Deep Multilevel Graph Partitioning

Lars Gottesbiiren
Karlsruhe Institute of Technology, Germany

Tobias Heuer
Karlsruhe Institute of Technology, Germany

Peter Sanders
Karlsruhe Institute of Technology, Germany

Christian Schulz

Universitdt Heidelberg, Germany

Daniel Seemaier
Karlsruhe Institute of Technology, Germany

—— Abstract

Partitioning a graph into blocks of “roughly equal“ weight while cutting only few edges is a
fundamental problem in computer science with a wide range of applications. In particular, the
problem is a building block in applications that require parallel processing. While the amount of
available cores in parallel architectures has significantly increased in recent years, state-of-the-art
graph partitioning algorithms do not work well if the input needs to be partitioned into a large number
of blocks. Often currently available algorithms compute highly imbalanced solutions, solutions of low
quality, or have excessive running time for this case. This is due to the fact that most high-quality
general-purpose graph partitioners are multilevel algorithms which perform graph coarsening to build
a hierarchy of graphs, initial partitioning to compute an initial solution, and local improvement to
improve the solution throughout the hierarchy. However, for large number of blocks, the smallest
graph in the hierarchy that is used for initial partitioning still has to be large.

In this work, we substantially mitigate these problems by introducing deep multilevel graph
partitioning and a shared-memory implementation thereof. Our scheme continues the multilevel
approach deep into initial partitioning — integrating it into a framework where recursive bipartitioning
and direct k-way partitioning are combined such that they can operate with high performance and
quality. Our integrated approach is stronger, more flexible, arguably more elegant, and reduces
bottlenecks for parallelization compared to existing multilevel approaches. For example, for large
number of blocks our algorithm is on average at least an order of magnitude faster than competing
algorithms while computing partitions with comparable solution quality. At the same time, our
algorithm consistently produces balanced solutions. Moreover, for small number of blocks, our
algorithms are the fastest among competing systems with comparable quality.

2012 ACM Subject Classification Mathematics of computing — Graph algorithms
Keywords and phrases graph partitioning, graph algorithms, multilevel, shared-memory, parallel
Digital Object Identifier 10.4230/LIPIcs.ESA.2021.48

Supplementary Material The source code and data has been made available at https://algo2.iti.
kit.edu/seemaier/deep_mgp/ as well as https://github.com/KaHIP/KaMinPar.

Funding The authors acknowledge support by the State of Baden-Wiirttemberg through bwHPC.
This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 882500).

© Lars Gottesbiiren, Tobias Heuer, Peter Sanders, Christian Schulz, and Daniel Seemaier;
37 licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).

Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 48; pp. 48:1-48:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://algo2.iti.kit.edu/seemaier/deep_mgp/
https://algo2.iti.kit.edu/seemaier/deep_mgp/
https://github.com/KaHIP/KaMinPar
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2

Deep Multilevel Graph Partitioning

1 Introduction

Graphs are a universal abstraction for modelling relations between objects. Thus they are
used throughout computer science and have applications with an ever growing volume and
variety of the considered graphs. One frequently needed basic operation is balanced graph
partitioning — cutting a graph into k pieces of “roughly equal” weight while cutting only few
edges. Balanced graph partitioning is NP-hard and even NP-hard to approximate [5] and
thus usually solved using heuristics. In particular, multilevel graph partitioning (MGP) is
used in most high-quality general-purpose systems: During coarsening, build a hierarchy of
graphs where each graph is a coarse approximation of the previous one. When the coarse
graph is “small”, run a possibly expensive inital partitioning method on it. This is useful
because a feasible partition at the coarsest level is a feasible partition of the original input
with the same cut value. The partition is successively uncoarsened to each finer level and
locally improved. This is often both faster and higher quality than applying comparable
improvement algorithms only on the finest level since MGPs have a more global view on the
coarse levels and can move entire groups of nodes in constant time.

A prominent application (out of many) is distributing workload across parallel machines
with little communication. With growing numbers of processors in parallel machines, we
are interested in large values of k — in the order of millions. However, existing research
has mostly focused on small values, typically 2 < k& < 256. Unsurprisingly, these systems
perform poorly for large k. If direct k-way partitioning is used, the coarsest graph still has
to be large when initial partitioning is called. Recursive bipartitioning performs log(k) cycles
of (un)coarsening and is either restricted to very small imbalances or unlikely to return a
feasible solution. Further, both exhibit parallelization bottlenecks on coarse levels.

We mitigate these problems by introducing deep MGP, an approach that continues the
multilevel scheme deep into initial partitioning and integrates aspects of direct k-way and
recursive bipartitioning. Deep MGP can be instantiated with concrete (parallel) building
blocks for (un)coarsening, k-way local improvement, and bipartitioning of small graphs. We
also include balancing as an explicit component. Figure 1 summarizes the approach. Deep
MGP performs only one cycle of (un)coarsening. Bipartitioning is done during uncoarsening
so that it is always applied to graphs with about C nodes (input parameter) until the
desired number of k blocks is reached. To exploit all the available parallelism, the invariant is
maintained that parallel tasks performed by x processing elements (PEs) work on graphs with
at least xC nodes. Maintaining this invariant during coarsening allows multiple diversified
attempts with little overhead invested.

Under certain simplifying assumptions, deep MGP for k-partitioning an n-node graph
with bounded degree can be done in time O((n/p) max(1,log(kC/n)) + log®n), i.e., with
linear work and polylogarithmic span unless k is very large; see Section 4.

After introducing notation and basic concepts in Section 2 and discussing related work in
Section 3, Section 4 introduces deep MGP as a generic method. In Section 5 we describe the
simple and fast KaMinPar partitioner which uses deep MGP to achieve scalability to both
large k£ and a considerable number of parallel cores while guaranteeing balanced solutions.

In Section 6 we report on extensive experiments which indicate that KaMinPar has a very
favorable quality-performance tradeoff and very good scaling behavior. For traditional values
of k, it is faster than previous algorithms that can achieve comparable or better quality. For
large k, previous algorithms mostly find infeasible solutions and exhibit excessive running
times, whereas KaMinPar consistently finds feasible solutions with comparable quality and is
an order of magnitude faster. Section 7 summarizes the results and outlines possible future
directions.

L. Gottesbiiren, T. Heuer, P. Sanders, C. Schulz, and D. Seemaier

coarsening >> select best

» uncoarsening <Z duplicate > bipartitioning

balancing + k-way local improvement

Figure 1 Partitioning a graph with n nodes into 8 blocks using 4 PEs. Duplicate while coarsening
to maintain load > C on each PE. Successively bipartition during uncoarsening. Colors indicate
work performed by each PE.

2 Preliminaries

Notation and Definitions. Let G = (V, E, ¢,w) be an undirected graph with node weights
¢:V — Nyg, edge weights w : E — Ny, n = |V|, and m = |E|. We extend ¢ and w to
sets, Le., c(V') =3 oy c(v) and w(E') =3 cpw(e). N(v) = {u]| {u,v} € E} denotes
the neighbors of v and E(v) := {e | v € e} denotes the edges incident to v. For some
V' CV, G[V'] denotes the subgraph of G induced by V’. We are looking for blocks of nodes
IT := {V4,..., Vi } that partition V, i.e., ViU-- - UV}, = V and V;NV; = @ for i # j. The balance
constraint demands that Vi € {1..k} : ¢(V;) < Lax x = max{(1 +¢) C(;/), C(;/) + max, c(v)}
for some imbalance parameter . The objective is to minimize cut(II) := Y, _ ;w(Eij)
(weight of all cut edges), where E;; == {{u,v} € E|u € V;,v € V;}. We call anode v € V;
that has a neighbor w € Vj, i # j a boundary node. A clustering C :== {C4,...,C} is also a
partition of V| where the number of blocks [is not given in advance (there is also no balance
constraint).

Multilevel Graph Partitioning. Many high-quality graph partitioners employ the multilevel
paradigm, which consists of three phases: During the coarsening phase, the algorithms build
a hierarchy of successively smaller graphs where each graph is a coarse approximation of the
previous one. Coarse graphs are built by either computing node clusters or matchings and
afterwards contracting them. A clustering C = {C1,...,C;} is contracted by collapsing each
cluster C; into a single node ¢; with weight c(c;) = >, <, ¢(v). There is an edge e = (c;, ¢;)
in the contracted graph with weight w(e) = Z(u,v)eEU w(u,v) where E;; are the edges that
connect cluster C; and Cj in the original graph, if |E;;| > 0. Once the number of nodes of a
coarse graph falls below a certain threshold or the coarsening algorithm converges, initial
partitioning computes a partition of the coarsest graph. Finally, refinement subsequently
undoes the contractions performed during coarsening. In each uncontraction, the partition is
first projected to the finer graph and then improved using local improvement algorithms.

L Traditionally, Ly == (1 + E)[%] is used as balance constraint. However, finding a balanced partition
with Lj, is NP-complete, which, as we will see in Section 4, is not case for Lmpax,k-

48:3

ESA 2021

48:4

Deep Multilevel Graph Partitioning

Generally, there are two ways to partition a graph into k& blocks using the mutlilevel
paradigm, namely direct k-way partitioning and recursive bipartitioning. The former coarsens
the graph until Q(k) nodes are left — usually £C' nodes where C' is an input parameter — and
then computes a k-way partition of the coarsest graph. The latter first computes a bipartition
IT = {V4, V2} and then recurses on the induced subgraphs G[V;] and G[V3] by partitioning V;
into [4] and V3 into [%] blocks. Note that many multilevel graph partitioners based on the
direct k-way partitioning scheme use recursive bipartitioning to compute an initial partition
of the coarsest graph [25, 37, 28, 3, 19].

Size-Constrained Label Propagation. Based on the label propagation clustering algorithm
by Raghavan et al. [36], Meyerhenke et al. [34] introduced the size-constrained label propagation
algorithm as a coarsening and refinement algorithm. The algorithm is parameterized by a
maximum cluster size U. In the coarsening resp. refinement phase, each node is initially
assigned to its own cluster resp. to its corresponding block of the partition. The algorithm
then works in rounds. In each round, the nodes are visited in some order and a node u is
moved to the cluster resp. block K that contains the most neighbors of u without violating
the size constraint, i.e., ¢(K) + c¢(u) < U. The algorithm terminates once no more nodes
were moved during a round or a maximum number of rounds has been exceeded.

Maintaining the Balance Constraint. Finding a balanced partition of a weighted graph
with Ly == (1 +¢) (%1 as balance constraint is NP-complete as it can be reduced to the
problem of scheduling jobs on identical parallel machines [17]. Therefore, many partitioners
incorporate techniques that prevent the formation of heavy nodes during the coarsening
process by penalizing the contraction of nodes with large weights [9] or enforcing a strict
upper bound for node weights [21]. This makes it easier for initial partitioning to find a
feasible initial solution. However, as we will see in Section 4, if we replace L with Lyax the
problem of finding a balanced partition becomes solvable in polynomial time. In the recursive
bipartitioning setting, using the input imbalance parameter € for each bipartition can produce
blocks in the final k-way partition that would violate the balance constraint. Therefore,
KaHyPar [20, 38] ensures that a k-way partition obtained via recursive bipartitioning is
balanced by adapting the imbalance ratio for each bipartition individually. Let G[V'] be the
subgraph of the current biparltition that should be partitioned recursively into &’ < k blocks.
Then, &= ((1+¢) G2 k) Te=2(DT — 1 is the imbalance ratio used for the bipartition of G[V].
If each bipartition is ¢’-balanced, then the final k-way partition is e-balanced.

3 Related Work

There has been a huge amount of research on graph partitioning so that we refer the reader
to overview papers [39, 7, 43, 8, 40] for most of the general material. Here, we give a brief
overview of techniques used in parallel multilevel graph partitioners and issues closely related
to our main contributions.

Most modern high-quality graph partitioners are based on the multilevel paradigm. Well-
known software packages based on this approach include KaHiP [37] and Metis [24] (sequential
graph partitioners), Mt-KaHiP [4] and Mt-Metis [28, 30] (shared-memory graph partitioners),
Jostle [43]. PT-Scotch [11], ParHiP [35] and ParMetis [23] (distributed graph partitioners).

The matching [11, 13, 28, 23, 43] and clustering algorithms [4, 10, 19] used by different
sequential partitioners in the coarsening phase are well-suited for parallelization, sometimes
with only minor quality losses [10, 33]. The coarsening phase proceeds until a fixed number
of nodes remains, usually kC', where C is a tuning parameter.

L. Gottesbiiren, T. Heuer, P. Sanders, C. Schulz, and D. Seemaier

In the initial partitioning phase, parallel partitioners either call sequential multilevel
algorithms with different random seeds [4, 11, 13, 22] or use parallel recursive bipartition-
ing [19, 28, 23, 30]. In the former case, the graph is copied to each PE and the best partition
obtained from all independent runs is projected back to the coarsest graph. In the latter
case, parallelism is achieved by either splitting the thread pool into two evenly-sized groups
and assigning each to one of the two recursive calls [23, 28] or dynamically assign the threads
to the recursive calls with a task scheduler [19]. To obtain an initial bipartition of the
coarsest graph, often portfolio approaches composed of different bipartitioning algorithms
are used [37, 38, 19, 9].

Most parallel partitioners use the label propagation heuristic to improve the solution
quality during the refinement phase [4, 28, 19, 35, 43, 13]. More advanced techniques are
based on parallel variants of the FM local search [15] that are widely used in sequential
partitioners. PT-Scotch [11], KaPPa [22] and Jostle [43] use sequential 2-way FM refinement
on two adjacent blocks of the partition. Mt-KaHiP [4] and Mt-KaHyPar [19] implement a
parallel k-way FM algorithm based on the localized multi-try FM of the sequential graph
partitioner KaHiP [37]. Mt-Metis [30] uses greedy refinement (FM with only positive gain
moves), and hill-scanning, a simplification of localized FM where small groups of vertices,
whose individual gains are negative, are moved if their combined gain is positive.

In the parallel setting, nodes can change their block concurrently which requires syn-
chronization to ensure that the balance constraint is not violated [28]. Existing systems
either explicitly communicate their local changes and reject moves that would violate the
balance constraint [28, 23, 13] or use atomic compare-and-swap instructions to maintain

block weights [19, 4].

Limitations of Existing Systems for Large k. The coarsening phase of MGP usually stops
when kC nodes are left. For large k, this breaks the assumption that the coarsest graph is
small. Thus, really expensive initial partitioners are infeasible at this level. Many MGPs
therefore use multilevel recursive bipartitioning for the coarsest graph [25, 37, 28, 3, 19].
This results in a sequential running time of O(T log k) where T is the running time of the
bipartitioning algorithm. When this is used within a parallel algorithm, initial partitioning
can become a major bottleneck [4].

Furthermore, a feasible solution for the k-way graph partitioning problem must satisfy the
balance constraint that usually depends on the average block weight # Thus, increasing
the number of blocks leads to a tighter balance constraint and drastically reduces the space
of feasible solutions. Therefore, a partitioner handling larger values of k has to employ
techniques to ensure that the balance constraint is not violated.

4 Generic Deep MGP

In this section, we present our first major contribution — a new partitioning scheme that
we call Deep Multilevel Graph Partitioning. Deep MGP continues coarsening deep into the
initial partitioning phase. Roughly speaking, it starts by coarsening the input graph until
2C' nodes are left — for some input parameter C. Then, the coarsest graph is bipartitioned
into two blocks. During uncoarsening, it maintains the key invariant that the partition of a
coarse graph with n’ nodes has k¥’ = min{k, ceilg(%')} blocks, where ceila(x) is & rounded up
to the next power of two. This value is chosen such that each invocation of flat bipartitioning
works on a graph with roughly 2C nodes. Thus, the graph is divided into min{k, ceila(#)}
blocks after unrolling the graph hierarchy. If k > ceilz(#), blocks are further subdivided
until £ blocks are obtained.

48:5

ESA 2021

48:6

Deep Multilevel Graph Partitioning

Algorithm 1 partition. Algorithm 2 bipartitionBlocks.
Input: G=(V,E), k, € > 0, const. C Input: G, k’-way partition II, k, const. R
Output: k’-way partition II of G Output: 2k’-way partition IT’

1 if |[V(G)| > 2C and coarsening has not 1 I =0

converged then // recursion 2 foreach V; € II do

2 G. = coarsen(Q) . cvy)/ tog2(k/ITID)

3 I, == partitic(m(GC7 k,e,C) 8 = ((1 te) ‘Hli(‘}i)) -

4 I1 := project(G,I1.) 4 Gi = G[Vi]

5 else // base case 5 // compute R bipartitions of V;

6 L = {V} 6 Iy,...,HR = bipartition(G;, €', R)
% V)= 7 // select lowest (feasible) edge cut

7 kK = { Céilz(|V|/C), Llsein s | I :=TI' U lowest(Gy, I, . .., IIR)

8 k' := max{min{k, k'}, 2}

9 while |II| < &’ do // obtain k' blocks

10 L II := bipartitionBlocks(G,II, k)

11
12

Il := refine(G, balance(G, II))
return II

This approach combines the merits of direct k-way partitioning and recursive biparti-
tioning: similar to direct k-way partitioning, deep MGP coarsens and uncoarsens the graph
only once, and enables the use of k-way local improvement algorithms throughout the graph
hierarchy. Moreover, it enforces that (possibly expensive) bipartitioning algorithms are only
applied to small graphs. Thereby, it eliminates the initial partitioning bottleneck for large
values of k or parallel graph partitioning.

In the remainder of this section, we give a detailed description of deep MGP. We simplify
this description by restricting k£ to powers of two, but lift this restriction in a subsequent
paragraph. Finally, we describe how to parallelize it and analyze its running time.

Deep Multilevel Graph Partitioning. Deep MGP starts by coarsening the input graph
G1 = (W4, E1), building a hierarchy of successively coarse representations Gy, ..., Gy of Gy.
This is achieved by clustering each graph G; and contracting all clusters to build G;4;.
Coarsening stops once the coarsest graph G, has at most 2C' nodes, or the process converged.
In Algorithm 1, this process is implemented in Lines 2-3.

From here, we start a sequence of the following operations: use recursive initial bipartition
to subdivide the current graph into more blocks, possibly rebalance the partition and improve
it using a k-way local improvement algorithm, project the partition onto the previous graph
Gy_1 and repeat the process on that graph. During these operations, we maintain the
following key invariants:

(P) A coarse graph G; is partitioned into k; = ceila(|V;]/C) blocks (bounded by 2 and

(B) A k;-way partition of G; fulfills the balance constraint.

An idealized coarsening algorithm produces a graph hierarchy where the number of nodes
is halved between two levels and the coarsest graph has 2C nodes. In this case, it is sufficient
to bipartition the coarsest graph G, once to fulfill invariant (P). To restore the invariant
after uncoarsening (doubling the number of nodes in the current graph), each block of the
current partition has to be bipartitioned once.

In the more general case, where coarsening can shrink the number of nodes of a graph by
a larger factor than 2, we use recursive initial bipartitioning to maintain (P). More precisely,
whenever the partition II; of graph G; violates invariant (P), we recursively bipartition each

L. Gottesbiiren, T. Heuer, P. Sanders, C. Schulz, and D. Seemaier

block of II; until we have k; blocks in total. In Algorithm 1, this process is implemented in
Lines 7-10. Initial bipartitioning is implemented in Algorithm 2.

Uncoarsening and initial bipartitioning can cause violations of invariant (B) (see below).
If this is the case, we run a balancing algorithm afterwards. The resulting partition — which
satisfies invariants (P) and (B) — is then improved using a k-way local improvement algorithm
(Algorithm 1, Line 11).

If & > ceily(|V4]/C), the partition computed by the process described above has less than
k blocks. In this case, we perform an additional round of recursive initial bipartitioning to
obtain k blocks, and run balancing and k-way local improvement once more on the final
partition.

Parallelization. We parallelize the partitioning method described above using parallel
coarsening, local improvement and balancing algorithms. On very coarse levels, we maintain
the invariant that parallel tasks performed by p PEs work on graphs with at least pC
nodes. This is achieved by running initial partitioning on more and more copies of the
coarsened graph, as illustrated by Figure 1. We diversify this search by using randomized
coarsening, initial bipartitioning and local improvement algorithms. More precisely, we follow
the algorithm described above until the coarsest graph G¢ has pC nodes left. To uphold the
invariant that tasks performed by p PEs work on graphs with at least pC' nodes, we obtain
two copies G, and GZC of G¢, and split PEs into two groups (conceptually) with p’ = £
PEs each. If p’ > 1, we continue by coarsening G, with PEs of the first group and Gé with
PEs of the second group, until each graph has p’C nodes left. We proceed in this fashion
recursively, until we have obtained p graphs with 2C nodes each after log,(p) recursion levels.

Each of these graphs is then bipartitioned using a single PE. Let G¢, and Gé with
respective bipartitions IIf, and Hé be two such graphs that are copies of G¢ on the previous
recursion level. We use the better bipartition of II7, and Hé (i.e., if only one of these
partitions is feasible, we use that one, otherwise the one with the lower edge cut) as partition
Il of Go. We proceed on G¢ as before, i.e., bipartition each block of Il if applicable, and
apply the balancing and local improvement algorithm. This process is repeated for all log, (p)
recursion levels.

Handling General k. The simplified description of deep MGP only considers the case where
k is a power of two. For the general case, we associate each block B with a final block count
fB — the number of blocks B is subdivided into in the final partition. Initially, fyy = k. To
bipartition B into two blocks By and Bj, we set fp, = LfTBJ and fp, = [%3], and divide
the weight of B in a fp, to fp, ratio between By and B;. Thus, once we have computed a
k' := floory(k)-way partition, there are k — k' heavy blocks with fp = 2 and 2k’ — k light
blocks with fg = 1. During the next and final initial partitioning step, we obtain a k-way

partition by only bipartitioning heavy blocks.

Maintaining the Balance Constraint. Since MGP implementations usually employ coarsen-
ing algorithms that do not guarantee strictly uniform node weights, maintaining the
balance constrain used in other partitioning systems, Ly = (1 + 6)[0(;/)], becomes an
NP-complete problem [17] on coarse levels. To mitigate this problem, we use Lyaxk =
max{(1 —H—:)%, % +max, c(v)} as balance constraint instead. This ensures that a feasible
partition always exists, and that it can be found with simple greedy algorithms. Both claims

are based on the fact that the average block weight of a partition is # and thus, there

always exists a block V; with ¢(V;) < # In the multilevel setting, projecting a partition

48:7

ESA 2021

48:8

Deep Multilevel Graph Partitioning

to a finer graph can violate the balance constraint due to the change in max, ¢(v). However,
the overload per block is bounded by max, ¢(v), which implies that a balancing algorithm
only needs to move a small number of nodes out of a block to restore the balance constraint.

Running Time. Next, we analyze the running time of parallel (deep) MGP using highly
idealized assumption. We do not claim that the results hold for our implementation but use
this simplified analysis to give a quantitative expression to the qualitative reasoning that
deep MGP is scalable if its components are scalable. The analysis also allows us to compare
the asymptotic performance of different approaches to parallel MGP without having to
discuss which particular implementations of the basic operations can or cannot avoid certain
difficult cases. We assume: (1) k is a power of two and we have unit node/edge weights,
(2) n > Cplogp, (3) coarsening a graph halves the number of nodes, (4) (un)coarsening
or balancing a graph with n nodes takes time O(n/p + logn), (5) sequential bipartitioning
takes linear time. We effectively ignore edges here. This implies the assumption that nodes
have bounded degree and that the degrees remain bounded when the graph is shrunk.

» Theorem 1. Under the assumptions made above, deep MGP requires time

o (n max <1, log kC) + log? n)
P n

Proof. By (3), MGP goes through log(n/C') levels so that the overhead terms “logn” in (4)
sum to (9(log2 n) — we ignore these overhead from now on. While > pC' nodes are left, the
graph shrinks geometrically with the levels so that the total remaining cost for (un)coarsening
and balancing from (4) is linear — O(n/p).

When < pC nodes are left, replication and selection of the best partition keeps the
number of nodes at each level at ©(pC). There are logp such levels incurring total cost
O(C'logp) for (un)coarsening and balancing. By (2) this cost is bounded by O(n/p).

For the cost of bipartitioning we consider three cases:

Case (a) k < p: Each PE performs log k bipartitions with total cost C'logk. By (2) this is
bounded by O(n/p).

Case (b) p < k < n/C: Each PE performs log p + k/p bipartitions with total cost C'(k/p+
logp). Once more, by (2) this is bounded by O(n/p).

Case (c) k > n/C: In this case, deep MGP first performs an n/C-way partitioning into
blocks of size about C'. By the above analysis, this takes time O(n/p + log? n) Then the
remaining blocks are partitioned into k/(n/C) = kC/n blocks using recursive bipartition-
ing in time O(C'log(kC/n)). Summing over all blocks assigned to a PE we get additional
cost nlog(kC/n)/p. <

5 Implementation

In this section we describe the different components in our shared-memory parallel im-
plementation of deep MGP called KaMinPar. Recall that the components are coarsening,
bipartitioning on small graphs, and uncoarsening with k-way balancing and refinement.

5.1 Coarsening by Size-Constrained Label Propagation

We use size-constrained label propagation [34] to compute a clustering for contraction, where

the weight of the heaviest cluster is restricted by a fixed upper bound U. We set U = sc(k‘,/),

where k' = min{k, |V|/C} is the number of blocks we obtain on the finest level (before

L. Gottesbiiren, T. Heuer, P. Sanders, C. Schulz, and D. Seemaier

further bipartitioning if necessary) and ¢ is the imbalance from the problem formulation.

c maxq c(v)<U

This choice implies that k‘,/) + max, ¢(v) (I+4¢) [Ck‘//n = Ly on every level, and
hence Lmax,, simplifies to the traditional balance constraint Lj; on unweighted inputs. If
the current number of nodes is < %C, we adapt k' to % and U accordingly. We perform 5

rounds of label propagation, but terminate early if no nodes were moved. To further improve
the running time, we only move a node, if one of its neighbors changed its cluster in the
previous round.

Parallelization. We parallelize the algorithm by iterating over all nodes in parallel. When
moving a node to another cluster, we use atomic fetch-and-add operations to update the
respective cluster weights. Note that we do not strictly enforce the weight limit. The limit
could be violated if multiple PEs move a node to the same cluster at the same time. However,
this is unproblematic in practice since the weight limit violations are usually small.

Iteration Order and Cache Locality. Solution quality of label propagation is improved when
nodes are visited in increasing degree order [34, 4]. Since this is not cache efficient and lacks
diversification by randomization, we sort the nodes of the graph into exponentially spaced
degree buckets, i.e., bucket i contains all nodes with degree 2! < d < 2i*!, and rearrange
the graph such that nodes are sorted by their bucket number. For node traversal, we split
buckets into small chunks and randomize node traversal on a inter-chunk and intra-chunk
level. This is analogous to the randomization in Metis’ matching algorithm [24].

Two-hop Clustering. We observed that size-constrained label propagation is unable to
shrink some irregular graph instances sufficiently. We solve this by implementing a technique
similar to the two-hop matching algorithm of Metis [31]. During label propagation, if node u
cannot be moved into any neighboring cluster due to the size constraint, we store the highest
rated neighboring cluster as u’s favored cluster. If the graph is shrunk by less than 50% after
termination, we merge singleton clusters that share the same favored cluster until the graph
shrunk by 50%.

5.2 Initial Bipartitioning

We perform multilevel bipartitioning to compute an initial bipartition of a subgraph Gy
(with |V’| &~ 2C'). On this size, the used algorithms are sequential. For coarsening, we use
label propagation and set the maximum cluster weight to the same value used in KaHiP [37].
The maximum block weight for bipartitioning is set to Ly = (1 4 ¢’) V(Tvl)], where &’ is
the adaptive imbalance as defined in Section 2. We coarsen until no further contractions
are possible. For refinement, we use 2-way FM [15]. We use a pool of simple algorithms
to bipartition the coarsest graph, namely random bipartitioning, breadth-first searches and
greedy graph growing [24]. We repeat each algorithm several times with different random
seeds and select the bipartition with the lowest edge cut. Moreover, we use the adaptive

algorithm selection technique of Mt-KaHyPar [18].

5.3 Uncoarsening

After bipartitioning the blocks of a g—way partition, we use a k-way balancing algorithm
to restore the balance constraint (if violated). Afterwards, we run a local improvement
algorithm based on size-constrained label propagation to improve it.

48:9

ESA 2021

48:10

Deep Multilevel Graph Partitioning

Balancing. In contrast to Section 4, our implementation prevents balance constraint vi-
olations by changes in max, ¢(v) due to our choice of the maximum cluster weight during
coarsening. However, balance violations can occur during initial bipartitioning, in particular
due to our multilevel bipartitioning approach.

For each overloaded block B, we store just enough nodes of B in a priority queue Pp
ordered by relative gains, to remove the excess weight o(B) := ¢(B)—Lmax,x. The relative gain
of anode vis d-c(v) if d > 0 and d/c(v) if d < 0, where d is the largest reduction in edgecut
when moving v to a block that would not become overloaded. We initialize the priority queues
by iterating over the nodes in G. If a node is in an overloaded block and ¢(Pg) < o(B), we
insert it. Otherwise, we only insert it if its relative gain is higher than the lowest relative
gain of any element in Pp and remove its lowest element if ¢(Pp) > o(B) + max, c(V) after
the insertion.

Once the priority queues are initialized, we empty each overloaded block B individually
by repeatedly removing the node v with the largest relative gain from Pg. If its relative
gain changed since insertion, or its designated target block can no longer take v without
becoming overloaded, we re-insert v (if v is still a border node). Otherwise, we move v to its
target block or a random block that can take v without becoming overloaded. Subsequently,
we try to insert all neighbors from its former block. To reduce the running time, we only try
to insert each node once.

We parallelize the algorithm as follows. During initialization, we iterate over all nodes in
parallel and maintain one thread-local priority queue for each overloaded block. Afterwards,
we iterate over all blocks in parallel, merge the respective thread-local priority queues and
perform node movements as described above.

Local Improvement. We use the same parallelization of size-constrained label propagation
as described in Section 5.1, but strictly enforce the maximum cluster weight (set to the
maximum block weight) using an atomic compare-and-swap instruction. We run at most 5
rounds of size-constrained label propagation (same value as used in Mt-KaHyPar [19]), but
terminate early if no node was moved during a round.

6 Experimental Evaluation

We implemented the proposed algorithm KaMinPar in C++ and compiled it using g++-10.2
with flags -03 -march=native. We use Intel’s TBB [1] as parallelization library.

Setup. We perform our experiments on two different machines. Machine A is equipped
with an AMD EPYC 7702 64-Core processor clocked at 2 GHz and 1 TB main memory.
This machine is only used for our scalability experiment. All other experiments are run on
Machine B, which is a node of a cluster equipped with Intel Xeon Gold 6230 processors (2
sockets with 20 cores each) clocked at 2.1 GHz and 96 GB or 192 GB main memory.

We compare our algorithm with Mt-Metis 0.7.2 [30], Mt-KaHiP 1.0 [4], PuLP 0.11 [41],
Metis 5.1.0 [31] and the fsocial preset of KaHiP 3.10 [37]. We chose this preset because it is
one of the fastest configurations that computes good quality. While other presets of KaHiP
achieve better partition quality, they are also much slower. We do not include ParMetis [23]
and Pt-Scotch [11] in our comparison since they are slower than Mt-Metis and produce
partitions with comparable solution quality [29]. Moreover, we exclude ParHiP [35] since it is
outperformed by Mt-KaHiP [2]. In the following, we add a suffix to the name of each parallel
partitioner to indicate the number of threads used, e.g., KaMinPar 64 for 64 threads.

L. Gottesbiiren, T. Heuer, P. Sanders, C. Schulz, and D. Seemaier

Instances. We evaluate our algorithm on a benchmark set composed of 197 graphs (referred
to as set A), including 129 graphs from the 10th DIMACS Implementation Challenge [6], 25
randomly generated graphs [16, 26], 25 large social networks [27, 32], and 18 graphs from
various application domains [12, 44, 42]. Scalability and experiments with larger values of
k are performed on a subset of set A that contains 21 graphs (referred to as set B). This
benchmark set includes the 18 largest graphs (by number of nodes)? and 3 randomly chosen
small graphs of set A such that a partition with 22° blocks only contains a few nodes per
block. Basic properties of benchmark instances are shown in Appendix A, Figure 6.

Methodology. We consider a combination of a graph and number of blocks k as an instance.
For each instance, we usually perform several runs with different random seeds and aggregate
running times and edge cuts using the arithmetic mean over all seeds. To further aggregate
over multiple instances, we use the harmonic mean for relative speedups, and the geometric
mean for absolute running times and edge cuts. Runs with imbalanced partitions are not
excluded from aggregated running times and for instances that exceeded the time limit, we
use the time limit in the aggregates. We consider an instance as infeasible, if all runs failed
or computed an imbalanced partition and mark them with X in the plots.

To compare the solution quality of different algorithms, we use performance profiles [14].
Let A be the set of all algorithms we want to compare, Z the set of instances, and g4 (I) the
quality of algorithm A € A on instance I € Z. For each algorithm A, we plot the fraction of
instances lIfT(‘T)‘ (y-axis) where Zo(7) :=={I € Z | ga(I) <7 -mingcaga (I)} and 7 is on
the z-axis. Achieving higher fractions at lower 7-values is considered better. For 7 = 1, the
y-value indicates the percentage of instances for which an algorithm performs best. Since
performance profiles relate the quality of an algorithm to the best solution, the ranking
induced by 7 = 1 does not permit full ranking of all algorithms, if more than two algorithms
are included.

Running Time and Solution Quality for Small k. In Figure 2, Figure 3 and Table 1, we
compare the quality and running time of KaMinPar with different sequential and parallel
partitioners for k € {2,4,8,16,32,64}, e = 0.03 and 5 repetitions per instance on set A and
machine B. These are commonly used values to evaluate graph partitioning systems. We
execute each parallel partitioner using 10 threads to simulate the performance on commodity
machines.

KaMinPar 10 is the overall fastest algorithm on average and also an order of magnitude
faster than the sequential partitioners Metis and KaHIP-fsocial on large graphs (m > 108),
while producing partitions with comparable solution quality (see Figure 3 (left)). KaMinPar
10 (0.39 s geometric mean running time) is moderately faster than Mt-Metis 10 (0.48 s) and
more than a factor of 2 resp. 3 faster than PuLP 10 (1.11 s) and Mt-KaHIP 10 (1.33 s). The
differences in running time, as shown in Figure 2 (right), are more pronounced on larger
instances, e.g., KaMinPar 10 (9.36 s) is more than factor of 3 resp. 5 faster than Mt-Metis 10
(30.36 s) resp. Mt-KaHIP 10 (55.76 s) on instances with more than 10% edges. Figure 2 (left)
shows that Mt-KaHIP 10 computes the partition with lowest edge cut on a majority of the
instances (~60%), while the partitions produced by PuLP 10 are more than a factor of 2
worse than the best achieved edge cuts on more than 55% of the instances. These results are
expected, since Mt-KaHIP is the only partitioner that implements a parallel direct k-way FM
algorithm and PuLP is the only non-multilevel system in our evaluation.

2 excluding er-fact1.5-scale26, since Mt-KaHiP and Mt-Metis are unable to compute a partition on

this graph even for small k£, and kmer_V2a to avoid over-representation of k-mer graphs

48:11

ESA 2021

48:12

Deep Multilevel Graph Partitioning

Table 1 Geometric mean running time and solution quality for different algorithms on benchmark
set A and k € {2,4,8,16,32,64}. Running time only includes instances for which all algorithms
produced a result. The number of included instances is shown in the last row. Solution quality is
relative to KaMinPar (lower is better) and only includes instances for which the respective algorithm
computed a balanced partition. Thus, solution quality cannot be compared between different
competitors.

Algorithm ‘ T Tim >10° T[m > 10%] ‘ rel. cut # infeasible
KaMinPar 10 | 0.39 s 0.85 s 9.36s | 1.00 0
Mt-Metis 10 0.48 s 1.49 s 30.36 s 1.00 349
Mt-KaHiP 10 1.33 s 3.84 s 55.76 s 0.94 6
PuLP 10 1.11 s 5.70 s 95.93 s 2.39 72
Metis 1.00 s 4.15 s 97.44 s 1.05 2
KaHiP-fsocial 2.93 s 11.05 s 200.67 s 1.03 8
instances ‘ 1,150 832 196 ‘
é 1.00 — 10.00 A
=] =)
< 0.80 ®
‘é & 1.00
£ 060 /"_ s
°© , 8
g 0.40 3, 0.10
or— Q)
*:% 0.20 g o
= 0.0l = 00
1 1.05 1.1 1.5 210" 10° X 216 220 224 228 232
T Number of Edges
— Mt-KaHiP 10 — KaMinPar 10 — Mt-KaHiP 10 — KaMinPar 10
— Mt-Metis 10 —— PuLP 10 — Mt-Metis 10 — PuLP 10

Figure 2 Performance profile and running time plot (shows time per edge with a right-aligned
rolling geometric mean over 50 instances) comparing the performance of KaMinPar with different
partitioners for k € {2,4,8,16,32,64} on set A.

We also ran KaMinPar, Mt-Metis and Mt-KaHiP on all 64 cores of machine A. Here, we
partitioned each graph of the reduced benchmark set B into & € {2,4, 8,16, 32,64} blocks
allowing a maximum imbalance of € = 0.03. In this setup, KaMinPar 64 is 5 resp. 4.4 times
faster than Mt-KaHiP 64 resp. Mt-Metis 64, whereas on the same instances on 10 cores
of machine B, it is 5.7 resp. 3.1 times faster. Thus, we can see that the running time of
KaMinPar scales slightly worse to 64 cores than Mt-KaHiP, but slightly better than Mt-Metis
for smaller values of k. In Figure 3 (right), we compare the solution quality of each algorithm
on the reduced benchmark set B. We can see that the differences of the partitioners in terms
of solution quality are more pronounced on this set than on set A (compare with Figure 2).
However, this is due to the benchmark set, since each partitioner produced partitions with
comparable quality if we compare them individually with 10 and 64 threads. Overall, we
can conclude that KaMinPar offers a compelling trade-off between running time and quality
compared to established shared-memory and sequential GP systems.

Running Time and Solution Quality for Large k. In Table 2, we present the results of
our experiment with different parallel partitioners (each using 10 threads) for larger values
of k € {211,214 217 2201 = = (.03 and 3 repetitions per instance with a time limit of one

L. Gottesbiiren, T. Heuer, P. Sanders, C. Schulz, and D. Seemaier

Table 2 Results of our experiment for large values of k with different parallel partitioners on set B.
The last two columns show the geometric mean running time and edge cuts relative to KaMinPar of
all instances that do not crash (timeout instances are additionally excluded in edge cut comparison).

Algorithm ‘ # timeout # crash # imbalanced ‘ # feasible ‘ rel. time rel. cut
KaMinPar 10 | 0 0 0 | 84 | 1.00 1.00
Mt-Metis-K 10 19 10 51 4 11.91 0.99
Mt-Metis-RB 10 0 25 55 4 5.61 1.03
Mt-KaHiP 10 31 7 11 35 38.64 1.00
PuLP 10 76 0 0 8 73.52 1.25

é 1.00 r—- — [g 1.00 P

£ 0.80 £ 0.80-

% % |

5 0.60 £ 0.60 /_

Gy Gy

S S

= 0.40- = 0.40-

RS 2

B 0.20 1 5 0.20 1

g g

B~ 0.01A = 0.01 A

1 1.05 1.1 1.5 2 10'10°X © 1 1.05 1.1 1.5 2 10'10% X
T T
Metis — KaHiP-fsocial — KaMinPar 10 — II\{I(%%IEQE?E’ ?ﬁ — Mt-Metis 64

Figure 3 Left: performance profile of KaMinPar, Metis and KaHiP-fsocial on benchmark set
A with k € {2,4,8,16,32,64} and ¢ = 0.03. Right: performance profile of KaMinPar, Mt-KaHiP
and Mt-Metis on 64 cores of machine A, reduced benchmark set B with k € {2,4, 8,16, 32,64} and
€ = 0.03. Note that the change in relative solution quality is due to the reduced benchmark set.

hour on set B and machine B (192 Gb main memory). Note that the time limit is 10 times
larger than the longest running time of KaMinPar for an instance. We additionally included
the recursive bipartitioning version of Mt-Metis (referred to as Mt-Metis-RB) to evaluate the
performance of recursive bipartitioning on large k. In the following, we consider a run of an
algorithm for an instance as feasible, if the algorithm terminates in the given time limit and
the produced partition satisfies the balance constraint Ly == (1 + ¢) f@]

Out of the 84 evaluated instances (21 graphs times 4 values of k), Mt-Metis-RB 10,
Mt-Metis-K 10, PuLP 10 and Mt-KaHiP 10 were only able to produce on 4, 4, 8 resp. 35
instances a feasible solution. Mt-Metis-RB 10 and Mt-Metis-K 10 primarily failed to produce
solutions that satisfy the balance constraint (55 resp. 51 instances). Figure 4 (right) shows
that Mt-Metis-K 10 generally produces larger balance violations (median resp. maximum
imbalance is 1.14 resp. 15.56) than Mt-Metis-RB 10 (median 1.05 and maximum 1.15). Mt-
KaHiP 10 and PuLP 10 were mostly unable to compute a partition in the given time limit
(31 resp. 76 instances). KaMinPar 10 produced a feasible solution on all instances. The
fastest competitor is Mt-Metis-RB 10, which is more than 5 times slower than KaMinPar
10 on average. All other partitioners are an order of magnitude slower. If we include all
imbalanced partitions and individually compare the partitioners on those instances with
respect to solution quality, we can see that all perform comparable (except for PuLP 10).
However, a fair comparison is difficult due to the large number of infeasible solutions. We
can conclude that KaMinPar is currently the only partitioner considered in our evaluation
that can reliably compute feasible partitions for larger values of k in a reasonable amount of

time.

48:13

ESA 2021

48:14

Deep Multilevel Graph Partitioning

5.00 = 10.00
<) oo]
= i Z 5007
E E
£ 2.00 1 e g
— Lo . = 200 -
1.30 A A
WL : 1.30 A
1.034 ﬂlam “,b %.mlunf i L% :v-x 1.03 i ; i
Q SN Q@ & & Q@ &&Q Q)@
$ A > s & & <
¢ &% & & & S
/) N P ﬁ &Q/
S & @“ & &

Figure 4 Left: imbalance of infeasible partitions computed by Mt-KaHiP 10, Mt-Metis 10, PuLP
10, Metis and KaHiP-fsocial on benchmark set A with k € {2,4, 8,16, 32,64} and £ = 0.03. Right:
imbalance of infeasible partitions computed by Mt-Metis-K 10, Mt-Metis-RB 10 and Mt-KaHiP 10 on
benchmark set B with k € {2',2'* 27 22°} and £ = 0.03.

Time Coarsening Initial Partitioning Refinement
64
o, . so0 o oo _"__"_,W o ° o
3 16 . . oq e% o o = » L
g g .—'-'”W— vttt W PR NP y
2 v
4_
T T T T T T T T T T T T T T
64 256 1024 64 256 4 16 64 256 1024 16 64 256 1024

Single-Threaded Running Time |s]
Threads 4 == 16 = 64

Figure 5 Self-relative speedups for the different components of KaMinPar on set B.

Scalability of KaMinPar. In Figure 5, we show the scalability of KaMinPar for k €
{211 214 217 9201 "= = (.03 and three repetitions per instance on set B using p € {1,4, 16,64}
cores of machine A. In the plot, we represent the speedup of each instance as a point and
the cumulative harmonic mean speedup over all instances with a single-threaded running
time > x seconds with a line. Note that initial partitioning includes all calls to our initial
bipartitioning algorithms on graphs with more than 2pC nodes.

The overall harmonic mean speedup of KaMinPar is 3.8 for p = 4, 13.3 for p = 16
and 27.9 for p = 64. The harmonic mean speedups of coarsening, initial partitioning and
refinement are 25.0, 34.5 and 33.1 for p = 64. We note that our refinement component
achieves slightly better speedups than our coarsening component, although both are based on
the size-constrained label propagation algorithm. This effect is most pronounced on instances
with larger node degrees. During coarsening, each thread aggregates ratings to neighboring
clusters in a local hash map (with only 2!° entries) for nodes with small degree and in a local
vector of size n for high degree nodes (> 2!°/3). During refinement, each thread uses a local
vector of size k for this. Instances with larger node degrees more often uses the local vector
of size n to aggregate ratings during coarsening, which can limit scalability due to cache
effects. Note that KaMinPar performs no expensive arithmetic operations. Hence, perfect
speedups are not possible due to limited memory bandwidth.

L. Gottesbiiren, T. Heuer, P. Sanders, C. Schulz, and D. Seemaier

7 Conclusion and Future Work

We presented a new graph partitioning scheme that successfully combines the merits of
classical direct k-way partitioning and recursive bipartitioning. Similar to direct k-way
partitioning, deep MGP coarsens and uncoarsens the graph only once, and allows the use
of k-way local improvement algorithms. Yet, it does not suffer scalability problems if
k is large and has a better asymptotic running time than recursive bipartitioning. Our
experimental evaluation shows that our shared-memory parallel implementation of deep
MGP runs efficiently on up to 64 PEs, while achieving comparable results to established
graph partitioners if k is small. Furthermore, our evaluation showed that KaMinPar is an
order of magnitude faster than other graph partitioners based on direct k-way partitioning if
k is large, while consistently producing balanced solutions. In the future, we would like to
explore graph partitioning for very large values of k, e.g., k € ©(n).

—— References

1 Intel Threading Building Blocks. https://www.threadingbuildingblocks.org/.

2 Y. Akhremtsev. Parallel and External High Quality Graph Partitioning. PhD thesis, Karlsruher
Institut fiir Technologie (KIT), 2019. doi:10.5445/IR/1000098895.

3 Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag. Engineering a direct k-way Hypergraph
Partitioning Algorithm. In 19th Workshop on Algorithm Engineering and FExperiments,
(ALENEX), pages 28-42, 2017.

4 Y. Akhremtsev, P. Sanders, and C. Schulz. High-Quality Shared-Memory Graph Partitioning.
IEEE Transactions on Parallel and Distributed Systems, 31(11):2710-2722, 2020. doi:10.

1109/TPDS.2020.3001645.

5 K. Andreev and H. Récke. Balanced Graph Partitioning. Theory of Computing Systems,
39(6):929-939, 2006.

6 D. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, editors. 10th DIMACS Implementation
Challenge — Graph Partitioning and Graph Clustering, 2012.

7 C. Bichot and P. Siarry, editors. Graph Partitioning. Wiley, 2011.

8 A. Buluc, H. Meyerhenke, I.a Safro, P. Sanders, and C. Schulz. Recent Advances in Graph

Partitioning. In Algorithm Engineering, volume 9220 of LNCS, pages 117-158. Springer, 2014.

9 U. V. Catalyurek and C. Aykanat. Hypergraph-partitioning based Decomposition for Parallel
Sparse-Matrix Vector Multiplication. IEEE Transactions on Parallel and Distributed Systems
(TPDS), 10(7):673-693, 1999.

10 U. V. Catalyiirek, M. Deveci, K. Kaya, and B. Ucar. Multithreaded Clustering for Multi-Level
Hypergraph Partitioning. In IEEE 26th International Symposium on Parallel and Distributed
Processing (IPDPS), pages 848-859. IEEE, 2012.

11 C. Chevalier and F. Pellegrini. PT-Scotch. Parallel Computing, pages 318-331, 2008.

12 T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM Transactions
on Mathematical Software, 38(1):1:1-1:25, 2011.

13 K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V. Catalyiirek. Parallel
Hypergraph Partitioning for Scientific Computing. In 20th International Conference on Parallel
and Distributed Processing, (IPDPS), pages 124-124. IEEE, 2006.

14 E. D. Dolan and J. J. Moré. Benchmarking Optimization Software with Performance Profiles.

Math. Program., 91(2):201-213, 2002. doi:10.1007/s101070100263.
15 C. M. Fiduccia and R. M. Mattheyses. A Linear-Time Heuristic for Improving Network

Partitions. In Proceedings of the 19th Conference on Design Automation, pages 175-181, 1982.

16 D. Funke, S. Lamm, P. Sanders, C. Schulz, D. Strash, and M. von Looz. Communication-free
Massively Distributed Graph Generation. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2018.

48:15

ESA 2021

https://doi.org/10.5445/IR/1000098895
https://doi.org/10.1109/TPDS.2020.3001645
https://doi.org/10.1109/TPDS.2020.3001645
https://doi.org/10.1007/s101070100263

48:16

Deep Multilevel Graph Partitioning

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness, volume 174. W.H. Freeman, San Francisco, 1979.

L. Gottesbiiren, T. Heuer, P. Sanders, and S. Schlag. Shared-Memory n-level Hypergraph
Partitioning. arXiv preprint arXiv:2104.08107, 2021.

L. Gottesbiiren, T. Heuer, P. Sanders, and S. Schlag. Scalable Shared-Memory Hypergraph
Partitioning. In 23rd Workshop on Algorithm Engineering and Ezperiments, (ALENEX 2021),
pages 16-30. SIAM, 2021.

T. Heuer, N. Maas, and S. Schlag. Multilevel Hypergraph Partitioning with Vertex Weights
Revisited. In 19th International Symposium on Ezxperimental Algorithms, SEA 2021, June 7-9,
2021, Nice, France, volume 190 of LIPIcs, pages 8:1-8:20. Schloss Dagstuhl - Leibniz-Zentrum
fir Informatik, 2021. doi:10.4230/LIPIcs.SEA.2021.8.

T. Heuer and S. Schlag. Improving Coarsening Schemes for Hypergraph Partitioning by Ex-
ploiting Community Structure. In 16th International Symposium on Ezxperimental Algorithms,
(SEA), pages 21:1-21:19, 2017.

M. Holtgrewe, P. Sanders, and C. Schulz. Engineering a Scalable High Quality Graph
Partitioner. 24th IEEE International Symposium on Parallel and Distributed Processing
(IPDPS), pages 1-12, 2010.

G. Karypis and V. Kumar. Parallel Multilevel k-way Partitioning Scheme for Irregular Graphs.
In Proceedings of the ACM/IEEE Conference on Supercomputing, 1996.

G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359-392, 1998.

G. Karypis and V. Kumar. Multilevel k-way Partitioning Scheme for Irregular Graphs. Journal
on Parallel and Distributed Compututing, 48(1):96-129, 1998.

F. Khorasani, R. Gupta, and L. N. Bhuyan. Scalable SIMD-Efficient Graph Processing on
GPUs. In Proceedings of the 24th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’15, pages 39-50, 2015.

University of Milano Laboratory of Web Algorithms. Datasets. URL: http://law.di.unimi.
it/datasets.php.

D. LaSalle and G. Karypis. Multi-threaded Graph Partitioning. In 27th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 225-236, 2013.

D. Lasalle and G. Karypis. Multi-threaded Graph Partitioning. In 27th IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2018, Cambridge, MA, USA, May
20-24, 20183, pages 225—236, 2013. doi:10.1109/IPDPS.2013.50.

D. LaSalle and G. Karypis. A Parallel Hill-Climbing Refinement Algorithm for Graph
Partitioning. In 45th International Conference on Parallel Processing (ICPP), pages 236—241,
2016.

D. LaSalle, Md. M. A. Patwary, N. Satish, N. Sundaram, P. Dubey, and G. Karypis. Improving
Graph Partitioning for Modern Graphs and Architectures. In Proceedings of the 5th Workshop
on Irregular Applications - Architectures and Algorithms, IA3 2015, Austin, Texas, USA,
November 15, 2015, pages 14:1-14:4. ACM, 2015. doi:10.1145/2833179.2833188.

J. Leskovec. Stanford Network Analysis Package (SNAP).

M. Birn and V. Osipov and P. Sanders and C. Schulz and N. Sitchinava. Efficient Parallel and
External Matching. In Euro-Par, volume 8097 of LNCS, pages 659—670. Springer, 2013.

H. Meyerhenke, P. Sanders, and C. Schulz. Partitioning Complex Networks via Size-Constrained
Clustering. In Ezperimental Algorithms, volume 8504 of LNCS, pages 351-363. Springer, 2014.
doi:10.1007/978-3-319-07959-2_30.

H. Meyerhenke, P. Sanders, and C. Schulz. Parallel Graph Partitioning for Complex Networks.
IEEE Transactions on Parallel and Distributed Systems, 28(9):2625-2638, 2017. doi:10.1109/
TPDS.2017.2671868.

U. N. Raghavan, R. Albert, and S. Kumara. Near Linear Time Algorithm to Detect Community
Structures in Large-Scale Networks. Physical review E, 76(3):036106, 2007.

https://doi.org/10.4230/LIPIcs.SEA.2021.8
http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php
https://doi.org/10.1109/IPDPS.2013.50
https://doi.org/10.1145/2833179.2833188
https://doi.org/10.1007/978-3-319-07959-2_30
https://doi.org/10.1109/TPDS.2017.2671868
https://doi.org/10.1109/TPDS.2017.2671868

L. Gottesbiiren, T. Heuer, P. Sanders, C. Schulz, and D. Seemaier

37

38

39

40

41

42

43

44

A

P. Sanders and C. Schulz. Engineering Multilevel Graph Partitioning Algorithms. In 19th
European Symposium on Algorithms (ESA), volume 6942 of LNCS, pages 469-480. Springer,
2011.

S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and C. Schulz. k-way Hypergraph
Partitioning via n-Level Recursive Bisection. In 18th Workshop on Algorithm Engineering and
Ezxperiments (ALENEX), pages 53—67, 2016.

K. Schloegel, G. Karypis, and V. Kumar. Graph Partitioning for High Performance Scientific
Simulations. In The Sourcebook of Parallel Computing, pages 491-541, 2003.

C. Schulz and D. Strash. Graph Partitioning: Formulations and Applications to Big Data. In
Encyclopedia of Big Data Technologies. Springer, 2019. doi:10.1007/978-3-319-63962-8_
312-2.

G. M. Slota, K. Madduri, and S. Rajamanickam. PuLP: Scalable Multi-Objective Multi-
Constraint Partitioning for Small-World Networks. In 2014 IEEE International Conference
on Big Data (Big Data), pages 481-490, 2014. doi:10.1109/BigData.2014.7004265.

N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei. The DAC 2012 Routability-driven
Placement Contest and Benchmark Suite. In 49th Design Automation Conference, (DAC),
pages 774-782, 2012.

C. Walshaw and M. Cross. JOSTLE: Parallel Multilevel Graph-Partitioning Software — An
Overview. In Mesh Partitioning Techniques and Domain Decomposition Techniques, pages
27-58. 2007.

S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of Sparse
Matrix-Vector Multiplication on Emerging Multicore Platforms. In SC ’07: Proceedings of the
2007 ACM/IEEE Conference on Supercomputing, pages 1-12, 2007. doi:10.1145/1362622.
1362674.

Benchmark Set Statistics

10!),
108 % $
107 1 -

l[)ﬁ 4
105 4
10% 4
103 4
102 A

10" A ﬁ

n m (IC) A,
A BB

Figure 6 Basic properties of benchmark sets A and B: number of nodes n, number of edges m,

median degree d(v) and maximum degree A,.

48:17

ESA 2021

https://doi.org/10.1007/978-3-319-63962-8_312-2
https://doi.org/10.1007/978-3-319-63962-8_312-2
https://doi.org/10.1109/BigData.2014.7004265
https://doi.org/10.1145/1362622.1362674
https://doi.org/10.1145/1362622.1362674

	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Generic Deep MGP
	5 Implementation
	5.1 Coarsening by Size-Constrained Label Propagation
	5.2 Initial Bipartitioning
	5.3 Uncoarsening

	6 Experimental Evaluation
	7 Conclusion and Future Work
	A Benchmark Set Statistics

