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Abstract
We introduce the balanced crown decomposition that captures the structure imposed on graphs by
their connected induced subgraphs of a given size. Such subgraphs are a popular modeling tool in
various application areas, where the non-local nature of the connectivity condition usually results
in very challenging algorithmic tasks. The balanced crown decomposition is a combination of a
crown decomposition and a balanced partition which makes it applicable to graph editing as well as
graph packing and partitioning problems. We illustrate this by deriving improved approximation
algorithms and kernelization for a variety of such problems.

In particular, through this structure, we obtain the first constant-factor approximation for the
Balanced Connected Partition (BCP) problem, where the task is to partition a vertex-weighted
graph into k connected components of approximately equal weight. We derive a 3-approximation
for the two most commonly used objectives of maximizing the weight of the lightest component or
minimizing the weight of the heaviest component.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases crown decomposition, connected partition, balanced partition, approximation
algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.26

Related Version Full Version: https://arxiv.org/abs/2011.04528

1 Introduction

Connected subgraphs are one of the most natural structures to encode aspects of a practical
task, modeled as a graph problem. On the one side, such subgraphs represent structures
we seek to discover, such as territories for postal delivery and similar districting problems
(see e.g. the survey [22]). From another perspective, the structures of interest could be
operations that scatter a graph into small connected components; a structure e.g. used to
model vulnerability in network security (see e.g. the survey [2]). Partitioning a graph into
connected components of a given size is also used as a model for task allocation to robots [43].
From an algorithmic perspective, connectivity is a non-local requirement which makes it
particularly challenging. We introduce a graph structure that can be used to design efficient
algorithms for a broad class of problems involving connected subgraphs of a given size.
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26:2 Balanced Crown Decomposition for Connectivity Constraints

One useful structure to derive information about connected subgraphs is a connected
partition, defined as follows. Given a graph G = (V, E), a connected partition of G is a
partition V1, . . . , Vk of V such that the graph induced by the vertex set Vi is connected
for each 1 ≤ i ≤ k, where k ∈ N is the size of the partition. Often, we are not interested
in just any connected partition but in those that have the additional property of being
balanced. Informally speaking, a connected partition is considered balanced if the sets Vi

have approximately equal cardinality. There are several measures to assess the quality of a
balanced connected partition (BCP for short), with the two most commonly used objectives
being to maximize min1≤i≤k |Vi| or to minimize max1≤i≤k |Vi|, as first introduced for trees
in [30] and [25], respectively. Despite extensive studies on these problems for the past 40
years, see e.g. [7, 30, 32, 35, 37, 38, 39] the best known approximation ratio for the Min-Max
objective depends on the number of sets k [11]. For the Max-Min objective not even such a
result is known; only for the cases with k restricted to 2 or 3, there exist approximations
with ratio 4

3 [12] and 5
3 [8], respectively. Deriving an approximation with a ratio independent

of k seems to require a new strategy.
Helpful structures for both of the objectives Max-Min and Min-Max, as a sort of com-

promise, are BCP’s such that λl ≤ |Vi| ≤ λr for some fixed bounds λl, λr. We call this
compromise structure [λl, λr]-CVP (connected vertex partition), and it is one ingredient of
balanced crown decomposition, the main structural object that we present. In the case that
no [λl, λr]-CVP exists for a graph, we can learn something about its structure. In particular,
our balanced crown decomposition theorem (Theorem 7) shows that for any k, λ > 0, the
non-existence of a [λ, 3λ − 3]-CVP implies the existence of a vertex set H ⊆ V of cardinality
at most k that disconnects at least one component of size less than λ from G. Such sets H

are in a sense the dual of balanced connected partitions.
Small subsets of vertices that disconnect a graph are usually called vertex separators, and

they are one of the most powerful tools for designing efficient graph algorithms. In a sense,
they are the base requirement of successful divide-and-conquer strategies for graph problems.
This generality and their wide applicability has made the study of separators a rich and
active research field, see e.g. the book by Rosenberg and Heath [31], or the line of research
initialized by the seminal paper of Lipton and Tarjan [27] on separators in planar graphs.
Numerous different types of separator structures emerged over the past couple of decades.
In the context of connectivity problems, the separator structures of particular interest are
crown decompositions; a classical tool to derive kernelizations in the field of parameterized
complexity. We refer to chapter 4 of the book on kernelization [18] for more details on crown
decompositions and their applications.

Crown decomposition was introduced as a generalization of Hall’s Theorem in [13]. More
precisely, a crown decomposition of a graph G = (V, E) is a partition of V into three sets H

(head), C (crown) and R (royal body), such that H separates C from R, C is an independent
set in G, and there exists a matching of size |H| among the edges E ∩ (H × C). Notice that
the set H is the separator set, and the property of C being an independent set can be seen as
H splitting connected components of size 1 from the graph. The condition of the matching
from H into C models a trade-off between the size of the separator and the amount of small
sets that are separated. Different versions of crown decompositions have been introduced in
the literature, adjusting the structure to specific application scenarios.

The structure of particular interest to us is the q-Weighted Crown Decomposition in-
troduced by Xiao [40]. Here, the crown C is no longer an independent set, but has the
restriction that each connected component in it has size at most q (generalizing the notion
of independent set for q = 1); and there exist an assignment of connected components of
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the crown to the head such that each vertex in the head is assigned at least q vertices. This
assignment generalizes the notion of matching in the original crown decomposition. Such a
weighted crown decomposition can be derived using the Expansion Lemma as stated in [17,
Chapter 5.3], and its generalization to the Weighted Expansion Lemma as given in slightly
different forms in [24] and [40]. The expansions derived by these lemmas can be thought
of as bipartite analogues of the crown decomposition. Formally, given a bipartite graph
G = (A, B, E), a q-(Weighted) Expansion is given by sets H ⊆ A and C ⊆ B such that the
neighborhood of C is contained in H and an assignment f : C → H such that the number
(resp. weight, in the vertex-weighted case) of vertices assigned to each vertex in H is at least q

(resp. q − W + 1 where W is the largest weight). Both Kumar and Lokshtanov [24] and
Xiao [40] use their respective Weighted Expansion Lemma to derive kernels for Component
Order Connectivity, a version of the editing problem that we also consider in a more
general form under the name W -Weight Separator.

To create our new structure balanced crown decomposition, we combine balanced connected
partitions and crown decompositions to derive a tool that has the advantages of both of the
individual structures. Essentially, it is a weighted crown decomposition with the additional
property that the body has a balanced connected partition. Also, note that we allow a more
generalized version of weighted crown decomposition than Xiao [40], by considering weighted
vertices. Formally, we consider vertex-weighted graphs G = (V, E, w) with integer-weights
w : V → N. For simplicity we use w(V ′) =

∑
v∈V ′ w(v) for the weight of a subset V ′ ⊆ V .

We show that balanced crown decompositions have applications for various kinds of
problems involving connectivity constraints. Specifically we discuss for the three types editing,
packing and partitioning the following problems on input G = (V, E, w) and k, W ∈ N:
Max-Min (Min-Max) BCP: Decide if there exists a connected partition V1, . . . , Vk of V

such that w(Vi) ≥ W (resp. w(Vi) ≤ W ) for each i ∈ [k]; usually stated as optimization
problem to maximize/minimize W .

W -weight Separator: Decide if there exists a set S ⊆ V with |S| ≤ k whose removal
from G yields a graph with each connected component having weight less than W .

W -weight Packing: Decide if there exist k pairwise disjoint sets V1, . . . , Vk ⊆ V with
w(Vi) ≥ W , such that the graph induced by Vi is connected, for each i ∈ [k].

We remark that the problems W -weight Separator and W -weight Packing have
been studied mostly on the unweighted versions, also known as Component Order
Connectivity and Tr-Packing, respectively.

For all results of this paper, we consider the RAM model of computation with word size
O(log(|V | + maxv∈V w(v))). All our algorithms are polynomial w.r.t. the encoding of input.

Lastly, we point out that this short version of the paper contains only a summary of
how to compute a balanced crown decomposition and its applications. Here we provide
descriptions of the algorithms used and proof sketches about the results achieved through
this structure. For technical details and complete proofs, we refer to the full version of the
paper.

1.1 Our Contribution
Our main contributions can be summarized as follows:
1. Balanced Crown Decomposition (BCD): The main contribution of our paper is a

new crown decomposition tailored for problems with connectivity constraints. Our novel
addition over previous crown decompositions is that we also give a partition of the body
into connected parts of roughly similar size. More precisely, we divide the graph into
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26:4 Balanced Crown Decomposition for Connectivity Constraints

C, H, and R such that C, H, R is a weighted-crown decomposition and also a [λ, 3λ]-CVP
is given for R. Definition 6 gives the formal definition of BCD, and Theorem 7 gives our
main result about computing BCD. We believe that apart from the applications used in
this paper, BCD will find applications for other problems with connectivity constraints.

2. Balanced Expansion: We also give a novel variation of the expansion lemma, which is an
important constituent of our algorithm for BCD. Given a bipartite graph G = (A, B, E),
we give an expansion with H ⊆ A, C ⊆ B, with the addition that the expansion f while
being a weighted q-expansion from C to H, now also maps B\C to neighbors in A\H such
that only a bounded weight is assigned to each vertex in A\H. See Definition 1 for a more
formal definition and Theorem 2 for our result on computing balanced expansion. Apart
from its usage here to compute BCD, the balanced expansion could be of independent
interest, given the significance of the Expansion Lemma in parameterized complexity.

3. Approximation algorithms for BCP: Using BCD, we give 3-approximation algorithms
for both Max-Min and Min-Max BCP. These are the first constant approximations for
both problems in polynomial time for a general k. Recall that despite numerous efforts in
the past 40 years, only a k/2-approximation for Min-Max BCP [11], and constant-factor
approximations for the particular cases of k = 2, 3 for Max-Min BCP [12, 8] were known.

4. Improved Kernels for W-weight separator and packing: BCD directly gives a
3kW -kernel for both of the problems improving over the previous best polynomial time
kernels of size 9kW [40] and O(kW 3) [9]. Especially, we get the same improvements for
the unweighted versions Component Order Connectivity and Tr-Packing.

5. Faster algorithms for Expansion: Our algorithm for Balanced Expansion, also gives
an alternative flow-based method for computing the standard (weighted) expansion. Our
algorithm can compute a (weighted) expansion in O(|V ||E|) surpassing the previous best
runtimes of O(|V |1.5|E|) and O(|E||V |1.5W 2.5) [18, Chapter 5.3] (here W is the largest
weight) for unweighted and weighted expansion, respectively. In particular, for weighted
expansion, our runtime does not depend on the weights and is the first algorithm that
runs in time polynomial w.r.t. the length of the input-encoding. The improvement in
runtime may turn out to be useful to speed up kernelizations for other problems.

1.2 Related work
Both variants of BCP were first introduced for trees, where Max-Min BCP and Min-Max
BCP are introduced in [30] and [25], respectively. For this restriction to trees, a linear
time algorithm was provided for both variants in [19]. For both variants of BCP, a ∆T -
approximation is given in [3] where ∆T is the maximal degree of an arbitrary spanning tree
of the input graph; for Max-Min BCP the result holds only when the input is restricted
to weights with maxv∈V w(v) ≤ w(G)

∆k . Also, although not explicitly stated, a (1 + ln (k))-
approximation in O

(
nk

)
time for Min-Max BCPk follows from the results in [10]. With

respect to lower bounds, it is known that there exists no approximation for Max-Min BCP
with a ratio below 6/5, unless P ̸= NP [7]. For the unweighted case, i.e. w ≡ 1, the best
known result for Min-Max BCP is the k

2 -approximation for every k ≥ 3 given in [11].
Balanced connected partitions are also studied for particular cases of k, denoted BCPk.

The restriction BCP2, i.e. balanced connected bipartition, is already be NP-hard [5]. On the
positive side, a 4

3 -approximation for Max-Min BCP2 is given in [12], and in [11] this result is
used to derive a 5

4 -approximation for Min-Max BCP2. For tripartition, approximations for
Max-Min BCP3 and Min-Max BCP3 with ratios 5

3 and 3
2 , respectively, are given in [8].

BCP in unit-weighted k-connected graphs can be seen as a special case of the Győri-
Lovász Theorem (independently given by Győri [20] and Lovász [28]). It states that for any
k-connected graph G = (V, E) and integers n1, . . . , nk with n1 + · · · + nk = |V |, there exists
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a connected partition V1, . . . , Vk of V with |Vi| = ni for all i ∈ [k]. Moreover, it is possible
to fix vertices v1, . . . , vk and request vi ∈ Vi for all i ∈ [k]. The Győri-Lovász Theorem is
extended to weighted directed graphs in [10] and Győri’s original proof is generalized to
weighted undirected graphs in [6]. Polynomial algorithms to also compute such connected
partitions are only known for the particular cases k = 2, 3, 4 [32, 35, 21] and all k ≥ 5 are
still open. A restricted case of BCP where the partitions are allowed to differ only by a size
of one, has been studied from the FPT viewpoint [15].

W -weight Separator occurs in the literature under different names. The unweighted
version is studied under the names p-Size Separator [40] or ℓ-Component Order Connectivity
(COC) [14, 24]; where p, ℓ = W −1 translate this to our definition of W -weight Separator
with unit weights. In [14] a weighted version of COC denoted by Weighted Component Order
Connectivity (wCOC) is introduced. This problem differs from our W -weight Separator
by searching for a set S with w(S) ≤ k instead of |S| ≤ k.

Note that W -weight Separator with W = 2 and unit weights yields the classical
problem Vertex Cover. This in particular shows that W (alone) is not a suitable
parameter from the FPT viewpoint. Further, W -weight Separator is W[1]-hard for
parameter k, even when restricted to split graphs [14]. These lower bounds lead to studying
parameterization by W + k. Stated with ℓ = W − 1, a kernel of size 9kℓ is given in [40].
Also [24] derives a kernel of size 2kℓ in time O

(
|V |ℓ

)
. Both of these results are for unit

weights. An O
(
kℓ(k + ℓ)2)

weight kernel for the related problem w-COC is given in [14].
For W = 3 and unit weights, W -weight Separator corresponds to Vertex Cover

P3 or 3-path Vertex Cover (see e.g. [34] and [4]), first studied by Yannakakis [42] under
the name Dissociation Number. The best known kernel for this problem is of size 5k

and given in [41]. W -weight Packing with unit weights is equivalent to Tr-Packing with
r = W + 1, where Tr is a tree with at least r edges, as defined in [9]; note that any connected
component with at least W vertices has at least r − 1 edges, and any tree with r − 1 edges
has exactly W vertices. The best known kernel for this problem is of size O

(
kW 3)

by [9].
W -weight Packing is also studied for particular values of W . The case W = 2 with

unit weights is equivalent to the Maximum Matching problem; note that a matching of size
k can be derived from a solution V1, . . . , Vk for 2-weight Packing by choosing arbitrarily
any edge in a set Vi with |Vi| > 2. In a similar way, the particular case of W = 3 is a problem
studied under the names P2-packing or Packing 3-Vertex Paths (see e.g [36] and [23]).
A 5k kernel for this problem is given in [26].

2 Balanced Expansion

In this section we introduce a balanced generalization of weighted expansions that we call
balanced expansion.

Balanced expansion extends the existing weighted expansion structures and is one of
the ingredients to derive our main BCD structure in the next section. Like the weighted
expansion, it is a structure on bipartite graphs. We write G = (A ∪ B, E, w) for bipartite
vertex-weighted graphs, where w : A ∪ B → N is its weight function. See Figure 1 for an
illustration of this structure.
▶ Definition 1 (balanced expansion). Let G = (A ∪ B, E, w) be a bipartite vertex-weighted
graph, where wB

max = maxb∈B w (b). For q ∈ N0, a partition A1 ∪ A2 of A and f : B → A,
the tuple (A1, A2, f, q) is called a balanced expansion if:

1. w (a) + w
(
f−1 (a)

) {
≥ q − wB

max + 1, a ∈ A1

≤ q + wB
max − 1, a ∈ A2

2. f (b) ∈ N (b)
3. N

(
f−1 (A1)

)
⊆ A1

ESA 2021
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B A }
A1

}
A2

s t

B A

w(b) q − w(a)

w(b)

Figure 1 Left: Balanced expansion for w(b) = 1 for all b ∈ B, q = 2 and assignment f depicted
with bold edges. Right: Flow network embedding of the graph on the left.

Our main result of this section is the following theorem.

▶ Theorem 2 (balanced expansion). Consider a vertex-weighted bipartite graph G =
(A ∪ B, E, w) with no isolates in B, and q ≥ maxb∈B w (b) = wB

max. A balanced expansion
(A1, A2, f, q) for G can be computed in O (|V | |E|) time. Furthermore, if w (A)+w (B) ≥ q|A|,
then A1 ̸= ∅.

As intermediate structure we use a fractional version of the balanced expansion where we
partially assign weights from vertices of B to vertices of A encoded as edge weights.

▶ Definition 3 (fractional balanced expansion). Let G = (A ∪ B, E, w) be a bipartite vertex-
weighted graph. For q ∈ N0, a partition A1 ∪ A2 of A and g : E → N0, the tuple (A1, A2, g, q)
is called fractional balanced expansion if:

1. w (a) +
∑

b∈B g (ab)
{

≥ q, a ∈ A1

≤ q, a ∈ A2
2. ∀b ∈ B :

∑
a∈A g (ab) ≤ w (b) (capacity)

3. N (BU ∪ BA1) ⊆ A1 (separator)
where Ba := {b ∈ B | g (ab) > 0} for a ∈ A, BA′ :=

⋃
a∈A′ Ba for A′ ⊆ A and BU :={

b ∈ B |
∑

a∈A g (ab) < w (b)
}

We prove a fractional version of our result first in the following lemma.

▶ Lemma 4 (fractional balanced expansion). Given a vertex-weighted bipartite graph G =
(A ∪ B, E, w) with no isolated vertices in B and q ∈ N0, a fractional balanced expansion
(A1, A2, g, q) can be computed in O (|V | |E|). Also, if w (A) + w (B) ≥ q|A|, then A1 ̸= ∅.

Proof Sketch. The main idea is to embed G to a capacitated flow network in a standard
way (see Figure 1). We construct a network H = (A ∪ B ∪ {s, t} ,

−→
E , c). To obtain H from G,

add source s and sink t, and arcs −→
E with a capacity function c : −→

E → N defined as follows.
For every b ∈ B, add an arc

−→
sb with capacity w (b) and for every a ∈ A, add an arc −→

at with
capacity q − w (a). Moreover, transform every edge ab ∈ E to an arc

−→
ba with capacity w (b).

We compute a max flow f : −→
E → N and define the saturated vertices A′ ⊆ A as a ∈ A

with f(−→at) = c(−→at). We now gradually build the sets A1 and A2. The vertices of A′ are
potential vertices for A1 while the unsaturated vertices are immediately added to A2. We
define F :=

∑
−→e ∈δ−(t) f(−→e ) as the flow value, where δ−(v) denotes the incoming, and δ+(v)

the outgoing arcs for v ∈ V (G). The final selection of A1 follows by individually increasing
the capacity by one for each −→

at for a ∈ A′, and checking whether the flow value increases
by computing a new max flow fa with the increased capacity of −→

at. Let Fa be the flow
value when the capacity of −→

at is increased by one. If Fa > F , then the vertex is added to
A1, otherwise it is added to A2. The intuition behind this selection can be explained as
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follows: first observe that each b ∈ B that has an edge ba2 to some a2 ∈ A2 is saturated,
i.e.

∑
−→e ∈δ+(b) f(−→e ) = w(b). Otherwise, we could route an additional unit of flow from b to

a2 either in f or in fa2 , giving a contradiction to the fact that a2 ∈ A2. Consequently, every
unsaturated b ∈ B is adjacent only to A1. The second observation is that there are no b ∈ B

with f(
−→
ba1) > 0 and ba2 ∈

−→
E for a1 ∈ A1 and a2 ∈ A2. If such a b exist, we show that we

can route an extra unit of flow from b to a2 either in f or fa2 . The idea is that we could
reroute one unit of flow from

−→
ba1 to

−→
ba2 creating a vacuum for one unit of incoming flow in

a1. Since fa1 routed one unit flow more than f , we could use a similar flow routing as in
fa1 to fill this vacuum, thus contradicting the maximality of either f or fa2 . As a result, all
vertices added to A1 have the desired exclusive neighborhood in B encoded by f . Finally, in
order to derive g we convert the flow arc values of f to edge weights for g. Note that the
required upper bound on the assignment of A2 follows from the capacities of the arcs from A

to t, and the required lower bound on the assignment of A1 follows from the vertices in A1
being saturated. Regarding running time, we remark that it is sufficient to find one max-flow
f at the beginning and then computing each fa with only one augmenting flow step. The
max-flow f can be computed in O (|V | |E|) time using the algorithm by Orlin [29]. ◀

Proof Sketch of Theorem 2. Once we have the fractional balanced expansion g, our first
step is modifying the edge weights g such that the edge-weighted graph G′ := (V, {ab ∈
E|g(a, b) > 0}, g) becomes a forest, without changing the sum

∑
b∈N(a) g(a, b) for any a ∈ A

and at the same time ensuring that
∑

a∈N(b) g(a, b) ≤ w(b) for all b ∈ B. This is possible
through a standard cycle canceling process. Now consider the trees in this forest. The trees
intersecting A1 are disjoint from the trees intersecting A2 due to the separation property of
the balanced fractional expansion. For a tree T intersecting A1, we allocate each b ∈ V (T )∩B

completely to its parent in T . This way, any a ∈ V (T ) ∩ A1 loses at most the assignment
from its parent and hence its assignment decreases by at most wB

max − 1 as required. Now
consider a tree T intersecting A2. If a b ∈ V (T ) ∩ B is a leaf of T its assignment has to be
non-fractional, so it can be completely assigned to its parent a and deleted from the tree.
This way, all leafs can be assumed to be from A2. We then allocate each b ∈ V (T ) ∩ B to
one of its children, and thus to every a ∈ V (T ) ∩ A2 at most the assignment from its parent
is added, and hence the assignment increases by at most wB

max − 1 as required. ◀

Before moving to BCD, we formally state the aforementioned implication of the results in
this section on the runtime of computing (non-balanced) expansions.

▶ Lemma 5 (Weighted Expansion Lemma). Let G = (A ∪ B, E) be a bipartite graph without
isolated vertices in B, w : B → {1, . . . , W}, and q ∈ N0. A q-weighted expansion (f, H, C) in
G can be computed in time O (|A ∪ B| |E|). Furthermore, if w (B) ≥ q|A| then H ̸= ∅.

3 Balanced Crown Decomposition

In this section we introduce our combination of balanced connected partition and crown
decomposition that we call balanced crown decomposition, formally defined as follows (see
also Figure 2 for an illustration).

▶ Definition 6. A λ-balanced crown decomposition (λ-BCD) of a vertex-weighted graph
G = (V, E, w) is a tuple (C, H,R, f), where {H, C, R} is a partition of V , the set R is a
partition of R, and f : CC(C) → H where CC(C) is the set of connected components of G[C],
such that:

ESA 2021



26:8 Balanced Crown Decomposition for Connectivity Constraints

1. there are no edges from C to R

2. w(Q) < λ for each Q ∈ CC(C)
3. f(Q) ∈ N(Q) for each Q ∈ CC(C)
4. w(h) + w(f−1(h)) ≥ λ for each h ∈ H


(weighted crown dec.)

5. G[R′] is connected and λ ≤ w(R′) ≤ 3λ − 3 for each R′ ∈ R.

Our novel contribution is condition 5, that gives a balanced connected partition of the
body. Without this condition, the structure is same as the weighted crown decomposition [40].
Observe that if there is a connected component of weight less than λ in G, then there is no
λ-balanced crown decomposition for G. In the applications of BCD, such small components
in the input are usually removed through some form of preprocessing.

We point out that the ratio 3 between the upper and lower bound in condition 5 of BCD
is not arbitrary, but the best possible, since we want to ensure the existence of this structure
in case all connected components have weight at least λ. A simple tight example is a triangle
with each vertex having a weight of λ − 1; here, C = H = ∅ is the only possibility and hence
R = {V } is the only possible partition of R = V .

R
H

C

< λ

λ ≤ ≤ 3λ − 3

Figure 2 λ-balanced crown decomposition.

The main structural result of the paper is the following.

▶ Theorem 7 (Balanced Crown Decomposition Theorem). Let G = (V, E, w) be a vertex-
weighted graph and λ ∈ N, such that each connected component in G has weight at least λ. A
λ-balanced crown decomposition (C, H,R, f) of G can be computed in O

(
k2 |V | |E|

)
time,

where k = |H| + |R| ≤ min {w(G)/λ, |V |}.

The proof of this result is very technical and we therefore here only give a very high-level
overview of the ideas. Observe that the condition |H| + |R| ≤ min {w(G)/λ, |V |} holds, since{

{h} ∪ f−1(h) : h ∈ H
}

∪ R is a partition of the vertices with each part having weight at
least λ. This bound is also used to track our progress in our BCD algorithm. We maintain
a set H that can be thought of as a potential head (not necessarily a separator), a set of
connected components of weight smaller than λ (some of them assigned to vertices in H by
a partial assignment f) which can be thought of as a potential crown, and a remaining body
that is packed according to condition 5.

To easily talk about condition 5 in the following, we say U is a connected packing in
V ′ ⊆ V , if for every U ∈ U we have U ⊆ V ′, U induces a connected subgraph in G and⋂

U∈U U = ∅. We say U is an [a, b]-connected packing of V ′ if w(U) ∈ [a, b] for every U ∈ U
and that U is maximal if the remaining graph does not have a connected component of weight
at least a. Recall that we say U is a CVP or [a, b]-CVP of V ′ if additionally

⋃
U∈U U = V ′

holds, and observe that condition 5 asks for a [λ, 3λ − 3]-CVP of the body R.
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Proof Sketch of Theorem 7. Let G = (V, E, w) be a vertex-weighted graph and λ ∈ N such
that each connected component of G has weight at least λ. We reduce G by deleting all
vertices of weight more than λ and all connected components of size smaller than λ that occur
after this deletion. Suppose we have a λ-BCD for the reduced graph, then a λ-BCD of G

can be built by adding the deleted heavy vertices to the head, the deleted small components
to the crown and assigning (by the function f in the definition of λ-BCD) each of these
components arbitrarily to a heavy vertex it is adjacent to. Thus, we can assume that every
vertex has weight at most λ. See Figure 3 for an illustration of the structures arising below.

We start with a maximal [λ, 2λ]-connected packing of G which is obtained greedily (slight
deviation from the main proof to provide better intuition). Let R = {R1, R2, · · · } be this
packing, C be the vertices not in the packing, and let CC(C) = {C1, C2, · · · } be the connected
components of G[C]. Note that by the maximality of the packing, w(Ci) < λ for all i. Think
of R as the current body and C as the current crown, and the head is empty in the beginning.
Note that at this point we do not ensure that there are no edges between crown and body.
If C is empty then we already have a λ-BCD (with empty crown and head). Also, if we
can somehow assign each Ci to some adjacent Ri such that each Ri is assigned weight at
most 3λ (including its own weight), then we have also built a λ-BCD (with empty crown and
head). Assuming neither of these cases hold, there has to exist an Ri such that its weight
plus the weight of the neighborhood in the crown part is at least 3λ; recall that we assumed
that all connected components of G have weight at least λ, so each Cj is connected to at
least one component in R. We call the subgraph induced by Ri together with all Cj that are
connected to it the effective neighborhood of Ri, and its weight the effective weight of Ri.

In case we have not found a λ-BCD yet, we pick an Ri with effective weight at least 3λ and
use the following fact derived from the famous results of Tarjan [33, 16]: for any connected
graph of total weight at least 3λ and largest vertex weight at most λ, we can efficiently
either find a partition of it into two connected subgraphs of weight at least λ each, or find a
cut-vertex that cuts the graph into components each of weight less than λ. If the effective
neighborhood is divided into two, we take each of the two parts into the body and remove
Ri, thus increasing the body size by one. In the other case, that is, if we find a cut-vertex c,
then we add c to the head and the components of Ri \ {c} (each having weight less than λ)
to the crown CC(C). We assign with a partial function f : CC(C) → H some of these
components that we just added to CC(C) to c such that c is assigned a total weight of at
least 3λ (including weight of c). The reason for assigning 3λ when we only require λ by the
definition of BCD, will become clear in the following. The new components added to the
crown could have edges to the old components there and hence can merge with these. If
at any point it happens that there is a component of weight at least λ in the crown, then
we immediately add it to the body. This could cause some head vertex to loose some of its
assignment, but since it had 3λ assigned to it, an assignment of at least λ remains. This is
because we ensure that the part we move to the body can have weight at most 2λ, as we
move it immediately as the weight is at least λ, and each addition is by steps of less than λ.

We repeat this process of picking an effective neighborhood of an Ri and dividing or
cutting it. We point out that when we calculate effective neighborhoods and weights, we
do not consider the crown parts that are already assigned by f . This process continues
until the effective weights of all sets Ri are less than 3λ. We claim that the reason why we
have not arrived at a λ-BCD yet could only be that there are crown parts that do not have
edges to the body (we call them private components) and not assigned by f , while there are
also crown parts that have edges to the body (non-private components) and assigned by f .
Note that if there are no unassigned private components, we can merge all unassigned crown
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parts with some set in the body and create a [λ, 3λ]-CVP given by the Ri’s and the sets
{v} ∪ f−1(v). Note that since the effective weights were lighter than 3λ, the body parts after
the merging are lighter than 3λ. Also, if f does not assign any non-private components, we
can assign unassigned private components to arbitrary neighbors in H, and merge unassigned
non-private components to body obtaining a λ-BCD.

We modify the assignment f to switch non-private with private components in the best
way possible. For this we use the balanced expansion Theorem 2. We build the bipartite
graph where the set A are the head vertices, and the set B are the private crown components
each contracted into a single vertex. Theorem 2 with expansion parameter 2λ then gives
us sets A′ ⊆ A and B′ ⊆ B and an assignment f ′ such that w({a′} ∪ f ′−1(a′)) ≥ λ for all
a′ ∈ A′ and w({a} ∪ f ′−1(a)) ≤ 3λ for all a ∈ A \ A′, and the crown components in B′ are
completely assigned to A′ and do not have neighbors in A \ A′. Note that since B was the
set of private components, the components B′ do not have neighbors in the body either.
Now augment f ′ by assigning to A \ A′ also enough non-private components such that they
have an assignment of at least 3λ each. This is possible since each vertex in A \ A′ has an
assignment of 3λ by f which did not use any components from B′ (as there are no edges
from B′ to A \ A′). Note that this augmentation of f ′ needs to be done carefully since the
private components could be assigned by the balanced expansion differently than by f .

By f ′ all private components are now assigned to the head, but there could still be
non-private ones assigned as well. But now, if the effective weight of each Ri is at most 3λ,
we can add the unassigned crown parts to sets in R, and thus create a λ-BCD: A′ with its
assignment by f ′ are head and crown, and R plus the sets {a} ∪ f ′−1(a) with a ∈ A \ A′ are
a [λ, 3λ]-CVP of the body. Thus, if we are not successful, there exists an Ri with effective
weight more than 3λ and we continue by dividing or cutting it. Note that we can proceed
with f ′ replacing f although some head vertices (from what was A′ in the balanced expansion)
might only have weight λ assigned to them (and not 3λ), because the crown parts assigned
to them are private and hence do not interfere with the further process.

To analyse the run time, we estimate how often we divide or cut a set Ri; note that each
such step can be performed in O(|V ||E|). Throughout our algorithm, the value |H| + |R|
is non-decreasing, and upper bounded by k. Every time we divide some Ri, we increase
|H| + |R|, hence this happens at most k times. Every time we cut some Ri we increase |H|
by one. Since |H| is also upper bounded by k, and we are careful not to decrease |H| with
the balancing step in-between cut steps, we arrive at a total of at most k2 divide or cut steps.

One pitfall here is that after applying the balanced expansion one might be tempted
to just take A′ and its assignment via f ′ into head and crown respectively, delete it, and
start over on the rest of the graph. The problem with this is that we are not guaranteed
to find a non-empty set A′ (since the private components might not have weight at least
λ|A|). The way we augment f ′, we ensure that we retain the preliminary crown, head and
body structure, and with this especially the value |H|, and can split up another Ri to either
increase |H| or |H| + |R|. Further, the reason why we cannot use the standard weighted
expansion lemma here is that we would need a lower bound of at least λ|A| on the weight of
B for this. We cannot ensure that the private components of the crown alone have a weight
of at least λ|A|, since we also used the non-private components for the assignment f .

One detail that we did not mention so far is that it is not possible to assign exactly 3λ

to each head vertex. Since the step size we can guarantee is only λ, we might have to
assign (4λ − 1) in order to get a value of at least 3λ. Recall that we assign a collection of
components of weight less than λ. Without further work, this only yields an upper bound of
4λ instead of 3λ for the packing of the body, worsening the quality of our structure (we for



K. Casel, T. Friedrich, D. Issac, A. Niklanovits, and Z. Zeif 26:11

example would only get a 4- instead of a 3-approximation for the BCP problems). For this
improvement from 4 to 3, we maintain a “last component” as a special assignment. (This is
called g′-assignment in the full proof). The details of how we make use of this special second
assignment is rather technical, and to some extent complicates the proof. If one is satisfied
with a bound of 4λ for the body, this complication is not necessary.

Another technical detail we skipped is that in the assignment f we maintain, the crown
parts we map may not be whole sets in CC(C) (connected components induced by crown
vertices). They are connected, but can be subgraphs of some Ci ∈ CC(C). We call such
subgraphs sub-components. Different sub-components of some Ci can be assigned to different
heads. Also, for a Ci some of its sub-components can be assigned while others are not. For
our structure to converge to a λ-BCD, sub-components have to be classified as private or
non-private based on the set CC(C) they are a part of, so it can happen that a sub-component
is non-private but has no edge to the body. Whenever we make the move from crown to body,
we therefore have to do a merging of some sub-components such that for each Ci ∈ CC(C)
either all its sub-components are assigned to the head or none of them are. ◀

R1

R2

R

≥ λ

H
CC(C)

< λ

private components

Figure 3 Illustration of a possible intermediate stage in the proof of Theorem 7. Colors represent
the partial assignment f , e.g., the two blue-colored sub-components are assigned to the blue vertex
in H. Thick lines are edges that go from the sets of the body to their effective neighborhoods.

4 Applications of Balanced Crown Decomposition

In this section we present some applications of the balanced crown decomposition.
For the problems W -weight Separator and W -weight Packing we immediately

get the following theorems by reducing an instance (G, k, W ) by first finding a W -BCD
(C, H,R, f) of G, and then applying the standard crown reduction rule that removes the
head H and crown C from G. We emphasize that the balanced connected partition of the
body is crucial to obtain the kernel sizes. These are the first kernels for vertex-weighted
graphs, while also improving the state-of-the-art results for the unweighted cases.

▶ Theorem 8. W -weight Separator admits a kernel of weight 3k (W − 1). Furthermore,
such a kernel can be computed in time O

(
k2|V | |E|

)
.

▶ Theorem 9. W -weight Packing admits a kernel of weight 3k (W − 1). Furthermore,
such a kernel can be computed in time O

(
k2|V | |E|

)
.
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For the optimization variant of the W -weight Packing problem, i.e. maximizing the
size of packing, the fact that the partition R is a solution also gives a 3-approximation; to
the best of our knowledge, the first approximation result for the problem.

▶ Theorem 10. A 3-approximation for the optimization problem of W -weight Packing
can be computed in O

(
k∗2|V | |E|

)
, where k∗ denotes the optimum value.

To better sketch the ideas for our results for the BCP problems, we denote by I-CVPk for
an interval I, a CVP with k parts where each part has a weight in I. We derive the following
result for Max-Min BCP, which is the first constant approximation for this problem.

▶ Theorem 11. A 3-approximation for the Max-Min BCP problem can be computed in
O

(
log (X∗) k2|V | |E|

)
, where X∗ denotes the optimal value.

Proof. Let (G, k) be an instance of Max-Min BCP. For any value X, using BCD, we
show how to either obtain an [X/3, ∞)-CVPk, or report that X > X∗. Once we have this
procedure in hand, a binary search can be used to obtain an [X∗/3, ∞)-CVPk.

We first obtain a λ-BCD (C, H,R, f) of G with λ = ⌈X/3⌉. If |H| + |R| ≥ k, we output
a [X/3, ∞)-CVPk given by the body and the assignment to head vertices (if this gives more
than k sets, arbitrarily merge some until there are only k). If |H| + |R| < k, then we report
that X > X∗. To see that this is correct, assume towards contradiction that X ≤ X∗, and
consider an optimal solution S∗ = {S∗

1 , . . . , S∗
k}. Then in the λ-BCD we computed, we know

that w(R) < X for every R ∈ R and w(C ′) < X for every C ′ ∈ CC(C). Observe that then
no C ′ ∈ CC(C) or a subset of it can be a set in S∗, since w(S∗

i ) ≥ X∗ ≥ X for every S∗
i ∈ S.

From the separator properties of H and that the fact that each S∗
i ∈ S is connected, we

obtain that any set in S∗ containing vertices from C also has to contain at least one vertex
from H. Thus, we can derive that the cardinality of S∗

H = {S∗
i ∈ S∗|S∗

i ∩ (C ∪ H) ̸= ∅}
is at most |H|. Also, |S∗ \ S∗

H | ≤ w(V (R))/X∗ ≤ w(V (R))/X ≤ |R|. Thus it follows that
|S∗| ≤ |H| + |R| < k, a contradiction. ◀

The last problem that we consider as application of the balanced crown decomposition is
the Min-Max BCP problem, where we also provide the first constant approximation result.

▶ Theorem 12. A 3-approximation for the Min-Max BCP problem can be computed in time
O

(
log (X∗) |V | |E|

(
log log X∗ log (|V |wmax) + k2))

, where X∗ denotes the optimum value
and wmax = maxv∈V w(v) the maximum weight of a vertex.

Proof. Achieving this requires several technical steps after having a balanced crown decom-
position in hand, including a second use of the balanced expansion. Let (G, k) be an instance
of Min-Max BCP and let S∗ = {S∗

1 , . . . , S∗
k} be an optimal solution. Let (C, H,R, f)

be a λ-BCD of G. Similar to the Max-Min case we try to make a comparison between
S∗ and the vertex decomposition C, H and V (R). The main issue is that, in contrast to
the Max-Min case, an optimal solution can (and sometimes has to) build more than |H|
sets from the vertices in H ∪ C. With the connectivity constraints, this means that some
components in G[C] are in fact a set in the optimal partition. Hence, when computing an
approximate solution from a balanced crown decomposition, we have to also choose some
components from G[C] to be sets, while others are combined with some vertex in H. In
order to make the decision of where to place the components in G[C], we compute a min-cost
flow using the algorithm from [1] on a network that models the options for components
in G[C] to either be sets or be combined with some vertex in H. A partial embedding of
{S∗

i ∈ S∗|S∗
i ∩ (C ∪ H) ̸= ∅} to this cost-flow network allows a comparison with the resulting
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partition of C ∪ H. The balanced weight properties of R then yield a comparison with
the whole set S∗. With the additional use of a min cost-flow network, our balanced crown
structure can be used to estimate the optimal objective value and again enables a binary
search for an approximate solution. ◀
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