is a finite set, φ : Aω → R is a positionally determined payoff and
g : φ(Aω) → R is a non-decreasing3 function, then g ◦ φ is a positionally determined payoff.

2.2 Continuous payoffs
For a finite set A, we consider the set Aω as a topological space. Namely, we take the discrete
topology on A and the corresponding product topology on Aω. In this product topology
open sets are sets of the form

S =
⋃

u∈S

uAω,

where S ⊆ A∗. When we say that a payoff φ : Aω → R is continuous we always mean
continuity with respect to this product topology (and with respect to the standard topology
on R). The following proposition gives a convenient way to establish continuity of payoffs.

2 This definition is equivalent to a more standard one: (σ, τ) is an equilibrium if and only if σ is a “best
response” to τ in every node, and vice versa.

3 Throughout the paper we call a function f : S → R, S ⊆ R non-decreasing if for all x, y ∈ S with x ≤ y
we have f(x) ≤ f(y).
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▶ Proposition 2. Let A be a finite set. A payoff φ : Aω → R is continuous if and only if for
any α ∈ Aω and for any infinite sequence {βn}∞

n=1 of elements of Aω the following holds. If
for all n ≥ 1 the sequences α and βn coincide in the first n elements, then lim

n→∞
φ(βn) exists

and equals φ(α).

For a finite A by Tychonoff’s theorem the space Aω is compact (because any finite set
A with the discrete topology is compact). This has the following consequence which is
important for this paper: if φ : Aω → R is a continuous payoff, then φ(Aω) is a compact
subset of R.

3 Statement of the Main Result and Preliminary Discussion

Our main result establishes a simple property which is equivalent to positional determinacy
for continuous payoffs.

▶ Definition 3. Let A be a finite set. A payoff φ : Aω → R is called prefix-monotone if
there are no u, v ∈ A∗, β, γ ∈ Aω such that φ(uβ) > φ(uγ) and φ(vβ) < φ(vγ).

(One can note that prefix-independence trivially implies prefix-monotonicity. On the
other hand, no prefix-independent payoff which takes at least 2 values is continuous.)

▶ Theorem 4. Let A be a finite set and φ : Aω → R be a continuous payoff. Then φ is
positionally determined if and only if φ is prefix-monotone.

The fact that any continuous positionally determined payoff must be prefix-monotone4 is
proved in Appendix A. Three different proofs of the “if” part of Theorem 4 are discussed in,
respectively, Sections 4, 5 and 6. Before going into the proofs, let us discuss the notions of
continuity and prefix-monotonicity by means of the multi-discounted payoffs.

▶ Definition 5. A payoff φ : Aω → R for a finite set A is multi-discounted if there are
functions λ : A → [0, 1) and w : A → R such that

φ(a1a2a3 . . .) =
∞∑

n=1
λ(a1) · . . . · λ(an−1) · w(an) (1)

for all a1a2a3 . . . ∈ Aω.

A few technical remarks: since the set A is finite, the coefficients λ(a) are bounded away
from 1 uniformly over a ∈ A. This ensures that the series (1) converges. In fact, this
means that a tail of this series converges to 0 uniformly over a1a2a3 . . . ∈ Aω. Thus, the
multi-discounted payoffs are continuous. As the multi-discounted payoffs are positionally
determined, by Theorem 4 they also must be prefix-monotone. Of course, prefix-monotonicity
of the multi-discounted payoffs can be established without Theorem 4. Indeed, from (1) it is
easy to derive that φ(aβ) − φ(aγ) = λ(a) · (φ(β) − φ(γ)) for all a ∈ A, β, γ ∈ Aω. Due to
the condition λ(a) ≥ 0, we have that φ(aβ) > φ(aγ) implies that φ(β) > φ(γ). Moreover,
the same holds if we append more than one character to β and γ. Hence it is impossible
to simultaneously have φ(uβ) > φ(uγ) and φ(vβ) < φ(vγ) for u, v ∈ A∗, as required in the
definition of prefix-monotonicity.

4 Here it is crucial that in our definition of positional determinacy we require that some positional strategy
is optimal for all the nodes. Allowing each starting node to have its own optimal positional strategy
gives us a weaker, “non-uniform” version of positional determinacy. It is not clear whether non-uniform
positional determinacy implies prefix-monotonicity. At the same time, we are not even aware of a payoff
which is positional only “non-uniformly”.

CONCUR 2021
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4 Inductive Argument

Here we show that any continuous prefix-monotone payoff is positionally determined using a
sufficient condition of Gimbert and Zielonka [9, Theorem 1], which, in turn, is proved by
an inductive argument. As Gimbert and Zielonka indicate [9, Lemma 2], their sufficient
condition takes the following form for continuous payoffs5.

▶ Proposition 6. Let A be a finite set. Any continuous payoff φ : Aω → R, satisfying the
following two conditions:

(a) for all u ∈ A∗ and α, β ∈ Aω we have that φ(α) ≤ φ(β) =⇒ φ(uα) ≤ φ(uβ);
(b) for all non-empty u ∈ A∗ and for all α ∈ Aω we have that

min{φ(uω), φ(α)} ≤ φ(uα) ≤ max{φ(uω), φ(α)};

is positionally determined.

We observe that one can get rid of the condition (b) in this Proposition.

▶ Proposition 7. For continuous payoffs the condition (a) of Proposition 6 implies the
condition (b) of Proposition 6.

Proof. See Appendix B. ◀

So to establish positional determinacy of a continuous payoff it is enough to demonstrate
that this payoff satisfies the condition (a) of Proposition 6. Let us now reformulate this
condition using the following definition.

▶ Definition 8. Let A be a finite set. A payoff φ : Aω → R is called shift-deterministic if
for all a ∈ A, β, γ ∈ Aω we have φ(β) = φ(γ) =⇒ φ(aβ) = φ(aγ).

▶ Observation 9. Let A be a finite set. A payoff φ : Aω → R satisfies the condition (a) of
Proposition 6 if and only if φ is prefix-monotone and shift-deterministic.

The above discussion gives the following sufficient condition for positional determinacy.

▶ Proposition 10. Let A be a finite set. Any continuous prefix-monotone shift-deterministic
payoff φ : Aω → R is positionally determined.

Still, some argument is needed for continuous prefix-monotone payoffs that are not
shift-deterministic. To tie up loose ends we prove the following:

▶ Proposition 11. Let A be a finite set and let φ : Aω → R be a continuous prefix-monotone
payoff. Then φ = g ◦ ψ for some continuous prefix-monotone shift-deterministic payoff
ψ : Aω → R and for some continuous6 non-decreasing function g : ψ(Aω) → R.

Proof. See Appendix C. ◀

Due to Proposition 1 this finishes our first proof of Theorem 4. In fact, we do not need
continuity of g here, but it will be useful later.

5 Lemma 2 can only be found in the HAL version of their paper.
6 Throughout the paper we call a function f : S → R, S ⊆ Rn continuous if f is continuous with respect

to a restriction of the standard topology of Rn to S.
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5 Fixed point argument

Here we present a way of establishing positional determinacy of continuous prefix-monotone
shift-deterministic payoffs (Proposition 10) via a fixed point argument. Together with
Proposition 11 this constitutes our second proof of Theorem 4.

Obviously, for any shift-deterministic payoff φ : Aω → R and for any a ∈ A there is
a unique function shift[a, φ] : φ(Aω) → φ(Aω) such that shift[a, φ]

(
φ(β)

)
= φ(aβ) for all

β ∈ Aω.

▶ Observation 12. A shift-deterministic payoff φ : Aω → R is prefix-monotone if and only
if shift[a, φ] is non-decreasing for every a ∈ A.

We use this notation to introduce the so-called Bellman’s equations, playing a key role in
our fixed point argument.

▶ Definition 13. Let A be a finite set, φ : Aω → R be a shift-deterministic payoff and
G = ⟨V = VMax ⊔ VMin, E, source, target, lab⟩ be an A-labeled game graph.

The following equations in x ∈ φ(Aω)V are called Bellman’s equations for φ in G:

xu = max
e∈E,source(e)=u

shift[lab(e), φ]
(
xtarget(e)

)
, for u ∈ VMax, (2)

xu = min
e∈E,source(e)=u

shift[lab(e), φ]
(
xtarget(e)

)
, for u ∈ VMin. (3)

The most important step of our argument is to show the existence of a solution to
Bellman’s equations.

▶ Proposition 14. For any finite set A, for any continuous prefix-monotone shift-deterministic
payoff φ : Aω → R and for any A-labeled game graph G there exists a solution to Bellman’s
equations for φ in G.

(One can also show the uniqueness of a solution, but we do not need this for the argument).
This proposition requires some additional work, and we first discuss how to derive

positional determinacy of continuous prefix-monotone shift-deterministic payoffs from it.
Assume that we are give a solution x to (2–3). How can one extract an equilibrium of
positional strategies from it? For that we take any pair of positional strategies that use
only x-tight edges. Now, an edge e is x-tight if xsource(e) = shift[a, φ](xtarget(e)). Note
that each node must contain an out-going x-tight edge (this will be any edge on which
the maximum/minimum in (2–3) is attained for this node). So clearly each player has at
least one positional strategy which only uses x-tight edges. It remains to show that for
continuous prefix-monotone shift-deterministic φ any two such strategies of the players form
an equilibrium.

▶ Lemma 15. If A is a finite set, φ : Aω → R is a continuous prefix-monotone shift-
deterministic payoff, and x ∈ φ(Aω)V is a solution to (2–3) for an A-labeled game graph
G = ⟨V = VMax ⊔ VMin, E, source, target, lab⟩, then the following holds. Let σ∗ be a positional
strategy of Max and τ∗ be a positional strategy of Min such that σ∗(VMax) and τ∗(VMin)
consist only of x-tight edges. Then (σ∗, τ∗) is an equilibrium in G.

We now proceed to details of our proof of Proposition 14. Consider a function
T : φ(Aω)V → φ(Aω)V , mapping x ∈ φ(Aω)V to the vector of the right-hand sides of
(2–3). We should argue that T has a fixed point. For that we will construct a continuous
metric D : φ(Aω)V × φ(Aω)V → [0,+∞) with respect to which T is contracting. More
precisely, D(Tx, Ty) will always be smaller than D(x,y) as long as x and y are distinct.
Due to the compactness of the domain of T this will prove that T has a fixed point.
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10:10 Continuous Positional Payoffs

Now, to construct such D we show that for continuous shift-deterministic φ there must
be a continuous metric d : φ(Aω) × φ(Aω) → [0,+∞) such that for all a ∈ A the function
shift[a, φ] is d-contracting. Once we have such d, we let D(x,y) be the maximum of
d(xa,ya) over a ∈ V . Checking that T is contracting with respect to such D will be rather
straightforward (technically, we will need an additional property of d which can be derived
from the prefix-monotonicity of φ).

The main technical challenge is to prove the existence of d. In the full version of this
paper we do so via the following general fact about compositions of continuous functions.

▶ Theorem 16. Let K ⊆ R be a compact set, m ≥ 1 be a natural number and f1, . . . , fm : K →
K be m continuous functions. Then the following two conditions are equivalent:

(a) for any a1a2a3 . . . ∈ {1, 2, . . . ,m}ω we have limn→∞ diam
(
fa1 ◦fa2 ◦ . . .◦fan

(K)
)

= 0
(by diam(S) for S ⊆ R we mean supx,y∈S |x− y|);
(b) there exists a continuous metric d : K ×K → [0,+∞) such that f1, f2, . . . , fm are all
d-contracting (a function h : K → K is called d-contracting if for all x, y ∈ K with x ≠ y

we have d(h(x), h(y)) < d(x, y)).
If f1, . . . , fm are non-decreasing, then one can strengthen item (b) by demanding that
d satisfies the following property: for all x, y, s, t ∈ K with x ≤ s ≤ t ≤ y we have
d(s, t) ≤ d(x, y).

Namely, we apply this theorem to the functions shift[a, φ] for a ∈ A (for that we first
show that the continuity of φ implies that these functions satisfy item (a) of Theorem 16).

Applications of the fixed point technique
Theorem 16 additionally provides an exhaustive method of generating continuous positionally
determined payoffs.

▶ Theorem 17. Let m be a natural number. The set of continuous positionally determined
payoffs from7 {1, 2, . . . ,m}ω to R coincides with the set of φ that can be obtained in the
following 5 steps.

Step 1. Take a compact set K ⊆ R.
Step 2. Take a continuous metric d : K ×K → [0,+∞).
Step 3. Take m non-decreasing d-contracting functions f1, f2, . . . , fm : K → K (they
will automatically be continuous due to continuity of d).
Step 4. Define ψ : {1, . . . ,m}ω → K so that

{ψ(a1a2a3 . . .)} =
∞⋂

n=1
fa1 ◦ fa2 ◦ . . . ◦ fan

(K)

for every 8 a1a2a3 . . . ∈ {1, 2, . . . ,m}ω.
Step 5. Choose a continuous non-decreasing function g : ψ({1, 2, . . . ,m}ω) → R and set
φ = g ◦ ψ.

▶ Remark 18. Recall that we did not use continuity of g from Proposition 11 in the inductive
argument. It becomes important for Theorem 17 – otherwise we could not argue that all
continuous positionally payoffs can be obtained in these 5 steps.

7 Of course, in this theorem a set of labels can be any finite set, we let it be {1, 2, . . . , m} for some m ∈ N
just to simplify the notation.

8 Note that this intersection always consists of a single point due to Cantor’s intersection theorem and
item (a) of Theorem 16. This will also be limn→∞ fa1 ◦ fa2 ◦ . . . ◦ fan (x) for any x ∈ K.
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We get the multi-discounted payoffs when the functions f1, f2, . . . , fm are affine, each
with the slope from [0, 1). In this case they will be contracting with respect to a standard
metric d(x, y) = |x − y|. We get the whole set of continuous positionally determined
payoffs by relaxing the multi-discounted payoffs in the following three regards: (a) functions
f1, f2, . . . , fm do not have to be affine; (b) d can be an arbitrary continuous metric; (c) any
continuous non-decreasing function g can be applied to a payoff.

We use Theorem 17 to construct a continuous positionally determined payoff which does
not “reduce” to the multi-discounted ones, in a sense of the following definition.

▶ Definition 19. Let A be a finite set, φ,ψ : Aω → R be two payoffs, and G be an A-labeled
game graph. We say that φ positionally reduces to ψ inside G if any pair of positional
strategies in G which is an equilibrium for ψ is also an equilibrium for φ.

This definition has an algorithmic motivation. Namely, note that finding a positional
equilibrium for ψ in G is at least as hard as for φ, provided that φ reduces to ψ inside
G. There are classical reductions from Parity to Mean Payoff games [17] and from Mean
Payoff to Discounted games [25] that work in exactly this way. See also [11] for a reduction
from Priority Mean Payoff games to Multi-Discounted games. As far as we know, our next
proposition provides the first example of a positionally determined payoff which does not
reduce to the multi-discounted ones in this sense.

▶ Proposition 20. There exist a finite set A, a continuous positionally determined payoff
φ : Aω → R and an A-labeled game graph G such that there exists no multi-discounted payoff
to which φ reduces inside G.

Proposition 20 means, in particular, that there exists a continuous positionally determined
payoff which differs from all the multi-discounted ones (as was stated in Section 3). This fact
alone can be used to disprove a conjecture of Gimbert [8]. Namely, Gimbert conjectured the
following: “Any payoff function which is positional for the class of non-stochastic one-player
games is positional for the class of Markov decision processes”. To show that this is not the
case, in the full version of this paper [19] we establish that all continuous payoffs that are
positionally determined in Markov decision processes are multi-discounted.

6 Strategy improvement argument

Here we establish the existence of a solution to Bellman’s equations (Proposition 14) via
the strategy improvement. This will yield our third proof of Theorem 4. We start with an
observation that a vector of values of a positional strategy always gives a solution9 to a
restriction of Bellman’s equations to edges that are consistent with this strategy.

▶ Lemma 21. Let A be a finite set, φ : Aω → R be a continuous prefix-monotone shift-
deterministic payoff and G = ⟨V = VMax ⊔ VMin, E, source, target, lab⟩ be an A-labeled game
graph. Then for every positional strategy σ of Max in G we have:

Val[σ](u) = shift[lab(σ(u)), φ]
(

Val[σ]
(
target(σ(u))

))
for u ∈ VMax,

Val[σ](u) = min
e∈E,source(e)=u

shift[lab(e), φ]
(

Val[σ](target(e))
)

for u ∈ VMin.

9 Bellman’s equations involve the functions shift[a, φ] for a ∈ A, and these functions are defined on φ(Aω).
So formally we should argue that the values of any strategy belong to φ(Aω). Indeed, for continuous
φ the set φ(Aω) is compact and hence is closed, and all values are the infimums/supremums of some
subsets of φ(Aω).
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10:12 Continuous Positional Payoffs

Next, take a positional strategy σ of Max. If the vector {Val[σ](u)}u∈V happens to
be a solution to the Bellman’s equations, then we are done. Otherwise by Lemma 21
there must exist an edge e ∈ E with source(e) ∈ VMax such that Val[σ](source(e)) <

shift[lab(e), φ]
(
Val[σ](target(e))

)
. We call edges satisfying this property σ-violating. We show

that switching σ to any σ-violating edge gives us a positional strategy which improves σ.

▶ Lemma 22. Let A be a finite set, φ : Aω → R be a continuous prefix-monotone shift-
deterministic payoff and G = ⟨V = VMax ⊔ VMin, E, source, target, lab⟩ be an A-labeled game
graph. Next, let σ be a positional strategy of Max in G. Assume that the vector Val[σ] =
{Val[σ](u)}u∈V does not satisfy (2–3) and let e′ ∈ E be any σ-violating edge. Define a
positional strategy σ′ of Max as follows:

σ′(u) =
{
e′ u = source(e′),
σ(u) otherwise.

Then
∑

u∈V

Val[σ′](u) >
∑

u∈V

Val[σ](u).

By this lemma, a Max’s positional strategy σ∗ maximizing the quantity
∑

u∈V Val[σ](u) (over
positional strategies σ of Max) gives a solution to (2–3). Such σ∗ exists just because there are
only finitely many positional strategies of Max. This finishes our strategy improvement proof
of Proposition 14. Let us note that the same argument can be carried out with positional
strategies of Min (via analogues of Lemma 21 and Lemma 22 for Min).

Applications of the strategy improvement technique
In this subsection we discuss implications of our strategy improvement argument to the
strategy synthesis problem. Strategy synthesis for a positionally determined payoff φ is an
algorithmic problem of finding an equilibrium (with respect to φ) of two positional strategies
for a given game graph. It is classical that strategy synthesis for classical positionally
determined payoffs admits a randomized algorithm which is subexponential in the number
of nodes [14, 1]. We obtain the same subexponential bound for all continuous positionally
determined payoffs. From a technical viewpoint, we just observe that a technique which
was used for classical positionally determined payoffs is applicable in a more general setting.
Specifically, we use a framework of recursively local-global functions due to Björklund and
Vorobyov [1].

Let us start with an observation that for continuous positionally determined shift-
deterministic payoffs a non-optimal positional strategy can always be improved by changing
it just in a single node.

▶ Proposition 23. Let A be a finite set and φ : Aω → R be a continuous positionally
determined shift-deterministic payoff. Then for any A-labeled game graph G = ⟨V =
VMax ⊔ VMin, E, source, target, lab⟩ the following two conditions hold:

if σ is a non-optimal positional strategy of Max in G, then in G there exists a Max’s
positional strategy σ′ such that |{u ∈ VMax | σ(u) ̸= σ′(u)}| = 1 and

∑
u∈V Val[σ′](u) >∑

u∈V Val[σ](u);
if τ is a non-optimal positional strategy of Min in G, then in G there exists a Min’s
positional strategy τ ′ such that |{u ∈ VMin | τ(u) ̸= τ ′(u)}| = 1 and

∑
u∈V Val[τ ′](u) <∑

u∈V Val[τ ](u).

It is instructive to visualize this proposition by imagining the set of positional strategies
of one of the players (say, Max) as a hypercube. Namely, in this hypercube there will be as
many dimensions as there are nodes of Max. A coordinate corresponding to a node u ∈ VMax
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will take values in the set of edges that start at u. Obviously, vertices of such hypercube are
in a one-to-one correspondence with positional strategies of Max. Let us call two vertices
neighbors of each other if they differ in exactly one coordinate. Now, Proposition 23 means
in this language the following: any vertex σ, maximizing

∑
u∈V Val[σ](u) over its neighbors,

also maximizes this quantity over the whole hypercube.
So an optimization problem of maximizing

∑
u∈V Val[σ](u) (equivalently, finding an

optimal positional strategy of Max) has the following remarkable feature: all its local maxima
are also global. For positional strategies of Min the same holds for the minima. Optimization
problems with this feature are in a focus of numerous works, starting from a classical area of
convex optimization.

Observe that in our case this local-global property is recursive; i.e., it holds for any
restriction to a subcube of our hypercube. Indeed, subcubes correspond to subgraphs of
our initial game graph, and for any subgraph we still have Proposition 23. Björklund and
Vorobyov [1] noticed that a similar phenomenon occurs for all classical positionally determined
payoffs. In turn, they showed that any optimization problem on a hypercube with this
recursive local-global property admits a randomized algorithm which is subexponential in the
dimension of a hypercube. In our case this yields a randomized algorithm for the strategy
synthesis problem which is subexponential in the number of nodes of a game graph.

Still, this only applies to continuous payoffs that are shift-deterministic (as we have
Proposition 23 only for shift-deterministic payoffs). One more issue is that we did not specify
how our payoffs are represented. We overcome these difficulties in the following result.

▶ Theorem 24. Let A be a finite set and φ : Aω → R be a continuous positionally determined
payoff. Consider an oracle which for given u, v, a, b ∈ A∗ tells, whether there exists w ∈ A∗

such that φ(wu(v)ω) > φ(wa(b)ω). There exists a randomized algorithm which with this
oracle solves the strategy synthesis problem for φ in expected e

O
(

log m+
√

n log m
)

time for
game graphs with n nodes and m edges. In particular, every call to the oracle in the
algorithm is for u, v, a, b ∈ A∗ that are of length O(n), and the expected number of the calls
is eO

(
log m+

√
n log m

)
.

So to deal with the issue of representation we assume a suitable oracle access to φ. Still,
the oracle from Theorem 24 might look unmotivated. Here it is instructive to recall that
all continuous positionally determined φ must be prefix-monotone. For prefix-monotone
φ a formula ∃w ∈ A∗ φ(wα) > φ(wβ) defines a total preorder on Aω, and our oracle
just compares ultimately periodic sequences according to this preorder. In fact, it is easy
to see that the formula ∃w ∈ A∗ φ(wα) > φ(wβ) defines a total preorder on Aω if and
only if φ is prefix-monotone. This indicates a fundamental role of this preorder for prefix-
monotone φ and justifies a use of the corresponding oracle in Theorem 24. Let us note that[
∃w ∈ A∗ φ(wα) > φ(wβ)

]
⇐⇒ φ(α) > φ(β) if φ is additionally shift-deterministic.

7 Discussion

As Gimbert and Zielonka show by their characterization of the class of positionally determined
payoffs [10], positional determinacy can always be proved by an inductive argument. Does
the same hold for two other techniques that we have considered in the paper – the fixed
point technique and the strategy improvement technique? The answer is positive in the
continuous case, so this suggests that the answer might also be positive at least in some
other special cases, for instance, for prefix-independent payoffs. E.g., for the mean payoff,
a major example of a prefix-independent positionally determined payoff, both the strategy
improvement and the fixed point arguments are applicable [13, 18].
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10:14 Continuous Positional Payoffs

These questions are specifically interesting for the strategy improvement argument. Indeed,
strategy improvement usually leads to subexponential-time (randomized) algorithms for the
strategy synthesis. So this resonates with a question of how hard strategy synthesis for a
positionally determined payoff can be. Loosely speaking, do we have this subexponential
bound for all positionally determined payoffs (as we do, by Theorem 24, for all such payoffs
that are additionally continuous)?

Finally, is it possible to characterize positionally determined payoffs more explicitly (say,
as in Theorem 17)? This question sounds more approachable in special cases, and a natural
special case to start is again the prefix-independent case.
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A The “Only If” Part of Theorem 4

Assume that φ is not prefix-monotone. Then for some u, v ∈ A∗ and α, β ∈ Aω we have

φ(uα) > φ(uβ) and φ(vα) < φ(vβ). (4)

First, notice that by continuity of φ we may assume that α and β are ultimately periodic.
Indeed, consider any two sequences {αn}n∈N and {βn}n∈N of ultimately periodic sequences
from Aω such that αn and α (respectively, βn and β) have the same prefix of length n. Then
from continuity of φ (by Proposition 2) we have:

lim
n→∞

φ(uαn) = φ(uα), lim
n→∞

φ(vαn) = φ(vα),

lim
n→∞

φ(uβn) = φ(uβ), lim
n→∞

φ(vβn) = φ(vβ).

So if u, v, α, β violate prefix-monotonicity, then so do u, v, αn, βn for some n ∈ N.
Now, if α, β are ultimately periodic, then α = p(q)ω and β = w(r)ω for some p, q, w, r ∈ A∗.

Consider an A-labeled game graph from Figure 1 (all nodes there are owned by Max).

a

b

c

a

a
u

v w

p
q

r

Figure 1 A game graph where φ is not positionally determined.

In this game graph there are two positional strategies of Max, one which from c goes by
p and the other which goes from c by w. The first one is not optimal when the game starts
in b, and the second one is not optimal when the game starts in a (because of (4)). So φ is
not positionally determined in this game graph.
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B Proof of Proposition 7

We only show that φ(uα) ≤ max{φ(uω), φ(α)}, the other inequality can be proved similarly.
If φ(uα) ≤ φ(α), then we are done. Assume now that φ(uα) > φ(α). By repeatedly applying
(a) we obtain φ(ui+1α) ≥ φ(uiα) for every i ∈ N. In particular, for every i ≥ 1 we get that
φ(uiα) ≥ φ(uα). By continuity of φ the limit of φ(uiα) as i → ∞ exists and equals φ(uω).
Hence φ(uω) ≥ φ(uα).

C Proof of Proposition 11

Define a payoff ψ : Aω → R as follows:

ψ(γ) =
∑

w∈A∗

(
1

|A| + 1

)|w|

φ(wγ), γ ∈ Aω. (5)

First, why is ψ well-defined, i.e., why does this series converge? Since Aω is compact, so is
φ(Aω) ⊆ R, because φ is continuous. Hence φ(Aω) ⊆ [−W,W ] for some W > 0 and (5) is
bounded by the following absolutely converging series:

∑
w∈A∗

W ·
(

1
|A| + 1

)|w|

.

We shall show that ψ is continuous, prefix-monotone and shift-deterministic, and that
φ = g ◦ ψ for some continuous non-decreasing g : ψ(Aω) → R.

Why is ψ continuous? Consider any α ∈ Aω and any infinite sequence {βn}n∈N of elements
of Aω such that for all n the sequences α and βn coincide in the first n elements. We have
to show that ψ(βn) converges to ψ(α) as n → ∞. By definition:

ψ(βn) =
∑

w∈A∗

(
1

|A| + 1

)|w|

φ(wβn), ψ(α) =
∑

w∈A∗

(
1

|A| + 1

)|w|

φ(wα).

The first series, as we have seen, is bounded uniformly (in n) by an absolutely converging
series. So it remains to note that the first series converges to the second one term-wise, by
continuity of φ.

Why is ψ prefix-monotone? Let α, β ∈ Aω. We have to show that either ψ(uα) ≥ ψ(uβ)
for all u ∈ A∗ or ψ(uα) ≤ ψ(uβ) for all u ∈ A∗.

Since φ is prefix-monotone, then either φ(wα) ≥ φ(wβ) for all w ∈ A∗ or φ(wα) ≤ φ(wβ)
for all w ∈ A∗. Up to swapping α and β we may assume that φ(wα) ≥ φ(wβ) for all w ∈ A∗.
Then for any u ∈ A∗ the difference

ψ(uα) − ψ(uβ) =
∑

w∈A∗

(
1

|A| + 1

)|w| [
φ(wuα) − φ(wuβ)

]
consists of non-negative terms. Hence ψ(uα) ≥ ψ(uβ) for all u ∈ A∗, as required.
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Why is ψ shift-deterministic? Take any a ∈ A and β, γ ∈ Aω with ψ(β) = ψ(γ). We have
to show that ψ(aβ) = ψ(aγ). Indeed, assume that

0 = ψ(β) − ψ(γ) =
∑

w∈A∗

(
1

|A| + 1

)|w| [
φ(wβ) − φ(wγ)

]
.

If this series contains a non-zero term, then it must contain a positive term and a negative
term. But this contradicts prefix-monotonicity of φ. So all the terms in this series must be 0.
The same then must hold for a series:

ψ(aβ) − ψ(aγ) =
∑

w∈A∗

(
1

|A| + 1

)|w| [
φ(waβ) − φ(waγ)

]
(all the terms in this series also appear in the series for ψ(β) − ψ(γ)). So we must have
ψ(aβ) = ψ(aγ).

Why φ = g ◦ ψ for some continuous non-decreasing g : ψ(Aω) → R? Let us first show
that

φ(α) > φ(β) =⇒ ψ(α) > ψ(β) for all α, β ∈ Aω. (6)

Indeed, if φ(α) > φ(β), then we also have φ(wα) ≥ φ(wβ) for every w ∈ A∗, by prefix-
monotonicity of φ. Now, by definition,

ψ(α) − ψ(β) =
∑

w∈A∗

(
1

|A| + 1

)|w| [
φ(wα) − φ(wβ)

]
.

All the terms in this series are non-negative, and the term corresponding to the empty w is
strictly positive. So we have ψ(α) > ψ(β), as required.

Now, let us demonstrate that (6) implies that φ = g ◦ ψ for some non-decreasing
g : ψ(Aω) → R. Namely, define g as follows. For x ∈ ψ(Aω) take an arbitrary γ ∈ ψ−1(x)
and set g(x) = φ(γ). First, why do we have φ = g ◦ ψ? By definition, g(ψ(α)) = φ(γ) for
some γ ∈ Aω with ψ(α) = ψ(γ). By (6) we also have φ(α) = φ(γ), so g(ψ(α)) = φ(γ) = φ(α),
as required. Now, why is g non-decreasing? I.e., why for all x, y ∈ ψ(Aω) we have x ≤ y =⇒
g(x) ≤ g(y)? Indeed, g(x) = φ(γx), g(y) = φ(γy) for some γx ∈ ψ−1(x) and γy ∈ ψ−1(y).
Now, since x ≤ y, we have x = ψ(γx) ≤ ψ(γy) = y. By taking the contraposition of (6) we
get that g(x) = φ(γx) ≤ φ(γy) = g(y), as required.

Finally, we show that any g : ψ(Aω) → R with φ = g ◦ψ must be continuous. For that we
show that |g(x)−g(y)| ≤ |x−y| for all x, y ∈ ψ(Aω). Take any α, β ∈ Aω with x = ψ(α) and
y = ψ(β). By prefix-monotonicity of φ we have that either φ(wα) ≥ φ(wβ) for all w ∈ A∗

or φ(wα) ≤ φ(wβ) for all w ∈ A∗. Up to swapping x and y we may assume that the first
option holds. Then

ψ(α) − ψ(β) =
∑

w∈A∗

(
1

|A| + 1

)|w| [
φ(wα) − φ(wβ)

]
≥ φ(α) − φ(β) ≥ 0.

On the left here we have x− y, and on the right we have φ(α) −φ(β) = g ◦ψ(α) − g ◦ψ(β) =
g(x) − g(y).
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