
Fibrational Initial Algebra-Final Coalgebra
Coincidence over Initial Algebras:
Turning Verification Witnesses Upside Down
Mayuko Kori #

The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
National Institute of Informatics, Tokyo, Japan

Ichiro Hasuo #

The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
National Institute of Informatics, Tokyo, Japan

Shin-ya Katsumata #

National Institute of Informatics, Tokyo, Japan

Abstract
The coincidence between initial algebras (IAs) and final coalgebras (FCs) is a phenomenon that
underpins various important results in theoretical computer science. In this paper, we identify a
general fibrational condition for the IA-FC coincidence, namely in the fiber over an initial algebra
in the base category. Identifying (co)algebras in a fiber as (co)inductive predicates, our fibrational
IA-FC coincidence allows one to use coinductive witnesses (such as invariants) for verifying inductive
properties (such as liveness). Our general fibrational theory features the technical condition of
stability of chain colimits; we extend the framework to the presence of a monadic effect, too, restricting
to fibrations of complete lattice-valued predicates. Practical benefits of our categorical theory are
exemplified by new “upside-down” witness notions for three verification problems: probabilistic
liveness, and acceptance and model-checking with respect to bottom-up tree automata.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases initial algebra, final coalgebra, fibration, category theory

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.21

Related Version Extended Version: https://arxiv.org/abs/2105.04817

Funding Ichiro Hasuo: ERATO HASUO Metamathematics for Systems Design Project (No. JP-
MJER1603), JST
Shin-ya Katsumata: ERATO HASUO Metamathematics for Systems Design Project (No. JP-
MJER1603), JST

1 Introduction

Categorical Algebras and Coalgebras. Categorical algebras and coalgebras are omnipresent
in theoretical computer science. For a category C and an endofunctor F : C → C, an
F -algebra is a C-morphism a : FX → X, while an F -coalgebra is c : X → FX. These
structures occur in many different settings with different C and F ; the identification of such
(co)algebras has yielded a number of concrete benefits, such as rigorous system/program
semantics, verification methods, and programming language constructs.

One principal use of categorical (co)algebras is as models of data structures such as
terms and state-based systems. Examples include modeling of inductive datatypes by initial
algebras [6], and the theory of coalgebras [18,26] that captures state-based behaviors. Here,
the base category C is typically that of (structured) sets and (structure-preserving) maps.
(In this paper, such a category will constitute a base category of a fibration).
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Another principal use of (co)algebras is as logical recursive specifications. Here the base
category C is typically a complete lattice of truth values (such as 2 = {⊥, ⊤}) and the functor
F : C → C is identified with a monotone function. Liveness properties are modeled by least
fixed points (lfp’s); safety properties are greatest ones (gfp’s); and by the classic Knaster–
Tarski theorem, these are identified with initial algebras and final coalgebras, respectively.
(In this paper, such a category will appear as a fibre category of a fibration).

Initial Algebras and Final Coalgebras. In the above variety of occurrences of (co)algebras,
initial algebras and final coalgebras play key roles. Their definition is by suitable universality:
β : F (µF ) → µF is initial if there is a unique algebra morphism from β to an arbitrary
algebra a : FX → X; and dually for final coalgebras.

F (µF )
∼=init. ��

// FX
��

µF // X

FX // F (νF )

X //

OO

νF
∼= final
OO

Their (co)algebra structures are isomorphisms by the Lambek lemma. The latter extends
the Knaster–Tarski theorem from lattices to categories.

In many occurrences of (co)algebras in computer science, initial algebras represent finitary
entities while final coalgebras represent infinitary entities. For example, when C = Set (the
category of sets and functions) and F is a functor that models a datatype constructor, the
carrier µF of an initial algebra represents the inductive datatype – collecting all finite trees
“of shape F” – while the carrier νF of a final coalgebra is for the coinductive datatype and
collects all (finite and infinite) trees. This intuition is found also in the logical (co)algebras:
liveness properties (initial algebras) can be witnessed within finitely many steps, while safety
properties (final coalgebras) are verified only after infinitely many steps.

Initial Algebra-Final Coalgebra Coincidence. In this paper, we are interested in the
coincidence of an initial algebra and a final coalgebra (the IA-FC coincidence). While it may
sound unlikely in view of the contrast between finitary and infinitary, the coincidence has
been found in different areas in computer science, underpinning fundamental results.

One example is in domain theory: cpo-enrichment yields the IA-FC coincidence, which
is used to solve recursive domain equations of mixed variance [11, 13, 27, 32]. Another
example is in process semantics: specifically, in the coalgebraic characterization of finite trace
semantics [15], the IA-FC coincidence in some Kleisli categories Kl(T ) has been observed.

Contribution: the Fibrational IF/I Coincidence and Application to Verification Witnesses.
In this paper, we identify a general fibrational condition for the IA-FC coincidence: under mild
assumptions, we have the IA-FC coincidence in the fiber over an initial algebra in the base
category (the IF/I coincidence). Identifying the base IA as a datatype, and the fibre IA/FC
as lfp/gfp specifications, the IF/I coincidence implies the coincidence between induction and
coinduction as reasoning principles, assuming they are over a (finitary) algebraic datatype.

This coincidence allows us to turn witness notions upside down, that is, to use coinductive
witness notions for establishing inductive properties. In general, inductive witness notions
for lfp properties (such as ranking functions) tend to be more complex than coinductive
witness notions for gfp properties (such as invariants). When we have the IF/I coincidence,
the latter can now be used for lfp properties.

Our technical contributions are as follows. We work with a fibration p : E → B, where B
is intuitively a category of sets and functions, and E equips these sets with predicates.
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We identify a general fibrational framework for what we call the IF/I coincidence – the
coincidence of IAs (lfp predicates) and FCs (gfp predicates) in the fiber over an initial
algebra in B (an inductive datatype). The IF/I coincidence relies only on mild fibrational
assumptions, notable among which are fibredness of functors and stability of certain
colimits. Although we restrict fibrations to posetal ones in the main text (§4), a similar
result for general fibrations can be shown (Appendix A).
As a notable class of examples, in §5 we show that the fibration of Ω-valued predicates
exhibits the IF/I coincidence (where Ω is an arbitrary complete lattice for truth values).
Furthermore, we study the IF/I coincidence in the presence of monadic effects [23],
building on the fibrational framework from [4].
These theoretical results are used to obtain coinductive (invariant-like) witness notions
for inductive (lfp, liveness) properties. Specifically, we present new witness notions for
probabilistic verification (§6) and verification with tree automata as specifications (§7).

Related Work. Many works are discussed in the technical sections; we discuss some others.
The work [25] shows uniqueness of fixed points above what is called a minimal invariant;

the latter corresponds to the lifting of a morphism which is both an initial algebra and a
final coalgebra. Our IF/I coincidence can yield such lifting under some assumptions (see
Thm. 3.6). The proof in [25] relies on homset enrichment, unlike our fibrational framework.

One of our main ideas is to use the IA-FC coincidence for novel proof methods for
recursive specifications (§6–7), mixing lfp’s and gfp’s. This is pursued also in [8,31] where
corecursive algebras induce the lfp-gfp coincidence.

Organization. After recalling fibrations and the chain construction of initial algebras in §2,
we formulate our IF/I coincidence in §3 and present sufficient conditions for the coincidence
in §4. In §5, these results are specialized to fibrations of Ω-valued predicates, where we
additionally include monadic effects. This paves the way to the concrete applications in §6–7,
where we present seemingly new verification techniques for probabilistic liveness and witnesses
of tree automata. We defer many proofs to the appendix.

2 Preliminaries

2.1 Fibrations

A fibration p : E → B is a functor that models indexing and substitution. That is, a functor
p : E → B can be seen as a family of categories (EX)X∈B that is equipped with substitution
functors that change the index X.

In our examples, the base category B is that of sets and (potentially effectful) functions;
and the total category E models “predicates” over sets in B. We review a minimal set of
definitions and results on fibrations. See [19] for details.

▶ Definition 2.1 (fibre, fibration). Let p : E → B be a functor.
For each X ∈ B, the fibre category (or simply fibre) EX over X is the category with

objects P ∈ E such that pP = X and morphisms f : P → Q such that pf = idX . An object
P ∈ EX is said to be above X and a morphism f ∈ EX is said to be vertical.

A morphism f : P → Q in E is cartesian if it satisfies the following universality: for each
g : R → Q in E and k : pR → pP in B with pg = pf ◦ k, there exists a unique morphism
h : R → P satisfying g = f ◦ h and ph = k. See the diagram below.

CONCUR 2021
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E

p

��

R
g

%%
h
&&
P

f
// Q l∗Q

l // Q

pR
pg

%%
k
%%

B pP
pf
// pQ X

l
// pQ

The functor p : E → B is a fibration if, for each Q ∈ E and each l : X → pQ in B, there
exists l∗Q ∈ E and a morphism l : l∗Q → Q such that pl = l and l is cartesian.

The functor p : E → B is an opfibration if pop : Eop → Bop is a fibration. A functor that
is both a fibration and an opfibration is called a bifibration.

When p is a fibration, the correspondence from Q to l∗Q described above induces the
substitution functor l∗ : EY → EX which replaces the index. The following characterization
of bifibrations is useful for us: a fibration p is a bifibration if and only if each substitution
functor l∗ : EY → EX (often called a pullback) has a left adjoint l∗ : EX → EY (often called
a pushforward).

We are interested in reasoning over algebraic datatypes, that is in categorical terms,
predicates in EµF over the carrier µF of the initial algebra for F : B → B. For this purpose
we often consider a tuple (p, F, Ḟ ) in the following definition.

▶ Definition 2.2 ((fibred) lifting). Let p : E → B be a functor and F be an endofunctor on B.
We say that an endofunctor Ḟ on E is a lifting of F along p if p ◦ Ḟ = F ◦ p (see above).

Assuming that p is a fibration, a lifting Ḟ is fibred if Ḟ preserves cartesian morphisms.

In this paper, we focus on a certain class of posetal fibrations called CLat∧-fibrations.
They can be seen as topological functors [17] whose fibres are posets. This class abstracts
treatment of spacial and logical structures.

▶ Definition 2.3 (CLat∧-fibration). A CLat∧-fibration is a fibration p : E → B where each
fibre EX is a complete lattice and each substitution f∗ : EY → EX preserves all meets

∧
.

In each fibre EX , the order is denoted by ≤X or ≤. Its least and greatest elements are
denoted by ⊥X and ⊤X ; its join and meet are denoted by

∨
and

∧
.

The above simple axioms of CLat∧-fibrations induce many useful structures [20, 28]. One of
them is that a CLat∧-fibration is always a bifibration whose pushforwards f∗ arise essentially
by Freyd’s adjoint functor theorem. Another one is that CLat∧-fibrations lift colimits. This
is proved by [19, Prop. 9.2.2 and Exercise 9.2.4].

▶ Proposition 2.4. Let p : E → B be a CLat∧-fibration.
1. p is a bifibration.
2. If B is (co)complete then E is also (co)complete and p strictly preserves (co)limits.

▶ Example 2.5 (CLat∧-fibration).
(Pre → Set, Pred → Set) These forgetful functors are CLat∧-fibrations. Here Pre is
the category of preordered sets (X, ≤X) and order-preserving functions between them.
Pred is that of predicates: objects are P ⊆ X, and morphisms f : (P ⊆ X) → (Q ⊆ Y )
are functions f : X → Y satisfying f(P ) ⊆ Q.
(ERel → Set) The functor ERel → Set defined by the change-of-base [19], as shown
below, is a CLat∧-fibration. Concretely, ERel is the category of sets with binary relations
(X, R ⊆ X × X) as objects, and relation-preserving maps as morphisms.

ERel //

��

Pred
��

Set
(−)2
// Set
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(Domain fibration dΩ : Set/Ω → Set) For each complete lattice Ω, we introduce a
CLat∧-fibration dΩ : Set/Ω → Set defined as follows.

X
h

≤X

//

f ��

Y

g��

Ω

Here, Set/Ω is a lax slice category defined as follows: objects of Set/Ω are pairs
(X, f : X → Ω) of a set and a function (an “Ω-valued predicate on X”); we shall often
write simply f : X → Ω for the pair (X, f). Its morphisms from f : X → Ω to g : Y → Ω
are functions h : X → Y such that f ≤X g ◦ h, as shown above.
Then dΩ is the evident forgetful functor, extracting the upper part of the above triangle.
The order ≤X used there is the pointwise order between functions of the type X → Ω;
the same order ≤X defines the order in each fiber (Set/Ω)X = Set(X, Ω). Following [4,
Def. 4.1], we call dΩ a domain fibration (from the lax slice category).

2.2 Chain Construction of Initial Algebras
▶ Definition 2.6 (chain-cocomplete category). A category C is chain-cocomplete if C has a
colimit of every chain. We write 0 for a colimit of the empty chain (i.e. an initial object).

Noteworthy is that chain-cocompleteness is equivalent to existence of an initial object and
filtered colimits, see [2, Cor. 1.7] for further details.

▶ Definition 2.7 (initial chain [1], [3, Def. 3.2]). Let C be a chain-cocomplete category, and
F : C → C be an endofunctor. The initial chain of F is the following diagram:

0 α0,1−−−→ F0 α1,2−−−→ · · · −→ F λ0 αλ,λ+1−−−−→ · · · . (1)

This consists of the following.
(Objects) It has objects F i0 for each i ∈ Ord (where Ord is the category of ordinals),
defined by F 00 = 0, F i+10 = F (F i0), and for a limit ordinal i, F i0 = colimj<i F j0.
(Morphisms) It has morphisms αi,j : F i0 → F j0 for all ordinals i, j such that i ≤ j,
defined inductively on i. (Base case) α0,j : 0 → F j0 is the unique morphism. (Step case)
αi+1,j+1 is Fαi,j ; for a limit ordinal j, αi+1,j is from the colimiting cocone for F j0. (Limit
case) When i is a limit ordinal, αi,j is induced by universality of F i0 = colimk<i F k0.

If αλ,λ+1 is an isomorphism, then we say that the initial chain of F converges in λ steps.

▶ Proposition 2.8 (from [1], [3, Thm. 3.5]). In the setting of Def. 2.7, assume that the initial
chain converges in λ steps. Then α−1

λ,λ+1 : F λ+10 ∼=→ F λ0 is an initial F -algebra.

The dual of the initial chain in Def. 2.7 is called the final chain. This also satisfies the
dual of Prop. 2.8 (yielding final coalgebras), see [3, Def. 3.20 and Thm. 3.21].

The converse of Prop. 2.8 holds if we restrict to Set.

▶ Proposition 2.9 (from [30], [3, Cor. 3.16]). A set functor has an initial algebra if and only
if the initial chain converges.

We often write µF for the carrier of an initial algebra of F .
The next basic lemma is important for us. Its dual (for coalgebras) is observed e.g. in [14].

CONCUR 2021
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▶ Lemma 2.10. Assume that p : E → B is a fibration, that both E and B are chain-cocomplete,
and that p strictly preserves chain colimits. Let Ḟ be a lifting of F : B → B along p.

Consider the following initial chains.

E
p ��

0
α̇0,1
// Ḟ0

α̇1,2
// · · · // Ḟ λ0

α̇λ,λ+1
// · · ·

B 0
α0,1
// F0

α1,2
// · · · // F λ0

αλ,λ+1
// · · ·

1. We have αi,j = pα̇i,j for all ordinals i, j with i < j.
2. Moreover, if the upper initial chain for Ḟ converges and yield an initial Ḟ -algebra

α̇ : Ḟ (µḞ ) → µḞ , then pα̇ : Fp(µḞ ) → p(µḞ ) is an initial F -algebra.

3 Initial Algebra-Final Coalgebra Coincidence over Initial Algebras

In this section, we formulate our target coincidence called the IF/I coincidence. It is a
fibrational IA-FC coincidence over an initial algebra.

▶ Definition 3.1 (IF/I coincidence). Let p : E → B be a fibration, and Ḟ be a lifting of F .
We say that the tuple

(
p : E → B, F : B → B, Ḟ : E → E

)
satisfies the IA-FC coincidence

over an initial algebra (IF/I coincidence, for short) if the following is satisfied.
1. There is an initial F -algebra β : F (µF ) ∼=→ µF .
2. There is an initial Ḟ -algebra β̇ : Ḟ (µḞ ) ∼=→ µḞ above β.
3. Moreover, β̇−1 is final over β−1 in the following sense: for each Ḟ -coalgebra γ above β−1

(shown below diagram on the left), there exists a unique vertical coalgebra morphism f

from γ to β̇−1 (below diagram on the right, where vertical means pf = idµF ).

EḞ 99

p

��

Ḟ (µḞ ) µḞ
β̇−1

∼=
oo

ḞP P
γ
oo =⇒ ḞP

Ḟ f
OO

P
γ
oo

f
OO

BF 99 F (µF ) µF ;β−1

∼=
oo F (µF ) µF ;β−1

∼=
oo

IF/I Coincidence in Fibrations of (Co)algebras. The IF/I coincidence in Def. 3.1 is nicely
organized in terms of fibrations of (co)algebras: the last two conditions in Def. 3.1 can be
stated succinctly in advanced fibrational terms.

Given a functor F : B → B, Alg(F ) is the category of F -algebras, where an object
is a pair (X ∈ B, a : FX → X) and a morphism from (X, a) to (Y, b) is f : X → Y such
that b ◦ Ff = f ◦ a. Dually, Coalg(F ) is the category of F -coalgebras, where an object is
(X ∈ B, c : X → FX) and a morphism from (X, c) to (Y, d) is f such that d ◦ f = Ff ◦ c.

Then a fibration p and a fibred lifting Ḟ yield fibrations of (co)algebras.

▶ Proposition 3.2 (from [14, Prop. 4.1]). A lifting Ḟ of F along a fibration p induces functors
Alg(p) : Alg(Ḟ ) → Alg(F ) and Coalg(p) : Coalg(Ḟ ) → Coalg(F ), given by

Alg(p) : (ḞP
q−→ P ) 7−→ (FpP = pḞP

pq−→ pP ),

Coalg(p) : (P r−→ ḞP ) 7−→ (pP
pr−→ pḞP = FpP ).

The functor Alg(p) is a fibration. If additionally Ḟ is a fibred lifting, then Coalg(p) is a
fibration, too. For an opfibration p, we have a result dual to the above: Coalg(p) is an
opfibration; so is Alg(p) if Ḟ is an opfibred lifting (preserving cocartesian morphisms).
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The functor Coalg(p) : Coalg(Ḟ ) → Coalg(F ) in Prop. 3.2 plays an important role in
the following development. It is thought of as a functor where

(following the coalgebraic tradition) state-based transition systems c : X → FX and
behavior-preserving morphisms between them populate the base category Coalg(F ), and
invariants – i.e. predicates P ∈ EX over X that are preserved by transitions – populate the
total category Coalg(Ḟ ). The arrows in Coalg(Ḟ ) are logical implication of invariants.

The following reformulation is proved in [21, Appendix C.2], together with technical remarks.

▶ Proposition 3.3. The following is equivalent to Cond. 2 and 3 in Def. 3.1, respectively.
2’. There is an initial object β̇ in the fiber Alg(Ḟ )β.
3’. β̇−1 is a final object in the fiber Coalg(Ḟ )β−1 .

IF/I Coincidence in a CLat∧-fibration. Here we shall rewrite conditions in Def. 3.1 for
CLat∧-fibrations. But first, we need the following investigation of these conditions.

An initial Ḟ -algebra lying above an initial F -algebra is a norm (Cond. 1–2; cf. Lem. 2.10).
What is special is the finality of the initial Ḟ -algebra (Cond. 3). The intuition of the latter
is the following:

an lfp and a gfp coincide, in the fiber over the base initial algebra.

Intuitively, P with (γ : P → ḞP ) ∈ Coalg(Ḟ )β−1 is an invariant – it is a predicate that is
preserved by the transition β−1. Indeed, the morphism γ is equivalent to a morphism

γ† : P −→ (β−1)∗ḞP over idµF , that is,
P ≤ (β−1)∗ḞP if the fibration p : E → B is posetal,

by pulling back along β−1. The latter inequality signifies that P is an invariant. This
equivalence is formulated as follows.

▶ Lemma 3.4. Let p : E → B be a fibration and Ḟ be a lifting of F along p. For any
isomorphism α : X

∼=→ FX in B, Alg(Ḟ )α−1 ∼= Alg(α∗Ḟ ) and Coalg(Ḟ )α
∼= Coalg(α∗Ḟ ).

Therefore, Cond. 3 requires that β̇−1 gives a greatest invariant. In view of the Knaster–
Tarski theorem (that a greatest post-fixed point is a greatest fixed point), this means that
β̇−1 is a gfp if p is a CLat∧-fibration. Symmetrically, Cond. 2 (rephrased as Cond. 2’)
requires that β̇ is an lfp. Therefore, the IF/I coincidence yields a coincidence between an lfp
and a gfp. This plays an important role in the next section.

▶ Proposition 3.5. If p is a CLat∧-fibration then Cond. 2 and 3 in Def. 3.1 are equivalent
to the following condition: there is a unique fixed-point µḞ of (β−1)∗Ḟ : EµF → EµF .

IF/I Coincidence over Base IA-FC Coincidence. The IF/I coincidence (Def. 3.1) allows a
simpler formulation in the special case where the IA-FC coincidence is already there in the
base category. In this case, β̇−1 is final not only in a suitable fiber (Cond. 3 of Def. 3.1; cf.
Prop. 3.3), but also globally in the total category E. See [21, Appendix C.4] for details.

This special setting (the base IA-FC coincidence) is known to hold in domain-theoretic set-
tings [13,27]. We use this setting (specifically the IA-FC coincidence in a Kleisli category [15])
in one of our applications (§7).

▶ Theorem 3.6 (IF/I coincidence over the base coincidence). Let p : E → B be a bifibration
and (p, F, Ḟ ) be a tuple satisfying the IF/I coincidence. If there exists initial F -algebra
β : F (µF ) ∼= µF (in B) such that β−1 is a final F -coalgebra, then there exists an initial
Ḟ -algebra β̇ : Ḟ (µḞ ) ∼= µḞ (in E) above β such that β̇−1 is a final Ḟ -coalgebra.

CONCUR 2021
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4 IF/I Coincidence from Stable Chain Colimits

We now present our main observation, namely that the IF/I coincidence is a general phe-
nomenon that relies only on a few mild assumptions. These assumptions include 1) that Ḟ is
fibred (Def. 2.2) and 2) stability of chain colimits (Def. 4.1).

Here in §4, we restrict the underlying fibration p : E → B to a CLat∧-fibration over
Set (Def. 2.3). This restriction simplifies proofs and technical developments. Nevertheless,
we have a general coincidence theorem for not necessarily posetal fibrations; it is found in
Appendix A. The general proof hinges on stable chain colimits, too.

The following is a key assumption. It is a fibrational adaptation of pullback-stable colimit,
a notion studied in (higher) topos theory and categorical logic [9, 16,22].

▶ Definition 4.1 (stable chain colimits). We say that a fibration p : E → B has stable chain
colimits if the following condition holds: for each λ ∈ Ord and each diagram D : Ord<λ → B,
1. B has a colimit of D. The i-th cocone component is denoted by κi : Di → colim D.
2. Moreover, for each object P ∈ Ecolim D above colim D, we have P ∼= colim κ∗

i P , with the
cartesian liftings (κ∗

i P → P )i∈Ord<λ
forming a colimiting cocone.

E
p��

κ∗
0P // κ∗

1P // · · · // P (∼= colim κ∗
i P )

B D0 // D1 // · · · // colim D

The first condition is equivalent to chain-cocompleteness. The situation of the second
condition is illustrated as the above diagram. Stability requires that the upper cocone
is colimiting. In the diagram, we note that morphisms κ∗

i P → κ∗
j P above D(i → j) are

well-defined (where i ≤ j ≤ λ); they are induced by universality of the cartesian liftings
κ∗

j P → P .
Letting λ = 0 in Def. 4.1 yields the following property.

▶ Lemma 4.2. Let p : E → B be a fibration with stable chain colimits. Then, all objects in
E0 are initial in E.

▶ Example 4.3. The fibrations in Example 2.5 – Pre → Set, Pred → Set, ERel → Set,
and the domain fibration dΩ for any complete lattice Ω – all have stable chain colimits.
Non-examples are deferred to [21, Appendix B].

▶ Theorem 4.4 (Main result). Let p : E → Set be a CLat∧-fibration and Ḟ be a lifting of F

along p. Assume further the following conditions:
1. there exists an initial F -algebra;
2. Ḟ is a fibred lifting of F ;
3. p has stable chain colimits.

Then (p, F, Ḟ ) satisfies the IF/I coincidence (Def. 3.1).

We prove the theorem in the rest of the section. Due to Prop. 3.5, it suffices to show that
(β−1)∗Ḟ : EµF → EµF has a unique fixed point, where β is an initial F -algebra. Cond. 1 in
Thm. 4.4 yields that the initial chain of F converges and gives an initial F -algebra (Prop. 2.8
and 2.9).

We analyze the initial chains of F and Ḟ , which is shown on the below.

E
p ��

0
α̇0,1
// Ḟ0

α̇1,2
// · · · // Ḟ λ0

α̇λ,λ+1
// Ḟ λ+10 // · · ·

Set 0
α0,1
// F0

α1,2
// · · · // F λ0

αλ,λ+1
// Ḟ λ+10 // · · ·
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Prop. 2.4 and Lem. 2.10 ensure that each chain morphism α̇i,i+1 is above αi,i+1. Then,
assuming that the initial chain of F converges in λ steps, the functor (β−1)∗Ḟ of our interest
is equal to α∗

λ,λ+1Ḟ .
Fig. 1 is the key diagram about a unique fixed-point of α∗

λ,λ+1Ḟ . For simplicity, we write
α for αλ,λ+1. We find the initial chain of Ḟ as its middle row; the initial chain of α∗Ḟ as the
bottom half of the last column; and the final chain of α∗Ḟ as the top half. The other objects
in the diagram are obtained by applying substitution to the last column.

α∗
0,λ⊤ // α∗

1,λ⊤ // α∗
2,λ⊤ // · · · // ⊤

α∗
0,λα∗Ḟ ⊤ // α∗

1,λα∗Ḟ ⊤ //

OO

α∗
2,λα∗Ḟ ⊤ //

OO

· · · // α∗Ḟ ⊤

OO

α∗
0,λ(α∗Ḟ )2⊤ // α∗

1,λ(α∗Ḟ )2⊤ // α∗
2,λ(α∗Ḟ )2⊤ //

OO

· · · // (α∗Ḟ )2⊤

OO

OO

0

...

...

α̇0,1
// Ḟ 0

...

α̇1,2
//

...
Ḟ 20 //

...

...
· · · // Ḟ λ0 (the initial Ḟ -chain)

...

...

α∗
0,λ(α∗Ḟ )2⊥ // α∗

1,λ(α∗Ḟ )2⊥ // α∗
2,λ(α∗Ḟ )2⊥ // · · · // (α∗Ḟ )2⊥

OO

α∗
0,λα∗Ḟ ⊥ // α∗

1,λα∗Ḟ ⊥ // α∗
2,λα∗Ḟ ⊥ //

OO

· · · // α∗Ḟ ⊥

OO

α∗
0,λ⊥ // α∗

1,λ⊥ //

OO

α∗
2,λ⊥ //

OO

· · · // ⊥

OO

0
α0,1

// F 0
α1,2

// F 20 // · · · // F λ0 (the initial F -chain)

Figure 1 IA-FC coincidence for CLat∧-fibrations, in Prop. 4.5. Here we write α for αλ,λ+1; the
choice of λ is arbitrary (the initial Ḟ -chain may not have stabilized).

The next result is the key technical observation. It says 1) the upper rows become closer
to the initial Ḟ -chain as we go below; and 2) symmetrically, the lower rows become closer
to the same as we go up. Its proof is by transfinite induction; the stability assumption is
crucially used in its limit case.

▶ Proposition 4.5. Consider the setting of Thm. 4.4. Let λ be an arbitrary ordinal. We
write α, α̇ for αλ,λ+1, α̇λ,λ+1 and ⊤, ⊥ for the maximum and minimum of the complete lattice
EF λ0. For each ordinal i, the objects (α∗Ḟ )i⊥ and (α∗Ḟ )i⊤ above F λ0 are defined by the
initial chain and the final chain of α∗Ḟ (the last column of Fig. 1).

Then we have α∗
i,λ(α∗Ḟ )i⊥ = Ḟ i0 = α∗

i,λ(α∗Ḟ )i⊤ for each i with i ≤ λ.

Proof sketch; a full proof is in [21, Appendix C.6]. The proof is by transfinite induction
on i. The base case is clear because E0 includes only one object by Lemma 4.2 and the
posetal assumption on p.

In the step case, fibredness of the lifting Ḟ lifts the equality for i, which is α∗
i,λ(α∗Ḟ )i⊥ =

Ḟ i0 = α∗
i,λ(α∗Ḟ )i⊤ (the induction hypothesis), to the desired equality for i + 1.

The limit case is less obvious than the other cases. We rewrite the target objects (e.g.
α∗

i,λ(α∗Ḟ )i⊥) to chain colimits (e.g. colimj<i α∗
j,λ(α∗Ḟ )i⊥) by stability of chain colimits,

and use the fact that colimits of diagonal elements (e.g. colimj<i α∗
j,λ(α∗Ḟ )j⊥) are equal to

Ḟ i0 by the induction hypothesis. See [21, Appendix C.6] for a full proof. ◀

Letting i = λ in Prop. 4.5 yields that (α∗Ḟ )λ⊥ = Ḟ λ0 = (α∗Ḟ )λ⊤. Therefore, both the
initial and final chains of α∗Ḟ (the last column in Fig. 1) converge in λ steps. We conclude
that Ḟ λ0 is both the lfp and gfp for α∗Ḟ : EF λ0 → EF λ0, hence is its unique fixed point.
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Here are some consequences of the proposition. In the next result, note that the number
of converging steps of F and that of Ḟ are not the same in general. See [21, Appendix B] for
an example.

▶ Corollary 4.6. Let p : E → Set be a CLat∧-fibration and Ḟ be a fibred lifting of F along
p. Assume p has stable chain colimits. Then, the initial chain of F converges in λ steps if
and only if that of Ḟ converges in λ steps.

▶ Corollary 4.7. In the setting of Cor. 4.6, if F has an initial algebra α, then any isomorphism
ḞP → P above α is an initial algebra of Ḟ .

We are finally in a position to prove our main theorem.

Proof of Thm. 4.4. Using Prop. 2.9 and Cor. 4.6, Cond. 1 ensures the existence of an ordinal
λ such that both the initial chains of F and Ḟ converges in the steps. Then α−1

λ,λ+1 is an
initial F -algebra by Prop. 2.8 and Ḟ λ0 is a unique fixed-point of α∗

λ,λ+1Ḟ by Prop. 4.5.
Prop. 3.5 concludes the proof. ◀

5 Coincidence for Ω-Valued Predicates, Pure and Effectful

We instantiate the above categorical results to an important family of examples, namely
Ω-valued predicates (Example 2.5). In this setting, a functor lifting Ḟ (§3) has a concrete
presentation as an F -algebra, an observation that helps identification of many examples.

Besides the “pure” setting modeled by the fibration Set/Ω → Set, we also consider the
“effectful” setting Kl(Ṫ ) → Kl(T ), where effects are modeled by a monad T [23] with its
lifting Ṫ along dΩ, and the base category is the Kleisli category for T . The categorical
construction of the fibration Kl(Ṫ ) → Kl(T ) is described later in §5.2; the construction
builds upon the recent results in [4].

The theoretical development here in §5 specializes that in §3–4, but it is still in abstract
categorical terms. The theory in §5 paves the way to the concrete applications in §6–7.

5.1 Coincidence for Ω-Valued Predicates, the Pure Setting
We first focus on the domain fibration dΩ : Set/Ω → Set (Example 2.5), where 1) a complete
lattice Ω is regarded as a truth value domain, and 2) the fibration is regarded as that of
Ω-valued predicates. If Ω is the two-element lattice 2 = {⊥, ⊤}, then d2 : Set/2 → Set is
isomorphic to Pred → Set.

Towards the IF/I coincidence for the fibration dΩ, we first need to describe a fibred lifting
Ḟ of F . It is induced by an F -algebra over Ω that is equipped with a suitable order structure.

▶ Definition 5.1 (monotone algebra [4]). Let F : Set → Set be a functor and Ω be a complete
lattice. We call σ : FΩ → Ω a monotone F -algebra over Ω if i ≤X i′ ⇒ σ ◦ Fi ≤F X σ ◦ Fi′

holds for all X ∈ Set and all i, i′ ∈ Set(X, Ω).

▶ Lemma 5.2 (from [4, 7]). Let F : Set → Set be a functor, and Ω be a complete lattice.
There is a bijective correspondence between monotone F -algebras σ : FΩ → Ω and fibred
liftings Ḟ of F along dΩ. Specifically, σ gives rise to the lifting Ḟ given by Ḟ (X x−→ Ω) =
(FX

F x−−→ FΩ σ−→ Ω); conversely, Ḟ gives rise to (FΩ σ−→ Ω) = Ḟ (Ω idΩ−−→ Ω).

Application of §4 to a domain fibration is then easy.

▶ Theorem 5.3 (coincidence for Ω-valued predicates, pure). In the setting of Def. 5.1, let
σ : FΩ → Ω be a monotone F -algebra. By Lem. 5.2, σ gives rise to a fibred lifting Ḟ of F

along dΩ. If there exists an initial F -algebra then (dΩ, F, Ḟ ) satisfies the IF/I coincidence.
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5.2 Coincidence for Ω-Valued Predicates, Effectful
In order to accommodate some concrete examples (those in §7 to be specific), we extend the
above material to the setting with monadic effects.

We aim at the situation in (2), where the domain fibration dΩ is Kleisli-embedded in the
fibration dΩ

T ,Ṫ : Kl(Ṫ ) → Kl(T ) on the right. The latter is the desired fibration of effectful
computations and Ω-valued predicates; moreover, we extend a functor F and its lifting Ḟ for
the Kleisli fibration, too.

Set/Ω
dΩ
��

Ḟ ::
L̇ // Kl(Ṫ ) ḞṪdd

dΩ
T ,Ṫ��

SetF <<
L // Kl(T ) FTdd

(2)

The construction of the Kleisli fibration dΩ
T ,Ṫ is via a cartesian lifting of the monad T . It

is defined to be a monad (Ṫ , η̇, µ̇) on Set/Ω such that 1) Ṫ (as a functor) is a fibred lifting
of the functor T , and 2) η̇, µ̇ are componentwise cartesian morphisms above η, µ, respectively.
Then dΩ

T ,Ṫ : Kl(Ṫ ) → Kl(T ) is defined to be the evident extension of dΩ to Kleisli categories,
and is a fibration [4]. Cartesian liftings of T from Set to Set/Ω bijectively correspond to
Eilenberg-Moore (EM) T -algebras, much like in Lem. 5.2.

▶ Definition 5.4 (EM monotone algebra [4]). Let T : Set → Set be a monad and Ω be
a complete lattice. A monotone T -algebra τ : T Ω → Ω (where T is identified with its
underlying functor) is called an Eilenberg-Moore (EM) monotone T -algebra if idΩ = τ ◦ ηΩ
and τ ◦ T τ = τ ◦ µΩ. Here η and µ are the unit and multiplication of the monad T .

▶ Lemma 5.5 (from [4, Thm. 4.4]). Let T : Set → Set be a monad and Ω be a complete
lattice. There is a bijective correspondence between

EM monotone T -algebras τ , and
Cartesian liftings Ṫ of T that is itself a monad on Set/Ω.

Specifically, τ gives rise to the lifting Ṫ given by Ṫ (X x−→ Ω) = (T X
T x−−→ T Ω τ−→ Ω);

conversely, Ṫ gives rise to (T Ω τ−→ Ω) = Ṫ (Ω idΩ−−→ Ω).

Let us now describe the fibration dΩ
T ,Ṫ between Kleisli categories – it is the one on the

right in (2). Recall that the Kleisli category Kl(T ) of a monad T on C has the same objects
as C, and its morphisms from C to D are C-morphisms C → T D (often denoted by C −p→ D).
In view of Lem. 5.5, the Kleisli category Kl(Ṫ ) is described as follows:

its objects are pairs (X, f : X → Ω) where the latter is an Ω-valued predicate;
its morphisms from (X, f : X → Ω) to (Y, g : Y → Ω) are h : X → T Y such that
f ≤X Ṫ g ◦ h as shown below, where τ is the EM monotone T -algebra that corresponds
to the lifting Ṫ (Lem. 5.5).

X
h //

f ��
≤X

T Y

Ṫ g=τ◦T g
}}

Ω

▶ Lemma 5.6 (the fibration dΩ
T ,Ṫ : Kl(Ṫ ) → Kl(T ) [4, Cor. 3.5]). Let T : Set → Set be a

monad, Ω be a complete lattice, and τ be an EM monotone T -algebra. By Lem. 5.5, τ gives
the fibred lifting Ṫ of T such that Ṫ is a monad.
1. The functor dΩ

T ,Ṫ : Kl(Ṫ ) → Kl(T ), defined as follows, is a posetal fibration: (X →
Ω) 7−→ X on objects, and

(
f : (X → Ω) −p→ (Y → Ω)

)
7−→ f : X −p→ Y on morphisms.

2. For each X in Set, we have the isomorphism (Set/Ω)X
∼= Kl(Ṫ )LX between fibers. Here

L : Set → Kl(T ) is the Kleisli left adjoint that carries each object X to X.
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Now that we have described the fibration dΩ
T ,Ṫ : Kl(Ṫ ) → Kl(T ), let us extend the

functors F, Ḟ to FT , ḞṪ (cf. (2)). We can do so by specifying how F and T interact.

▶ Definition 5.7 (distributive law [24]). Let F : Set → Set be a functor and T : Set → Set
be a monad with unit η and multiplication µ. A distributive law of F over T is a natural
transformation λ : FT ⇒ T F that makes the following diagrams commute.

FX FT X

T FX

ηF X

F ηX

λX

FT 2X T FT X T 2FX

FT X T FX

λT X

F µX

T λX

µF X

λX

▶ Lemma 5.8 (from [24]). Let F : Set → Set be a functor, T : Set → Set be a monad
and L : Set → Kl(T ) be the left adjoint to the Kleisli category of T . There is a bijective
correspondence between distributive laws λ : FT ⇒ T F and extensions FT : Kl(T ) → Kl(T )
of F along L (that is, FT ◦ L = L ◦ F ).

The next lemma tells how to lift a distributive law λ of F over T to that of Ḟ over Ṫ . It
follows from [4, Thm. 4.4].

▶ Lemma 5.9. Let F : Set → Set be a functor, T : Set → Set be a monad, and Ω be a
complete lattice. Consider a fibred lifting Ḟ of F corresponding to a monotone F -algebra
σ : FΩ → Ω and a Cartesian lifting Ṫ of T corresponding to an EM monotone T -algebra
τ : T Ω → Ω (see Lem. 5.2 and 5.5). Assume further that a distributive law λ : FT ⇒ T F

is compatible with σ and τ , in the sense that σ ◦ Fτ ≤ τ ◦ T σ ◦ λΩ. Then this λ induces a
distributive law λ̇ : Ḟ Ṫ ⇒ Ṫ Ḟ of Ḟ over Ṫ above λ.

Finally, we obtain the fibrations and functors shown in (2).

▶ Definition 5.10. Assume the setting of Thm. 5.3. Let T : Set → Set be a monad; τ be an
EM monotone T -algebra on Ω; and λ be a distributive law satisfying σ ◦ Fτ ≤ τ ◦ T σ ◦ λΩ.
We define (dΩ

T ,Ṫ , FT , ḞṪ ) as follows.
The EM monotone T -algebra τ : T Ω → Ω gives rise to a Cartesian monad lifting Ṫ of T
along dΩ (Lem. 5.5) and a fibration dΩ

T ,Ṫ : Kl(Ṫ ) → Kl(T ) (Lem. 5.6).
The distributive law λ : FT ⇒ T F induces FT : Kl(T ) → Kl(T ) such that FT is an
extension of F (in the sense of FT ◦ L = L ◦ F , Lem. 5.8).
Because λ satisfies σ ◦ Fτ ≤ τ ◦ T σ ◦ λΩ, Lem. 5.9 canonically induces a distributive law
λ̇ : Ḟ Ṫ ⇒ Ṫ Ḟ .
This distributive law λ̇ induces an extension ḞṪ : Kl(Ṫ ) → Kl(Ṫ ) of Ḟ (Lem. 5.8), which
is also a lifting of Ḟ along dΩ

T ,Ṫ .
(Optional) If λ satisfies the equality σ ◦ Fτ = τ ◦ T σ ◦ λΩ (instead of the inequality ≤
required in the above), then ḞṪ is a fibred lifting of FT .

The above technical material (mainly from [4]) allows us to state this section’s main result.

▶ Theorem 5.11 (coincidence for Ω-valued predicates, effectful). In the setting of Def. 5.10,
if there exists an initial F -algebra then (dΩ

T ,Ṫ , FT , ḞṪ ) satisfies the IF/I coincidence.

The proof of Thm. 5.11 is not a straightforward application of the general results in §4
to the fibration dΩ

T ,Ṫ . Notice, for example, that fibredness of the lifting ḞṪ is not mandatory
in Def. 5.10, while it is required in the general IF/I coincidence result (Thm. 4.4). Indeed,
the lifting ḞṪ is not fibred in our application in §7, so Thm. 4.4 does not apply to it.
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Our proof of Thm. 5.11 instead goes via the “pure” fibration dΩ (on the left in (2)): using
the fact that the left adjoint L preserves initial chains, we essentially lift the IF/I coincidence
from pure (dΩ) to effectful (dΩ

T ,Ṫ ). We count this proof (in [21, Appendix C.10]) as one of
our main contributions.

6 Application 1: Probabilistic Liveness by Submartingales

We use the IF/I coincidence results in §3–5 to derive a new proof method for probabilistic
liveness – more concretely, we derive the method as an instance of Thm. 5.3. Liveness
properties are usually witnessed by ranking supermartingales; see e.g. [10, 29]. Restricting to
finite trees, we show that probabilistic liveness can also be witnessed by an invariant-like
submartingale (as opposed to supermartingale) notion.

Here is the class of probabilistic systems that we analyze. It is restricted for the simplicity
of presentation; accommodating more expressive formalisms is easy by changing a functor.

▶ Definition 6.1 (finite probabilistic binary tree). A finite probabilistic binary tree is a finite
binary tree such that

each internal node n is labeled with either ✓ or ?; and
each edge is labeled with a real number p ∈ [0, 1], in such a way that two outgoing
edge-labels sum to 1. See (3).

np
~~

1−p
  

n1 n2
(3)

We restrict to finite trees; here is one application scenario that justifies it. We think
of those probabilistic trees as models of systems with internal coin toss. We assume that
there is some timeout mechanism that forces the termination of those systems, that is, that
termination of the target system is guaranteed by some external means. Such mechanism
forcing finiteness is common in real-world systems.

The liveness property we are interested in is eventually reaching a state labeled with ✓.
More precisely, we are interested in the probability of eventually seeing ✓. The following
invariant-like witness notion gives a guaranteed lower bound for the probability in question.
It is derived from the IF/I coincidence; unlike ranking supermartingales, it does not use
natural numbers or ordinals.

▶ Definition 6.2 (IF/I submartingale). Let t be a finite probabilistic binary tree; the set of
its nodes is denoted by N . We say f : N → [0, 1] is an IF/I submartingale if it satisfies the
following.
1. f(n) = 0 for each leaf node n.
2. For each internal node n labeled with ?, let its children and their edge labels be as shown

in (3). Then we have

f(n) ≤ p · f(n1) + (1 − p) · f(n2).

The direction of the inequality is indeed that of a submartingale: the current value is a lower
bound of the expected next value. Note that there is no condition for f(n) if n is an internal
node labeled with ✓. In this case, f(n) can be set to 1 to improve the lower bound.

▶ Theorem 6.3. In the setting of Def. 6.2, assume f is an IF/I submartingale. Then,
identifying the tree t with the Markov chain with suitable probabilistic branching, the probability
of eventually reaching a node labeled with ✓ from the root is at least f(rt) where rt is the
root node of t.
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The proof of Thm. 6.3 is in [21, Appendix C.11]. The main step is to apply the following
to Thm. 5.3 in order to obtain a categorical data (d[0,1], F ptr, Ḟ ptr) satisfying the IF/I
coincidence:

a complete lattice Ω is [0, 1] with the usual order between real numbers;
a set functor F is F ptr = 1 + {✓, ?} × [0, 1] × (−)2; and
a monotone F ptr-algebra σ : F Σ[0, 1] → [0, 1] is σptr defined as follows:

σptr(x) =


0 if x = ∗ ∈ 1
1 if x = (✓, p, a, b)
pa + (1 − p)b if x = (?, p, a, b).

7 Application 2: Witnesses for Bottom-Up Tree Automata

We present an application of the IF/I coincidence in §3 to tree automata, using the results
in §5 as an interface. In this paper we restrict to bottom-up tree automata, although a similar
theory can be developed for top-down ones.

We restrict the ranked alphabet Σ used for trees to Σ = Σ0 ∪ Σ2, where operations in Σ0
are 0-ary and those in Σ2 are binary. This restriction is for simplicity and not essential.

▶ Definition 7.1 ((finite) Σ-trees). A Σ-tree t is a tuple (N, rt, ct) where N is a set of nodes,
rt ∈ N is a root node and ct : N → Σ0 + Σ2 × N × N is a function which determines
labels and next nodes: if ct(n) = s ∈ Σ0 then n is a leaf node labeled with s ∈ Σ0, and if
ct(n) = (s, n1, n2) then n is an internal node labeled with s ∈ Σ2 and the next nodes of n

are n1 and n2. A finite Σ-tree is a Σ-tree which has only finitely many nodes.

▶ Definition 7.2 (bottom-up tree automaton). A bottom-up tree automaton is a quadruple
A = (Σ0 ∪ Σ2, Q, δ, qF), where 1) Σ0 ∪ Σ2 is a ranked alphabet; 2) Q is a set of states; 3)
δ : Σ0 + Σ2 × Q × Q → PQ is a transition function (note the nondeterminism modeled by
the powerset PQ); and 4) qF ∈ Q is an accepting state.

A run of A over a Σ-tree t is a function ρ from nodes n of t to states ρ(n) ∈ Q such that
1) ρ(n) ∈ δ(s) for each leaf node n with ct(n) = s, and 2) ρ(n) ∈ δ

(
s, ρ(n1), ρ(n2)

)
for each

internal node n with ct(n) = (s, n1, n2).
A finite Σ-tree t is accepted by A if there is a run ρ of A over t such that ρ(rt) = qF.

Note that allowing multiple accepting states does not change the theory because of the
nondeterminism in transition functions.

Upside-Down Witness for Acceptance. For an acceptance of a single Σ-tree by a bottom-up
tree automaton, the IF/I coincidence in §3 and §5.1 (the pure setting) yields the following
(invariant-like, top-down) witness notion.

▶ Definition 7.3. Let A = (Σ0 ∪ Σ2, Q, δ, qF) be a bottom-up tree automaton, and t =
(N, rt, ct) be a finite Σ-tree. We say f : N → PQ is an acceptance invariant if
1. for each leaf node n with ct(n) = s, we have f(n) ⊆ δ(s);
2. for each internal node n with ct(n) = (s, n1, n2), we have f(n) ⊆⋃

q1∈f(n1),q2∈f(n2) δ
(
s, q1, q2

)
;

3. for the root node rt of t, we have qF ∈ f(rt).
An acceptance invariant assigns a predicate f(n) to each node n, and the constraints on f

runs in the top-down manner. The proof of Thm. 7.4 is in [21, Appendix C.12], where we
identify suitable categorical constructs (a fibration and functors) and apply the results in
§5.1.
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▶ Theorem 7.4 (acceptance witness for a finite tree). In the setting of Def. 7.3, if there exists
an acceptance invariant f : N → PQ, then A accepts the finite Σ-tree t.

Upside-Down Witness for Model Checking. We extend the above theory from acceptance
(of a single tree) to model checking (whether every tree generated by a system is accepted).
Besides its practical relevance, the model checking problem is categorically interesting.
Specifically, for the results here, we use the extended categorical framework in §5.2 (IF/I
coincidence in presence of effects) and Thm. 3.6 (coincidence lifting).

▶ Definition 7.5 (generative tree automaton C, its language Lfin
C , and model checking). A

generative tree automaton is C = (Σ0 ∪ Σ2, X, c, x0), where 1) Σ0 ∪ Σ2 is a ranked alphabet;
2) X is a set of states; 3) c : X → P(Σ0 + Σ2 × X × X) is a transition function (note the
powerset operator P); and 4) x0 ∈ X is an initial state.

Let t = (N, rt, ct) be a (possibly infinite) Σ-tree. A run of C over t is a function ρ : N → X,
assigning a state to each node, such that 1) ρ(rt) = x0 for the root node rt; 2) s ∈ c(ρ(n))
for each leaf node n with ct(n) = s; and 3)

(
s, ρ(n1), ρ(n2)

)
∈ c(ρ(n)) for each internal node

n with ct(n) = (s, n1, n2).
We say that a Σ-tree t is generated by C if there is a run ρ of C over t. The set of all

Σ-trees generated by C is denoted by LC ; the set of all finite Σ-trees generated by C is Lfin
C .

The model checking problem takes a generative tree automaton C and a bottom-up tree
automaton A (Def. 7.2) as input, and asks if every finite Σ-tree in Lfin

C is accepted by A.

Note that we restrict to finite trees here. One possible justification is an external mechanism
that forces termination, much like in §6.

Our general theory of the IF/I coincidence derives the following (invariant-like, top-down)
witness notion for model checking (where the specification is a bottom-up tree automaton).

▶ Definition 7.6 (model checking invariant). Let A = (Σ0 ∪ Σ2, Q, δ, qF) be a bottom-up
tree automaton, and let C = (Σ0 ∪ Σ2, X, c, x0) be a generative tree automaton. We say
f : X → PQ is a model checking invariant if it satisfies the following.
1. f(x) ⊆

⋂
a∈c(x) δf (a) for each x ∈ X. Here δf : Σ0 + Σ2 × X × X → PQ is defined by 1)

δf (s) = δ(s) for s ∈ Σ0; 2) δf (s, x1, x2) =
⋃

q1∈f(x1),q2∈f(x2) δ(s, q1, q2) for s ∈ Σ2.
2. qF ∈ f(x0).

▶ Theorem 7.7. In the setting of Def. 7.6, assume that there exists a model checking invariant
f : X → PQ. Then, A accepts every finite Σ-tree t ∈ Lfin

C generated by C.
The proof is in [21, Appendix C.13]. The nondeterminism on the system side (C in Def. 7.5)
requires to work in the effectful setting (§5.2). Another challenge is that the relevant functor
lifting is not fibred (cf. the last item in Def. 5.10); we use the coincidence lifting (Thm. 3.6) to
deal with it, where the required base coincidence comes from coalgebraic trace semantics [15].

8 Conclusions and Future Work

We presented our IF/I coincidence, which is a general categorical framework for the coincidence
of initial algebras and final coalgebras, a classic topic in computer science. The IF/I
coincidence is formulated in fibrational terms, and this occurs in the fiber over an initial
algebra; it is therefore understood as the coincidence of logical lfp and gfp specifications.
Relying on mild assumptions of fibred liftings and stable chain colimits, the IF/I coincidence
accommodates many examples. As applications, we derived seemingly new verification
methods for probabilistic liveness and tree automata.

CONCUR 2021
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The proofs in §6–7 suggest the possibility of a structural theory of the IA-FC coincidence,
where unique fixed points are pulled back along coalgebra homomorphisms. We will pursue
this structural theory, together with its practical consequences.

Another direction of future work is to formalize the relationship between the current
fibrational approach to the IA-FC coincidence, and the homset enrichment approach in [5,
11,12,15,27].
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A IF/I Coincidence for general fibrations

Here we show the following theorem similar to Thm. 4.4 for general fibrations.

▶ Theorem A.1 (IF/I coincidence for general fibrations). Let p : E → B be a fibration; assume
that E and B are chain-cocomplete. Let Ḟ be a lifting of F along p. Assume further the
following conditions:
1. The initial chain of Ḟ converges.
2. Ḟ is a fibred lifting of F .
3. p has stable chain colimits.
4. p strictly preserves chain colimits.
5. Substitution in p preserves chain colimits in fibers.

Then (p, F, Ḟ ) satisfies the IF/I coincidence.

The theorem follows from the next technical observation.

▶ Proposition A.2. In the setting of Thm. A.1, assume further that the initial chain of Ḟ

converges in λ steps. Consider the initial chains:

E
p ��

0
α̇0,1
// Ḟ0

α̇1,2
// · · · // Ḟ λ0 ∼=

α̇λ,λ+1
// Ḟ λ+10 // · · ·

B 0
α0,1
// F0

α1,2
// · · · // F λ0 ∼=

αλ,λ+1
// Ḟ λ+10 // · · ·

where 0 in the two lines denote initial objects in E and in B, respectively. Note that both
α̇λ,λ+1 and αλ,λ+1 are isomorphisms: the former is by the convergence assumption; the latter
is by the assumption and Lem. 2.10. Therefore their inverses are initial algebras by Prop. 2.8.

In this setting, α̇λ,λ+1 is a final object of Coalg(Ḟ )αλ,λ+1 (cf. Def. 3.1).

From now on, we aim to prove Prop. A.2.
To show finality of α̇λ,λ+1 in Coalg(Ḟ )αλ,λ+1 , we first claim the existence of a morphism

from an arbitrary Ḟ -coalgebra γ : P → ḞP in Coalg(Ḟ )αλ,λ+1 to α̇λ,λ+1. The next lemma
shows a construction of such a morphism pλ by transfinite induction along initial chains.

E

p

��

Ḟ λ0
α̇λ,λ+1
// Ḟ λ+10

P
pλ

OO

γ
// ḞP

Ḟ pλ

OO

B F λ0
αλ,λ+1
// F λ+10

This construction exploits the singleton property of E0 (Lem. 4.2) in the base case, fibredness
of the lifting Ḟ in the step case, and stability of chain colimits in the limit case.

▶ Lemma A.3. Let p : E → B be a fibration with stable chain colimits. Assume that E and
B are chain-cocomplete and p strictly preserves chain colimits. Let Ḟ be a fibred lifting of F

along p.
For each ordinal λ and each coalgebra γ : P → ḞP above αλ,λ+1 (or equivalently,

γ ∈ Coalg(Ḟ )αλ,λ+1), there exists a morphism pλ : γ → α̇λ,λ+1 in Coalg(Ḟ )αλ,λ+1 .

Proof. Let (kj,i : α∗
j,λP → α∗

i,λP )j≤i≤λ denote those morphisms induced from (α∗
i,λP →

P )i≤λ via their universality as cartesian liftings. We construct vertical morphisms (pi :
α∗

i,λP → Ḟ i0)i≤λ such that pi ◦ kj,i = α̇j,i ◦ pj for all i, j with j ≤ i ≤ λ. Such a (pi)i≤λ

makes the diagram below commute. (The rightmost square commutes, see [21, Appendix C.14]
for details.)
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E

p

��

0
α̇0,1

// Ḟ0
α̇1,2
// · · · // Ḟ λ0

α̇λ,λ+1
// Ḟ λ+10

α∗
0,λP

p0

OO

k0,1
// α∗

1,λP

p1

OO

k1,2
// · · · // α∗

λ,λP = P

pλ

OO

γ
// ḞP

Ḟ pλ

OO

B 0
α0,1

// F0
α1,2
// · · · // F λ0

αλ,λ+1
// F λ+10

Then this pλ is what we want. The construction of (pi)i≤λ is by the following transfinite
induction on i.

(Base case) Lem. 4.2 says α∗
0,λP ∼= 0 in E and this isomorphism is vertical because both

pα∗
0,λP and p0 are 0 in B. We define p0 as this isomorphism.

(Step case) If i is a successor ordinal, we define pi by

α∗
i,λP

(⋆)−−→ (Fαi−1,λ)∗ḞP
ξ−→∼= Ḟα∗

i−1,λP
Ḟ pi−1−−−−→ Ḟ i0

where ξ is from fibredness of Ḟ and (⋆) is induced as follows by universality of a cartesian
lifting.

α∗
i,λP

αi,λ

//

(⋆)��

P γ

��

(Fαi−1,λ)∗ḞP
F αi−1,λ

// ḞP

F i0
αi,λ

// F λ0
αλ,λ+1

// F λ+10.

Note that Fαi−1,λ = αλ,λ+1 ◦ αi,λ by the definition of α. We can prove α̇j,i ◦ pj = pi ◦ kj,i

for all j ≤ i by transfinite induction on j. See [21, Appendix C.14].
(Limit case) If i is a limit ordinal, we define pi by the stability of chain colimits. By
applying chain colimit stability of p to α∗

i,λP above F i0 = colimj<i F j0 (by Def. 2.7,
see below), we have α∗

i,λP ∼= colimj<i α∗
j,i(α∗

i,λP ) ∼= colimj<i α∗
j,λP . For all l, j with

l < j < i, by the induction hypothesis, we have α̇l,i ◦ pl = α̇j,i ◦ α̇l,j ◦ pl = α̇j,i ◦ pj ◦ kl,j .
Hence (Ḟ i0, (αj,i ◦ pj)j<i) is a cocone over (j 7→ α∗

j,λP ), as shown below. We define pi as
the mediating morphism from a colimit, as in the following diagram.

Ḟ i0 (colim.)

· · · // Ḟ l0

α̇l,i 00

// Ḟ j0
α̇j,i

22

// · · ·

· · · // α∗
l,λP

pl

OO

kl,i
--

// α∗
j,λP

pj

OO

kj,i

**

// · · ·

α∗
i,λP (colim.)

pi

]]

· · · // F l0
αl,j
// F j0

αj,i
// F i0 // · · ·

This concludes the proof. ◀

For Prop. A.2, it remains to show the uniqueness of pλ : γ → α̇λ,λ+1. The uniqueness
does not immediately follow from the construction of pλ in Lem. A.3.

Our uniqueness proof (in the proof of Prop. A.2 shown later), we work on a suitable chain
in the fiber EF λ0, defined as follows.

The following fact (cf. [19, Prop. 9.2.2 and Exercise 9.2.4]) shows CLat∧-fibrations have
properties suitable for colimits.
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▶ Proposition A.4. Let p : E → B be an opfibration. Assume the base category B has colimits
of shape I. Then the following statements are equivalent.
1. Each fiber of the opfibration p has colimits of shape I.
2. The total category E has colimits of shape I and p strictly preserves them.

▶ Notation A.5 (α̇, α). In the setting of Lem. A.3, let us fix λ to be a converging ordinal of
the initial Ḟ -chain, in the sense that α̇λ,λ+1 : Ḟ λ0 ∼=→ Ḟ λ+10 is an isomorphism. In the rest
of the section, we write α̇, α for α̇λ,λ+1, αλ,λ+1, respectively. Then α : F λ0 ∼=→ F λ+10 is an
isomorphism, too.

▶ Definition A.6. In Prop. A.2, we define a chain

P
β0,1−−→ α∗ḞP

β1,2−−→ (α∗Ḟ )2P
β2,3−−→ · · ·

by repeated application of α∗Ḟ . The whole chain resides in the fiber EF λ0, as shown in (4).

...
...

(α∗Ḟ )2P
α ))

OO

Ḟ (α∗Ḟ )2P

OO

α∗ḞP

β1,2
OO

α
))

Ḟα∗ḞP
Ḟ β1,2
OO

P
β0,1
OO

γ
// ḞP

Ḟ β0,1

OO

F λ0 α // F λ+10

(4)

The precise definition is as follows. It is similar to Def. 2.7, but starting from P (instead
of from 0) calls for some care.

(Objects) (α∗Ḟ )iP is given for each i ∈ Ord: (α∗Ḟ )0P = P , (α∗Ḟ )i+1P = α∗Ḟ ((α∗Ḟ )iP ),
and (α∗Ḟ )i0 = colimj<i(α∗Ḟ )j0 for a limit ordinal i.
(Morphisms) The morphism βi,i+1 : (α∗Ḟ )i0 → (α∗Ḟ )i+10 for each ordinal i is defined as
follows.

(Base case) β0,1 : P → α∗ḞP is induced from γ : P → ḞP by universality of the
cartesian lifting ᾱ : α∗ḞP → ḞP . See (4).
(Step case) βi+1,i+2 is defined by α∗Ḟ βi,i+1.
(Limit case) βi,i+1 : (α∗Ḟ )iP → (α∗Ḟ )i+1P for a limit ordinal i is induced by univer-
sality of (α∗Ḟ )iP = colimj<i(α∗Ḟ )jP . Prop. A.4 ensures this colimit vertex is above
F λ0.

We have defined βj,j+1 for each ordinal j. This induces morphisms βi,j : (α∗Ḟ )iP →
(α∗Ḟ )jP for each i < j in a straight-forward manner: one repeats the step and limit cases;
when j is a limit ordinal, βi,j is the cocone component to (α∗Ḟ )jP = colimk<j(α∗Ḟ )kP .

▶ Lemma A.7. In the setting of Prop. A.2, let us assume that λ is a converging ordinal in
the initial chain of Ḟ , and adopt Notation A.5.

Fig. 2 shows the following constructs.
The morphism γ : P → ḞP above α induces the chain P

β0,1−−→ α∗ḞP
β1,2−−→ (α∗Ḟ )2P → · · ·

as in Def. A.6.
The last chain induces, for each ordinal l such that l < λ, the chain

α∗
l,λP

α∗
l,λβ0,1−−−−−→ α∗

l,λα∗ḞP
α∗

l,λβ1,2−−−−−→ α∗
l,λ(α∗Ḟ )2P → · · ·

above F l0, via the substitution along αl,λ.
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For each ordinal i, we obtain a Ḟ -coalgebra as follows. It is above α; it is denoted by γi.

(α∗Ḟ )iP
γi := α◦βi,i+1

// Ḟ (α∗Ḟ )iP

F λ0 α
∼=

// F λ+10
(5)

We apply Lem. A.3 to the last coalgebras γi, using each of them in place of the coalgebra
γ in Lem. A.3. Following the proof of Lem. A.3, we obtain vertical morphisms (pi

j :
α∗

j,λ(α∗Ḟ )iP → Ḟ j0)j≤λ for each ordinal i.
In this case, for each i such that i ≤ λ, (i) pi

i is an isomorphism; (ii) pl
i = pm

i ◦ α∗
i,λβl,m for

all l, m with l ≤ m.

See [21, Appendix C.15] for the proof.

0 // Ḟ 0 // Ḟ 20 // · · · // Ḟ λ0 α̇ // Ḟ λ+10

...
...

...
...

...

E

p

��

α∗
0,λ(α∗Ḟ )2P //

OOp2
0

FF

α∗
1,λ(α∗Ḟ )2P //

OOp2
1

FF

α∗
2,λ(α∗Ḟ )2P //

OOp2
2

FF

· · · // (α∗Ḟ )2P

α
%%

OOp2
λ

FF

Ḟ (α∗Ḟ )2P

OO Ḟ p2
λ

XX

α∗
0,λα∗Ḟ P //

α∗
0,λβ1,2

OO

p1
0

BB

α∗
1,λα∗Ḟ P //

α∗
1,λβ1,2

OO

p1
1

BB

α∗
2,λα∗Ḟ P //

α∗
2,λβ1,2

OO

p1
2

BB

· · · // α∗Ḟ P

β1,2

OO

p1
λ

BB

α

%%

Ḟ α∗Ḟ P

Ḟ β1,2

OO

Ḟ p1
λ

\\

α∗
0,λP //

α∗
0,λβ0,1

OO

p0
0

@@

α∗
1,λP //

α∗
1,λβ0,1

OO

p0
1

@@

α∗
2,λP //

α∗
2,λβ0,1

OO

p0
2

@@

· · · // P

β0,1

OO

γ
//

p0
λ

@@

Ḟ P

Ḟ β0,1

OO

Ḟ p0
λ

^^

B 0 // F 0 // F 20 // · · · // F λ0 α // F λ+10

Figure 2 A diagram for Lem. A.7.

The last lemma shows that the Ḟ -coalgebra γi : (α∗Ḟ )iP → Ḟ (α∗Ḟ )iP gets closer to α̇

as i gets larger, with a particular consequence that γλ is isomorphic to α̇ (via pλ
λ). This is

used in the following proof of Prop. A.2.

Proof of Prop. A.2. Let γ be an arbitrary coalgebra P → ḞP above α = αλ,λ+1 (Nota-
tion A.5). Lem. A.3 shows the existence of a vertical morphism from γ to α̇λ,λ+1. We only
need to show the uniqueness of morphisms. Let f be an arbitrary vertical morphism from γ to
α̇λ,λ+1. The isomorphic correspondence in Lem. 3.4 carries f : (P γ−→ ḞP ) → (Ḟ λ0 α̇−→ Ḟ λ+10)
in Coalg(Ḟ )α to f : (P β0,1−−→ α∗ḞP ) → (Ḟ λ0 δ−→ α∗Ḟ λ+10) in Coalg(α∗Ḟ ), where δ is the
mediating morphism from α̇ by universality of the cartesian lifting α : α∗Ḟ λ+10 → Ḟ λ+10.

Using the above f in Coalg(α∗Ḟ ), we consider the following two chains and a morphism
between them. Everything here is above F λ0; cf. (4). δ is an isomorphism since the initial
chain of Ḟ converges in λ steps.

Ḟ λ0
∼=
δ // (α∗Ḟ )Ḟ λ0

∼= // · · ·
∼= // (α∗Ḟ )λḞ λ0

∼= // (α∗Ḟ )λ+1Ḟ λ0

P
β0,1

//

f

OO

(α∗Ḟ )P
(α∗Ḟ )f
OO

// · · ·
βλ−1,λ

// (α∗Ḟ )λP

(α∗Ḟ )λf
OO

βλ,λ+1

// (α∗Ḟ )λ+1P

(α∗Ḟ )λ+1f
OO

(6)
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It follows easily that βλ,λ+1 is the inverse of an initial α∗Ḟ -algebra. This is essentially
because 1) γλ is isomorphic to α̇ (see the paragraph that follows Lem. A.7); and 2) (the inverse
of) γλ = α ◦ βλ,λ+1 corresponds to (the inverse of) βλ,λ+1 in the isomorphic correspondence
Alg(Ḟ )α−1 ∼= Alg(α∗Ḟ ) in Lem. 3.4.

Consider the rightmost square in (6). By universality of the initial α∗Ḟ -algebra (βλ,λ+1)−1,
(α∗Ḟ )λf is unique; therefore the composite (α∗Ḟ )λf ◦ βλ−1,λ ◦ · · · ◦ β0,1 (on the left in (6))
is uniquely determined. By the commutativity of (6) and the fact that all the morphisms in
the first row are isomorphisms, this uniquely determines f , too. ◀
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