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Abstract
Let G = (V, E) be a weighted undirected graph with n vertices and m edges, and let dG(u, v) be the
length of the shortest path between u and v in G. In this paper we present a unified approach for
obtaining algorithms for all pairs approximate shortest paths in weighted undirected graphs. For
every integer k ≥ 2 we show that there is an Õ(n2 + kn2−3/km2/k) expected running time algorithm
that computes a matrix M such that for every u, v ∈ V :

dG(u, v) ≤ M [u, v] ≤ (2 + k − 2
k

)dG(u, v).

Previous algorithms obtained only specific approximation factors. Baswana and Kavitha [FOCS
2006, SICOMP 2010] presented a 2-approximation algorithm with expected running time of Õ(n2 +
m

√
n) and a 7/3-approximation algorithm with expected running time of Õ(n2 + m2/3n). Their

results improved upon the results of Cohen and Zwick [SODA 1997, JoA 2001] for graphs with
m = o(n2). Kavitha [FSTTCS 2007, Algorithmica 2012] presented a 5/2-approximation algorithm
with expected running time of Õ(n9/4).

For k = 2 and k = 3 our result gives the algorithms of Baswana and Kavitha. For k = 4, we
get a 5/2-approximation algorithm with Õ(n 5

4 m
1
2 ) expected running time. This improves upon the

running time of Õ(n9/4) due to Kavitha, when m = o(n2).
Our unified approach reveals that all previous algorithms are a part of a family of algorithms

that exhibit a smooth tradeoff between approximation of 2 and 3, and are not sporadic unrelated
results. Moreover, our new algorithm uses, among other ideas, the celebrated approximate distance
oracles of Thorup and Zwick [STOC 2001, JACM 2005] in a non standard way, which we believe is
of independent interest, due to their extensive usage in a variety of applications.
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1 Introduction

Computing All Pairs of Shortest Paths (APSP) is one of the most fundamental problems
in Computer Science. The fastest known algorithms for APSP in weighted graphs run in
min{Õ(mn), n3/ exp(

√
log n)} [27, 19, 20].

In unweighted undirected graphs the fastest known APSP algorithms run in Õ(min{mn,

nω}) time1 [21], where ω < 2.373 is the exponent of square matrix multiplication [28, 17, 24],
n is the number of vertices and m is the number of edges. For an extension of this result to
undirected graphs with integral weights see [22] and to directed graphs see [30]. Fast Matrix
Multiplication (FMM) algorithms hide large constants and are thus far from being practical.
A fundamental research question is whether one can obtain fast “combinatorial” algorithms,
that can be implemented.

1 Õ notation hides polylogarithmic factors
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4:2 A Unified Approach for APASP in Weighted Graphs

Aingworth, Chekuri, Indyk and Motwani [1] initiated the research on efficient APSP
algorithms in unweighted undirected graphs, that settle for an approximated solution and
do not use FMM. An all pairs approximate shortest paths (APASP) algorithm has (α, β)-
approximation if every distance X is estimated by the algorithm to be at least X and at most
αX + β, where α is the multiplicative approximation and β is the additive approximation.
Aingworth et al. [1] presented a (1, 2)-approximation that runs in Õ(n2.5).

Dor, Halperin and Zwick [10] improved and generalized the results of [1]. For every even
k > 2, they presented a generalized scheme with Õ(min{n2− 2

k+2 m
2

k+2 , n2+ 2
3k−2 }) running

time and an additive approximation of k. For k = 2, the running time is Õ(min{n 3
2 m

1
2 , n

7
3 })

and the additive approximation is 2. They also obtained an algorithm with Õ(n2) running
time and (3, 0)-approximation. Berman and Kasiviswanathan [6] improved this result and
obtained an algorithm with the same running time of Õ(n2) and (2, 1)-approximation. The
question of obtaining efficient APASP algorithms for unweighted undirected graphs was
considered by many subsequent works [11, 5, 3, 23, 16, 2].

Cohen and Zwick [9] extended the results of Dor et al. [10] to weighted undirected
graphs. They obtained an Õ(n2) time algorithm with a (3, 0)-approximation, an Õ(n 3

2 m
1
2 )

time algorithm with a (2, 0)-approximation and also Õ(n 7
3 ) time algorithm with (7/3, 0)-

approximation. Their analysis of the (3, 0)-approximation algorithm allowed them to obtain a
general scheme with a running time of Õ(n2−1/km1/k) that for every pair u, v ∈ V computes
an additive approximation of 2

∑k−1
i=1 wi, where wi is the ith heaviest edge on the shortest

path between u and v. (For a similar result see also [12].) This is still a (3, 0)-approximation
in the worst case.

Baswana and Kavitha [4] presented several algorithms that perform better than the
algorithms of Cohen and Zwick when m = o(n2). They presented a (2, 0)-approximation
algorithm with expected running time of Õ(n2+m

√
n) and a (7/3, 0)-approximation algorithm

with expected running time of Õ(n2 + m2/3n). Notice that both algorithms have the same
running times as those of Cohen and Zwick when m = Θ(n2). Kavitha [15] presented a
(5/2, 0)-approximation algorithm with expected running time of Õ(n9/4). Baswana and
Kavitha [4] presented also a (2, W )-approximation algorithm, where W is the largest edge
weight, with expected running time of Õ(min{n2, m

√
n}). This is still a (3, 0)-approximation

in the worst case. A deterministic algorithm with the same bounds was presented by Berman
and Kasiviswanathan [6].

It stems from all the previous results mentioned above that for m = Θ(n2) there is a
(2 + (k − 2)/k, 0)-approximation algorithm with an expected running time of Õ(n2+1/k), for
every k ∈ {2, 3, 4}. For k ∈ {2, 3}, there is a (2 + (k− 2)/k, 0)-approximation algorithm with
expected running time of Õ(n2 + n2− 3

k m
2
k ). Therefore, in light of the existing results and the

lack of progress in improving them for more than 15 years, a natural research question that
arises is, whether there is a general scheme of algorithms with (2+(k−2)/k, 0)-approximation
and Õ(n2+1/k) running time, for every k > 4 or even more generally, is there a general
scheme of algorithms with (2+(k−2)/k, 0)-approximation that work better for sparse graphs
and have a running time of Õ(n2 + n2− 3

k m
2
k ), for every k > 3. Obtaining the latter scheme

requires first to improve the (5/2, 0)-approximation algorithm with expected running time of
Õ(n9/4) of Kavitha [15]. In this paper we answer the more general question positively and
prove:

▶ Theorem 1. For every integer k ≥ 2, there is an APASP algorithm with expected running
time of Õ(n2 + m

2
k n2− 3

k ) and multiplicative approximation of 2 + k−2
k .

For k = 2, 3 we get the results of Baswana and Kavitha [4]. For k = 4, we improve upon
the result of Kavitha [15] and get a (5/2, 0)-approximation algorithm with Õ(n2 + n

5
4 m

1
2 )

expected running time, which is better than Õ(n9/4) when m = o(n2).
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The main contribution of Theorem 1 is in unifying all previous algorithms into one general
systematic scheme which reveals for the previous known algorithms with 2, 7/3 and 5/2
approximation, that rather than being accidental ad-hoc results, they are part of a family of
algorithms that exhibits a smooth tradeoff between time and approximation.

Another aspect of Theorem 1 is that the current state of the art in conditional lower
bounds only rules out the existence of a (2 − ε)-approximation algorithm whose running
time is better than the running time of FMM. No conditional lower bounds are currently
known for approximation factors in the range between 2 and 3. Our result shed a light on
this range from the upper bound perspective.

From the technical perspective our result is obtained by a combination of several obser-
vations with one important key ingredient that might be useful for generalizing also other
algorithms that are based on distance computation. Very roughly speaking, the algorithms
for k = 2, 3 of [4] and for k = 4 of [15] are obtained by using a case analysis in which one of
the cases uses the following approach. For every u, v ∈ V there is some edge (a, b) ∈ E on a
shortest path between u and v that is used to get an estimation to the distance between u

and v based on approximate distance queries between u and b and v and a. We develop a
generalization of this idea which is based on the query procedure of the approximate distance
oracles (ADO) of Thorup and Zwick [26]. However, this key ingredient in its own is not
enough to obtain Theorem 1. A tighter analysis of the algorithm of [4] for the case that
k = 2 and a careful combination of it with our generalization technique is required.

The ADO of Thorup and Zwick [26] plays a pivotal role in many results related to
approximating distances. Formally, Thorup and Zwick showed that for any integer k ≥ 1 it
is possible to preprocess a weighted undirected graph in O(kmn1/k) expected time and to
create ADO of size O(kn1+1/k). For every u, v ∈ V a query returns in O(k) time a (2k−1, 0)-
approximation. Many of the subsequent works on ADO were focused on improving the
preprocessing time. (For more details see for example [4, 29, 23].) Baswana and Kavitha [4]
showed that for k > 2 it is possible to compute ADO in Õ(min{n2, kmn1/k}) expected
running time. Other aspects of ADO were considered as well. For more details see for
example [18, 29, 7, 8, 13, 14].

The rest of this paper is organized as follows. In the next section we present notations and
review previous works. In Section 3 we present the main ingredients needed for obtaining the
generalization. In Section 4 we present a couple of additional ingredients whose combination
with the generalization presented in Section 3 yields the proof of Theorem 1.

2 Preliminaries

Let G = (V, E) be a weighted undirected graph with n = |V | vertices and m = |E| edges.
Let w : E → R+ be a weight function on the edges of G. For a vertex u ∈ V , let N(u) be the
set of neighbours of u including u itself. Let Eu be the set of incident edges of u. Let Eu(i)
be the i lightest edges2 that are incident to u and let N(u, i) = {v | (u, v) ∈ Eu(i)}. Let
E(i) = ∪u∈V Eu(i). Let u, v ∈ V and let dG(u, v) be the distance between u and v in G, that is,
the length of the shortest path between u and v. Let S ⊆ V . Let pS(u) = arg minw∈S dG(u, w)
and let dG(u, S) = dG(u, pS(u)). If S = ∅ then dG(u, S) = ∞. Notice that pS(s) = s for
every s ∈ S. Let ES(u) = {(u, v) ∈ Eu | w(u, v) < dG(u, S)} and let ES = ∪u∈V ES(u).
Notice that in the degenerate case that S = ∅ we have ES = E, since dG(u, S) =∞.

2 Ties are broken arbitrarily. If i is not integral we take the ⌈i⌉ lightest edges.
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4:4 A Unified Approach for APASP in Weighted Graphs

Several variants of the next two Lemmas were used in many of the previous papers [10, 9,
26]. For our needs we use the formulation of Baswana and Kavitha [4]:

▶ Lemma 2 ([4]). Given a weighted undirected graph G = (V, E) and a set S ⊆ V the
following holds:
1. If dG(u, v) < dG(u, S) then all the edges on a shortest path between u and v are in

G(V, ES) and dG(V,ES)(u, v) = dG(u, v).
2. dG(V,ES∪EpS (u))(u, pS(u)) = dG(u, pS(u)).

▶ Lemma 3 ([4]). If v ∈ V is added to S with probability p then E[|ES |] is O(n/p).

For every u ∈ V , the ball of u with respect to S is BS(u) = {w | dG(u, w) < dG(u, S)}.
An example to a ball is presented in The next definition of overlapping balls is used implicitly
in many of the previous research on ADO and APASP. This definition was stated explicitly
by Kavitha [15].

▶ Definition 4 ([15]). Balls BS(u) and BS(v) overlap if dG(u, S) + dG(v, S) > dG(u, v).

The next Corollary from [15] is crucial for our new algorithms.

▶ Corollary 5 ([15]). If P (u, v) is a shortest path and BS(u) and BS(v) overlap then P (u, v)
can be divided into a portion P (u, a) in BS(u), a portion P (v, b) in BS(v), and an edge
(a, b)3.

Let S0 ⊆ V , Si+1 ⊆ Si, where i ∈ [0, k] and k ≥ 1. The set Si+1 is constructed by picking
every vertex of Si independently at random with probability p · c log n, for some constant
c. We denote these k + 1 vertex sets with Sp

k and call them a regular hierarchy if S0 = V

and Sk = ∅. Later we also define augmented and mixed hierarchies. We will usually refer to
vertices in Si, for i > 0, as pivots. For every u ∈ V let pi(u) = pSi

(u).
Thorup and Zwick [26] introduced approximate distance oracles (ADO). Given k ≥ 1,

an ADO of size Õ(n1+1/k) can be constructed in Õ(mn1/k) time. A query between any
u, v ∈ V returns in O(k) time a (2k − 1)-multiplicative approximation of the distance.
At the core of the ADO is the definition of a bunch Bi(u) for every vertex u ∈ V and
i ∈ [0, k − 1]. For a given i ∈ [0, k − 1] and u ∈ V a bunch Bi(u) is defined as follows:
Bi(u) = {w ∈ Si \ Si+1 | dG(u, w) < dG(u, pi+1(u))}. Notice that if we translate the
definition of bunches to the terminology of balls then for every u ∈ V and i ∈ [0, k − 1],
Bi(u) = Si ∩BSi+1(u). In particular, for i = 0 we have that the bunch B0(u) is simply the
ball BS1(u). Thorup and Zwick [26] proved the following Lemma on the size of the bunches.

▶ Lemma 6 ([26]). Let p = qc log n, where c is a large constant and q ∈ (0, 1/(c log n)). For
every i ∈ [0, k− 2] the size of Bi(u) is O(q−1 log n) with high probability. The size of Bk−1(u)
is O(n(q log n)k−1), whp.

The different bound on |Bk−1(u)| is not really relevant for the ADO of Thorup and Zwick,
as they set q = n−1/k and both bounds coincide at the same value. In our case, however, it
raises a non trivial obstacle on the way to obtain efficient algorithms for sparse graphs. We
will elaborate more on this issue later on.

The ADO is composed of an hierarchy Sp
k , where p = n−1/kc log n, and Sk = ∅. For every

u ∈ V and i ∈ [0, k], pi(u) and Bi(u) are computed and saved in the data structure. Thorup
and Zwick defined also clusters Ci(w) = {u | w ∈ Bi(u)}, for every w ∈ Si \ Si+1. The query
algorithm is presented in Algorithm 1.

3 Notice that in the degenerate case of a path of two edges either u = a or b = v
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Algorithm 1 dist(u, v).

i← 0;
while pi(u) /∈ Bi(v) do

i← i + 1;
swap u and v;

end
return d(u, pi(u)) + d(v, pi(u));

Algorithm 2 dist(u, v, r).

i← r;
while pi(u) /∈ Bi(v) do

i← i + 1;
swap u and v;

end
return d(u, pi(u)) + d(v, pi(u));

For the purpose of our new algorithms we generalize the query of Thorup and Zwick’s
ADO (see Algorithm 2) by adding an additional input value r. The search is for the first
i ≥ r, for which pi(u) ∈ Bi(v), alternating between u and v after each iteration. Let f(u, v, r)
be the value of i when dist(u, v, r) ends.

▶ Lemma 7. Let u, v ∈ V , r ∈ [0, k−1] and f = f(u, v, r). If f−r is even then dG(u, pf (u)) ≤
dG(u, pr(u))+(f−r)dG(u, v). If f−r is odd then dG(v, pf (v)) ≤ dG(u, pr(u))+(f−r)dG(u, v).

Proof. Consider every i ∈ [r, f − 1]. If i − r is even then pi(u) /∈ Bi(v) and from bunch
definition together with the triangle inequality we get dG(v, pi+1(v)) ≤ dG(v, pi(u)) ≤
dG(u, v) + dG(u, pi(u)). Similarly, if i − r is odd then pi(v) /∈ Bi(u) and dG(u, pi+1(u)) ≤
dG(u, pi(v)) ≤ dG(u, v)+dG(v, pi(v)). This implies that for even i−r we have dG(v, pi+1(v)) ≤
(i + 1− r) · dG(u, v) + dG(u, pr(u)) and for odd i− r we have dG(u, pi+1(u)) ≤ (i + 1− r) ·
dG(u, v) + dG(u, pr(u)).

Thus, if f − r is even we have dG(u, pf (u)) ≤ (f − r) · dG(u, v) + dG(u, pr(u)) and if f − r

is odd we have dG(v, pf (v)) ≤ (f − r) · dG(u, v) + dG(u, pr(u)).
As before we consider two subcases. The first is that r is even and the second is that r is

odd.
In case that r is even then we let f = f(a, u, r). ◀

3 A generalized scheme for APASP algorithms

3.1 Improving the pivots data
Baswana and Kavitha [4] presented a simple algorithm that given an hierarchy Sp

k computes
the distance between every pair of vertices (s, v) ∈ Si×V in the graph (V, ESi+1 ∪Es), where
i ∈ [0, k − 1], in expected running time of Õ(n2+1/k).

In our new pivot-dist algorithm we compute the bunches of every u ∈ V with respect to
hierarchy Sp

k . We also change the way distances are computed for the pairs (s, v) ∈ Si × V

in the graph (V, ESi+1 ∪ Es) by using more edges and in particular edges which are not
necessarily in E.

We define a new graph Gi+1(s) = (V, Hi+1(s)), for every i ∈ [0, k − 1] and s ∈ Si and
run Dijkstra’s algorithm for s in Gi+1(s). The graph Gi+1(s) is constructed as follows. The
edge set Hi+1(s) is initialized with ESi+1 . The first change is that we add to Hi+1(s) the set
of edges E(1/(pi+1)).

The second change is that for every s ∈ Si the set H(s) contains an edge between s and
every u ∈ V . The weight of every (s, v) ∈ H(s)\Es is initially set to∞. Every (s, v) ∈ H(s)∩
Es already has a weight. Next, we ensure in a loop that the weight of (s, v) ∈ H(s) is at most
min{w(s, v), minu∈Ci(s)∩N(v){dG(s, u)+w(u, v)}, minu∈N(v)∧pi(u)=s{dG(s, u)+w(u, v)}} and
add H(s) to Hi+1(s).

ESA 2021



4:6 A Unified Approach for APASP in Weighted Graphs

As mentioned above we perform these computations using algorithm pivot-dist. The
additional data computed by pivot-dist for the pairs (s, v) ∈ Si × V enables us later on to
perform more queries when computing the approximate distance between pairs u, v ∈ V .

Algorithm 3 pivot-dist(Sp
k ).

M [i, j]←∞, for every (i, j) ∈ [n]× [n];
for i← 0 to k − 1 do

// Phase 1: Adding shortcut edges
foreach s ∈ Si \ Si+1 do

H(s)← {(s, v) | v ∈ V };
foreach e ∈ H(s) \ Es do w(e)←∞;

end
// Phase 2: Computing dG(u, Si), pi(u), Bi(u) and updating edge weights.
foreach u ∈ V do

compute dG(u, Si), pi(u) and Bi(u);
M [pi(u), u]← dG(u, Si), M [u, pi(u)]← dG(u, Si);
w(pi(u), u) = dG(u, Si);

(1) foreach (u, v) ∈ Eu do
w(pi(u), v)← min{w(pi(u), v), dG(pi(u), u) + w(u, v)};

foreach s ∈ Bi(u) do M [s, u]← dG(u, s), M [u, s]← dG(u, s);
(2) foreach (u, v) ∈ Eu do

foreach s ∈ Bi(u) do w(s, v)← min{w(s, v), dG(s, u) + w(u, v)};
end

end
// Phase 3: Computing shortest paths for the vertices of Si

foreach s ∈ Si do
Gi+1(s) = (V, ESi+1 ∪ E(1/(pi+1)) ∪H(s));
run Dijkstra’s algorithm from s in Gi+1(s);
foreach u ∈ V do

M [s, u]← min{M [s, u], dGi+1(s)(s, u)},
M [u, s]← min{M [u, s], dGi+1(s)(s, u)}

end
end

end
return M ;

A pseudocode of pivot-dist(Sp
k) for computing distance information for (s, v) ∈ Si × V ,

for every i ∈ [0, k − 1], s ∈ Si and v ∈ V , is presented in Algorithm 3. A matrix M of size
n× n is initialized with ∞ in every entry. We iterate on i from 0 to k − 1. For every i we
have three phases. In the first phase we iterate on the set Si. For every s ∈ Si \ Si+1 the
set H(s) is initialized with edges between s and every v ∈ V . For every (s, v) ∈ H(s) \ Es

we set w(s, v) to ∞. In the second phase for every u ∈ V we compute pi(u), dG(u, Si)
and Bi(u). We then set M [pi(u), u] = dG(u, Si) and w(pi(u), u) = dG(u, Si). Notice
that here we update the weight of edges in H(s), some might be in the original graph
and some might not. In line (1) we scan the edges of u and for each (u, v) ∈ Eu we set
w(pi(u), v) = min{w(pi(u), v), dG(pi(u), u) + w(u, v)}. We set M [s, u] = dG(u, s), for every
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s ∈ Bi(u). Notice that by this we ensure that we have for every u ∈ V the distance between
u and every vertex in its bunches, according to the bunch definition of Thorup and Zwick’s
ADO. In line (2) we scan the edges of u and the vertices of Bi(u) and for every (u, v) ∈ Eu

and s ∈ Bi(u) we set w(s, v) = min{w(s, v), dG(s, u) + w(u, v)}.
In the third phase we iterate on the vertices of Si. We compute the distance from every

s ∈ Si to every vertex in V in the graph Gi+1(s) by running Dijkstra’s algorithm from s

and update M accordingly. The matrix M is returned as the output. Next, we analyze the
running time of Algorithm 3.

▶ Lemma 8. pivot-dist(Sp
k) runs in Õ(n2 + (k − 1)n2p−1 + mnpk−1) expected time.

Proof. Initializing M takes O(n2) time. In the first phase of the loop on i we scan Si \ Si+1
and for every s ∈ Si \ Si+1 we add an edge between s and every vertex of V to the set H(s).
We then update the weight. This costs O(|Si \ Si+1|n). The total cost of the first phase for
every i ∈ [0, k − 1] is O(n2).

In the second phase we compute pi(u), dG(u, Si) and Bi(u) for every u ∈ V . It is easy to
compute pi(u) and dG(u, Si), for every u ∈ V , in Õ(m) time by connecting a dummy vertex
only to the vertices of Si and running Dijkstra’s algorithm from the dummy vertex.

Thorup and Zwick [26] showed that computing Bi(u) for every u ∈ V takes
Õ(

∑
u∈V |Bi(u)| · |N(u)|) time (Section 4.3 in [26]). For i ∈ [0, k − 2] this results in a

running time of Õ(m · p−1), since from Lemma 6 we have Bi(u) = Õ(1/p). The cost
of computing Bk−1(u), for every u ∈ V , is Õ(m · npk−1), since from Lemma 6 we have
Bk−1(u) = Õ(npk−1).

For every i, the cost of line (1) is Õ(
∑

u∈V |N(u)|) = Õ(m) and the cost of line (2) is
Õ(

∑
u∈V |Bi(u)| · |N(u)|). Thus, the total cost of the second phase is Õ(km ·p−1 +m ·npk−1).

In the third phase we run Dijkstra’s algorithm from every s ∈ Si in Gi+1(s). The set
of edges of Gi+1(s) is ESi+1 ∪ E(1/(pi+1)) ∪H(s). The set H(s) is of size O(n). The set
E(1/(pi+1)) is of size O(n/(pi+1)).

Consider now the set ESi+1 , for i < k − 1. The probability of a vertex to be in Si+1 is
Õ(pi+1). Applying Lemma 3 we get that the expected size of the set ESi+1 is O(n/(pi+1)).

We get that the cost of the third phase for every inetger i ∈ [0, k − 2] is Õ(|Si| · n/pi+1).
Since the expected size of Si is Õ(npi) we get a bound of Õ(

∑k−2
i=0 (n · pi · n/pi+1)=Õ(n2 +

(k − 1)n2p−1).
When i = k − 1 we cannot apply Lemma 3 to bound the size of ESk

since Sk = ∅,
thus, we bound the cost of running Dijkstra’s algorithm from every s ∈ Sk−1 in Gk(s) with
Õ(|Sk−1|m) = Õ(n · pk−1m). We get a running time of O(n2 + (k− 1)n2p−1 + mnpk−1). ◀

In the next Lemma we summarize several properties of the matrix M returned by
pivot-dist. These properties are ensured by phase 2.

▶ Lemma 9. Let i ∈ [0, k − 1], let s ∈ Si and let u ∈ V .
1. If s ∈ {pi(u)} ∪Bi(u) then M [s, u] = dG(s, u)
2. If s ∈ {pi(u)} ∪Bi(u) and (u, v) ∈ E then M [s, v] ≤ dG(s, u) + w(u, v)

Proof. The proof easily follows from the execution of phase 2. ◀

We finish this section with a Lemma that summarizes several additional properties that
follow from the structure of the graph Gi+1(s), where s ∈ Si and i ∈ [0, k − 1]. These
properties are ensured by phase 3 of pivot-dist.
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▶ Lemma 10. Let u, v ∈ V and let P (u, v) be a shortest path between u and v with at least
two edges. Let s ∈ Si and let pi(u) = s, where i ∈ [0, k − 1].
1. If P (u, v) is in Gi+1(s) then M [s, v] ≤ dG(s, u) + dG(u, v).
2. If P (u, v) is not in Gi+1(s) then i ≤ k − 2.
3. If P (u, v) is not in Gi+1(s) and BSi+1(u) and BSi+1(v) overlap, where (a, b) ∈ P (u, v) is

the edge that connects them, then (a, b) /∈ Ea(1/pi+1) ∪ Eb(1/pi+1) ∪ ESi+1 .

Proof.
1. The claim follows since P (u, v) is in Gi+1(pi(u)), (pi(u), u) ∈ H(pi(u)) and w(pi(u), u) =

dG(pi(u), u).
2. Assume towards a contradiction that i = k − 1. The graph Gk(pk−1(u)) contains the

edges ESk
and since Sk = ∅ we have ESk

= E. Thus, Gk(pk−1(u)) contains E and in
particular, P (u, v) is Gk(pk−1(u)), a contradiction.

3. Since dG(u, a) < dG(u, pi+1(u)) and dG(v, b) < dG(v, pi+1(v)) it follows from Lemma 2
that P (u, a) and P (v, b) are in ESi+1 and thus in Gi+1(pi(u)). Since P (u, v) is not in
Gi+1(pi(u)) it must be that (a, b) /∈ Ea(1/pi+1) ∪ Eb(1/pi+1) ∪ ESi+1

4. ◀

3.2 A general scheme
We turn now to describe our new and general scheme for APASP algorithm. We denote this
algorithm with apasp. Our new algorithm is obtained by using pivot-dist(Sp

k) to obtain
better estimations in several important cases. These better estimations are then combined
with a procedure similar to the query of Thorup and Zwick distance oracles. The main
challenge is in the analysis of the approximation factor.

The algorithm gets as an input a weighted undirected graph G and an hierarchy Sp
k . The

algorithm returns a matrix M of approximate distances.
The algorithm works as follows. We start by initializing the matrix M . For every

(i, j) ∈ E we set M [i, j] to w(i, j) and for every (i, j) /∈ E we set M [i, j] to ∞. Next, we run
pivot-dist(Sp

k) and update matrix M with the result. Finally, we scan for every u, v ∈ V

the vertices pi(u), for every i ∈ [0, k − 1] and the vertices in Bi(u), for every i ∈ [0, k − 2].
We update M [u, v] if we find a vertex w such that M [u, w] + M [v, w] < M [u, v]. Notice that
we are not scanning the vertices of Bk−1(u) deliberately. This caveat is because the size
of Bk−1(u) is Õ(npk−1), for every u ∈ V , thus scanning these bunches is prohibited if we
like to obtain an algorithm with an efficient running time in sparse graphs. A careful case
analysis of odd and even values of k allows us to avoid scanning Bk−1(u) without affecting
the approximation factor. A pseudocode of apasp is presented in Algorithm 4.

We now analyze the approximation of the algorithm.

▶ Lemma 11. The output M of apasp(G,Sp
k) satisfies dG(u, v) ≤ M [u, v] ≤ 2dG(u, v) +

k−2
k · dG(u, v).

Proof. Let u, v ∈ V . Let P (u, v) be a shortest path between u and v. If P (u, v) has a
single edge then M [u, v] = w(u, v) since we set M [u, v] to w(u, v) in apasp. Thus, we can
assume that P (u, v) has at least 2 edges. Let i ∈ [0, k − 1] be the largest index such that
dG(u, Si) + dG(v, Si) ≤ dG(u, v). Such an index must exist since S0 = V which implies that
dG(u, S0) + dG(v, S0) = 0 ≤ dG(u, v).

4 If P (u, v) has two edges then the claim hold since either v = b or u = a.
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Algorithm 4 apasp(G, Sp
k ).

foreach (i, j) ∈ [n]× [n] do M [i, j]←∞;
foreach (i, j) ∈ E do M [i, j]← w(i, j);
M ← min{M, pivot-dist(Sp

k)};
foreach u ∈ V do

for i← 0 to k − 1 do
foreach v ∈ V do

(1) M [u, v]← min{M [u, v], M [pi(u), u] + M [pi(u), v], M [v, u]};
if i ≤ k − 2 then

foreach w ∈ Bi(u) do
(2) M [u, v]← min{M [u, v], M [w, u] + M [w, v], M [v, u]}

end
end

end
end

end
return M ;

Assume, wlog, that dG(u, Si) ≤ dG(v, Si). If P (u, v) is in Gi+1(pi(u)) it follows from
Lemma 9(i) and from Lemma 10(i) that after updating M with the result of pivot-dist
M [pi(u), u] = dG(pi(u), u) and M [pi(u), v] ≤ dG(pi(u), u) + dG(u, v). In line (1) of apasp we
update M [u, v] if needed, therefore, it is guaranteed that M [u, v] ≤ 2dG(pi(u), u)+dG(u, v) ≤
2dG(u, v).

Consider now the case that P (u, v) is not in Gi+1(pi(u)). From Lemma 10(ii) it follows
that i < k−1. Since i is the largest index for which we have dG(u, Si)+dG(v, Si) ≤ dG(u, v) it
follows that dG(u, Si+1) + dG(v, Si+1) > dG(u, v), which implies that BSi+1(u) and BSi+1(v)
overlap. Let (a, b) ∈ P (u, v) be the edge that connects BSi+1(u) and BSi+1(v). From
Lemma 10(iii) it follows that (a, b) /∈ Ea(1/pi+1) and (a, b) /∈ Eb(1/pi+1). Therefore, for the
rest of the proof we can assume that P (u, v) has at least 2 edges, i < k − 1, P (u, a) is in
G(V, ESi+1), P (v, b) is in G(V, ESi+1) and (a, b) /∈ Ea(1/pi+1) ∪ Eb(1/pi+1) ∪ ESi+1 .

Next, we will prove two different bounds on M [u, v].

▷ Claim 12. M [u, v] ≤ min{3dG(u, v)− 2dG(b, v), 3dG(u, v)− 2dG(a, u)}.

Proof. Let j > i + 1 be the smallest index for which (a, b) ∈ E(1/pj). If j ≥ k we set j to k.
Assume that (a, b) ∈ Ea(1/pj) and (a, b) ∈ Eb(1/pj′), where j′ ≥ j. If j = k we set j′ to k.
By definition, the sets N(a, 1/pj−1) and N(b, 1/pj−1) are of size 1/pj−1. Since vertices of V

are in Sj−1 with probability at least pj−1c log n, it follows that, whp, Sj−1 contains at least
one vertex from N(a, 1/pj−1) and N(b, 1/pj−1).

Let x ∈ N(a, 1/pj−1) ∩ Sj−1 and let y ∈ N(b, 1/pj−1) ∩ Sj−1. Since (a, x) ∈ Ea(1/pj−1)
and (a, b) /∈ Ea(1/pj−1) we have w(a, x) ≤ w(a, b). Similarly, since (b, y) ∈ Eb(1/pj−1)
and (a, b) /∈ Eb(1/pj−1) we have w(b, y) ≤ w(a, b). Thus, we get that dG(u, pj−1(u)) ≤
dG(u, a) + w(a, b) ≤ dG(u, b) and dG(v, pj−1(v)) ≤ dG(v, b) + w(a, b) ≤ dG(v, a).

Now since (a, b) ∈ Ea(1/pj) it follows that the path P (u, v) is in Gj(pj−1(u)) and
Gj(pj−1(v)), when j < k. When j = k we have ESk

= E and P (u, v) is in Gk(pk−1(u)). It
follows from Lemma 10(i) that M [pj−1(u), v] ≤ dG(pj−1(u), u)+dG(u, v) and M [pj−1(v), u] ≤
dG(pj−1(v), v) + dG(u, v).
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Thus, after line (1) of apasp is executed for the pair u, v and for the pair v, u we have
M [u, v] = M [v, u] ≤ min{2dG(u, pj−1(u)) + dG(u, v), 2dG(v, pj−1(v)) + dG(u, v)}. We get:

M [v, u] = M [u, v] ≤ min{2dG(u, pj−1(u)) + dG(u, v), 2dG(v, pj−1(v)) + dG(u, v)}
≤ min{dG(u, v) + 2dG(u, b), dG(u, v) + 2dG(v, a)}
= min{3dG(u, v)− 2dG(b, v), 3dG(u, v)− 2dG(a, u)},

since dG(u, pj−1(u)) ≤ dG(u, b) and dG(v, pj−1(v)) ≤ dG(v, a) and since dG(u, b) = dG(u, v)−
dG(b, v) and dG(v, a) = dG(u, v)− dG(a, u). ◁

We now turn to prove a second bound on M [u, v].

▷ Claim 13. M [u, v] is bounded either by (i) 2 · (k − 1)dG(u, a) + dG(u, v) or by (ii)
2 · (k − 1)dG(v, b) + dG(u, v)

Proof. We consider the pair of vertices u and a and the pair of vertices v and b.
Let r be the largest index such that a /∈ BSr

(u) and u /∈ BSr
(a). Let r′ be the largest

index such that b /∈ BSr′ (v) and v /∈ BSr′ (b). Since S0 = V it follows that BS0(x) = {x}, for
every x ∈ V . Thus, we have a /∈ BS0(u) and u /∈ BS0(a) and also b /∈ BS0(v) and v /∈ BS0(b).

We assume that r ≥ r′ and show that M [u, v] ≤ 2 · (k − 1)dG(u, a) + dG(u, v). If r′ ≥ r

then a symmetric proof shows that M [u, v] ≤ 2 · (k− 1)dG(v, b) + dG(u, v). In the degenerate
case that P (u, v) has only two edges and b = v we set r′ = r. The proof below works for this
case as well and hence M [u, v] ≤ 2 · (k − 1)dG(u, a) + dG(u, v). If a = u a symmetric proof
shows that M [u, v] ≤ 2 · (k − 1)dG(v, b) + dG(u, v).

Recall that we are in the case that dG(u, a) < dG(u, pi+1(u)) and dG(v, b) < dG(v, pi+1(v)),
thus we have a ∈ BSi+1(u) and b ∈ BSi+1(v). This implies that r ≤ i < k−1 and r′ ≤ i < k−1,
since i < k − 1.

From the definition of r it follows that either a ∈ BSr+1(u) or u ∈ BSr+1(a). If a ∈
BSr+1(u) then dG(u, a) < dG(u, Sr+1) and it follows from Lemma 2 that P (u, a) ∈ ESr+1 .
Similarly, if u ∈ BSr+1(a) then dG(u, a) < dG(a, Sr+1) and it follows from Lemma 2 that
P (u, a) ∈ ESr+1 . From symmetrical arguments we get that P (v, b) ∈ ESr′+1 . Since ESj

⊆
ESj+1 , for every j ∈ [0, k − 1], we have and P (u, a) ∪ P (v, b) ⊆ ESq+1 , for every q ≥ r.

Next, we distinguish between odd and even values of k. Assume first that k is odd. This
implies that k − 1 is even. We now consider two subcases. The first is that r is even and the
second is that r is odd. In case that r is even then we let f = f(u, a, r).

From Lemma 7 it follows that if f − r is even then we have dG(u, pf (u)) ≤ dG(u, pr(u)) +
(f − r)dG(u, a) and if f − r is odd then dG(a, pf (a)) ≤ dG(u, pr(u)) + (f − r)dG(u, a).

We proceed by considering these two scenarios.

1. Even f−r. In this case dG(u, pf (u)) ≤ dG(u, pr(u))+(f−r)dG(u, a) and pf (u) ∈ Bf (a).
It follows from Lemma 9(ii) that after Phase 2 of pivot-dist M [pf (u), b] ≤ dG(pf (u), a)+
w(a, b). When executing in Phase 3 of pivot-dist Dijkstra’s algorithm from pf (u) in
Gf+1(pf (u)) with edge set ESf+1 ∪ E(1/(pf+1)) ∪ H(pf (u)) the weight of the edge
(pf (u), b) ∈ H(pf (u)) is M [pf (u), b] ≤ dG(pf (u), a) + w(a, b) and P (v, b) ⊆ ESf+1 . Thus,
we get that M [pf (u), v] ≤ dG(pf (u), a)+dG(a, v) ≤ dG(pf (u), u)+dG(u, v). In line (1) of
apasp we update M [u, v] so that it is at most M [pf (u), u]+M [pf (u), v]. From Lemma 9(i)
it follows that M [pf (u), u] = dG(pf (u), u) and since M [pf (u), v] ≤ dG(pf (u), u)+dG(u, v)
we get that M [u, v] ≤ 2 · dG(pf (u), u) + dG(u, v). (See
Combining this with the fact that dG(u, pf (u)) ≤ dG(u, pr(u)) + (f − r)dG(u, a) we get
that for even f − r we have M [u, v] ≤ 2 · (dG(u, pr(u)) + (f − r)dG(u, a)) + dG(u, v).
Recall also that f ≤ k − 1. In the degenerate case of r = 0 we have p0(u) = u and
M [u, v] ≤ 2 · (k − 1)dG(u, a) + dG(u, v).
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For the case that r ≥ 1 since a /∈ BSr (u) we have dG(u, pr(u)) ≤ dG(u, a). Using this we
get M [u, v] ≤ 2 · ((f − r + 1)dG(u, a)) + dG(u, v) ≤ 2 · (k − 1)dG(u, a) + dG(u, v).

2. Odd f − r. In this case dG(a, pf (a)) ≤ dG(u, pr(u)) + (f − r)dG(u, a) and pf (a) ∈ Bf (u).
It follows from Lemma 9(ii) that after Phase 2 of pivot-dist M [pf (a), b] ≤ dG(pf (a), a)+
w(a, b). When executing in Phase 3 of pivot-dist Dijkstra’s algorithm from pf (a)
in Gf+1(pf (a)) with edge set ESf+1 ∪ E(1/(pf+1)) ∪ H(pf (a)) the weight of the edge
(pf (a), b) ∈ H(pf (a)) is M [pf (a), b] ≤ dG(pf (a), a) + w(a, b) and P (v, b) ⊆ ESf+1 . Thus,
we get that M [pf (a), v] ≤ dG(pf (a), a) + dG(a, v).
Consider the execution of line (2) in apasp for vertices v, u and a and the index f . Notice
that this line is only executed for indices i ≤ k−2. In our case we have pf (a) ∈ Bf (u) and
since r is even and f−r is odd, f must be odd. Since k−1 is even we have f ≤ k−2. Thus
line (2) is executed and we update M [u, v] so that it is at most M [pf (a), u] + M [pf (a), v].
Since pf (a) ∈ Bf (u) it follows from Lemma 9(i) that M [pf (a), u] = dG(pf (a), u) ≤
dG(u, a) + dG(pf (a), a) and since M [pf (a), v] ≤ dG(pf (a), a) + dG(a, v) we get that
M [u, v] ≤ 2 · dG(pf (a), a) + dG(u, v).
Combining this with the fact that dG(a, pf (a)) ≤ dG(u, pr(u)) + (f − r)dG(u, a) we get
that for odd f − r we have M [u, v] ≤ 2 · (dG(u, pr(u))+(f − r)dG(u, a))+dG(u, v). Recall
also that f ≤ k − 1.
In the degenerate case of r = 0 we have p0(u) = u and M [u, v] ≤ 2 · (k − 1)dG(u, a) +
dG(u, v).
For the case that r ≥ 1 since a /∈ BSr (u) we have dG(u, pr(u)) ≤ dG(u, a). Using this we
get M [u, v] ≤ 2 · ((f − r + 1)dG(u, a)) + dG(u, v) ≤ 2 · (k − 1)dG(u, a) + dG(u, v).

Consider now the second case in which r is odd and let f = f(a, u, r).
1. Odd f − r. In this case dG(u, pf (u)) ≤ dG(a, pr(a)) + (f − r)dG(u, a) and pf (u) ∈ Bf (a).

The proof is identical to the proof for even r, f = f(u, a, r) and even f − r.
2. Even f − r. In this case dG(a, pf (a)) ≤ dG(a, pr(a)) + (f − r)dG(u, a) and pf (a) ∈ Bf (u).

The proof is identical to the proof for even r, f = f(u, a, r) and odd f − r.

Assume now that k is even. This implies that k − 1 is odd.
1. Odd f − r. In this case dG(u, pf (u)) ≤ dG(a, pa(u)) + (f − r)dG(u, a) and pf (u) ∈ Bf (a).

The proof is identical to the proof for even r, f = f(u, a, r) and even f − r.
2. Even f − r. In this case dG(a, pf (a)) ≤ dG(a, pr(a)) + (f − r)dG(u, a) and pf (a) ∈ Bf (u).

The proof is identical to the proof for even r, f = f(u, a, r) and odd f − r.

Consider now the second case in which r is odd and let f = f(u, a, r).
1. Even f−r. In this case dG(u, pf (u)) ≤ dG(u, pr(u))+(f−r)dG(u, a) and pf (u) ∈ Bf (a).

The proof is identical to the proof for even r, f = f(u, a, r) even f − r.
2. Odd f − r. In this case dG(a, pf (a)) ≤ dG(u, pr(u)) + (f − r)dG(u, a) and pf (a) ∈ Bf (u).

The proof is identical to the proof for even r, f = f(u, a, r) and odd f − r. ◁

We now combine the two bounds to complete the proof. From Claim 13 it follows that
either M [u, v] ≤ 2 · (k − 1)dG(u, a) + dG(u, v) or M [u, v] ≤ 2 · (k − 1)dG(v, b) + dG(u, v).
Assume that M [u, v] ≤ 2 · (k − 1)dG(u, a) + dG(u, v). From Claim 12 it follows that
M [u, v] ≤ min{3dG(u, v) − 2dG(b, v), 3dG(u, v) − 2dG(a, u)}. Thus, M [u, v] ≤ min{2 · (k −
1)dG(u, a) + dG(u, v), 3dG(u, v)− 2dG(a, u)}. Let X = 2 · (k − 1)dG(u, a) + dG(u, v) and let
Y = 3dG(u, v) − 2dG(a, u). When dG(u, a) = dG(u, v)/k, we have X = Y = 2dG(u, v) +
k−2

k · dG(u, v). When dG(u, a) < dG(u, v)/k we have X < 2dG(u, v) + k−2
k · dG(u, v). When

dG(u, a) > dG(u, v)/k we have Y < 2dG(u, v) + k−2
k · dG(u, v). Since M [u, v] ≤ min{X, Y }

we get that M [u, v] ≤ 2dG(u, v) + k−2
k · dG(u, v).
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Consider the degenerate case in which P (u, v) has only two edges, and assume that b = v.
From Claim 13 it follows that M [u, v] ≤ 2 · (k − 1)dG(u, a) + dG(u, v). From Claim 12 it
follows that M [u, v] ≤ 3dG(u, v) − 2dG(a, u). Thus, from the same arguments as above,
M [u, v] ≤ 2dG(u, v) + k−2

k · dG(u, v). ◀

We now turn to analyze the running time of the algorithm.

▶ Lemma 14. The expected running time of apasp(G,Sp
k) is Õ(n2 +(k−1)n2p−1 +mnpk−1)

Proof. Initializing M takes O(n2) time. From Lemma 8 it follows that the call to pivot-dist
takes Õ(n2 + (k− 1)n2p−1 + mnpk−1) time. Finally, for every u ∈ V , i ∈ [0, k− 2] and v ∈ V

we do |Bi(u)| + 1 read operations to matrix M . This takes Õ(n2 + k(n2p−1)) time, since
|Bi(u)| = Õ(p−1), for i ∈ [0, k − 2]. ◀

We can now prove:
The approach presented so far powerful enough on its own to obtain the following non

trivial generalization, which already improves the general scheme presented by Cohen and
Zwick [9].

▶ Theorem 15. For every integer k ≥ 2, there is an APASP algorithm with expected running
time of Õ(kn2−1/km1/k) and multiplicative approximation of 2 + k−2

k .

Proof. We run apasp with the hierarchy Sp
k . From Lemma 14 it follows that the running

time is Õ(n2 +(k−1)n2p−1 +mnpk−1). Setting n2p−1 = mnpk−1 we get p =
(

n2

mn

)1/k

. Thus,
the running time is Õ(kn2−1/km1/k). From Lemma 11 it follows that the multiplicative
approximation is 2 + k−2

k . ◀

4 A faster scheme

In this section we first present augmented hierarchies. This is basically the first part of the
2-approximation algorithm of Baswana and Kavitha [4]. We provide a tighter analysis that
relaxes the requirements for getting a 2-approximation. We then present the idea of mixed
hierarchies, a combination of a regular hierarchy with the last set of the augmented hierarchy.
This allows us to connect our algorithm from Section 3, that worked with a base set V , to the
first part of the 2-approximation algorithm, by forcing the second set of a mixed hierarchy
to be the last set of the augmented hierarchy. We end by proving Theorem 1.

4.1 Augmented hierarchy with Ŝk ̸= ∅
Thorup and Zwick [25] showed that if a set S ⊆ V is constructed by a careful recursive
sampling procedure then the maximum size of every cluster is bounded as well. They proved:

▶ Lemma 16 ([25]). Given a parameter p, we can compute a set S of size Õ(np) in Õ(mp−1)
expected time such that, |CS(w)| = O(1/p) for every vertex w ∈ V \ S, and |BS(v)| = O(1/p)
for every v ∈ V .

Following Baswana and Kavitha [4] we will extend the vertex hierarchy to an augmented
hierarchy, denoted with Ŝp

k . Let Sp
k be a regular hierarchy with S0 = V and Sk = ∅. Let

S be a set computed using Lemma 16 with parameter pk. In Ŝp
k we have Ŝi = Si ∪ S, for

every i ∈ [0, k]. In particular, we have Ŝk = S. We also set Ŝk+1 = ∅. We refer to S as the
augmenting set of the hierarchy.
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The pivots data that we compute for an augmented hierarchy Ŝp
k is computed using

algorithm aug-pivot-dist. Algorithm aug-pivot-dist differs from pivot-dist by an
additional special phase that is added between the first phase and the second phase and by
avoiding the explicit computation of bunches in phase 2. The special phase is devoted for the
set Ŝk. For every u ∈ V , we compute BŜk

(u) and CŜk
(u). For every a ∈ BŜk

(u) ∪ CŜk
(u)

and i ∈ [0, k] we scan the edges of a and update the weight of the edge between pi(u) and
every b ∈ N(a) so that it will be at most dG(pi(u), u) + dG(u, a) + w(a, b).

Next, we analyze the running time of aug-pivot-dist.

▶ Lemma 17. If S is computed using Lemma 16 with parameter pk then the expected running
time of Algorithm aug-pivot-dist(Ŝp

k) is Õ(n2 + (k − 1)n2p−1 + kmp−k)

Proof. Phase 1 remains unchanged, therefore, its cost remains Õ(n2) as in Lemma 8 .
In the special phase we compute for every u ∈ V the ball BS(u) in Õ(

∑
u∈V deg(u)|BS(u)|)

time as was shown by Baswana and Kavitha [4]. Since |BS(u)| = O(p−k) this part takes
Õ(mp−k) time. Since clusters are simply the inverse of balls we can compute them at the
same cost. For every a ∈ BŜk

(u) ∪ CŜk
(u) and for every i ∈ [0, k − 1] we scan the edges of a

and update for every b ∈ N(a) the value of w(pi(u), b), if needed. The total cost of this is
O(k

∑
a∈V |CŜk

(a)∪BŜk
(a)|deg(a)) = O(kmp−k). In phase 2 we do not compute bunches as

before and thus the cost is only Õ(m) for the computation of pi(u) and dG(u, Si). In phase
3 we no longer have to split the analysis of the case that i = k − 1 from the analysis of the
general case. This is due to the fact that Ŝk ≠ ∅. Since a vertex is in Ŝk with probability
less than pk we can apply Lemma 3 and get that the expected size of ESk

is O(n/(pk)).
Therefore, phase 3 takes Õ(n2 + (k − 1)n2p−1) time. ◀

We use aug-pivot-dist for computing APASP in an algorithm denoted with aug-apasp.
The running time analysis of aug-apasp stems from Lemma 17 and Lemma 14.

▶ Corollary 18. aug-apasp(G, Ŝp
k) has Õ(n2 + kn2p−1 + kmp−k) expected running time.

In order to analyse the approximation produced by aug-apasp we introduce the following
definition which allows us to relax the condition required for proving a 2 approximation.

▶ Definition 19. Let u, v ∈ V and let S ⊆ V . We say that u and v are covered by balls
BS(u) and BS(v) if there is a shortest path P between u and v such that P ⊆ BS(u)∪BS(v).

The next Lemma follows easily from the above definition.

▶ Lemma 20. If BS(u) and BS(v) do not cover u, v ∈ V then dG(u, S)+dG(v, S) ≤ dG(u, v)

Proof. As u and v are not covered by BS(u) and BS(v) every shortest path P (u, v) has
a vertex w /∈ BS(u) ∪ BS(v). Thus, dG(u, S) ≤ dG(u, w) and dG(v, S) ≤ dG(v, w). Since
w ∈ P (u, v) we get dG(u, v) = dG(u, w) + dG(v, w) and dG(u, S) + dG(v, S) ≤ dG(u, v). ◀

We are now ready to bound the approximation produced by aug-apasp.

▶ Lemma 21. Let Ŝp
k be an augmented hierarchy with Ŝ0 = V and Ŝk = S. If BŜk

(u) and
BŜk

(v) do not cover u, v ∈ V then aug-apasp(G, Ŝp
k) returns a matrix M that satisfies:

dG(u, v) ≤M [u, v] ≤ 2dG(u, v).

Proof. Let u, v ∈ V . Let i ∈ [0, k] be the smallest index such that BŜi
(u) and BŜi

(v) cover
u and v. Such an index must exist since u and v are covered by BŜk

(u) and BŜk
(v). Since

BŜ0
(v) = {v} and BŜ0

(u) = {u} and since we can assume that any shortest path between u
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and v is of at least two edges we have that u and v are not covered by BŜ0
(v) and BŜ0

(u).
Thus, i > 0. From Lemma 20 it follows that dG(u, Ŝi−1) + dG(v, Ŝi−1) ≤ dG(u, v). Assume,
wlog, that dG(u, Ŝi−1) ≤ dG(v, Ŝi−1). Let P (u, v) be a shortest path between u and v such
that P (u, v) ⊆ BŜi

(u) ∪BŜi
(v).

We can partition P (u, v) into three portions. A portion P (u, a) between u and a in BŜi
(u),

a portion P (b, v) between v and b in BŜi
(v), and an edge (a, b). Since dG(u, a) < dG(u, pi(u))

it follows from Lemma 2 that P (u, a) is in G(V, EŜi
) and d(V,E(Ŝi))(u, a) = dG(u, a). Similarly,

P (v, b) is in G(V, EŜi
) and d(V,E(Ŝi))(v, b) = dG(v, b).

Now BŜi
(u) ⊆ BŜk

(u). This implies that a ∈ BŜk
(u) and w(pi−1(u), b) was updated in the

special phase of aug-pivot-dist such that w(pi−1(u), b) ≤ dG(pi−1(u), u)+dG(u, a)+w(a, b).
After running Dijkstra’s algorithm in phase 3 of aug-pivot-dist for pi−1(u) in Gi(pi−1(u))
we have M [pi−1(u), v] ≤ dG(pi−1(u), u)+dG(u, v). Thus, after updating the M with the result
of aug-pivot-dist we have M [pi−1(u), v] ≤ dG(pi−1(u), u) + dG(u, v) and M [pi−1(u), u] =
dG(pi−1(u), u). In line (1) of aug-apasp we update M [u, v] if needed, therefore, it is
guaranteed that M [u, v] ≤ 2dG(pi−1(u), u) + dG(u, v) ≤ 2dG(u, v). ◀

4.2 A mixed hierarchy
Let S be the augmenting set of an augmented hierarchy. We define a mixed hierarchy as
follows: S̄0 = V , S̄1 = S. For i ∈ [2, k − 1] the set S̄i is constructed by picking every vertex
of S̄i−1 independently at random with probability p · c log n, for some constant c. The set S̄k

is empty. We denote a mixed hierarchy with S̄p,q
k , where q is the parameter used to create S

by Lemma 16.
We update pivot-dist to handle a mixed hierarchy. We add a special phase as in

aug-pivot-dist for the set S̄1. Since |S̄0| = n and |ES̄1
| = O(nq−1) we do not execute

phase 3 for the vertices of S̄0 = V to avoid an additional cost of Õ(n2q−1) time. In phase 3
the set E(1/(pi+1)) is changed to E(1/(qpi)), so that it reflects the size of S̄1. The updated
algorithm is called mix-pivot-dist.

Next, we anaylze the running time of mix-pivot-dist.

▶ Lemma 22. mix-pivot-dist(S̄p,q
k ) has an expected running time of Õ(n2 + (k− 2)n2p−1 +

mq−1 + mnqpk−2).

Proof. The analysis of the first phase remains as in Lemma 8, and therefore it is O(n2).
The special phase costs Õ(mq−1) as in Lemma 17. In the second phase we compute pi(u),
dG(u, S̄i) and Bi(u) for every u ∈ V . It takes Õ(m) time to compute pi(u) and dG(u, S̄i),
for every u ∈ V . Computing Bi(u) for every u ∈ V , where i ∈ [2, k − 2] costs Õ(m · p−1).
Computing B1(u) for every u ∈ V costs Õ(m · q−1) since q is the parameter used for S̄1.
Computing Bk−1(u), for every u ∈ V , costs Õ(m · nqpk−2), since from Lemma 6 we have
Bk−1(u) = Õ(nqpk−2).

Line (1) costs Õ(
∑

u∈V |N(u)|) = Õ(m) and line (2) costs Õ(
∑

u∈V |Bi(u)| · |N(u)|) =
Õ(m · (p−1 + q−1)).

In the third phase we run Dijkstra’s algorithm from every s ∈ S̄i in Gi+1(s), as beofre.
The set of edges of Gi+1(s) is ESi+1 ∪ E(1/(qpi)) ∪ H(s). The set H(s) is of size O(n).
The set E(1/(qpi)) is of size O(n/(qpi)). Consider now the set ES̄i+1

, for 0 < i < k − 1.
The probability of a vertex to be in Si+1 is Õ(qpi). Applying Lemma 3 we get that the
expected size of the set ESi+1 is O(n/(qpi)). We get that the cost of the third phase for
every i ∈ [1, k − 2] is Õ(|S̄i| · n/qpi). Since the expected size of S̄i is Õ(nqpi−1) we get a
bound of Õ(

∑k−2
i=1 (n · qpi−1 · n/qpi)=Õ(n2 + (k − 2)n2p−1).
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When i = k − 1 we cannot apply Lemma 3 to bound the size of ES̄k
since S̄k = ∅,

thus, we bound the cost of running Dijkstra’s algorithm from every s ∈ S̄k−1 in Gk(s) with
Õ(|S̄k−1|m) = Õ(n ·qpk−2m). We get a running time of O(n2 +(k−2)n2p−1 +mnqpk−2). ◀

mix-apasp is algorithm apasp in which mix-pivot-dist is called instead of pivot-dist.
We do not execute Line (2) of apasp when i = 0, from the same reason we have not executed
phase 3 for the vertices of S̄0 = V in mix-pivot-dist. The analysis of the running time of
mix-apasp is relatively straightforward and stems from Lemma 22 and Lemma 14.
▶ Corollary 23. mix-apasp(G, Ŝp,q

k ) runs in Õ(n2 + kn2p−1 + mq−1 + mnqpk−2) expected
time.

We prove a variant of Lemma 11 for mix-apasp (G, S̄p,q
k ). The difference with respect to

Lemma 11 is that the Lemma is proved only for vertices u, v ∈ V that are not covered by
BS̄1

(u) and BS̄1
(v). This change is required since we are not computing shortest paths for

the vertices of S̄0 in phase 3 of mix-pivot-dist.
▶ Lemma 24. mix-apasp(G, S̄p,q

k ) returns a matrix M that satisfies: dG(u, v) ≤M [u, v] ≤
2dG(u, v) + k−2

k · dG(u, v), for every u, v ∈ V that are not covered by BS̄1
(u) and BS̄1

(v).
Proof. Let u, v ∈ V . Let P (u, v) be a shortest path between u and v. Let i ∈ [0, k − 1] be
the largest index such that dG(u, S̄i) + dG(v, S̄i) ≤ dG(u, v). Such an index must exist since
S̄0 = V , which implies that dG(u, S̄0) + dG(v, S̄0) = 0 ≤ dG(u, v). Since u and v are not
covered by BS̄1

(u) and BS̄1
(v), it follows from Lemma 20 that dG(u, S̄1)+dG(v, S̄1) ≤ dG(u, v),

as well and i ≥ 1. This implies that the analysis of the case that P (u, v) is in Gi+1(pi(u))
remains the same and is not affected by the fact that in mix-pivot-dist no data is computed
in phase 3 for the set S̄0.

The analysis of the case that the path P (u, v) is not in Gi+1(pi(u)) is not using the
third phase data of S̄0 and remains the same. Thus, for the rest of the proof we can
assume that 0 < i < k − 1, P (u, a) is in G(V, ES̄i+1

), P (v, b) is in G(V, ES̄i+1
) and (a, b) /∈

Ea(1/qpi) ∪ Eb(1/qpi) ∪ ES̄i+1
.

The proof of Claim 12 remains the same since we only use data for pivots from S̄j−1,
where j > i + 1 and i > 0. Thus, not computing data for S̄0 in phase 3 of mix-pivot-dist
has no affect.

The proof of Claim 13 remains also the same from the following reason. Recall that we
focus on the pair of vertices u and a and the pair of vertices v and b. In the proof we use r

which is defined to be the largest index such that a /∈ BS̄r
(u) and u /∈ BS̄r

(a) and r′ which
is defined to be the largest index such that b /∈ BS̄r′ (v) and v /∈ BS̄r′ (b). Recall also that
since S̄0 = V we have BS̄0

(x) = {x}, for every x ∈ V and thus a /∈ BS̄0
(u) and u /∈ BS̄0

(a)
and similarly b /∈ BS̄0

(v) and v /∈ BS̄0
(b).

From the definition of r it follows that either a ∈ BS̄r+1
(u) or u ∈ BS̄r+1

(a). If a ∈
BS̄r+1

(u) then dG(u, a) < dG(u, S̄r+1) and it follows from Lemma 2 that P (u, a) ∈ ES̄r+1
.

Similarly, if u ∈ BS̄r+1
(a) then dG(u, a) < dG(a, S̄r+1) and it follows from Lemma 2 that

P (u, a) ∈ ES̄r+1
.

From symmetrical arguments we get that P (v, b) ∈ ES̄r′+1
. Since ES̄j

⊆ ES̄j+1
, for every

j ∈ [0, k− 1], we have and P (u, a) ⊆ ES̄q+1
, and P (v, b) ⊆ ES̄q′+1

for every q ≥ r and q′ ≥ r′,
respectively.

Because we do not compute in the third phase data for the set S̄0 we deal separately with
the special case that r = r′ = 0. In such a case we have a ∈ BS̄1

(u) or u ∈ BS̄1
(a) and also

b ∈ BS̄1
(v) or v ∈ BS̄1

(b)5. Now since u and v are not covered by BS̄1
(u) and BS̄1

(v) it must

5 If there are only two edges of the path the same proof holds with b = v
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Algorithm 5 main-apasp(G, k′).

create a set S with prob. n−β using Lemma 16;
create an augmented hierarchy Ŝn−β/ log n

log n with S as the augmenting set;

create a mixed hierarchy H̄n−γ/(k′−2),n−β

k′ with H̄1 = S;
M1 ← aug-apasp(G, Ŝn−β/ log n

log n );

M2 ← mix-apasp(G, H̄n−γ/(k′−2),n−β

k′ );
M ← min{M1, M2};
return M ;

be that either a /∈ BS̄1
(u) or b /∈ BS̄1

(v). Assume, wlog, that a /∈ BS̄1
(u). From the definition

of r it must be that u ∈ BS̄1
(a), as otherwise r > 0. Because u ∈ BS̄1

(a) we update w(p1(u), b)
in the special phase of mix-pivot-dist so that it is at most dG(p1(u), u) + dG(u, a) + w(a, b).

Since r′ = 0 we have that P (v, b) ∈ ES̄2
. Thus, at the third phase of mix-pivot-dist

we update M [p1(u), v], due to the bound of w(p1(u), b), so that it is at most dG(p1(u), u) +
dG(u, v). Now in line (1) of mix-apsp M [u, v] is updated so that it is at most 2dG(p1(u), u) +
dG(u, v). Since a /∈ BS̄1

(u) we have dG(p1(u), u) ≤ dG(u, a) and we get that M [u, v] ≤
2dG(u, a) + dG(u, v). This is exactly bound (i) in Claim 13 for k = 2 and thus holds for
every k ≥ 2. Thus, we can assume that r > 0 and not computing data for S̄0 in phase 3 of
mix-pivot-dist has no affect on the proof of Claim 13 since f ≥ r . ◀

4.3 Combining augmented hierarchies and mixed hierarchies
We now describe our main APASP algorithm main-apasp. The input is a weighted undirected
graph G and an integer k′. We use two hierarchies. An augmented hierarchy Ŝp

k , k = log n

levels, set Ŝ0 is V and the probability p is Õ(n−β/ log n). The hierarchy is augmented with
a set S computed by Lemma 16 with parameter n−β . Notice that |Ŝlog n| = Õ(n1−β), and
for every v ∈ V we have |BŜlog n

(v)| = |CŜlog n
(v)| = O(nβ). The second hierarchy is a

mix hierarchy H̄p,q
k′ with k′ levels, H̄1 = Ŝlog n and H̄k′ = ∅. Since Ŝlog n is formed using

Lemma 16 with parameter n−β we have q = n−β . The probability p is Õ(n−γ/(k′−2)).
Next, we run aug-apasp(G, Ŝn−β/ log n

log n ). Then we run mix-apasp(G, H̄n−γ/(k′−2),n−β

k′ ).
main-apasp is presented in Algorithm 5. We now turn to analyse the running time.

▶ Lemma 25. main-apasp(G, k′) runs in of Õ(n2 + m
2

k′ n2− 3
k′ ) expected time.

Proof. It follows from Lemma 16 that S can be computed in Õ(mnβ) expected running time.
It follows from Corollary 18 that the expected running time of aug-apasp(G, Ŝn−β/ log n

log n ) is
Õ(n2 + n2 · nβ/ log n log n + mnβ log n) = Õ(n2 + mnβ). It follows from Corollary 23 that
the expected running time of mix-apasp(G, H̄n−γ/(k′−2),n−β

k′ ) is Õ(n2 + (k′ − 2)n2nγ/(k′−2) +
mn1−β−γ). We first express nβ as a function of nγ using the equation n2nγ/(k′−2) = mn1−β−γ

which balances the two main terms in the running time of mix-apasp.

n2nγ/(k′−2) = mn1−β−γ −→ nβ = mn1−γ

n2nγ/(k′−2) −→ nβ = m

n1+γ(1+1/(k′−2))

Next, we substitute nβ as a function of nγ in the running time of aug-apasp.

Õ(n2 + mnβ) −−−−−−−−−−−−−−→
nβ= m

n1+γ(1+1/(k′−2))

Õ(n2 + m2

n1+γ(1+1/(k′−2)) )
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We now compute the value of nγ using the equation n2+γ/(k′−2) = m2

n1+γ(1+1/(k′−2)) which
balances the two main terms in the running times of mix-apasp and aug-apasp.

nγ(1+2/(k′−2)) = m2

n3 −→ nγ =
(

m2

n3

) k′−2
k′

To obtain the running time of apasp we substitute nγ in n2+γ/(k′−2):

n2+γ/(k′−2) −−−−−−−−−−→
nγ =

(
m2
n3

) k′−2
k′

n2
(

m2

n3

) 1
k′

= n2− 3
k′ m

2
k′

Thus, we get that the running time of apasp is Õ(n2 + m
2

k′ n2− 3
k′ ) . ◀

We now bound the approximation of main-apasp.

▶ Lemma 26. Algorithm main-apasp(G, k′) returns a matrix M that satisfies: dG(u, v) ≤
M [u, v] ≤ 2dG(u, v) + k′−2

k′ · dG(u, v), where k′ ≥ 2.

Proof. Let u, v ∈ V . Recall that H̄1 = Ŝlog n. If u and v are covered by BH̄1
(u) and BH̄1

(v)
then it follows from Lemma 21 that Algorithm aug-apasp returns a matrix M1 that satisfies:
dG(u, v) ≤M1[u, v] ≤ 2dG(u, v). If u and v are not covered by BH̄1

(u) and BH̄1
(v) then it

follows from Lemma 24 that Algorithm mix-apasp returns a matrix M that satisfies:

dG(u, v) ≤M2[u, v] ≤ 2dG(u, v) + k′ − 2
k′ · dG(u, v).

Since M = min{M1, M2} the claim follows. ◀

Proof of Theorem 1

Proof. The proof follows from Lemma 25 and Lemma 26 . ◀
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