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Abstract
An asymptotic lowerbound of Ω((m+n) logn) is established for partition refinement algorithms
that decide bisimilarity on labeled transition systems. The lowerbound is obtained by subsequently
analysing two families of deterministic transition systems – one with a growing action set and another
with a fixed action set.

For deterministic transition systems with a one-letter action set, bisimilarity can be decided
with fundamentally different techniques than partition refinement. In particular, Paige, Tarjan,
and Bonic give a linear algorithm for this specific situation. We show, exploiting the concept of an
oracle, that the approach of Paige, Tarjan, and Bonic is not of help to develop a generic algorithm
for deciding bisimilarity on labeled transition systems that is faster than the established lowerbound
of Ω((m+n) logn).
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1 Introduction

Strong bisimulation [16, 13] is the gold standard for equivalence on labeled transition systems
(LTSs). Deciding bisimulation equivalence among the states of an LTS is a crucial step for tool-
supported analysis and model checking of LTSs. The well-known and widely-used partition
refinement algorithm of Paige and Tarjan [14] has a worst-case upperbound O(m logn) for
establishing the bisimulation equivalence classes. Here, m is the number of transitions and
n is the number of states in an LTS. The algorithm of Paige and Tarjan seeks to find, starting
from an initial partition, via refinement steps, the coarsest stable partition, that in fact is
built from the bisimulation equivalence classes that are looked for. The algorithm achieves
the complexity of the logarithm of the number of states n by restricting the amount of work
for refining blocks and moving states. Refining blocks is carried out by only investigating
the smaller splitting blocks, using an intricate bookkeeping trick. Only the smaller parts of
a block that are to be moved to a new block are split off, leaving the bulk of the original
block at its place. These specific ideas go back to [8] and make the difference with the earlier
O(mn) algorithm of Kanellakis and Smolka [11].

The Paige-Tarjan algorithm, with its format of successive refinements of an initial partition
till a fixpoint is reached, has been leading for variations and generalizations for deciding
specific forms of (strong) bisimilarities, see e.g. [4, 6, 7, 18, 10]. We are interested in the
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question whether the Paige-Tarjan algorithm is computationally optimal. A result is provided
by Berkholz et al. in a paper [2] that studies stable colourings of (coloured) graphs. More
specifically, they show that for an undirected graph with n nodes and m edges, canonical
coarsest bi-stable colouring is in Ω((m + n) log n). Translated to LTSs, the result of [2]
builds on the assumption that LTSs are essentially non-deterministic, i.e., every state has
multiple outgoing transitions for the same label. A first contribution of the present paper
is a lowerbound of the class of partition refinement algorithms for deciding bisimilarity of
deterministic LTSs. We define what a partition refinement algorithm is and articulate the
complexity in terms of the number of states that are moved. Then, a particular family of
(deterministic) LTSs, called bisplitters, is shown to require n log n work. This strengthens
the result of [2], actually answering an open question in it.

We obtain our lowerbound results assuming that algorithms use partition refinement.
However, one may wonder if a different approach than partition refinement can lead to a
faster decision procedure for bisimulation. For the specific case of deterministic LTSs with a
singleton action set and a state labelling, Robert Paige, Robert Tarjan and Robert Bonic
propose a linear algorithm [15], which we will refer to as Roberts’ algorithm. In [5] it is
proven that partition refinement à la Hopcroft has a lowerbound of Ω(n log n) in this case.
Concretely, this means that Roberts’ algorithm achieves the essentially better performance by
using a completely different technique than partition refinement to determine the bisimulation
equivalence classes.

Crucial for Roberts’ algorithm is the ability to identify, in linear time, the bisimilarity
classes of cycles. In this paper we show that if the alphabet consists of at least two actions
a rapid decision on “cycles” as in [15] will not be of help to improve on the Paige-Tarjan
algorithm for general LTSs. We argue that the specialty in the algorithm of [15], viz. to be
able to quickly decide the bisimilarity of the states on cycles, can be captured by means
of a stronger notion, namely an oracle, that provides the bisimulation classes of the states
of a so-called “end structure”, the counterpart in the multiple action setting of a cycle in
the single action setting. The oracle can be consulted to refine the initial partition with
respect to the bisimilarity on the end structures of the LTS for free. We show that for the
class of partition refinement algorithms enhanced with such an oracle, thus encompassing
the algorithm of [15], the n log n lowerbound persists for non-degenerate action sets.

The family of n log n-hard LTSs we use to establish the lowerbound, involve an action
set of log n actions. Building on the two results already mentioned, and exploiting ideas
borrowed from [15] to extend the bisimulation classes for the states in the end structures, i.e.
cycles, to the states of the complete LTS, we provide another family of (deterministic) LTSs
that have only two actions. Led by these LTSs we argue that for the two-action case the
complexity of deciding bisimulation is Ω((m + n) log n), whether we use an oracle or not.

The document is structured as follows. In Section 2 we give the necessary preliminaries
on the problem. A recap of the linear algorithm of [15] is provided in Section 3. Next,
we introduce the family of deterministic LTSs Bk for which we show in Section 4 that
deciding bisimilarity is Ω(n log n) for the class of partition refinement algorithms and for
which we establish in Section 5 an Ω(n log n) lowerbound for the class of partition refinement
algorithms enhanced with an oracle for end structures. In Section 6 we introduce the family
of deterministic LTSs Ck, each involving two actions only, to take the number of transitions m

into account and establish an Ω((m + n) log n) lowerbound for partition refinement with and
without oracle for end structures. We wrap up with concluding remarks.
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2 Preliminaries

Given a set of states S, a partition of S is a set of sets of states π ⊆ 2S such that for all
B, B′ ∈ π it holds that B ̸= ∅, B ∩ B′ = ∅, and

⋃
B∈π B = S. The elements of a partition

are refered to as blocks. A partition π of S induces an equivalence relation =π ⊆ S × S,
where for two states s, t ∈ S, s =π t iff the states are in the same block, i.e. there is a block
B ∈ π such that s, t ∈ B. A partition π of S is a refinement of a partition π′ of S iff for
every block B ∈ π there is a block B′ ∈ π′ such that B ⊆ B′. It follows that each block of π′

is the union of blocks of π. The refinement is strict if π ̸= π′. The common refinement of
two partitions π and π′ is the partition with blocks { B ∩ B′ | B ∈ π, B′ ∈ π′ }. A sequence
of partitions π0, . . . , πn is called a refinement sequence iff πi+1 is a refinement of πi, for all
0 ⩽ i < n.

▶ Definition 1. A labeled transition system with initial partition (LTS) L = (S, A, →, π0)
is given by a finite set of states S, a finite alphabet of actions A, a transition relation
→ ⊆ S × A × S, and a partition π0 of S. A labeled transition system with initial partition is
called deterministic (dLTS) if the transition relation is a total function S × A → S.

Note that we omit an initial state, as it is not relevant in this article. Note also that in the
presence of an initial partition, an LTS with one action label represents a Kripke structure.
For a dLTS with a set of states S and the initial partition π0 = {S} we have that π0 itself
already represents bisimilarity, contrary to LTSs in general.

Given an LTS L = (S,A, →, π0), states s, t ∈ S, and an action a ∈ A, we write s
a−→ t

instead of (s, a, t) ∈→. For dLTSs we occasionally write L(s, a) for t, i.e., t is the image of
the pair (s, a) of the function →. We say that s reaches t via a iff s

a−→ t. A state s reaches
a set U ⊆ S iff there is a state in U that is reached by s. A set of states V ⊆ S is called
stable under a set of states U ⊆ S iff for all actions a either all states in V reach U via a, or
no state in V reaches U via a. A partition π is stable under a set of states U iff each block
B ∈ π is stable under U . A partition π is called stable iff it is stable under all its blocks.

Following [16, 13], for an LTS L a symmetric relation R ⊆ S × S is called a bisimulation
relation iff for all (s, t) ∈ R and a ∈ A, we have that s

a−→ s′ for some s′ ∈ S implies that t
a−→ t′

for some t′ ∈ S such that (s′, t′) ∈ R. In the setting of the present paper, as we incorporate
the initial partition in the definition of an LTS, bisimilarity is slightly non-standard. For a
bisimulation relation R, we additionally require that it respects the initial partition π0 of L,
i.e. (s, t) ∈ R implies s =π0 t. Two states s, t ∈ S are called (strongly) bisimilar for L iff a
bisimulation relation R exists with (s, t) ∈ R, notation s↔ L t. Bisimilarity is an equivalence
relation on the set of states of L. We write [s]↔L for the bisimulation equivalence class of the
state s in L.

Partition refinement algorithms for deciding bisimilarity on LTSs start with an initial
partition π0, which is then repeatedly refined until a stable partition is reached. This stable
partition is then the coarsest stable partition of the LTS refining π0 and coincides with
bisimilarity [11, 14].

We define that an algorithm is a partition refinement algorithm if it constructs a valid
sequence of partitions. Concretely this means that a state s in a block B is only assigned
to another block if there is reason to do so, i.e. there is a splitter block B′ in the current
partition to which s has a transition and some other state in B does not, or the other way
around. Thus, the block B is not stable under the block B′. Moreover, we insist that each
subsequent partition reflects some progress, i.e., πi+1 is a strict refinement of πi. This leads
to the following notion of a valid refinement and a valid partition sequence.

CONCUR 2021
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Figure 1 dLTS with one action label (not shown) and initial partition distinguishing states
1, 4, 7, 10, 12 from states 2, 3, 5, 6, 8, 9, 11, 13.

▶ Definition 2. Let L = (S,A, →, π0) be an LTS, and π a partition of S. We call a
refinement π′ of π a valid refinement with respect to L, if the following criteria hold.
(a) π′ is a strict refinement of π;
(b) if s ̸=π′ t for s, t ∈ S, then (i) s ≠π t or (ii) s′ ∈ S exists such that s

a−→ s′ for
some a ∈ A, and for all t′ ∈ S such that t

a−→ t′ we have s′ ≠π t′, or the other way
around with t replacing s.

A sequence of partitions Π = (π0, . . . , πn) is called valid iff every successive partition πi, for
0 < i ⩽ n, is a valid refinement of πi−1, and, moreover, the partition πn is stable.

When a partition π is refined into a partition π′, states that are in the same block but can
reach different blocks can lead to a split of the block into smaller ones, each holding one
of the states. This means that a block B ∈ π is split into k blocks B1, . . . , Bk ∈ π′. The
least amount of work is done for this operation, by creating new blocks for the least number
of states possible. Thus, B ∈ π is transformed into B1 ∈ π′, say, the biggest block among
B1, . . . , Bk. Therefore, the so-called refinement cost rc of the refinement π′ of π is given by

rc(π, π′) =
∑

B∈π |B| − maxB′∈π′ : B′⊆B |B′| .

For a sequence of refinements Π = (π0, . . . , πn) we write rc(Π) for
∑n

i=1 rc(πi−1, πi). For
an LTS L, we write rc(L) for min{ rc(Π) | Π a valid refinement sequence for L }. Note that
this complexity measure is different from the one used in [2], which counts transitions. Our
costs are always less or equal.

We characterise the states of LTSs by sequences of bits. The set of bits is denoted as
B = {0, 1}. Bit sequences of length up to and including k are written as B⩽k. The inverse of
a bit b is denoted by b. Thus 0 = 1 and 1 = 0. For two bit sequences σ, σ′, we write σ ď σ′

to indicate that σ is a prefix of σ′ and write σ ≺ σ′ if σ is a strict prefix of σ′. For a bit
sequence σ ∈ Bk, for any i, j ⩽ k we write σ[i] to indicate the bit at position i starting from
position 1. We write σ[i:j] = σ[i]σ[i+1] · · · σ[j] to indicate the subword from position i to
position j.

3 Roberts’ algorithm

Most algorithms to determine bisimulation on an LTS use partition refinement. However,
there is one notable exception. On the class of dLTSs with a singleton action alphabet,
deciding the coarsest stable partition, i.e. bisimilarity, requires linear time only. This is due
to the algorithm of Robert Paige, Robert Tarjan, and Robert Bonic [15], which we therefore
aptly call Roberts’ algorithm.
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The algorithm exploits the structure of dLTSs with one label, of which examples are
depicted in Figure 1 where the initial partition is indicated by single/double circles around
the states. For each state in such a dLTS we can assign a unique cycle (also referred to as
“end structure” in the sequel), and that state is either on this cycle or following outgoing
edges lead to that (unique) cycle. Below, we roughly sketch how Roberts’ algorithm works.
See [15] for details.
1. Build lassos and mark states to identify the cycles of the dLTS.
2. Each state on a cycle encodes a sequence of states, viz. the states on the cycle in a specific

order. The sequence of the blocks these states belong to forms a word (over the alphabet
of the initial partition). Identify for each cycle the state with the lexicographic least
such word. This can be done in linear time in the size of the cycle. If there are bisimilar
states on the cycle, then the algorithm will identify them. States on different cycles can
only be bisimilar if the number of non-bisimilar states on these cycles is the same. By
comparing cycles with the same number of bisimulation equivalence classes, starting with
the lexicographic least state, it is then determined linearly for all states on final cycles
whether they are bisimilar.

3. By a backward calculation along the paths leading to the cycles the bisimilarity equivalence
classes for the states not on cycles can then be determined in linear time as well.

A striking observation is that any partition refinement algorithm, using a valid sequence of
partitions, requires a refinement cost of Ω(n log n) to calculate which states are bisimilar for
the dLTSs to which Roberts’ algorithm applies. This follows from results in [3, 5] where it
is shown that Hopcroft’s algorithm [8] cannot have a better running time than Ω(n log n).
Below we come back to this observation, showing that the ideas in Roberts’ algorithm
cannot be exploited to come up with a linear algorithm for bisimulation if the LTS is either
nondeterministic, or has more than one action label.

4 Bk is Ω(n log n) for partition refinement

In this section we introduce a family of deterministic LTSs called bisplitters on which the cost
of any partition refinement algorithm is Ω(n log n) where n is the number of states. With
some modification we obtain in Section 6 a family of LTSs that has the bound Ω((n+m) log n)
where m is the number of transitions.

▶ Definition 3. For k > 1, the bisplitter Bk = (S,Ak, →, π0) is defined as the dLTS that
has the set S = { σ | σ ∈ Bk } as its set of states, the set Ak = {a1, . . . , ak−1} as its set of
actions, the relation

{ σ
ai−→ σ | σ ∈ S, 1 ⩽ i < k : σ[i+1] = 0 } ∪

{ σ
ai−→ σ[1:i−1]σ[i]0k−i | σ ∈ S, 1 ⩽ i < k : σ[i+1] = 1 }

as its transition function, and the set π0 = { { σ ∈ S | σ[1] = 0 }, { σ ∈ S | σ[1] = 1 } } as its
initial partition.

Thus the bisplitter Bk has 2k states, viz. the bitstrings of length k, and Bk has k−1 action
labels. It has (k−1)2k transitions: (i) a self-loop for bitstring σ with label ai if the i+1-th
bit of σ equals 0; (ii) otherwise, i.e. when i+1-th bit of σ equals 1, the bitstring σ has for
label ai a transition to the bitstring that equals the first i−1 bits of σ, flips the i-th bit of σ,
and has k−i-many 0’s following. The initial partition π0 distinguishes the bitstrings starting
with 0 from those starting with 1. A drawing of bisplitter B3 is given in Figure 2. We see,
e.g., for the bitstring σ = 101 an a1-transition to itself, as σ[2] = 0, and an a2-transition to
110, as σ[3] = 1.
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Figure 2 Bisplitter B3 with initial partition {{000, 001, 010, 011}, {100, 101, 110, 111}}.

▶ Definition 4. For any string σ ∈ B⩽k, we define the prefix block Bσ of Bk to be the block
Bσ = { σ′ ∈ Bk | σ ď σ′ }.

The following lemma collects a number of results related to prefix blocks.

▶ Lemma 5. Let k ⩾ 2 and let the dLTS Bk = (Bk,Ak, →, π0) be the k-th bisplitter. Let the
sequence Π = (π0, . . . , πn) be a valid refinement sequence. Then it holds that
(a) Every partition πi of Π contains prefix blocks only.
(b) If partition πi of Π contains a prefix block Bσ with |σ| < k, then πi is not stable.
(c) If Bσ is in πi, for 0 ⩽ i < n, then either Bσ ∈ πi+1, or Bσ1 ∈ πi+1 and Bσ0 ∈ πi+1.

Proof (a). Initially, for π0 = {B0, B1} both blocks are prefix blocks by definition. We prove,
if partition πi, for 0 ⩽ i < n, has only prefix blocks then all blocks in πi+1 are prefix blocks
as well.

Assume, to arrive at a contradiction, that there is a block B ∈ πi+1 that is not a prefix
block. Because πi+1 is a refinement of πi, we have B ⊆ Bσ for some prefix block Bσ ∈ πi.
This means that σ is a common prefix of all elements of B. We can choose θ such that σθ is
the longest common prefix of all elements of B. Since every singleton of Bk is a prefix block,
B is not a singleton. This means that |σθ| < k, and that there are some elements σ1 and
σ2 of B such that σθ0 is a prefix of σ1 and σθ1 is a prefix of σ2. Because B is not a prefix
block, there must exist at least one τ ∈ Bk with a prefix σθ such that τ ̸∈ B. Obviously, we
have either (i) σθ0 is a prefix of τ , or (ii) σθ1 is a prefix of τ . We will show that in both
these cases τ in fact belongs to B in πi+1, which is a contradiction. This also means that for
any B ∈ πi+1, where B ⊆ Bσ for some prefix block Bσ ∈ πi, we have that B is a prefix block
for the prefix σθ (i.e. B = Bσθ) where σθ is the longest common prefix of all elements of B.

(i) Suppose σθ0 is a prefix of τ . We will show that τ and σ1 belong to the same block in
πi+1 because for each aj (where 1 ⩽ j < k) the states σ′

1 and τ ′, such that σ1
aj−→ σ′

1
and τ

aj−→ τ ′, belong to the same block in πi. There are three cases:
j < |σθ|: Since σθ is a prefix of both σ1 and τ , we have σ1[j + 1] = τ [j + 1].

If σ1[j + 1] = τ [j + 1] = 0, then σ′
1 = σ1 and τ ′ = τ . Obviously, both σ′

1 and τ ′

belong to Bσ (since σ1 and τ belong to Bσ).
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If σ1[j + 1] = τ [j + 1] = 1, then both σ′
1 and τ ′ are of the form ρ[1 : j − 1]ρ[j]0k−j

where ρ = σθ, and we have σ′
1 = τ ′, so they clearly belong to the same block of

πi.
j = |σθ|: Since σ1[j + 1] = τ [j + 1] = 0, we have σ′

1 = σ1 and τ ′ = τ , and obviously
both σ′

1 and τ ′ belong to Bσ (since σ1 and τ belong to Bσ).
j > |σθ|: In fact, for arbitrary ρ, performing aj with j > |σθ| in σθρ leads to σθρ′

(for both cases, where (σθρ)[j + 1] is 0 or 1). In particular this means that if j > |σθ|
and σ1

aj−→ σ′
1 and τ

aj−→ τ ′, then σθ is a prefix of both σ′
1 and τ ′, and σ′

1 and τ ′

belong to Bσ in πi.
(ii) Now, suppose σθ1 is a prefix of τ . We will show that τ and σ2 belong to the same

block in πi+1 because for each aj (where 1 ⩽ j < k) the states σ′
2 and τ ′, such that

σ2
aj−→ σ′

2 and τ
aj−→ τ ′, belong to the same block in πi. There are three cases:

j < |σθ|: Similar as in (i).
j = |σθ|: Since σ1[j + 1] = τ [j + 1] = 1, we have σ′

1 = τ ′ = ρ[1 : j − 1]ρ[j]0k−1 where
ρ = σθ, so clearly σ′

1 and τ ′ are in a same block in πi.
j > |σθ|: Similar as in (i). ◀

Proof (b). Suppose Bσ ∈ πi and |σ| = ℓ < k. Let θ ∈ B∗ be such that σ1 = σ0θ

and σ2 = σ1θ. Then we have σ1
aℓ−→ σ1 ∈ Bσ and σ2

aℓ−→ σ[1:ℓ−1]σ[ℓ]0k−ℓ /∈ Bσ. Thus Bσ

isn’t stable, and hence πi isn’t either. ◀

Proof (c). We show that for a prefix block Bσ ∈ πi, a bit b ∈ B and all θ, θ′ ∈ Bk−(|σ|+1)

the states σ1 = σbθ and σ2 = σbθ′ are not split by any action aj , for 1 ⩽ j < k, and thus
are in the same block of πi+1. Pick j, 1 ⩽ j < k, and suppose σ1

aj−→ σ′
1, σ2

aj−→ σ′
2, i.e.,

σ′
1 = Bk(σ1, aj) and σ′

2 = Bk(σ2, aj). If j ⩽ |σ| and σ[j] = 0 then σ′
1 = σ1 and σ′

2 = σ2
hence both σ′

1, σ′
2 ∈ Bσ don’t split for aj . If j ⩽ |σ| and σ[j] = 1 then σ′

1 = σ′
2 and don’t

split for aj either. If j > |σ| then both σ′
1, σ′

2 ∈ Bσ and don’t split for aj either. ◀

With the help of the above lemma, clarifying the form of the partitions in a valid refinement
sequence for the bisplitter family, we are able to obtain a lowerbound for any partition
refinement algorithm acting on it.

▶ Theorem 6. For any k > 1, application of partition refinement to the bisplitter Bk has
refinement costs rc(Bk) ∈ Ω(n log n) where n = 2k is the number of states of Bk.

Proof. Let Π = π0, . . . , πn be a valid refinement sequence for Bk. By items a and b of
Lemma 5, we have πn = { {s} | s ∈ Bk } since πn is stable. Item c of Lemma 5 implies
that in every refinement step (πi, πi+1) a block is kept or it is refined in two blocks of
equal size. The cost of refining the block Bσ, for |σ| < k, into Bσ0 and Bσ1 is the number
of states in Bσ0 or Bσ1, which are the same and equal to 1

22k−|σ|. Therefore, we have
rc(Bk, Π) =

∑k−1
ℓ=1 2ℓ 1

2 2k−ℓ =
∑k−1

ℓ=1
1
2 2k = (k − 1)2k−1. If n is the number of states of Bk,

it holds that n = 2k, thus k − 1 = log 1
2 n . Hence, rc(Bk, Π) = 1

2 n log 1
2 n which is in

Ω(n log n). ◀

5 Bk is Ω(n log n) for partition refinement with an oracle

One may wonder whether the approach of calculating bisimulation equivalence classes will
work on transition systems with non-degenerate action sets as well as the Roberts’ algorithm
guarantees a linear performance for the degenerate case. In order to capture the approach
of [15], we augment the class of partition refinement algorithms with an oracle. At the
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start of the algorithm the oracle can be consulted to identify the bisimulation classes for
designated states, viz. for those that are in an ‘end structure’, the counterpart of the cycles
in [15]. This results in a refinement of the initial partition; partition refinement then starts
from the updated partition.

Thus, we can ask the oracle to provide the bisimulation classes of all elements in an
end structure of the LTS at hand. This yields a new partition, viz. the common refinement
of the initial partition, on the one hand, and the partition induced by the bisimulation
equivalence classes as given by the oracle and the complement of their union, on the other
hand. The work that remains to be done is establishing the bisimulation equivalence classes,
with respect to the initial partition, for the states not in any end structure. We will establish
that a partition refinement algorithm strengthened with such an oracle will not improve
upon partition refinement.

We first define the notion of an end structure of an LTS and the associated notion of an end
structure partition.

▶ Definition 7. Given an LTS L = (S,A, →, π0), a non-empty subset S′ ⊆ S is called an
end structure of L, if S′ is a minimimal set of states closed under all transitions. Moreover,
es(L) = { S′ ⊆ S | S′ end structure of L } and πes = { [s]↔L | s ∈

⋃
es(L) } ∪ {S\{ [s]↔L | s ∈⋃

es(L) }} \ {∅} is called the end structure partition of L.

Like the cycles of [15], an LTS can have multiple end structures. The end structure
partition πes consists of the bisimilarity equivalence classes of L containing a state of an end
structure, completed with a block of the remaining states that are not in an end structure,
and not bisimilar to any state in an end structure (if not empty).

▶ Lemma 8. Let L = (S,A, →, π0) be a dLTS.
(a) If |A| = 1 then es(L) consists of all cycles in L.
(b) Every s ∈ S has a path to an end structure of L.

Proof. (a) Since an end structure S′ is closed under transitions, S′ is a lasso. Because S′ is
minimal and non-empty, it follows that S′ is a cycle.

(b) Let U = { t ∈ S | s
w−→∗ t, w ∈ A∗ } be the set of states reachable from state s. Then

U is closed under all transitions. The minimal subset U ′ ⊆ U which is still closed under all
transitions is an end structure of L and reachable by s. ◀

Next we enhance the notion of a partition refinement algorithm. An oracle can be consulted
for the states in the end structures. In this approach, the initial partition is replaced by a
partition in which all bisimilarity equivalence classes of states in end structures are separated
split off from the original blocks.

▶ Definition 9. A partition refinement algorithm with end structure oracle yields for an
LTS L = (S,A, →, π0) a valid refinement sequence Π = (π′

0, π1, . . . , πn) where π′
0 is the

common refinement of the initial partition π0 and the end structure partition πes of L. The
partition π′

0 is called the updated initial partition of L.

As Roberts’ algorithm shows, in the case of a singleton action set the availability of an end
structure oracle yields the asymptotic performance of a linear algorithm. In the remainder
of this section we confirm that in the case of more letters the end structure does not help
either. The next lemma states that the amount of work required for the dLTS Bk by a
partition refinement algorithm enhanced with an oracle dealing with end structures is at
least the amount of work needed by a partition refinement algorithm without oracle for the
dLTS Bk−2.
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▶ Lemma 10. For the bisplitter Bk = (S,A, →, π0), for some k > 2, let π′
0 be the updated

initial partition. Then every valid refinement sequence Π = (π′
0, π2, . . . , πn) for the updated

bisplitter B′
k = (S,A, →, π′

0) satisfies rc(Π) ⩾ rc(Bk−2).

Proof. Observe that there are only two end structures in Bk, viz. the singletons of the two
states with 0k and 10k−1. Since all other states can reach 0k or 10k−1, these states are not in
an end structure: Choose σ ∈ Bk, σ ̸= 0k, 10k−1. Then σ is of the form b0j1θ for some b ∈ B,
j ⩾ 0 and θ ∈ B∗. For j = 0 we have σ

a1−→ b0k−1 which is either 0k or 10k−1; for j > 0 we
have σ

aj+1−−−→ b0j−110k−(j+1) while b0j−110k−(j+1) reaches 0k or 10k−1 by induction.
By Lemma 5, every state σ ∈ Bk of Bk is in its own bisimulation equivalence class {σ}. It

follows that the updated initial partition π′
0 equals { {0k}, {10k−1}, B0\{0k}, B1\{10k−1} }.

We claim that if a sequence Π = (π′
0, π1, . . . , πn) for Bk exists with costs rc(Π) ⩽ rc(Bk−2),

then also a valid refinement sequence Π′ for Bk−2 exists with costs smaller than rc(Bk−2)
which yields a contradiction, since, by definition, rc(Bk−2) are the minimum costs over all
valid refinement sequence for Bk−2.

So, assume Π = (π′
0, π1, . . . πn) is a valid refinement sequence for Bk and rc(Π) ⩽ rc(Bk−2).

We obtain a valid refinement sequence Π′ for Bk−2 in two steps. First, we use the projection
function p from partitions on Bk to partitions on Bk−2 that removes the prefix 11 from strings
in a block (or ignores the block if such string is absent), i.e. p(π) = { { σ | 11σ ∈ B } | B ∈
π }\{∅}. In particular, p(π0) = {{ σ | σ ∈ Bk−2 }}. Second, the function P from refinement
sequences of Bk to refinement sequences of Bk−2, removes, in addition to application of p

to each constituent partition, duplicate partitions from the sequence. Then Π′ = P (Π), say
Π′ = (ϱ0, ϱ1, . . . , ϱℓ).

We have ϱ0 = p(π′
0) = {Bε}. Next we observe that ϱ1 = πk−2

0 = {B0, B1} the initial
partition of Bk−2, containing the prefix blocks of 0 and 1: Take any two different states
bθ, bθ′ ∈ Bk−2, for a bit b ∈ B and strings θ, θ′ ∈ Bk−3 that are not in the same block
of ϱ1. Let i, 0 ⩽ i < n be such that p(πi) = ϱ0 and p(πi+1) = ϱ1. Then 11bθ and 11bθ′

have been separated when refining πi into πi+1. But no action aj witnesses such a split:
(i) Bk(11bθ, a1) = Bk(11bθ′, a1) as both equal 0k; (ii) Bk(110θ, a2) = 110θ ∈ B1\{10k−1}
and Bk(110θ′, a2) = 110θ′ ∈ B1\{10k−1}; (iii) Bk(111θ, a2) = Bk(111θ′, a2), viz. are equal
to 10k−1; (iv) for j > 2 it holds that Bk(11bθ, aj),Bk(11bθ′, aj) ∈ B1\{10k−1}. Since
ϱ1 ̸= ϱ0, ϱ1 has at least two blocks. Hence these must be B0 and B1.

Next we prove that every refinement of ϱi into ϱi+1 of Π′, for i, 1 ⩽ i < ℓ, is valid
for Bk−2. We first observe that, for all σ, σ′ ∈ Bk−2, aj ∈ A, it holds that Bk−2(σ, aj) = σ′

iff Bk(11σ, aj+2) = 11σ′, a direct consequence of the definition of the transition functions of
Bk−2 and Bk. From this we obtain

σ =ϱi
σ′ ⇐⇒ 11σ =πh

11σ′ (1)

provided ϱi = p(πh), for 0 ⩽ i ⩽ ℓ, via the definition of the projection function p. Now,
consider subsequent partitions ϱi and ϱi in Π′. Let h, 0 ⩽ h < n, be such that ϱi = p(πh) and
ϱi+1 = p(πh+1). Clearly, ϱi+1 is a refinement of ϱi; if for B ∈ πh+1 we have B =

⋃
α∈I Bα

with Bα ∈ πh for α ∈ I, then for p[B] ∈ ϱi+1 we have p[B] =
⋃

α∈I p[Bα] with p[Bα] ∈ ϱi

for α ∈ I. The validity of the refinement of ϱi into ϱi+1 is justified by the validity of πh+1
into πh. If σ =ϱi

σ′ and σ ̸=ϱi+1 σ′ for σ, σ′ ∈ Bk−2, then σ, σ′ ∈ B0 or σ, σ′ ∈ B1 since
ϱi is a refinement of ϱ0. Moreover, 11σ =πh

11σ′ and 11σ ̸=πh+1 11σ′ by (1). Hence, by
validity, Bk(11σ, aj) ̸=πh

Bk(11σ′, aj). Clearly j ≠ 1. Also, j ̸= 2, since σ[1] = σ′[1] we have
(11σ)[3] = (11σ′)[3]. Therefore, Bk−2(σ, aj−2) ̸=πh

Bk−2(σ′, aj−2), showing the refinement
of ϱi into ϱi+1 to be valid.

CONCUR 2021
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Finally, since every block in πn is a singleton, this is also the case for ϱℓ. Thus, ϱℓ is
indeed the coarsest partition as required for Π′ to be a valid refinement sequence for Bk−2.
Every refinement of ϱi into ϱi+1 of Π′ is projected from a refinement of some πh into πh+1
of Π as argued above. Therefore, since ϱi = p(πi) and ϱi+1 = p(πi+1), we have rc(ϱi, ϱi+1) ⩽
rc(πh, πh+1), and hence rc(Π) =

∑n
h=1 rc(πh−1, πh) ⩾

∑ℓ
i= rc(ϱi−1, ϱi) = rc(Π′) ⩾ rc(Bk−2),

as was to be shown. ◀

Next we combine the above lemma with the lowerbound provided by Theorem 6 in order to
prove the main result of this section.

▶ Theorem 11. Any partition refinement algorithm with end structure oracle to decide
bisimilarity for a dLTS is Ω(n log n).

Proof. Let B′
k be the updated bisplitter (with the initial partition π′

0 containing {0k},
B0\{0k}, {10k−1}, and B1\{10k−1} as given by the oracle for end structures rather than the
partition π0 containing B0 and B1). By Lemma 10 we have, for k > 2, that rc(B′

k) ⩾ rc(Bk−2).
By Theorem 6 we know that rc(Bk−2) ⩾ 1

2 n′ log 1
2 n′ where n′ = 2k−2 is the number of states

of Bk−2. It holds that n′ = 2k−2

2k n = 1
4 n. So rc(B′

k) ⩾ 1
8 n log 1

8 n from which we conclude that
deciding bisimilarity for Bk with the help of an oracle for the end structures is Ω(n log n). ◀

6 Ck is Ω((m + n) log n) for partition refinement

We modify the bisplitter Bk, that has an action alphabet of k − 1 actions, to obtain a dLTS
with two actions only. The resulting dLTS Ck has the action alphabet {a, b}, for each k > 1,
and is referred to as the k-th layered bisplitter. We use Ck to obtain a Ω((n + m) log n)
lowerbound for deciding bisimilarity for LTSs with only two actions, where n is the number
of states and m is de number of transitions.

To this end we adapt the construction of Bk at two places. Given an action alphabet A

of Bk of k − 1 actions, we introduce for each σ ∈ Bk, a stake of 2k states. Moreover, for
each stake we add a tree gadget. These gadgets have height ⌈log( k−1

2 )⌉ to accommodate
⌈(k − 1)/2⌉ leaves.

▶ Definition 12. Let k > 1, Bk be the k-th bisplitter, and A = {a, b}. The dLTS Ck =
(SC

k ,A, →C, πC
0 ), over the action set A,

(a) has the set of states SC
k defined as

SC
k = { [σ, ℓ] ∈ Bk × N | 1 ⩽ ℓ ⩽ 2k } ∪

{ ⟨σ, w⟩ ∈ Bk × A∗ | 0 ⩽ |w| ⩽ ⌈log( k−1
2 )⌉ },

(b) has the transition relation →C given by
[σ, ℓ] α−→C [σ, ℓ + 1] for σ ∈ Bk, 1 ⩽ ℓ ⩽ 2k, α ∈ A

[σ, 2k ] α−→C ⟨σ, ε⟩ for σ ∈ Bk, α ∈ A
⟨σ, w⟩ α−→C ⟨σ, wα⟩ for σ ∈ Bk, |w| < ⌈log( k−1

2 )⌉, α ∈ A
⟨σ, w⟩ α−→C [σ′, 1] for σ ∈ Bk, |w| = ⌈log( k−1

2 )⌉, bin(wα) = j, Bk(σ, aj) = σ′,

(c) and has the initial partition πC
0 defined as

πC
0 =

{
{ [σ, ℓ] | σ ∈ B0 }, { [σ, ℓ] | σ ∈ B1 }

∣∣ 1 ⩽ ℓ ⩽ 2k
}

∪
{ ⟨σ, w⟩ ∈ SC

k | σ ∈ Bk, w ∈ A∗ }.

The auxilliary function bin : A⩽⌈log(k−1)⌉ → N, used in item b is inductively defined by
bin(ε) = 0, bin(wa) = min{2 ∗ bin(w), k−1}, and bin(wb) = min{2 ∗ bin(w)+1, k−1}.

We see that with each string σ ∈ Bk we associate in Ck as many as 2k stake states
[σ, 1], . . . , [σ, 2k ], one for each level ℓ, 1 ⩽ ℓ ⩽ 2k. The stake states are traversed from
the top [σ, 1] to bottom [σ, 2k ] on any string σ of length 2k over A. The tree gadget consists
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tree gadgets

[000, 1] [000, 1] [001, 1] . . . . . . [000, 1] [100, 1]

Figure 3 The partial layered bisplitter C3 with tree gadgets, the colors represent the initial
partition.

of a complete binary tree of height ⌈log(k−1
2 )⌉ that hence has at least ⌈(k − 1)/2⌉ leaves.

Traversal down the tree takes a left child on action a, a right child on action b. Together
with the two actions of A, k − 1 source-label pairs can be encoded. To simulate a transition
σ

aj−→ σ′ of Bk in Ck from a leaf of a tree gadget of σ to the top of the stake of σ′, we need
to be at a leaf ⟨σ, w⟩ of the tree gadget of σ such that the combined string wα for α ∈ A
is the binary encoding according of bin of the index j. An α-transition thus leads from
the source ⟨σ, w⟩ to the target [σ′, 1] if σ

aj−→ σ′ in Bk and wα corresponds to j. The
partition πC

0 = { Cℓ
0 , Cℓ

1 | 1 ⩽ ℓ ⩽ 2k } ∪ {Cε} distinguishes, for each level ℓ, the states at
level ℓ of the stakes of strings starting with 0 in Cℓ

0, the states of the stakes at level ℓ of
strings starting with 1 in Cℓ

1 , and the states of the tree gadgets collected in Cε.
Figure 3 depicts the two-label layered 3-splitter C3. Because also Bk has an action set of

size 2 the tree gadgets only consist of the root node of the form ⟨σ, ε⟩. In Figure 2 of B3 we
see that 101 a1−→ 101 and 101 a2−→ 110. In Figure 3 we have transitions ⟨101, ε⟩ a−→ [101, 1]
and ⟨101, ε⟩ b−→ [110, 1] (dotted and dashed, respectively). Coloring of nodes is used to
represent the initial partition πC

3 that separates 8 times, once for each level ℓ, the four states
of the stakes in Cℓ

0 on the left from the four stake states in Cℓ
1 on the right, and the 8 tree

states in Cε at the bottom of the picture.
The 6-th bisplitter B6 has five actions, a1 to a5. A tree gadget for the layered bisplitter C6

with corresponding outgoing transitions is drawn in Figure 4. The tree has height ⌈log((6 −
1)/2)⌉ = ⌈log 5

2 ⌉ = 2, hence it has 22 = 4 leaves. Since each leaf has two outgoing transitions,
one labeled a and one labeled b, the two leftmost leaves ⟨σ, aa⟩ and ⟨σ, ab⟩ are used with the
two labels a and b to simulate transitions for a1 up to a4, the two rightmost leaves ⟨σ, ba⟩
and ⟨σ, bb⟩ have together four transitions all simulating the a5-transition of σ.

CONCUR 2021



31:12 Bisimulation by Partitioning Is Ω((m+n) logn)

⟨011010, ε⟩

⟨011010, a⟩

⟨011010, aa⟩

[100000, 1] [000000, 1]

⟨011010, ab⟩

[011010, 1] [011100, 1]

⟨011010, b⟩

[011010, ba]

[011010, 1] [011010, 1]

⟨011010, bb⟩

[011010, 1] [011010, 1]

a

a

a b

b

a b

b

a

a b

b

a b

Figure 4 Example of the outgoing tree for C6 from the root [011010, ε] ∈ SC
6 .

The next lemma introduces three facts for the layered bisplitter Ck that we need in the sequel.
The first states that if two states in different stakes, but at the same level, are separated
during partition refinement, then all corresponding states at lower levels are separated as
well. The second fact helps to transfer witnessing transitions in Bk to the setting of Ck. A
transition σ

aj−→ σ′ of Bk is reflected by a path from [σ, 2k ] through the tree gadget of σ from
root to leaf and then to the top state [σ′, 1] of the stake of σ′. The word wα encountered
going down and out the tree gadget corresponds to the action aj according to the bin-function.
Lastly, it is shown that no two pairs of different states within the stakes are bisimilar.

▶ Lemma 13. Let Π be a valid refinement sequence for Ck and π a partition in Π.
(a) If two states [σ, ℓ], [σ′, ℓ] ∈ SC

k , for 1 ⩽ ℓ ⩽ 2k, are in a different block of π, then all
pairs [σ, m], [σ′, m] ∈ S, for all levels m, ℓ ⩽ m ⩽ 2k, are in different blocks of π.

(b) If [σ1, 2k ] and [σ2, 2k ] are split in π, then exist w ∈ A∗, α ∈ A, and σ′
1, σ′

2 ∈ Bk such
that

[σ1, 2k ] w−→∗
C ⟨σ1, w⟩ α−→C [σ′

1, 1] and [σ2, 2k ] w−→∗
C ⟨σ2, w⟩ α−→C [σ′

2, 1]

with [σ′
1, 1] and [σ′

2, 1] in different blocks of π.
(c) If π is the last refinement in Π, it contains the singletons of [σ, ℓ] for σ ∈ Bk and 1 ⩽

ℓ ⩽ 2k.

Proof. (a) For a proof by contradiction, suppose the partition π is the first partition of Π
that falsifies the statement of the lemma. So π ̸= πC

0 , since for the initial refinement πC
0

the statement holds. Thus, π is a refinement of a partition π′ in Π. So, there are two
states [σ, ℓ], [σ′, ℓ] ∈ SC

k in different blocks of π while the states [σ, ℓ+1], [σ′, ℓ+1] are in the
same block of π and hence of π′. Since [σ, ℓ] and [σ′, ℓ] only have transitions to [σ, ℓ+1]
and [σ′, ℓ+1], respectively, that are in the same block π′, the refinement wouldn’t have been
valid. We conclude that no falsifying partition π in Π exists and that the lemma holds.

(b) We first prove, by induction on |w|, that if ⟨σ1, w⟩ and ⟨σ2, w⟩ are split in π, then exist
w ∈ A∗ and α ∈ A such that ⟨σ1, w⟩ v−→∗ ⟨σ1, wv⟩ α−→ [σ′

1, 1] and ⟨σ2, w⟩ v−→∗ ⟨σ2, wv⟩ α−→ [σ′
2, 1]

with [σ′
1, 1] and [σ′

2, 1] in different blocks of π. If w has maximal length, |w| = ⌈log( k−1
2 )⌉ this

is clear. If ⟨σ1, w⟩ and ⟨σ, w⟩ are split, for |w| < ⌈log(k−1)⌉ − 1, then either a-transitions or
b-transitions lead to split states. By the induction hypothesis, suitable paths exists from the
targets of such transitions. Adding the respective transition proves the induction hypothesis.
Since [σ1, 2k ] and [σ2, 2k ] can only reach ⟨σ1, ε⟩ and ⟨σ2, ε⟩ the statement follows.

(c) Choose ℓ, 1 ⩽ ℓ ⩽ 2k and define the relation R ⊆ SB
k × SB

k such that (σ1, σ2) ∈ R iff
the stake states [σ1, ℓ], [σ2, ℓ] ∈ SC

k are bisimilar for Ck. We verify that R is a bisimulation
relation for Bk. Note, that R respects πB

k , the initial partifion of Bk. Now, suppose
(σ1, σ2) ∈ R and σ1

aj−→ σ′
1 for some aj ∈ Ak and σ′

1 ∈ SB
k . By construction of Ck we have

[σ1, ℓ] a2k−ℓ

−−−−→∗ [σ1, 2k ] a−→ ⟨σ1, ε⟩ w−→∗ ⟨σ1, w⟩ α−→ [σ′
1, 1] aℓ−1

−−−→∗ [σ′
1, ℓ] where bin(wα) = j.
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Since [σ1, ℓ] and [σ2, ℓ] are bisimilar in Ck, it follows that a corresponding path [σ2, ℓ] −→∗

[σ′
2, ℓ] exists in Ck with [σ′

1, ℓ] and [σ′
2, ℓ] bisimilar in Ck. From this we derive that σ2

aj−→ σ′
2

in Bk and (σ′
1, σ′

2) ∈ R. Hence, R is a bisimulation relation for Bk indeed. Now, bisimilarity
of Bk is discrete. Thus, if two stake states [σ1, ℓ] and [σ2, ℓ] are bisimilar for Ck, then σ1
and σ2 are bisimilar for Bk thus σ1 = σ2, and therefore [σ1, ℓ] = [σ2, ℓ]. ◀

The next lemma states that all the splitting of states [σ, ℓ] ∈ SC at some level ℓ has refinement
costs that are at least that of Bk.

▶ Lemma 14. It holds that rc(Ck) ⩾ 2krc(Bk) for all k > 1.

Proof. Let Π = (πC
0 , π1, . . . , πn) be a valid refinement sequence for Ck. We show that for

each level ℓ, the sequence Π induces a valid refinement sequence Πℓ for Bk.
The mapping pℓ assigns to a partition π of Ck a partition pℓ(π) by putting

pℓ(π) = { { σ ∈ Bk | [σ, ℓ] ∈ B } | B ∈ π } \ {∅}.

The sequence Πℓ = (πℓ
0, . . . , πℓ

m) is obtained from the sequence (pℓ(πC
0 ), pℓ(π1), . . . , pℓ(πn))

by removing possible duplicates. We verify that Πℓ is a valid refinement sequence for Bk.
First, we check that πℓ

i is a refinement of πℓ
i−1, for 1 ⩽ i ⩽ m. Choose such an index i

arbitrary. Let the index h with 1 ⩽ h ⩽ n by such that pℓ(πh−1) = πℓ
i−1 and pℓ(πi) = πℓ

h.
For each block B′ ∈ πℓ

i exists a block B ∈ πh such that B′ = pℓ(B). Since πh is a refinement
of πh−1, thus B =

⋃
r Br for suitable Br ∈ πh. Note, pℓ(Br) ∈ pℓ(πh−1) for each index r.

We have B′ =
⋃

r pℓ(Br) with pℓ(Br) ∈ πℓ
i−1, and πℓ

i is a refinement of πℓ
i−1.

Next, we verify that Πℓ is a valid refinement sequence for Bk. Suppose the state σ1, σ ∈ SB
k

are split for the refinement of πℓ
i−1 into πℓ

i . Then the states [σ1, ℓ], [σ2, ℓ] ∈ SC
k are split for

the refinement of a partition πh−1 into the partition πh for a some index h, 1 ⩽ h ⩽ n. Then
either (i) ℓ = 2k and [σ1, ℓ] and [σ2, ℓ] have α-transitions to different blocks, for some α ∈ A,
or (ii) ℓ < 2k and [σ1, ℓ+1] and [σ2, ℓ+1] are in different blocks of πh−1. In the case of (ii),
it follows by Lemma 13 that also [σ1, 2k ] and [σ2, 2k ] are in different blocks of πh−1. Thus,
for the refinement of some πg−1 into πg, 1 ⩽ g ⩽ h ⩽ n, splitted the two states [σ1, 2k ]
and [σ2, 2k ]. By Lemma 13 exist w ∈ A∗, α ∈ A, and σ′

1, σ′
2 ∈ Bk such that

[σ1, 2k ] w−→∗
C ⟨σ1, w⟩ α−→C [σ′

1, 1] and [σ2, 2k ] w−→∗
C ⟨σ2, w⟩ α−→C [σ′

2, 1]

with [σ′
1, 1] and [σ′

2, 1] in different blocks of πg−1. Hence, σ′
1 and σ′

2 are in different blocks
of πℓ

i−1 while σ1
aj−→B σ′

1 and σ2
aj−→B σ′

2 for j = bin(wα), which justifies splitting σ1 and σ2
for πℓ

i . We conclude that Πℓ is a valid refinement sequence for Bk.
We have established that if Π is a valid refinement sequence for Ck, then Πℓ is a valid

refinement sequence for Bk. The sequence Πℓ is obtained from Π by sifting out the blocks
of Π’s partitions and removing repeated partitions. Therefore it holds that rc(Π) ⩾ rc(Πℓ).
Since the mapping pℓ and pℓ′ include pairswise distinct sets of stake states for ℓ ̸= ℓ′,
1 ⩽ ℓ ⩽ 2k, it follows that rc(Π) ⩾

∑2k

ℓ=1 rc(Πℓ) ⩾ 2krc(Bk). Taking the minimum over
all valid refinement sequences for Ck we conclude that rc(Ck) ⩾ 2krc(Bk) as was to be
shown. ◀

With the above technical lemma in place, we are able to strengthen the Ω(n log n) lowerbound
of Theorem 6 to account for the number of transitions. The improved lowerbound is
Ω((m + n) log n), where m is the number of transitions and n the number of states.

▶ Theorem 15. Deciding bisimilarity for dLTSs with a partition refinement algorithm is
Ω((m + n) log n), where n is the number of states and m is the number of transitions of the
dLTS.

CONCUR 2021



31:14 Bisimulation by Partitioning Is Ω((m+n) logn)

Proof. For the bisplitter Bk, we know by Theorem 6 that rc(BK) ⩾ 2k−1(k−1). Thus,
by Lemma 14, we obtain rc(CK) ⩾ 22k−1(k−1). In the case of Ck we have n = 2k(2k +
2⌈log(k−1)⌉ − 1) and m = 2n. Hence n + m ∈ Θ(22k−1) and log n ∈ Θ(k − 1), from which it
follows that rc(Ck) ∈ Ω((m + n) log n). ◀

Underlying the proof of a lowerbound for deciding bisimilarity for the family of layered
bisplitters Ck is the observation that each Ck can be seen as 2k stacked instances of the
ordinary bisplitters Bk, augmented with tree gadgets to handle transitions properly. The
other essential ingredient for the proof of Theorem 15 is the complexity of deciding bisimilarity
with a partition refinement algorithm on the Bk family. The same reasoning applies when
considering partition refinement algorithms with an oracle for end structures from Section 5.
Also with an oracle the lowerbound of Ω((m+n) log n) remains.

▶ Theorem 16. Any partition refinement algorithm with an oracle for end structures that
decides bisimilarity for dLTSs is Ω((m + n) log n).

Proof sketch. The proof is similar to that of Lemma 10 and Theorem 15. Consider, for
some k > 2, the layered bisplitter Ck having initial partition π0. The dLTS Ck has two end
structures, viz. the set S0 ⊂ SC

k containing the states of the stake and accompanying tree
gadget S0 = { [0k, ℓ] | 1 ⩽ ℓ ⩽ 2k } ∪ { ⟨0k, w⟩ | w ∈ A∗, |w| ⩽ ⌈log(k−1

2 )⌉} for 0k and a
similar S1 ⊆ SC

k for 10k−1. The sets S0 and S1 are minimally closed under the transitions
of Ck. Other states, on the stake or tree gadget for a string σ, have a path to these sets
inherited from a path from σ to 0k or 10k in Bk. The bisimulation classes S′

0 and S′
1, say,

with respect to SC
k rather than π0, consist of S0 and S1 themselves plus a part of the tree

gadgets for transitions in Ck leading to S0 and S1, respectively.
The update of the initial partition π0 with oracle information, which concerns, ignoring the

tree gadgets, the common refinement of the layers on { [σ, ℓ] | σ ∈ B0 } and { [σ, ℓ] | σ ∈ B1 }
on the one hand, and (a trivial refinement of) the bisimulation classes S′

0 and S′
1 on the

other hand, is therefore equal to π on the stakes (and generally finer on the tree gadgets).
Then every valid refinement sequence Π = (π′

0, π2, . . . , πn) for the updated dLTS C′
k =

(S,A, →, π′
0) satisfies rc(Π) ⩾ rc(Ck−2). Following the lines of the proof of Lemma 10, we

can show that a valid refinement sequence Π for Ck with updated initial partition π′
0 induces

a valid refinement sequence Π′ for Ck−2.
The number of states in Ck−2 is Θ(n) with n the number of states of Ck, and number

of transitions in Ck−2 is Θ(m) with m the number of transitions of Ck. Therefore, rc(Π) ⩾
rc(Π′) ⩾ rc(Ck−2), from which we derive that any partition refinement algorithm with oracle
for end structures involves Θ((m+n) log n) times moving a state for Ck and that hence the
algorithm is Ω((m+n) log n). ◀

7 Conclusion

We have shown that, even when restricted to deterministic LTSs, it is not possible to construct
an algorithm based on partition refinement that is more efficient than Ω((m + n) log n). This
strengthens the result of [2]. The bound obtained is preserved even when the algorithm is
extended with an oracle that can determine for specific states whether they are bisimilar or
not in constant time. The oracle proof technique enabled us to show that the algorithmic
ideas underlying Roberts’ algorithm [15] for the one-letter alphabet case cannot be used to
come up with a fundamentally faster enhanced partition refinement algorithm for bisimulation.
Of course, this is not addressing a generic lower bound to decide bisimilarity on LTSs, nor
proving the conjecture that the Paige-Tarjan algorithm is optimal for deciding bisimilarity.
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It is conceivable that a more efficient algorithm exists that is not based on partitioning
for bisimulation. However, as it stands, no techniques are known to prove such a generic
algorithmic lowerbound, and all that that do exist make assumptions on allowed operations,
such as the well-known lowerbound on sorting. Further investigations to obtain a more
general lowerbound may strenghten the oracle used even further, such that a wider range of
algorithms is covered.

For the parallel setting, where deciding bisimilarity can be done faster indeed, a similar
dichotomy between the case of a single letter alphabet and of a multiple letter alphabet
occurs. For LTSs with multiple action labels a linear algorithm is proposed in [12], whereas
for dLTSs with one action label it is possible to calculate bisimulation in logarithmic time,
cf. [9]. The question is raised in [17], if a sub-linear parallel solution exists at all. Since
this problem in a general setting is known to be P-complete as shown in [1], it is generally
believed that no logarithmic algorithm is possible. It is worthwhile to transfer the results
of this paper to a parallel setting, in order to better understand whether it is possible to
design parallel partition based algorithms for bisimulation on LTSs that have a sub-linear
complexity.
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