
Inclusion Testing of Büchi Automata Based on
Well-Quasiorders
Kyveli Doveri # Ñ

IMDEA Software Institute, Madrid, Spain
Universidad Politécnica de Madrid, Spain

Pierre Ganty # Ñ

IMDEA Software Institute, Madrid, Spain

Francesco Parolini #Ñ

Sorbonne Université, Paris, France

Francesco Ranzato #Ñ

University of Padova, Italy

Abstract
We introduce an algorithmic framework to decide whether inclusion holds between languages of
infinite words over a finite alphabet. Our approach falls within the class of Ramsey-based methods
and relies on a least fixpoint characterization of ω-languages leveraging ultimately periodic infinite
words of type uvω, with u a finite prefix and v a finite period of an infinite word. We put forward
an inclusion checking algorithm between Büchi automata, called BAInc, designed as a complete
abstract interpretation using a pair of well-quasiorders on finite words. BAInc is quite simple: it
consists of two least fixpoint computations (one for prefixes and the other for periods) manipulating
finite sets (of pairs) of states compared by set inclusion, so that language inclusion holds when the
sets (of pairs) of states of the fixpoints satisfy some basic conditions. We implemented BAInc in
a tool called BAIT that we experimentally evaluated against the state-of-the-art. We gathered,
in addition to existing benchmarks, a large number of new case studies stemming from program
verification and word combinatorics, thereby significantly expanding both the scope and size of the
available benchmark set. Our experimental results show that BAIT advances the state-of-the-art
on an overwhelming majority of these benchmarks. Finally, we demonstrate the generality of our
algorithmic framework by instantiating it to the inclusion problem of Büchi pushdown automata
into Büchi automata.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Büchi (Pushdown) Automata, ω-Language Inclusion, Well-quasiorders

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.3

Supplementary Material Software (Source Code): https://github.com/parof/bait
archived at swh:1:dir:0085d9456cf1300c44386339a996c9453dca17c2

Funding Pierre Ganty: Partially supported by the Madrid regional project S2018/TCS-4339
BLOQUES, the Spanish project PGC2018-102210-B-I00 BOSCO and the Ramón y Cajal fel-
lowship RYC-2016-20281.
Francesco Ranzato: Partially funded by University of Padova, under the SID2018 project “Analysis
of STatic Analyses (ASTA)”; Italian Ministry of University and Research, under the PRIN2017
project no. 201784YSZ5 “AnalysiS of PRogram Analyses (ASPRA)”; Facebook Research, under a
“Probability and Programming Research Award”.

Acknowledgements We thank: Richard Mayr, Lorenzo Clemente, Parosh Abdulla and Lukáš Holík
for their insights and help with RABIT; Ming-Hsien Tsai for his help with GOAL; Reed Oei for the
Pecan benchmarks; Matthias Heizmann and Daniel Dietsch for the Ultimate Automizer benchmarks.

© Kyveli Doveri, Pierre Ganty, Francesco Parolini, and Francesco Ranzato;
licensed under Creative Commons License CC-BY 4.0

32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca; Article No. 3; pp. 3:1–3:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kyveli.doveri@imdea.org
https://kyveli.github.io/
https://orcid.org/0000-0001-9403-2860
mailto:pierre.ganty@imdea.org
https://software.imdea.org/~pierreganty/
https://orcid.org/0000-0002-3625-6003
mailto:francesco.parolini@lip6.fr
https://parof.github.io/
https://orcid.org/0000-0002-1077-7812
mailto:francesco.ranzato@unipd.it
https://www.math.unipd.it/~ranzato/
https://orcid.org/0000-0003-0159-0068
https://doi.org/10.4230/LIPIcs.CONCUR.2021.3
https://github.com/parof/bait
https://archive.softwareheritage.org/swh:1:dir:0085d9456cf1300c44386339a996c9453dca17c2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 Inclusion Testing of Büchi Automata Based on Well-Quasiorders

1 Introduction

Deciding whether a formal language contains another one is a fundamental problem with
diverse applications ranging from automata-based verification to compiler construction [6, 13,
25, 42]. In this work, we deal with the inclusion problem for ω-languages, namely languages of
words of infinite length (ω-words) over a finite alphabet. In particular, we are interested in the
case of ω-regular languages, which is known to be PSPACE-complete [26], and in the inclusion
of ω-context-free languages into ω-regular, which is known to be EXPTIME-complete [21, 32].

1.1 Main Contributions
We put forward a number of language inclusion algorithms that are systematically designed
from an abstraction-based perspective of the inclusion problem. Our starting point was
a recent abstract interpretation-based algorithmic framework for the inclusion problem
for languages of finite words [15, 16]. Extending this framework to ω-words raises several
challenges. First, the finite word case crucially relies on least fixpoint characterizations
of languages which we are not aware of for languages of ω-words (while greatest fixpoint
characterizations exist). The second challenge is to define suitable abstractions for languages
of ω-words and effective representations thereof.

We overcome the first challenge by reducing the inclusion problem for ω-languages to
an equivalent inclusion problem between their so-called ultimately periodic subsets. The
ultimately periodic subset of an ω-language L consists of those ω-words of the form uvω ∈ L,
where u and v are finite words referred to as, resp., a prefix and a period of an ω-word.
It turns out that an underlying Büchi (pushdown) automaton accepting L enables a least
fixpoint characterization of the ultimately periodic subset of L. To guarantee convergence
in finitely many Kleene iterations of such a least fixpoint, we resort to a conceptually
simple approach based on abstract interpretation [8]. Roughly speaking, we define over-
approximating abstractions of sets of finite words which “enlarge” these sets with new words
picked according to a quasiorder relation on finite words. Our abstractions rely on two distinct
quasiorder relations which, resp., enlarge the sets of prefixes and periods of an ultimately
periodic set representing an ω-language. The quasiorders inducing our abstractions have to
satisfy two basic properties: (1) to be well-quasiorders to guarantee finite convergence of
fixpoint computations; (2) some monotonicity conditions w.r.t. word concatenation in order
to yield a sound and complete inclusion algorithm (soundness holds for mere quasiorders).
Once the abstract least fixpoint has been computed, an inclusion check L ⊆? M reduces to a
finite number of tests uvω ∈? M for finitely many prefixes u and periods v taken from the
abstract least fixpoint representing L. We introduce different well-quasiorders to be used in
our inclusion algorithm and we show that using distinct well-quasiorder-based abstractions
for prefixes and periods pays off.

For a language inclusion check L ⊆ M , where L and M are accepted by Büchi automata,
some quasiorders enable a further abstraction step where finite words are abstracted by states
relating these words in the underlying Büchi automaton accepting M , and this correspondingly
defines a purely “state-based” inclusion algorithm that operates on automaton states only.
We further demonstrate the generality of our algorithmic framework by instantiating it to
the inclusion problem of Büchi pushdown automata into Büchi automata.

We implemented our language inclusion algorithm in a tool called BAIT (Büchi Automata
Inclusion Tester) [10]. We put together an extensive suite of benchmarks [11], notably
verification tasks as defined by the RABIT tool [1, 2], logical implication tasks in word
combinatorics as defined by the Pecan theorem prover [34], and termination tasks as defined



K. Doveri, P. Ganty, F. Parolini, and F. Ranzato 3:3

by Ultimate Automizer [18]. We conducted an experimental comparison of BAIT against
some state-of-the-art language inclusion checking tools: GOAL [41], HKCω [24], RABIT
[37, 7] and ROLL [27]. The experimental results show that BAIT advances the state-of-
the-art of the tools for checking inclusion of ω-languages on an overwhelming majority of
benchmarks.

1.2 Related Works
Due to space constraints, we limit our discussion to Ramsey-based algorithms, as our inclusion
procedure, and to methods based on automata complementation. Kuperberg et al. [24] also
reduce the language equivalence problem over Büchi automata to that of their ultimately
periodic subsets. A further commonality is that the algorithm of [24] handles prefixes
and periods differently: for the prefixes they leverage a state-of-the-art up-to congruence
algorithm [3], while up-to congruences are not used for the periods1. Fogarty and Vardi [14]
for the universality problem, and later Abdulla et al. [1, 2] for the inclusion problem between
languages accepted by Büchi automata, all reduce their decision problems to the ultimately
periodic subsets. Their approach is based on a partition of nonempty words whose blocks
are represented and manipulated through so-called supergraphs. The equivalence relation
underlying their partition can be obtained from one of our quasiorders. Moreover, by
equipping their supergraphs with a subsumption order [2, Def. 6], they define a relation
which coincides with one of our quasiorders. Hofmann and Chen [20], whose approach
based on abstract interpretation inspired our work, also tackle the inclusion problem for
ω-languages. They construct an abstract (finite) lattice using the same equivalence relation
which is derived from a given Büchi atomaton, and define a Galois connection between it and
the (infinite) lattice of languages of infinite words. However, they do not relax this relation
into a quasiorder. Finally, the complementation-based approaches reduce language inclusion
to a language emptiness check by using intersection and an explicit complementation of a
Büchi automaton. Despite that there are Büchi automata of size n whose complement cannot
be represented with less than n! states [33], algorithms to complement Büchi automata
have been defined, implemented and are effective in practice [40]. In our approach, explicit
complementation is avoided altogether.

2 Overview

We assume familiarity with the basics of language theory (see, e.g., [22, 35]). Throughout the
paper, we fix Σ to be a finite nonempty alphabet. Furthermore, let ϵ denote the empty word,
Σ∗ the set of finite words over Σ, Σ+ ≜ Σ∗ \ {ϵ}, Σω the set of infinite words (or ω-words)
over Σ, |w| ∈ N denote the length of w ∈ Σ∗. The ultimately periodic words are the words
ξ ∈ Σω such that ξ = uvω for some finite prefix u ∈ Σ∗ and some finite period v ∈ Σ+. Given
L ⊆ Σω, we associate pairs of finite words to ultimately periodic words and define

IL ≜ {(u, v) ∈ Σ∗ × Σ+ | uvω ∈ L} .

In the following we give an outline of our approach. Given two ω-languages L and
M such that the inclusion check reduces to that of their ultimately periodic words, i.e.
L ⊆ M ⇔ IL ⊆ IM holds, we reduce the inclusion problem L ⊆ M to finitely many
membership queries in the candidate “larger” language M .

1 In the technical report thereof, the authors work out up-to union and up-to equivalence reasoning for
periods but not their combination (up-to congruence).

CONCUR 2021



3:4 Inclusion Testing of Büchi Automata Based on Well-Quasiorders

A quasiorder (qo) relation on a set S is a reflexive and transitive binary relation on S. Any
qo ≤ ⊆ S ×S induces a map ρ≤ : ℘(S) → ℘(S) defined by ρ≤(X) ≜ {y ∈ S | ∃x ∈ X, x ≤ y},
which turns out to be a closure operator on the complete lattice ⟨℘(S), ⊆⟩. Let us recall that
a closure operator is a monotone (X ⊆ X ′ ⇒ ρ(X) ⊆ ρ(X ′)), idempotent (ρ(X) = ρ(ρ(X))),
and increasing (X ⊆ ρ(X)) map. Given X ∈ ℘(S), the set ρ≤(X) is called the upward
closure of X w.r.t. ≤. We say that a qo relation ⪯ on Σ∗ × Σ+ preserves IM if ρ⪯(IM ) = IM

holds. Given a qo ⪯ that preserves IM , since ρ⪯ is monotone and increasing, we have that:

L ⊆ M ⇐⇒ IL ⊆ IM ⇐⇒ ρ⪯(IL) ⊆ IM . (1)

A qo ≤ is a well-quasiorder (wqo) if for any upward closure ρ≤(X) there is a finite subset
X ′ ⊆fin X such that ρ≤(X) = ρ≤(X ′). Hence, if a relation ⪯ on Σ∗ × Σ+ is a wqo then there
exists a finite subset T ⊆fin IL such that ρ⪯(T ) = ρ⪯(IL). By exploiting the properties of
closures, this reduces the inclusion check to finitely many membership queries in M :

L ⊆ M ⇐⇒ ρ⪯(T ) ⊆ IM ⇐⇒ T ⊆ IM ⇐⇒ ∀(u, v) ∈ T, uvω ∈ M . (2)

Following this approach, we design inclusion algorithms in the cases where both languages
L and M are ω-regular and where the “left” language L is ω-context-free and the “right”
language M is ω-regular. In Section 3, we define wqos that preserve IM as required
by (1). Section 4 gives a detailed account of each step so as to end up designing our
inclusion algorithms. Section 5 shows how to obtain algorithms deciding L(A) ⊆ L(B) and
L(P) ⊆ L(B), where A and B are Büchi automata and P is a Büchi pushdown automaton,
by reasoning exclusively on the automata states/configurations. Section 6 describes the
experimental results of our implementation BAIT.

3 Well-Quasiorders for ω-Regular Languages

The equivalence (1) holds because the qo ⪯ on Σ∗ × Σ+ is such that ρ⪯(IM ) = IM . In the
following, we focus on pairs of qos ≤ and ≼ on, resp., Σ∗ and Σ+, such that their product
relation ≤ × ≼ on Σ∗ × Σ+ preserves IM , i.e., ρ≤×≼(IM ) = IM holds. We define different
pairs of qos preserving IM and show how they compare. All these qos are well-quasiorders
and right-monotonic. The first property guarantees the existence of a finite representation
for IL and the convergence after finitely many steps of the fixpoint computations, while the
second property ultimately yields a (sound and) complete inclusion algorithm.

A qo ≤ on Σ∗ is left-monotonic (right-monotonic) if

∀u, v, w ∈ Σ∗, u ≤ v ⇒ wu ≤ wv (uw ≤ vw) ,

while ≤ is monotonic if it is both left- and right-monotonic. Given any relation R ⊆ X × X,
R∗ ≜

⋃
n∈N Rn denotes its reflexive and transitive closure.

A Büchi automaton (BA) on an alphabet Σ is a tuple A = (Q, δ, i, F ) where Q is a finite set
of states including a unique initial state i ∈ Q, δ : Q × Σ → ℘(Q) is a transition function, and
F ⊆ Q is a subset of final states. We write a transition q

a→ q′ when q′ ∈ δ(q, a) and lift this
relation to finite words by transitive and reflexive closure, thus writing q

u−→∗q′ with u ∈ Σ∗.
We write q

u−→F
∗q′ if there exists qf ∈ F and u1, u2 ∈ Σ∗ such that q

u1−→∗qf , qf
u2−→∗q′ and

u = u1u2. The language of finite words accepted by A is L∗(A) ≜ {u ∈ Σ∗ | i
u−→∗q, q ∈ F}.

A trace of A on an ω-word w = a0a1 · · · ∈ Σω is an infinite sequence q0
a0→ q1

a1→ q2 · · · , which
is called initial when q0 = i and fair when qj ∈ F for infinitely many j’s. The ω-language
accepted by A is Lω(A) ≜ {w ∈ Σω | there exists an initial and fair trace on w}. An
ω-language L ⊆ Σω is ω-regular if L = Lω(A) for some BA A.



K. Doveri, P. Ganty, F. Parolini, and F. Ranzato 3:5

(a) C i a, b (b) D q0 qb
a ab

Figure 1 Büchi automata C and D over the alphabet Σ = {a, b}.

State-Based Quasiorders. We define quasiorders that compare words in Σ∗ based on the
states of a BA A = (Q, δ, i, F ). To do so, we associate with each word u ∈ Σ∗ its context
cA[u] ⊆ Q2 and final context f A[u] ⊆ Q2 in A as follows:

cA[u] ≜ {(q, q′) ∈ Q2 | q
u−→∗q′} ,

f A[u] ≜ {(q, q′) ∈ Q2 | q
u−→F

∗q′} .

We also define the successor set sA[u] ⊆ Q in A through a word u ∈ Σ∗ as follows:

sA[u] ≜ {q ∈ Q | i
u−→∗q} .

Based on this, we define the following qos on words in Σ∗:

u ≤A v
△⇔ sA[u] ⊆ sA[v] ,

u ⊴A v
△⇔ cA[u] ⊆ cA[v] ,

u ≼A v
△⇔ u ⊴A v ∧ f A[u] ⊆ f A[v] .

▶ Example 3.1. Consider the BA D in Fig. 1 (b). Since for all u ∈ Σ∗, sD[ua] = {q}
and sD[ub] = sD[ϵ] = {q0}, we have that u ≤D v iff either u, v ∈ Σ∗a or u, v ∈ Σ∗b ∪ {ϵ}.
Similarly, we find that u ⊴D v iff either u, v /∈ {ϵ} and u ≤D v, or u, v ∈ {ϵ}. For u ∈ Σ∗

we have f D[ua] = {(q0, q), (q, q)}. For u ∈ Σ∗ \ b∗ we have f D[ub] = {(q0, q0), (q, q0)} and
f D[bk] = {(q, q0)}, for any k ≥ 1. As for the empty word, f D[ϵ] = {(q, q)}. Hence, for
all u, v ∈ Σ∗, it turns out that u ≼C v holds iff one of the following four cases holds:
(i) u, v ∈ Σ∗a; (ii) u ∈ Σ∗b and v ∈ Σ∗b\b∗; (iii) u, v ∈ b+; (iv) u, v ∈ {ϵ}. ⌟

The qos ⊴A and ≤A appeared in [15] while ≼A was obtained by relaxing an equivalence
defined in [20]. By definition, we have that ≼A ⊆ ⊴A, and since q ∈ sA[u] iff (i, q) ∈ cA[u],
we deduce that ≼A ⊆ ⊴A ⊆ ≤A holds. Since Q is a finite set, it turns out that all these three
state-based qos are indeed wqos. It is easily seen that ⊴A and ≼A are monotonic and that
≤A is right-monotonic. Finally, we turn to the preservation property with respect to ILω(A).
Let (u, v) ∈ ILω(A). Then, uvω ∈ Lω(A) and there is an initial fair trace of A on uvω. Hence,
we can find two states p, q ∈ Q and two integers n, m ≥ 1 such that i

u−→∗p, p
vn

−→∗q and
q

vm

−−→∗
F q. Let (s, t) ∈ Σ∗ × Σ+ be such that u ≤A s and v ≼A t. By monotonicity of ≼A,

we deduce that vk ≼A tk holds for all k ∈ N. Hence, by definition of the state-based qos,
we also have i

s−→∗p, p
tn

−→∗q and q
tm

−−→∗
F q. Therefore, (s, t) ∈ ILω(A) holds. The argument

remains the same if u ⊴A s or u ≼A s, so that we conclude that the pair ≤A,≼A, as well as
the pairs ⊴A,≼A and ≼A,≼A are pairs of wqos preserving ILω(A).

4 An Algorithmic Framework for Checking Inclusion

We start with the ω-regular ⊆ ω-regular case and then leverage the generality of our
algorithmic framework to tackle the ω-context-free ⊆ ω-regular case in Section 4.2.

CONCUR 2021



3:6 Inclusion Testing of Büchi Automata Based on Well-Quasiorders

4.1 Language Inclusion ω-regular ⊆ ω-regular
Let us first recall the following fundamental theorem for languages of ω-words.

▶ Theorem 4.1 ([5]). The equivalence L ⊆ M ⇐⇒ IL ⊆ IM holds for all ω-regular
languages L, M ⊆ Σω.

Fix an ω-regular language M , a pair ≤,≼ of right-monotonic wqos on, resp., Σ∗ and
Σ+, with ρ≤×≼(IM ) = IM , as given in Section 3, and a BA A = (Q, δ, iA, F ) such that
L = Lω(A).

A Representation for the Ultimately Periodic Words of L. We slightly generalize the
approach presented in Section 2 and represent the ultimately periodic words of L by a subset
S ⊆ IL such that {uvω | (u, v) ∈ S} = {uvω | (u, v) ∈ IL} holds, so that L ⊆ M ⇔ S ⊆ IM

holds. The definition of such a subset S representing IL relies on the following result.

▶ Lemma 4.2. Let A = (Q, δ, iA, F ) be a BA. Then, uvω ∈ Lω(A) iff there exist p ∈ F ,
u′ ∈ Σ∗, v′ ∈ Σ+ such that uvω = u′v′ω, iA

u′

−→∗p and p
v′

−→∗p.

For each pair of states q, q′ ∈ Q, we define the automaton Aq
q′ ≜ (Q, δ, q, {q′}). By

Lemma 4.2, it turns out that the ultimately periodic words generated by the pairs of finite
words in

SA ≜
⋃

p∈F L∗(AiA
p ) × (L∗(Ap

p)\{ϵ})

coincide with the ultimately periodic words of Lω(A). Hence, by reasoning as in Section 2,
it turns out that:

Lω(A) ⊆ M ⇐⇒ SA ⊆ IM ⇐⇒ ρ≤×≼(SA) ⊆ IM . (1′)

Fixpoint Characterization of SA. For a function f : X → X over a set X and for all n ∈ N,
the n-th power fn : X → X of f is inductively defined as usual: f0 ≜ λx.x; fn+1 ≜ f ◦ fn.
The denumerable sequence of Kleene iterates of f starting from an initial value a ∈ X is
given by {fn(a)}n∈N. This sequence finitely converges to some fk(a), with k ∈ N, when for
all n ≥ k, fn(a) = fk(a). Let us recall that when X is a directed-complete partial order with
bottom ⊥ and f is monotone, if the Kleene iterates starting from the bottom {fn(⊥)}n∈N
finitely converge to some fk(⊥) then fk(⊥) is the least fixpoint of f , denoted by lfp f .

Given X ∈ ℘(Σ∗)Q, we define

PostA(X) ≜ ⟨
⋃

a∈Σ,q∈δ(q′,a) Xq′a⟩q∈Q ∈ ℘(Σ∗)Q ,

where, for all q ∈ Q, Xq denotes the q-indexed component of the vector X. In turn, for each
p ∈ F , we define the maps

PA ≜ λX.⟨{ϵ | q = iA} ∪ (PostA(X))q⟩q∈Q ,

RA,p ≜ λX.⟨{a ∈ Σ | q ∈ δ(p, a)} ∪ (PostA(X))q⟩q∈Q ,

which allows us to give the following least fixpoint characterization of SA.

▶ Lemma 4.3. SA =
⋃

p∈F (lfp PA)p × (lfp RA,p)p.

▶ Example 4.4. Consider the BA C in Fig. 1. Since L∗(Ci
i) = {a, b}∗, we have that

SC = {a, b}∗ × {a, b}+. Since C has only one state, vectors have dimension one. We have
that PC = λX.{ϵ} ∪ Xa ∪ Xb and RC = λX.{a, b} ∪ Xa ∪ Xb, so that their Kleene iterates
are P n

C (∅) = {u ∈ {a, b}∗ | |u| ≤ n − 1} and Rn
C (∅) = {v ∈ {a, b}+ | |v| ≤ n}, for n ∈ N. ⌟



K. Doveri, P. Ganty, F. Parolini, and F. Ranzato 3:7

A Finite Representation of SA. Given two vectors X, X ′ ∈ ℘(Σ∗)k, we abuse notations
and write X ∪ X ′ for the vector ⟨Xj ∪ X ′

j⟩j∈[1,k], and we write X ⊆ X ′ when Xj ⊆ X ′
j for

all j ∈ [1, k]. Given two functions f : ℘(Σ∗)k → ℘(Σ∗)k and ρ : ℘(Σ∗) → ℘(Σ∗) we write
fn(∅) for fn(∅, · · · , ∅), and ρ ◦ f for the function λX.⟨ρ((f(X))j)⟩j∈[1,k].

Since ≤ is a wqo, ρ≤(lfp PA) = ρ≤(D) for some finite subset D ⊆fin lfp PA. Since
lfp PA =

⋃
n∈N P n

A(∅), there exists some index N1 ∈ N such that D ⊆ P N1
A (∅). Hence,

ρ≤(P N1
A (∅)) = ρ≤(lfp PA) holds. This also applies to ≼ and RA,p, for each p ∈ F , so that

there exists an index N2 ∈ N such that ρ≼(RN2
A,p(∅)) = ρ≼(lfp RA,p). Thus, by taking

Tp ≜ P N1
A (∅) × RN2

A,p(∅), for each p ∈ F , we obtain a finite representation of SA, as required
by step (2). By plugging the least fixpoint characterisation of SA of Lemma 4.3 inside (1′),
by observing that the closures preserve unions, and that ρ≤×≼ and ρ≤ × ρ≼ coincide on
Cartesian products, we derive the following equivalences as in Section 2:

Lω(A) ⊆ M ⇐⇒ ∀p ∈ F, ρ≤×≼((lfp PA)p × (lfp RA,p)p) ⊆ IM

⇐⇒ ∀p ∈ F, ρ≤×≼(Tp) ⊆ IM ⇐⇒ ∀p ∈ F, Tp ⊆ IM .
(2′)

▶ Remark 4.5. Assume that {Xn}n∈N and {Yn}n∈N are two sequences of vectors in ℘(Σ∗)Q

such that for each n ∈ N: (i) the Q-indexed components of Xn and Yn, for all n, are finite
sets; (ii) for each n ∈ N, ρ≤(Xn) = ρ≤(P n

A(∅)) and ρ≼(Yn) = ρ≼(Rn
A,p(∅)). We call such a

sequence {Xn}n∈N (resp. {Yn}n∈N) a sequence of correct pruning steps w.r.t. ≤ (resp. ≼).
Then, the vector XN1 × YN2 can be used to achieve (2′), likewise Tp was used above. ⌟

Convergence Check. Let us now turn to the definition of a procedure for deciding when
to stop the computations of ρ≤(P n

A(∅)) and ρ≼(Rn
A,p(∅)). Here, we exploit a completeness

property of the closures ρ≤ and ρ≼, commonly used in abstract interpretation [8, 9]: a
closure ρ : C → C is called complete for a function f : C → C when ρ ◦ f = ρ ◦ f ◦ ρ

holds. Completeness is often used in abstract interpretation because it transfers to fixpoints,
meaning that if ρ is complete for f then ρ(lfp f) = lfp(ρ ◦ f) holds [9, Theorem 7.1.0.4].
The following result provides a sufficient condition on a qo on Σ∗ so as the induced closure
operator turns out to be complete for the functions PA and RA,p, for each p ∈ F .

▶ Lemma 4.6. Let A = (Q, δ, iA, F ) be a BA on Σ and ≤ be a right-monotonic qo on Σ∗.
Then, ρ≤ is complete for PA and RA,p, for each p ∈ F .

We are now in position to show that if the qos ≤ and ≼ are right-monotonic and
decidable, then a finite representation of SA can be computed. First, observe that for all
n ≥ 0, P n

A(∅) is finite and computable (an easy induction can prove this). Let us also
notice that PA is a monotone function, hence ρ≤ ◦ PA is monotone as well. Suppose that
ρ≤(P N1+1

A (∅)) ⊆ ρ≤(P N1
A (∅)) holds for some N1 ∈ N. Thus, by monotonicity of ρ≤ ◦ PA,

it turns out that ρ≤ ◦ PA ◦ ρ≤(P N1+1
A (∅)) ⊆ ρ≤ ◦ PA ◦ ρ≤(P N1

A (∅)). By Lemma 4.6, ρ≤ is
complete for PA, hence this latter inclusion is equivalent to ρ≤(P N1+2

A (∅)) ⊆ ρ≤(P N1+1
A (∅)). A

simple induction based on this argument proves that for all k ≥ N1, ρ≤(P k
A(∅)) ⊆ ρ≤(P N1

A (∅))
holds, so that we obtain that {ρ≤(P n

A(∅))}n∈N finitely converges at iteration N1. Hence, to
detect convergence of the iterates we check whether ρ≤(P n+1

A (∅)) ⊆ ρ≤(P n
A(∅)) holds or not.

When the qo ≤ is decidable, this test boils down to check if for each x ∈ P n+1
A (∅), there

exists y ∈ P n
A(∅) such that y ≤ x. This same reasoning also applies to ≼ and RA,p.

Word-based Inclusion Algorithms. Our “word-based” algorithm BAIncW for checking
Lω(A) ⊆ M is parameterized by a pair of right-monotonic wqos ≤,≼ (on, resp., Σ∗, Σ+)
preserving IM . It computes the Kleene iterates P n

A(∅) and Rn
A,p(∅), for each final state

CONCUR 2021



3:8 Inclusion Testing of Büchi Automata Based on Well-Quasiorders

p ∈ F , until ρ≤((P N1+1
A (∅))q) ⊆ ρ≤((P N1

A (∅))q) and ρ≼((RN2+1
A,p (∅))q) ⊆ ρ≼((RN2

A,p(∅))q) hold
for each q ∈ Q and some N1, N2 ∈ N. The resulting finite sets of words (P N1

A (∅))p and
(RN2

A,p(∅))p, for each final state p ∈ F , are used by the membership check procedure enabled
by (2′):

Lω(A) ⊆ M ⇐⇒ ∀p ∈ F, ∀u ∈ (P N1
A (∅))p, ∀v ∈ (RN2

A,p(∅))p, uvω ∈ M.

BAIncW Word-based algorithm for checking Lω(A) ⊆ M .

Data: Büchi automaton A = (Q, δ, iA, F )
Data: Procedure deciding uvω ∈? M given (u, v) ∈ Σ∗ × Σ+

Data: Decidable right-monotonic wqos ≤,≼ s.t. ρ≤×≼(IM ) = IM

1 Compute P N1
A (∅) with least N1 s.t. ∀q ∈ Q, ρ≤((P N1+1

A (∅))q) ⊆ ρ≤((P N1
A (∅))q);

2 foreach p ∈ F do
3 Compute RN2

A,p(∅) with least N2 s.t. ∀q ∈ Q, ρ≼((RN2+1
A,p (∅))q) ⊆ ρ≼((RN2

A,p(∅))q);
4 foreach u ∈ (P N1

A (∅))p, v ∈ (RN2
A,p(∅))p do

5 if uvω /∈ M then return false;
6 return true;

▶ Theorem 4.7. Given all the required input data, BAIncW decides Lω(A) ⊆ M .

▶ Remark 4.8. The for-loop at lines 2-5 of BAIncW is restricted to the final states p ∈ F of
the BA A. Thus, in general, the less they are the better is for BAIncW. ⌟

▶ Example 4.9. Consider the BAs C and D in Fig. 1. From Example 4.4 we have that
PC(∅) = {ϵ}, P 2

C (∅) = {ϵ, a, b} and P 3
C (∅) = {ϵ, a, b, aa, ab, ba, bb}. From Example 3.1, for

u ∈ {aa, ba} and v ∈ {ab, bb}, we have that a ≤D u and b ≤D v, while a and ϵ are
incomparable for ≤D. Hence, ρ≤D (PC(∅)) ̸= ρ≤D (P 2

C (∅)) and ρ≤D (P 2
C (∅)) = ρ≤D (P 3

C (∅)) hold,
so that a finite representation of lfp PC is achieved by P 2

C (∅). Since ρ≼D (R2
C(∅)) = ρ≼D (R1

C(∅)),
the membership check is performed on the elements of P 2

C (∅) × R1
C(∅) = {ϵ, a, b} × {a, b},

and for (a, b) ∈ P 2
C (∅) × R1

C(∅), the word abω is a witness that Lω(C) ̸⊆ Lω(D). ⌟

As explained by Remark 4.5, any sequence of correct pruning steps for the Kleene iterates
can be safely exploited to compute a finite representation of SA. This is formalized by the
algorithm BAIncW given in App. A.

The pairs of qos derived from M as defined in Section 3, are all pairs of decidable
right-monotonic wqos that verify the preservation property w.r.t. M . Each of them yields
a slightly different algorithm deciding whether Lω(A) ⊆ M holds (see the discussion in
Section 4.3).

4.2 Language Inclusion ω-context-free ⊆ ω-regular
A (Büchi) pushdown automaton ((B)PDA) on Σ is a tuple P = (Q, Γ, δ, i, F ) where Q

is a finite set of states including an initial state i, Γ is the stack alphabet including an
initial stack symbol ⊥, δ ⊆ Q × (Σ ∪ {ϵ}) × Γ × Q × Γ∗ is the finite set of transitions,
and F ⊆ Q is a subset of accepting states. Configurations of the PDA P are pairs in
Q × Γ∗ and, for each a ∈ Σ, the transition relation ⊢a between configurations is defined
by (q, γw) ⊢a (p, βw), for some w ∈ Γ∗, when (q, a, γ, p, β) ∈ δ, and it is lifted to words by
reflexivity and transitivity, that is, for all u ∈ Σ∗, (q, w) ⊢∗u (p, w′) when the configurations
(q, w) and (p, w′) are related by a sequence of transitions such that the concatenation of
the corresponding labels is the word u. We write (q, w) ⊢∗u

F (p, w′) when such a sequence
includes a configuration whose state is final. The language of finite words accepted by a



K. Doveri, P. Ganty, F. Parolini, and F. Ranzato 3:9

PDA P is L∗(P) ≜ {u ∈ Σ∗ | (i, ⊥) ⊢∗u (p, w), p ∈ F, w ∈ Γ∗}. A natural extension from
finite to infinite words relies on infinite sequences of configurations as follows. A trace of P
for an ω-word ξ = a0a1 · · · ∈ Σω is an infinite sequence (q0, w0) ⊢∗a0 (q1, w1) ⊢∗a1 · · ·, which
is initial when (q0, w0) = (i, ⊥) and fair when qj ∈ F for infinitely many j’s. The ω-language
accepted by P is Lω(P) ≜ {ξ ∈ Σω | there exists an initial and fair trace of P for ξ}. An
ω-language L ⊆ Σω is ω-context-free if L = Lω(P) for some BPDA P on Σ.

We fix an ω-regular language M , a pair ≤,≼ of monotonic wqos on Σ∗, Σ+ such that
ρ≤×≼(IM ) = IM holds, and a BPDA P such that L = Lω(P). Theorem 4.1 still holds when
the “left” language L is ω-context-free, so that L ⊆ M ⇐⇒ IL ⊆ IM holds. The following
result generalises Lemma 4.2 to BPDAs.

▶ Lemma 4.10. Let P = (Q, Γ, δ, i, F ) be a BPDA. Then, uvω ∈ Lω(P) iff there exist (q, γ) ∈
Q × Γ, u′ ∈ Σ∗, v′ ∈ Σ+ such that uvω = u′v′ω, (i, ⊥) ⊢∗u′

(q, γs) and (q, γ) ⊢∗v′

F (q, γw), for
some s, w ∈ Γ∗.

Similarly to the ω-regular case described in Section 4.1, Lemma 4.10 allows us to define
two PDAs P1

qγ and P2
qγ , where for each (q, γ) ∈ Q × Γ, P1

qγ deals with the prefixes, P2
qγ deals

with the periods, and are such that the ultimately periodic words generated by the pairs in
SP ≜

⋃
(q,γ)∈Q×Γ L∗(P1

qγ) × L∗(P2
qγ) coincide with those of Lω(P). Hence, similarly to (1′)

for the ω-regular case, it turns out that:

Lω(P) ⊆ M ⇐⇒ SP ⊆ IM ⇐⇒ ρ≤×≼(SP) ⊆ IM . (1′′)

Moreover, analogously to Lemma 4.3 for the ω-regular case, SP admits a least fixpoint
characterisation.

▶ Lemma 4.11. Any PDA P induces a monotone map FP : ℘(Σ∗)m → ℘(Σ∗)m, for some
m ∈ N, such that L∗(P) = (lfp FP)0.

Let us mention that the definition of FP relies on the production rules of a context-free
grammar (CFG) accepting L∗(P) and that (lfp FP)0 denotes the first vector component
corresponding to the start variable of the CFG. Let Pqγ and Rqγ be the functions provided
by Lemma 4.11 for the two PDAs P1

qγ and P2
qγ defined above for each (q, γ) ∈ Q × Γ. By (1′′)

and Lemma 4.11, it turns out that:

Lω(P) ⊆ M ⇐⇒ ∀(q, γ) ∈ Q × Γ, ρ≤((lfp Pqγ)0) × ρ≼((lfp Rqγ)0)) ⊆ IM . (2′′)

Since both ≤ and ≼ are wqos, the corresponding upward-closed sets in (2′′) can be
obtained as upward closure of some finite subsets. In particular, by reasoning as for the
ω-regular case, we have that for each (q, γ) ∈ Q × Γ there exist N1, N2 ∈ N such that
ρ≤((lfp Pqγ)0) = ρ≤((P N1

qγ (∅))0) and ρ≼((lfp Rqγ)0) = ρ≼((RN2
qγ (∅))0) hold.

Let us now turn to the convergence of the sequences of Kleene iterates. Being induced
by the rules of a CFG, the function FP(⟨X1, ..., Xm⟩) of Lemma 4.11 may rely on nonlinear
concatenations of type XiXj for some i, j ∈ [1, m], so that prefixes and periods in SP can be
obtained both by left- and right-concatenations. This is different from the ω-regular case,
where only right-concatenations were needed. Thus, in contrast to the ω-regular case of
Lemma 4.6, we need stronger monotonicity conditions on the qos ≤ and ≼ in order to ensure
the completeness of the closures ρ≤ and ρ≼ for, resp., Pqγ and Rqγ : both qos need to be
(left- and right-) monotonic.

▶ Lemma 4.12. Let P be a BPDA on Σ and ≤ be a monotonic qo on Σ∗. Then, ρ≤ is
complete for all the functions Pqγ and Rqγ induced by P.

CONCUR 2021



3:10 Inclusion Testing of Büchi Automata Based on Well-Quasiorders

in q1 q2 · · · qn−1

q′
0 q′

1 q′
2 · · · q′

n−1

pn

a a a a

a a a a
b b b b

a a a a

b

1

0 2

3n−1

qn

· · ·

a, b a

a

a

a

a

a, b

a, b

Figure 2 The families {An}n≥2 (left) and {Bn}n≥2 (right) s.t. Lω(An) ⊆ Lω(Bn) for all n.

Hence, by Lemma 4.12, the same arguments used for the ω-regular case entail that the
convergence of the Kleene iterates of Pqγ and Rqγ boils down to check, resp., the conditions:
ρ≤(P n+1

qγ (∅)) ⊆ ρ≤(P n
qγ(∅)) and ρ≼(Rn+1

qγ (∅)) ⊆ ρ≼(Rn
qγ(∅)), for some n ∈ N.

Summing up, our “word-based” algorithm for Lω(P) ⊆ M follows the same template of
BAIncW for the ω-regular case. First, it computes the iterates of Pqγ and Rqγ for, resp., the
prefix and period languages, until finite convergence is reached. Then, the resulting finite
sets of words (P N1

qγ (∅))0 and (RN2
qγ (∅))0 are used by the following membership check:

Lω(P) ⊆ M ⇐⇒ ∀(q, γ) ∈ Q × Γ, ∀u ∈ (P N1
qγ (∅))0, ∀v ∈ (RN1

qγ (∅))0, uvω ∈ M .

The pairs of state-based wqos that can be used to decide the inclusion Lω(P) ⊆ M are
⊴B,≼B and ≼B,≼B, where B is a BA recognising M , as defined in Section 3.

4.3 Discussion
Let us discuss how the inclusion algorithms provided by pairs of qos defined in Section 3
can be related to each other. Consider two wqos ≤, ≤′ ⊆ Σ∗ × Σ+ such that ≤ is coarser
than ≤′, i.e., ≤′ ⊆ ≤ holds. It turns out that ρ≤′(X) ⊆ ρ≤′(Y ) implies ρ≤(X) ⊆ ρ≤(Y ),
so that if some Kleene iterates of BAIncW converge in N ′ steps w.r.t. ≤′, then the same
Kleene iterates converge in N ≤ N ′ steps w.r.t. ≤, namely, convergence can be “faster”
with a coarser qo. Also, given a wqo ≤ and a nonempty set X ∈ ℘(Σ∗), consider the set
CX ≜ {Y ⊆fin X | ρ≤(Y ) = ρ≤(X)} of finite subsets of X inducing the same ≤-upward
closure as X, which is not empty because ≤ is a wqo. An element of CX of minimal size is
called a minor of X and denoted by ⌊X⌋≤. If ≤ is coarser than ≤′ then any minor ⌊X⌋≤ w.r.t.
≤ has at most as many elements as any minor ⌊X⌋≤′ w.r.t. ≤′. Thus, a coarser pair of wqos
may achieve a smaller minimal representation on which to perform the membership queries
of BAIncW. The following example shows the benefits of using the coarsest state-based pair
of wqos on the family of inclusion problems between the BAs depicted in Fig. 2.

▶ Example 4.13. Consider the families of BAs {An}n≥2 and {Bn}n≥2 in Fig. 2. Let Xn ≜
{aibaj+1 ∈ Σ∗ | i, j ≥ 0, i+j ≤ n−1} such that L∗(An

in
pn

) = Xn{b}∗ and L∗(An
pn
pn

)\{ϵ} = b+.
For any w ∈ L∗(An

in
pn

) we have that qn ∈ sBn [w], and, since sBn [aba] = {qn}, it holds that
aba ≤Bn w. Since aba ∈ L∗(An

in
pn

), we deduce that any minor ⌊L∗(An
in
pn

)⌋≤Bn has size one.
Similarly, any minor ⌊L∗(An

pn
pn

)\{ϵ}⌋≼Bn has size one. We also have that cBn [aibaj+1] =
{(n − i, j + 2), (0, qn), (qn, qn)}. Hence, if w ≼Bn w′, for w, w′ ∈ Xn, then w = w′. Since Xn

has size n(n+1)
2 , all the minors ⌊L∗(An

in
pn

)\{ϵ}⌋≼Bn and ⌊L∗(An
in
pn

)\{ϵ}⌋⊴Bn have at least
n(n+1)

2 elements. Hence, using the pair of qos ≤Bn ,≼Bn , a single membership query (i.e.,
uvω ∈ Lω(Bn)) is needed to decide the inclusion Lω(An) ⊆ Lω(Bn), as opposed to no less
than n(n+1)

2 membership queries for the other pairs of qos. ⌟



K. Doveri, P. Ganty, F. Parolini, and F. Ranzato 3:11

▶ Remark 4.14. The supergraphs of [2, Def. 6] endowed with their subsumption orders
coincide with our qo ≼. Without the subsumption order they coincide with ≼ ∩ ≼−1. ⌟

5 State-Based Inclusion Algorithms

In this section, we show how to derive state-based inclusion algorithms, namely, algorithms
that, given two BAs A = (QA, δA, iA, FA) and B = (QB, δB, iB, FB), decide whether
Lω(A) ⊆ Lω(B) by operating on the states of A and B only. The intuition is that words are
abstracted into states and, correspondingly, operations/tests on words are abstracted into
operations/tests on states. Of course, the key to enable such abstractions are the state-based
qos defined in Section 3, whose definitions rely just on the states of a BA representing an ω-
language. Due to lack of space, we focus on the ω-regular case, while a state-based algorithm
for the context-free case is given in App. B and is designed by following an analogous pattern.

We focus on the pair of qos ≤B,≼B defined in Section 3. The state-based algorithms for
different pairs of qos can be analogously derived. Given an ultimately periodic word uvω,
the prefix u ∈ Σ∗ is abstracted by the set of its successor states in B given by sB[u] ∈ ℘(QB),
while the period v is abstracted by the pair (cB[v], f B[v]) ∈ ℘(Q2

B) × ℘(Q2
B) providing its

context and final context in B. Thus, the state abstraction of SA, as given in Lemma 4.3, is:

SA,B ≜
⋃

p∈FA
{sB[u] | u ∈ (lfp PA)p} × {(cB[v], f B[v]) | v ∈ (lfp RA,p)p} .

We give a fixpoint characterisation of SA,B using the state abstractions of the functions
PA and RA,p w.r.t., resp., the qos ≤B and ≼B.

Let us define the maps Post≤B

A : ℘(℘(QB))QA → ℘(℘(QB))QA and Post≼
B

A : ℘(℘(Q2
B) ×

℘(Q2
B))QA → ℘(℘(Q2

B) × ℘(Q2
B))QA as follows:

Post≤B

A (X) ≜ ⟨
⋃

a∈Σ,q∈δA(q′,a){y ⋆ a | y ∈ Xq′}⟩q∈QA

Post≼
B

A (Y ) ≜ ⟨
⋃

a∈Σ,q∈δA(q′,a){
(
y1 ◦ cB[a], y1 ◦ f B[a] ∪ y2 ◦ cB[a]

)
| (y1, y2) ∈ Yq′}⟩q∈QA

where y ⋆ a ≜
⋃

q′∈y{q ∈ QB | (q′, q) ∈ cB[a]}, for y ∈ ℘(QB) and a ∈ Σ. The intuition for
this latter definition is the following: if y = sB[u], for some u ∈ Σ∗, then y ⋆ a = sB[ua]. Also,
given two binary relations y1, y2 ∈ ℘(Q2

B) on states of B, the notation y1 ◦ y2 denotes their
composition. Here, the intuition is similar: if y1 = cB[u] and y2 = f B[u], for some u ∈ Σ∗,
then y1 ◦ cB[a] = cB[ua] and y1 ◦ f B[a] ∪ y2 ◦ cB[a] = f B[ua]. In turn, the functions:

PA,B ≜ λX ∈ ℘(℘(QB))QA . ⟨{{iB} | q = iA}⟩q∈QA ∪ Post≤B

A (X)

RA,B,p ≜ λY ∈ ℘(℘(Q2
B) × ℘(Q2

B))QA . ⟨{(cB[a], f B[a]) | q ∈ δA(p, a)}⟩q∈QA ∪ Post≼
B

A (Y )

with p ∈ QA, give us the following least fixpoint characterization:

▶ Lemma 5.1. SA,B =
⋃

p∈FA
(lfp PA,B)p × (lfp RA,B,p)p.

Let us now turn to the convergence check for the Kleene iterates of PA,B and RA,B,p.
The qo ≤B on words translates into the inclusion order ⊆ on ℘(QB) and, analogously, ≼B

translates into the componentwise inclusion order ⊆2 ≜ ⊆×⊆ on ℘(Q2
B) × ℘(Q2

B). Hence,
the convergence of the iterates P n

A,B(∅) is checked by ρ⊆(P n+1
A,B (∅)) ⊆ ρ⊆(P n

A,B(∅)) (where ⊆
is componentwise on vectors). Similarly, for the iterates Rn

A,B,p(∅) w.r.t. ⊆2. Let us remark
that since the inclusion ⊆ is a partial order (rather than a mere qo), each set X ∈ ℘(℘(QB))
admits a unique minor ⌊X⌋ w.r.t. ⊆, and similarly for ⊆2. Hence, the sequences of minors
{⌊P n

A,B(∅)⌋}n∈N and {⌊Rn
A,B,p(∅)⌋}n∈N w.r.t., resp., ⊆ and ⊆2, are uniquely defined. Since

CONCUR 2021



3:12 Inclusion Testing of Büchi Automata Based on Well-Quasiorders

these are sequences of correct pruning steps according to Remark 4.5, they can be exploited
to achieve a smaller representation of SA,B. Hence, the clear rationale to use these uniquely
defined minors is to keep at each iteration the minimum number of elements of the Kleene
iterates for representing them.

Finally, let us discuss the state abstraction of the membership check uvω ∈ Lω(B). For
x ∈ ℘(QB) and (y1, y2) ∈ ℘(Q2

B)×℘(Q2
B), define the following state-based inclusion predicate:

IncB(x, (y1, y2)) ≜ ∃q, q′ ∈ QB, q ∈ x ∧ (q, q′) ∈ y∗
1 ∧ (q′, q′) ∈ y∗

1 ◦ y2 ◦ y∗
1 .

This is the correct state-based membership check because for all u ∈ Σ∗, v ∈ Σ+, it turns
out that uvω ∈ Lω(B) ⇔ IncB(sB[u], (cB[v], f B[v])).

Summing up, we are now in a position to put forward our state-based algorithm BAIncS
for checking Lω(A) ⊆ Lω(B). An illustrative run on the example of Fig. 1 is given in
Section 5.1.

BAIncS State-based algorithm for checking Lω(A) ⊆ Lω(B).

Data: Büchi automata A = (QA, δA, iA, FA) and B = (QB, δB, iB, FB)
1 Compute ⌊P N1

A,B(∅)⌋ with least N1 s.t. ∀q ∈ QA, ρ⊆((P N1+1
A,B (∅))q) ⊆ ρ⊆((P N1

A,B(∅))q);
2 foreach p ∈ FA do
3 Compute ⌊RN2

A,B,p(∅)⌋ with least N2 s.t. ∀q ∈ QA, ρ⊆2 ((RN2+1
A,B,p(∅))q) ⊆ ρ⊆2 ((RN2

A,B,p(∅))q);
4 foreach x ∈ (⌊P N1

A,B(∅)⌋)p, (y1, y2) ∈ (⌊RN2
A,B,p(∅)⌋)p do

5 if ¬IncB(x, (y1, y2)) then return false;
6 return true;

▶ Theorem 5.2. The algorithm BAIncS decides Lω(A) ⊆ Lω(B).

5.1 Illustrative Example of BAIncS
We show the execution of a run of BAIncS on the BAs C and D depicted in Fig. 1. As a result,
the algorithm will correctly decide that Lω(C) is not included in Lω(D) (e.g., abω ∈ Lω(C)
but abω /∈ Lω(D)). Observe that since C consists of a single state, vectors are not needed.

First, the algorithm evaluates the sequence {⌊P n
C,D(∅)⌋}n∈N ∈ (℘(℘(QD)))N, where

PC,D(X) = {{q0}} ∪ {x ⋆ a | x ∈ X} ∪ {x ⋆ b | x ∈ X}.
(1) ⌊P 1

C,D(∅)⌋ = {{q0}},
(2) ⌊P 2

C,D(∅)⌋ = ⌊{{q0}} ∪ {{q0} ⋆ a, {q0} ⋆ b}⌋ = {{q0}, {q}},
(3) ⌊P 3

C,D(∅)⌋ = ⌊{{q0}} ∪ {{q0} ⋆ a, {q0} ⋆ b, {q} ⋆ a, {q} ⋆ b}⌋ = {{q0}, {q}}.

Hence, ⌊P 3
C,D(∅)⌋ = ⌊P 2

C,D(∅)⌋ and the computations for the prefix iterates stop at the
third iteration.

Next, the algorithm evaluates the sequence {⌊Rn
C,D(∅)⌋}n∈N ∈ (℘(℘(Q2

D)×℘(Q2
D)))N. Let

y ≜ {(q0, q), (q, q)}, z1 ≜ {(q0, q0), (q, q0)} and z2 ≜ {(q, q0)}. We have that y, z1, z2 ∈ ℘(Q2
D),

y = cD[a] = f D[a], z1 = cD[b], z2 = f D[b] and {(cD(c), f D(c)) | i
c−→ i ∧ c ∈ {a, b}} =

{(y, y), (z1, z2)}. For each pair p = (p1, p2) ∈ ℘(Q2
D) × ℘(Q2

D) and each c ∈ Σ∗, we define
p ∗ c ≜ p1 ◦ f D(c) ∪ p2 ◦ cD(c) ∈ ℘(Q2

D). We then have:

(1) R1
C,D(X) = {(y, y), (z1, z2)} ∪ Post≼

D

C (X)

= {(y, y), (z1, z2)} ∪ {(p1 ◦ cD[c], p ∗ c) | i
c−→ i ∧ c ∈ {a, b} ∧ (p1, p2) ∈ X},

so that ⌊R1
C,D(∅)⌋ = ⌊{(y, y), (z1, z2)}⌋ = {(y, y), (z1, z2)}.



K. Doveri, P. Ganty, F. Parolini, and F. Ranzato 3:13

(2) ⌊R2
C,D(∅)⌋ =

⌊{(y, y), (z1, z2)} ∪ {(y ◦ cD[a], (y, y) ∗ a), (z1 ◦ cD[a], (z1, z2) ∗ a),
(y ◦ cD[b], (y, y) ∗ b), (z1 ◦ cD[b], (z1, z2) ∗ b)}⌋ =

⌊{(y, y), (z1, z2)} ∪ {(y, y), (z1, z2), (z1, z1)}⌋.

Since (z1, z2) ⊆2 (z1, z1), ⌊R2
C,D(∅)⌋ = ⌊{(y, y), (z1, z2), (z1, z1)}⌋ = {(y, y), (z1, z2)}.

Thus, ⌊R2
C,D(∅)⌋ = ⌊R1

C,D(∅)⌋ and the computations for the period iterates stop at the
second iteration.

It turns out that ¬IncD({q}, (z1, z2)): this, intuitively, corresponds to the counterexample
abω that belongs to Lω(C) but not Lω(D). Hence, the inclusion Lω(C) ⊆ Lω(D) does not
hold.

6 Implementation and Experimental Evaluation

Benchmarks. We collected new benchmarks from various trusted sources that significantly
expand the set of problem instances available to the research community on language inclusion.
In this section, a benchmark means an ordered pair of BAs.

The first set of benchmarks consists of verification tasks defined together with the early
versions of the RABIT tool [37]. The BAs are models of mutual exclusion algorithms [2],
where in each benchmark one BA is the result of translating a set of guarded commands
defining the protocol while the other BA translates a modified set of guarded commands,
typically obtained by randomly weakening or strengthening one guard. The resulting BAs
are on the binary alphabet {0, 1} and their sizes range from 20 to 7 963 states. Even though
more details about transition labels and acceptance conditions are given [1, 2], it is unclear
which basic properties this reduction satisfies, for instance, whether inclusion is preserved
when the modified version of the protocol is the result of adding to the original version
some “nop” statements. Moreover, we are not aware of any use of this reduction other than
generating the RABIT examples.

Our second collection of benchmarks stems from an automated theorem prover for
combinatorics on words called Pecan [34]. Here, BAs encode sets of solutions of predicates,
hence logical implication between predicates reduces to a language inclusion problem between
BAs. The benchmarks correspond to theorems of type ∀x, P (x) → Q(x) about Sturmian
words [19]. We collected 58 benchmarks from Pecan for which inclusion holds, where these
BAs have alphabets of varying size (from 3 to 256) and their sizes range from 1 to 21 395 states.
The third collection of benchmarks stems from software verification. Ultimate Automizer
(UA) [17, 18] is a well-known software model checker that verifies program correctness using
automata-based reasoning, and that reduces termination problems to inclusion problems
between BAs. Overall, we collected 600 benchmarks from UA for which inclusion holds. The
BAs have alphabets of varying size (from 6 to 13 173) and sizes ranging from 3 to 6 972 states.

The addition of the Pecan and UA benchmarks significantly expands the set of available
benchmarks while, at the same time, increases the diversity of their provenance. This
set of benchmarks, which is available on GitHub [11], is biased towards instances where
inclusion holds (as opposed to instances where inclusion does not hold). The rationale for this
choice is that non-inclusion should be somehow viewed as a separate problem. This claim is
supported by the existence of orthogonal approaches explicitly devoted to the non-inclusion
problem [30] and specifically tailored approaches and optimizations within tools, like in
RABIT. Nevertheless, let us remark that our approach decides the generic inclusion problem
and has been evaluated on both positive and negative instances.

CONCUR 2021



3:14 Inclusion Testing of Büchi Automata Based on Well-Quasiorders

Table 1 Runtime in milliseconds on the BAs of Fig. 2. M/O means memory out.

Value of n 1 10 100 1 000 10 000 20 000 30 000 40 000 50 000

BAIT 34 48 100 531 92 102 342 526 821 234 1 284 618 2 074 829
RABIT 75 71 114 919 55 247 M/O M/O M/O M/O

Table 2 Runtimes for RABIT benchmarks in millisec. GOAL− is Piterman inclusion algorithm
without simulations (invocation flag containment -m piterman). M/O means memory out.

Included Not-included
Tools bk bkv2 Fis Fisv2 Fisv3 Fisv4 mcs Pet Φ bkv3 Fisv5 Φv2 Φv3 Φv4

RABIT 2 220 4 552 2 260 213 3 985 1 271 49 193 71 136 2 697 6 002 334 265 287
ROLL 4 340 7 590 4 170 1 910 6 690 3 320 14 900 690 1 000 750 600 290 370 310
GOAL 88 320 71 090 128 680 3 500 41 620 18 120 456 480 1 380 2 260 2 450 12 580 1 480 1 510 2 260
GOAL− M/O M/O 857 840 6 470 306 370 75 960 3 194 940 2 240 4 360 48 010 85 880 4 110 2 430 2 960
BAIT 1 180 770 M/O M/O 1 153 654 385 M/O M/O 321 278 794 6 347 M/O 1 749 997 65 629

Tools. We implemented our state-based inclusion algorithm BAIncS in a tool called BAIT,
developed in Java and which is available on GitHub [10]. We compared BAIT with the
following language inclusion checking tools: RABIT 2.5.0, ROLL 1.0, GOAL (20200822),
and HKCω (fall 2018). RABIT [7] implements a Ramsey-based algorithm and an advanced
preprocessor using simulation relations. ROLL [27, 28] also uses the preprocessor of RABIT
but then it relies on automata learning and word sampling techniques to decide inclusion.
GOAL [41] implements a “complement-then-intersect-and-check-emptiness” approach using
advanced complementation algorithms for BAs. HKCω [24] decides inclusion using up-to
techniques. Further details on these tools are given in App. C.

Results. We ran our experiments on a server with 20 GB of RAM, 2 Xeon E5640 2.6 GHz
CPUs and Debian stretch 64 bit. In what follows, “left”/“right” BAs refer, resp., to the
automata on the left/right of a language inclusion instance.

We start with the following research question: What is the impact in having separate
qos for prefixes and periods? To answer it, we first examine the performance of BAIT on
the contrived family of examples of Fig. 2. In this set of instances, almost no computation
is carried out in the fixpoints for the periods (RA,B,p of BAIncS), since they converge in
one iteration. Tab. 1 displays the corresponding runtime comparison with RABIT, which
processes prefixes and periods the same way. It turns out that for sufficiently large values of
n, RABIT runs out of memory while BAIT safely terminates (in max 35 minutes).

Beyond the contrived family of BAs of Fig. 2, we claim that reasoning with separate
qos for prefixes and periods gives an advantage to BAIT. Actually, we found that BAIT is
the state-of-the-art on all but the RABIT benchmarks. On the RABIT benchmarks, Tab. 2
shows that BAIT runs out of memory on 4/9 of the included benchmarks and on 1/5 of the
not-included benchmarks. On these benchmarks, simulation relations are key enablers for
RABIT, ROLL and GOAL. Since the pair of BAs in each benchmark stems from two close
revisions of the same mutual exclusion protocol, it turns out that the simulation relations
being used retain enough information to dramatically lower the effort of showing inclusion
(in many cases, these simulation relations alone are sufficient to show language inclusion).

To interpret these outcomes for BAIT, we looked at the graph structure of the “left” BAs
of these RABIT benchmarks and we found that they roughly consist of one large strongly
connected component (SCC): this is expected since these BAs model agents running a mutual
exclusion protocol in an infinite loop. The computations of BAIT on these benchmarks are



K. Doveri, P. Ganty, F. Parolini, and F. Ranzato 3:15

54
0

56
1

56
4

60
0

105

106

107

108

# instances

tim
e

(m
s)

Ultimate Automizer benchmarks

RABIT
GOAL
ROLL
BAIT

(a) Plot not shown between 1 and 539 for clarity.
HKCω not depicted: more than 60 memory out
(8 GB virtual memory limit).

30 43 52 54 57 58 60

104

105

106

107

108

109

# instances

tim
e

(m
s)

Pecan benchmarks

HKCω

(b) Plot not shown between 1 and 29 for clarity.

Figure 3 Each benchmark has a timeout value of 12h. Survival plot with a logarithmic y axis
and linear x axis. No plot for abscissa value x and tool r means that, for 60−x Pecan benchmarks
(or 600−x for the case of Ultimate), r did not return an answer.

dominated by the fixpoints of RA,B,p for the periods, which compute over sets of pairs of
states, as opposed to the fixpoints of PA,B for the prefixes which compute over sets of states.
Also, the computations for RA,B,p dominate the memory use. However, this scenario of BAs
consisting of one large SCC does not occur for the other benchmarks: the “left” automata for
Pecan and UA benchmarks tend to have few SCCs including final states and each of them
are rather small. Here, BAIT is at an advantage because most computations are carried out
on the fixpoints of PA,B for the prefixes.

Because of the large number of available Pecan (60) and UA (600) benchmarks, we use
survival plots for displaying our experimental results. Let us recall how to obtain them for a
family of benchmarks {pi}n

i=1: (1) run the tool on each benchmark pi and store its runtime
ti (or timeout event); (2) sort the ti’s in increasing order (discarding the timeouts); (3) plot
the points (t1, 1), (t1 + t2, 2),. . . , and in general (

∑k
i=1 ti, k); (4) repeat for each tool under

evaluation. The runtimes for BAIT include a phase of preprocessing that reduced the set
of final states of the “left” BA while preserving the accepted language, in accordance with
Remark 4.8. This preprocessing used the function acc -min of the tool GOAL, a polynomial
time algorithm that relies on computing SCCs. The survival plots in compact form are
depicted in Fig. 3 and with more detail in App. D.

These results show that BAIT is the state-of-the-art approach for the Pecan and UA
benchmarks. They also show that GOAL performs quite well on the Pecan and UA bench-
marks compared to RABIT and ROLL whose approaches are less efficacious. This is expected
because both Pecan and UA rely on complementation for their decision procedure, so that
they produce their “right” BAs through some heuristics to make them easy to complement
(as confirmed to us by the developers of Pecan and UA). Indeed, we claim that GOAL’s
performance quickly degrades when the “right” BAs are hard to complement. Our claim is
supported by Fig. 4 where GOAL and BAIT are compared on a contrived family of bench-
marks based on Michel’s family of hard to complement BAs (see [33] and [39, Theorem 5.3]
for further details).

CONCUR 2021



3:16 Inclusion Testing of Büchi Automata Based on Well-Quasiorders

0, 1
0

1

1
Σ

Σ = {0, 1, 2, 3} Σ = {0, 1, 2, 3, 4} Σ = {0, 1, 2, 3, 4, 5}
Value of n BAIT GOAL− BAIT GOAL− BAIT GOAL−

3 45 13 550 ⊈ ⊈ ⊈ ⊈
4 45 14 040 77 9 187 680 ⊈ ⊈
5 46 13 120 89 9 148 710 225 T/O

10 54 13 840 100 T/O 291 T/O
100 123 17 020 282 T/O 1 301 T/O

Figure 4 Runtime in milliseconds using Michel’s family for the “right” BAs (parameterized by n)
and the depicted BA for the “left”. GOAL− refers to containment -m piterman (as in Table 2). ⊈
means not included, T/O is time out (12h).

7 Conclusion and Future Work

We designed a family of algorithms for the inclusion problem between ω-regular and ω-
context-free languages into ω-regular languages, represented by automata. Our algorithms
are conceptually simple: least fixpoint computations for the languages of finite prefixes and
periods of ultimately periodic infinite words. The functions to iterate for these fixpoints
are readily derived from the “left” automaton and the fixpoints converge in finitely many
iterations thanks to a well-quasiorder abstraction on words. Finally, language inclusion
is decided by a straightforward membership check. The height of the lattices of our least
fixpoint computations allows us to derive some information about the worst case complexity
of our algorithms. For each least fixpoint computation performed at line 3 of BAIncS,
the worst case is adding exactly one element in a subset of ℘(Q2

B) × ℘(Q2
B) to some entry

of the |QA|-dimensional vector at each iteration step, so that |QA| × 22|QB |2 is an upper
bound on N2 in BAIncS. We leave as future work a detailed worst case complexity analysis
of our algorithms. In practice, a simple Java implementation of our inclusion algorithm
was competitive against state-of-the-art tools, thus showing the benefits of having separate
well-quasiorders for prefixes and periods. We expect that this latter approach can be further
refined using, for instance, family of right-congruences [31], paving the way to even more
efficient inclusion algorithms.

References
1 Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukáš Holík, Chih-Duo Hong,

Richard Mayr, and Tomáš Vojnar. Simulation Subsumption in Ramsey-Based Büchi Automata
Universality and Inclusion Testing. In Proc. Int. Conf. on Computer Aided Verification (CAV).
Springer, 2010. doi:10.1007/978-3-642-14295-6_14.

2 Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukáš Holík, Chih-Duo Hong,
Richard Mayr, and Tomáš Vojnar. Advanced Ramsey-Based Büchi Automata Inclusion
Testing. In Proc. Int. Conf. on Concurrency Theory (CONCUR). Springer LNCS, 2011.
doi:10.1007/978-3-642-23217-6_13.

3 Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimulations up to
congruence. In Proc. of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL). ACM, 2013. doi:10.1145/2429069.2429124.

4 Filippo Bonchi and Damien Pous. Hacking nondeterminism with induction and coinduction.
Commun. ACM, 58(2), 2015. doi:10.1145/2713167.

5 Hugues Calbrix, Maurice Nivat, and Andreas Podelski. Ultimately periodic words of rational
ω-languages. In Proc. Int. Symp. on Mathematical Foundations of Programming Semantics
(MFPS), LNCS. Springer, 1994. doi:10.1007/3-540-58027-1\_27.

6 Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem. Handbook of
Model Checking. Springer, 1st edition, 2018. doi:10.1007/978-3-319-10575-8.

https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1007/978-3-642-23217-6_13
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.1145/2713167
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/978-3-319-10575-8


K. Doveri, P. Ganty, F. Parolini, and F. Ranzato 3:17

7 Lorenzo Clemente and Richard Mayr. Efficient reduction of nondeterministic automata with
application to language inclusion testing. Logical Methods in Computer Science, 15(1), 2019.
doi:10.23638/LMCS-15(1:12)2019.

8 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proc. 4th ACM Symp.
on Principles of Programming Languages (POPL). ACM, 1977. doi:10.1145/512950.512973.

9 Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In Proc.
of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL). ACM, 1979. doi:10.1145/567752.567778.

10 K. Doveri, P. Ganty, F. Parolini, and F. Ranzato. BAIT: Büchi Automata Inclusion Tester.
https://github.com/parof/bait, 2021.

11 K. Doveri, P. Ganty, F. Parolini, and F. Ranzato. Büchi Automata benchmarks for language
inclusion. https://github.com/parof/buchi-automata-benchmark, 2021.

12 Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne
Renault, and Laurent Xu. Spot 2.0 — a framework for LTL and ω-automata manipulation. In
Proc. 14th Int. Symp. on Automated Technology for Verification and Analysis (ATVA), LNCS.
Springer, 2016. doi:10.1007/978-3-319-46520-3_8.

13 Javier Esparza. Automata theory – An algorithmic approach. Lecture Notes, 2017. URL:
https://www7.in.tum.de/~esparza/autoskript.pdf.

14 Seth Fogarty and Moshe Y. Vardi. Efficient Büchi Universality Checking. In Proc. Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), LNCS.
Springer, 2010. doi:10.1007/978-3-642-12002-2_17.

15 Pierre Ganty, Francesco Ranzato, and Pedro Valero. Language inclusion algorithms as complete
abstract interpretations. In Proc. 26th Int. Static Analysis Symposium (SAS), LNCS. Springer,
2019. doi:10.1007/978-3-030-32304-2_8.

16 Pierre Ganty, Francesco Ranzato, and Pedro Valero. Complete abstractions for checking
language inclusion. ACM Trans. on Computational Logic, To appear, 2021. arXiv:1904.01388.

17 Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus, Jochen Hoenicke, Yong
Li, Alexander Nutz, Betim Musa, Christian Schilling, Tanja Schindler, and Andreas Podelski.
Ultimate Automizer and the search for perfect interpolants – (competition contribution). In
Proc. 24th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), LNCS. Springer, 2018. doi:10.1007/978-3-319-89963-3_30.

18 Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Software model checking for
people who love automata. In Proc. Int. Conf. on Computer Aided Verification (CAV). Springer
LNCS, 2013. doi:10.1007/978-3-642-39799-8_2.

19 Philipp Hieronymi, Dun Ma, Reed Oei, Luke Schaeffer, Zhengyao Lin, Christian Schulz, and
Jeffrey Shallit. Decidability for Sturmian words, 2021. arXiv:2102.08207.

20 Martin Hofmann and Wei Chen. Abstract interpretation from Büchi automata. In Proc. of
the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). ACM Press, 2014. doi:10.1145/2603088.2603127.

21 Takumi Kasai and Shigeki Iwata. Some problems in formal language theory known as decidable
are proved EXPTIME complete, 1992. URL: https://www.kurims.kyoto-u.ac.jp/~kyodo/
kokyuroku/contents/pdf/0796-02.pdf.

22 Bakhadyr Khoussainov and Nerode, Anil. Automata Theory and Its Applications. Springer,
2001. doi:10.1007/978-1-4612-0171-7.

23 Denis Kuperberg, Laureline Pinault, and Damien Pous. HKCω: Coinductive algorithms for
Büchi automata. http://perso.ens-lyon.fr/damien.pous/covece/hkcw/, 2018.

24 Denis Kuperberg, Laureline Pinault, and Damien Pous. Coinductive Algorithms for Büchi
Automata. In Proc. Int. Conf. on Developments in Language Theory (DLT), LNCS. Springer,
2019. doi:10.1007/978-3-030-24886-4_15.

CONCUR 2021

https://doi.org/10.23638/LMCS-15(1:12)2019
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://github.com/parof/bait
https://github.com/parof/buchi-automata-benchmark
https://doi.org/10.1007/978-3-319-46520-3_8
https://www7.in.tum.de/~esparza/autoskript.pdf
https://doi.org/10.1007/978-3-642-12002-2_17
https://doi.org/10.1007/978-3-030-32304-2_8
http://arxiv.org/abs/1904.01388
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-642-39799-8_2
http://arxiv.org/abs/2102.08207
https://doi.org/10.1145/2603088.2603127
https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0796-02.pdf
https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0796-02.pdf
https://doi.org/10.1007/978-1-4612-0171-7
http://perso.ens-lyon.fr/damien.pous/covece/hkcw/
https://doi.org/10.1007/978-3-030-24886-4_15


3:18 Inclusion Testing of Büchi Automata Based on Well-Quasiorders

25 Orna Kupferman. Automata Theory and Model Checking. In Handbook of Model Checking.
Springer, 2018. doi:10.1007/978-3-319-10575-8_4.

26 Orna Kupferman and Moshe Y. Vardi. Verification of fair transition systems. In Proc. Int. Conf.
on Computer Aided Verification (CAV). Springer, 1996. doi:10.1007/3-540-61474-5_84.

27 Yong Li, Yu-Fang Chen, Lijun Zhang, and Depeng Liu. A novel learning algorithm for Büchi
automata based on family of DFAs and classification trees. Information and Computation,
2020. doi:10.1016/j.ic.2020.104678.

28 Yong Li, Xuechao Sun, Andrea Turrini, Yu-Fang Chen, and Junnan Xu. ROLL 1.0: ω-regular
language learning library. In Proc. 25th Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), LNCS. Springer, 2019. doi:10.1007/978-3-030-17462-0_
23.

29 Yong Li and Andrea Turini. Roll library: Regular Omega Language Learning library. https:
//github.com/ISCAS-PMC/roll-library, 2020.

30 Yong Li, Andrea Turrini, Xuechao Sun, and Lijun Zhang. Proving non-inclusion of Büchi
automata based on Monte Carlo sampling. In Proc. 14th Int. Symp. on Automated Technology
for Verification and Analysis (ATVA). Springer, 2020. doi:10.1007/978-3-030-59152-6_26.

31 Oded Maler and Ludwig Staiger. On syntactic congruences for ω-languages. Technical report,
Verimag, France, 2008. URL: http://www-verimag.imag.fr/~maler/Papers/congr.pdf.

32 Roland Meyer, Sebastian Muskalla, and Elisabeth Neumann. Liveness verification and synthesis:
New algorithms for recursive programs, 2017. arXiv:1701.02947.

33 M. Michel. Complementation is more difficult with automata on infinite words. Technical
report, CNET, Paris, 1988.

34 Reed Oei, Dun Ma, Christian Schulz, and Philipp Hieronymi. Pecan: An automated theorem
prover for automatic sequences using Büchi automata, 2021. arXiv:2102.01727.

35 Dominique Perrin and Jean Eric Pin. Infinite Words: Automata, Semigroups, Logic and
Games. Number 141 in Pure and Applied Mathematics Series. Elsevier, Amsterdam ; Boston,
1st edition, 2004.

36 Nir Piterman. From nondeterministic Büchi and Streett automata to deterministic parity
automata. Logical Methods in Computer Science, 3(3), 2007. doi:10.2168/lmcs-3(3:5)2007.

37 RABIT/Reduce: Tools for language inclusion testing and reduction of nondeterministic Büchi
automata and NFA. http://www.languageinclusion.org/doku.php?id=tools. Accessed:
2021-01-29.

38 Roman R. Redziejowski. An improved construction of deterministic omega-automaton using
derivatives. Fundamenta Informaticae, 119(3–4), 2012. doi:10.3233/FI-2012-744.

39 Wolfgang Thomas. Languages, Automata, and Logic. In Handbook of Formal Languages:
Volume 3 Beyond Words. Springer, 1997. doi:10.1007/978-3-642-59126-6_7.

40 Ming-Hsien Tsai, Seth Fogarty, Moshe Vardi, and Yih-Kuen Tsay. State of Büchi complement-
ation. Logical Methods in Computer Science, 10(4), 2014. doi:10.2168/lmcs-10(4:13)2014.

41 Ming-Hsien Tsai, Yih-Kuen Tsay, and Yu-Shiang Hwang. GOAL for Games, Omega-Automata,
and Logics. In Proc. Int. Conf. on Computer Aided Verification (CAV). Springer, 2013.
doi:10.1007/978-3-642-39799-8_62.

42 William M. Waite and Gerhard Goos. Compiler Construction. Springer-Verlag, New York,
USA, 1984.

A Generalised Word-Based Algorithm

We give a generalised word-based algorithm gBAIncW, briefly explained in Section 4.1, which
computes sequences of pruned Kleene iterates {Xn}n∈N and {Yp,n}n∈N, for each p ∈ F . We
obtain the correcteness of BAIncW as a consequence of the correcteness of gBAIncW.

▶ Theorem A.1. Given all the required input data, gBAIncW decides Lω(A) ⊆ M .

https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1007/3-540-61474-5_84
https://doi.org/10.1016/j.ic.2020.104678
https://doi.org/10.1007/978-3-030-17462-0_23
https://doi.org/10.1007/978-3-030-17462-0_23
https://github.com/ISCAS-PMC/roll-library
https://github.com/ISCAS-PMC/roll-library
https://doi.org/10.1007/978-3-030-59152-6_26
http://www-verimag.imag.fr/~maler/Papers/congr.pdf
http://arxiv.org/abs/1701.02947
http://arxiv.org/abs/2102.01727
https://doi.org/10.2168/lmcs-3(3:5)2007
http://www.languageinclusion.org/doku.php?id=tools
https://doi.org/10.3233/FI-2012-744
https://doi.org/10.1007/978-3-642-59126-6_7
https://doi.org/10.2168/lmcs-10(4:13)2014
https://doi.org/10.1007/978-3-642-39799-8_62


K. Doveri, P. Ganty, F. Parolini, and F. Ranzato 3:19

gBAIncW Word-based algorithm for checking Lω(A) ⊆ M .

Data: Büchi automaton A = (Q, δ, iA, F )
Data: Procedure deciding uvω ∈? M given u, v ∈ Σ∗

Data: Decidable right-monotonic wqos ≤,≼ s.t. ρ≤×≼(IM ) = IM

Data: For each p ∈ F and n ∈ N, sequences {Xn}n∈N and {Yp,n}n∈N in ℘(Σ∗)|Q| s.t.
ρ≤(P n

A(∅)) = ρ≤(Xn) and ρ≼(Rn
A,p(∅)) = ρ≼(Yp,n).

1 Compute XN1 with least N1 s.t. ∀q ∈ Q, ρ≤((XN1+1)q) ⊆ ρ≤((XN1 )q)
2 foreach p ∈ F do
3 Compute Yp,N2 with least N2 s.t. ∀q ∈ Q, ρ≼((Yp,N2+1)q) ⊆ ρ≤((Yp,N2 )q)
4 foreach u ∈ (XN1 )p, v ∈ (Yp,N2 )p do
5 if uvω /∈ M then return false;
6 return true;

B State-Based Algorithm for ω-context-free ⊆ ω-regular

We derive a state-based inclusion algorithm that, given a BPDA P = (QP , Γ, δP , iP , FP) and
a BA B = (QB, δB, iB, FB), decides whether Lω(P) ⊆ Lω(B) holds or not by operating on
the states of P and B only. Similarly to the ω-regular case, words and operations/tests on
words are abstracted, resp., into states and operations/tests on states, using the state-based
qos derived from B, as explained in Section 3. Recall that in the context-free case we need
qos that are both right- and left- monotonic. Hence, we consider the pair of qos ⊴B,≼B (see
Section 3).

Given a CFG G = (V, P ) in CNF, we define the functions R1,G over ℘(Q2
B)V and R2,G

over (℘(℘(Q2
B) × ℘(Q2

B)))V as follows:

R1
G(S) ≜ ⟨{x ◦ y | ∃Xj → XkXl ∈ P, x ∈ Sk ∧ y ∈ Sl}⟩j∈[0,n] ,

R2
G(S) ≜ ⟨{(x1 ◦ y1, (x1 ◦ y2) ∪ (x2 ◦ y1)) | ∃Xj → XkXl ∈ P,

(x1, x2) ∈ Sk, (y1, y2) ∈ Sl}⟩j∈[0,n] .

Let us define the vectors b1
G ∈ ℘(Q2

B)V and b2
G ∈ (℘(℘(Q2

B) × ℘(Q2
B)))V as follows:

b1
G ≜ ⟨{cB[β] | Xj → β, β ∈ Σ ∪ {ϵ}}⟩j∈[0,n] ,

b2
G ≜ ⟨{(cB[β], fB[β]) | Xj → β, β ∈ Σ ∪ {ϵ}}⟩j∈[0,n] .

Let P1
qγ and P2

qγ , for each q ∈ QP and γ ∈ Γ, be the two PDAs defined from P and such
that the ultimately periodic words generated by the pairs in

⋃
(q,γ)∈Q×Γ L∗(P1

q,γ) × L∗(P2
q,γ)

coincide with the ultimately periodic words in Lω(P). Let G1
qγ ≜ PDA2CFG(P1

qγ) and
G2

qγ ≜ PDA2CFG(P2
qγ), where PDA2CFG is a procedure to convert a PDA into a CFG in

CNF. For each q ∈ QP and each γ ∈ Γ, we define the functions PqγB ≜ λX.b1
G1

qγ
∪ R1

G1
qγ

(X)
and RqγB ≜ λX.b2

G ∪R2
G2

qγ
(X). Let us define the following state-abstraction of the membership

test:

IncBcf (x, y1, y2) ≜ ∃p, q ∈ QB, (iB, p) ∈ x ∧ (p, q) ∈ y∗
1 ∧ (q, q) ∈ y∗

1 ◦ y2 ◦ y∗
1 .

▶ Lemma B.1. uvω ∈ Lω(B) ⇐⇒ IncBcf (cB[u], cB[v], fB[v]).

CONCUR 2021



3:20 Inclusion Testing of Büchi Automata Based on Well-Quasiorders

Algorithm BPDAIncS: State-based algorithm for Lω(P) ⊆ Lω(B).

Data: BPDA P = (Q, Γ, δ, q0, Z0, F ) and BA B = (QB, δB, iB, FB)
1 foreach q ∈ Q, γ ∈ Γ do
2 G1 := PDA2CFG(P1

[qγ]); G2 := PDA2CFG(P2
[qγ]);

3 Compute ⌊P N1
qγB⌋ with least N1 s.t. ∀j ∈ VG1

qγ
, ρ⊆((P N1+1

qγB (∅))j) ⊆ ρ⊆((P N1
qγB(∅))j);

4 Compute ⌊RN2
qγB⌋ with least N2 s.t. ∀j ∈ VG2

qγ
, ρ⊆2 ((RN2+1

qγB (∅))j) ⊆ ρ⊆2 ((RN2
qγB(∅))j);

5 foreach x ∈ (⌊P N1
qγB⌋)0, (y1, y2) ∈ (⌊RN2

qγB⌋)0 do
6 if ¬IncBcf (x, y1, y2) then return false;
7 return true;

▶ Theorem B.2. Given a BPDA P and BA B, BPDAIncS decides Lω(P) ⊆ Lω(B).

C Language Inclusion Checking Tools

RABIT [7] consists of about 20K lines of Java code and its source code is publicly available
[37]. To check a language inclusion RABIT combines several techniques controlled via
command line options. In our experiments we ran RABIT with options -fast -jf which
RABIT states as providing the “best performance”. Roughly speaking, RABIT performs
the following operations: (1) Removing dead states and minimizing the automata with
simulation-based techniques, thus yielding a smaller instance; (2) Witnessing inclusion by
simulation already during the minimization phase; (3) Using the Ramsey-based method to
witness inclusion or non-inclusion.

ROLL [27, 28] contains an inclusion checker that does a preprocessing similar to that
of RABIT and then relies on automata learning and word sampling techniques to decide
inclusion. ROLL consists of about 19K lines of Java code which is publicly available [29].

GOAL [41] contains several language inclusion checkers available with multiple options.
We used the Piterman check (containment -m piterman -sim -pre on the command line)
that constructs on-the-fly the intersection of the “left” BA and the complement of the “right”
BA which is itself built on-the-fly by the Piterman construction [36]. The options -sim -pre
compute and use simulation relations to further improve performance. The Piterman check
was deemed the “best effort” (cf. [7, Section 9.1] and [40]) among the inclusion checkers
provided in GOAL. GOAL is written in Java and the source code of the release we used is
not publicly available.

HKCω [24] includes an inclusion checker using the so-called up-to techniques. HKCω

consists of 3K lines of OCaml code which is publicly available [23]. Up-to techniques form the
state-of-the-art approach to decide equivalence for languages of finite words given by finite
state automata [3, 4]. The extension of up-to techniques to ω-words has been implemented
in HKCω, although only partially. Indeed, as stated in the code documentation, even if up-to
techniques have been defined for both prefixes and periods of ultimately periodic words,
HKCω only implements them for prefixes. HKCω also includes some preprocessing of the
BAs using simulation relations.

As far as we know all these implementations are sequential except for RABIT which,
using the -jf option, performs some computations in a separate thread.

BAIT is our implementation of the BAIncS algorithm defined in Section 5. BAIT consists
of less than 1 750 lines of Java code. BAIT relies exclusively on a few standard packages
from the Java SE Platform, notably standard collections such as HashSet or HashMap. One
of the design goals of BAIT was to have simple and unencumbered code. Unlike RABIT,
HKCω, ROLL and GOAL, BAIT does not compute or exploit simulation relations. Also,
BAIT is implemented as a purely sequential algorithm although some computations are
easily parallelizable such as the fixpoints for the prefixes and for the periods.



K. Doveri, P. Ganty, F. Parolini, and F. Ranzato 3:21

SPOT We did not consider the Spot tool [12] in our evaluation because we believe
GOAL is a better fit in our setting as we argue below. First, Spot works with a symbolic
alphabet where symbols are encoded using Boolean propositions, and sets of symbols are
represented and processed using OBDDs. We used GOAL in the classical alphabet mode
where symbols are explicitly represented as in ROLL, RABIT and BAIT. Second, the inclusion
algorithm of Spot complements the “right” BA using Redziejowski’s method with some
additional optimizations including simulation-based optimizations [12]. GOAL implements
Piterman’s complementation method [36], which inspired that of Redziejowski [38]. The
Piterman’s method of GOAL also offers simulation-based optimizations and, furthermore,
GOAL specialized Piterman’s method to the inclusion problem by constructing on-the-fly
the intersection of the “left” automaton and the complement of the “right” automaton
constructed on-the-fly by the Piterman’s method [40]. Finally, Spot is written in C++ while
GOAL is written in Java as ROLL, RABIT and BAIT, thus making their runtime comparison
more meaningful.

Experimental Setup. We ran our experiments on a server with 20 GB of RAM, 2 Xeon
E5640 2.6 GHz CPUs and Debian stretch 64 bit. We used openJDK 11.0.9.1 2020-11-04
when compiling Java code and ran the JVM with default options. For RABIT and BAIT
the execution time is computed using timers internal to their implementations. For ROLL
and GOAL the execution time is given by the “real” value of the time(1) command.

D Detailed Graphs of the Experimental Comparison

540 561 564 600

105

106

107

108

# instances

tim
e

(m
s)

Ultimate Automizer

RABIT
GOAL

GOAL−

ROLL
BAIT

Figure 5 Survival plot with a logarithmic y axis and linear x axis. Plot not depicted between
1 and 539 for clarity. Each benchmark has a timeout value of 12h. No plot for abscissa value x

and tool r means that, for 600−x benchmarks, r did not return an answer (i.e. it either ran out of
memory or time). HKCω not depicted: more than 60 memory out (8 GB virtual memory limit).

CONCUR 2021



3:22 Inclusion Testing of Büchi Automata Based on Well-Quasiorders

25 43 52 54 5758 60

104

105

106

107

108

# instances

tim
e

(m
s)

Pecan

HKCω
RABIT
GOAL

GOAL−

ROLL
BAIT

Figure 6 Survival plot with a logarithmic y axis and linear x axis. Plot not depicted between 1
and 24 for clarity. Each benchmark has a timeout value of 12h. No plot for abscissa value x and
tool r means that, for 60−x Pecan benchmarks, r did not return an answer (i.e., it either ran out of
memory or time).


	1 Introduction
	1.1 Main Contributions
	1.2 Related Works

	2 Overview
	3 Well-Quasiorders for ω-Regular Languages
	4 An Algorithmic Framework for Checking Inclusion
	4.1 Language Inclusion ω-regular ⊆ ω-regular
	4.2 Language Inclusion ω-context-free ⊆ ω-regular
	4.3 Discussion

	5 State-Based Inclusion Algorithms
	5.1 Illustrative Example of BAIncS

	6 Implementation and Experimental Evaluation
	7 Conclusion and Future Work
	A Generalised Word-Based Algorithm
	B State-Based Algorithm for ω-context-free ⊆ ω-regular
	C Language Inclusion Checking Tools
	D Detailed Graphs of the Experimental Comparison

