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Abstract
In the problem called single resource constraint scheduling, we are given m identical machines and
a set of jobs, each needing one machine to be processed as well as a share of a limited renewable
resource R. A schedule of these jobs is feasible if, at each point in the schedule, the number of
machines and resources required by jobs processed at this time is not exceeded. It is NP-hard to
approximate this problem with a ratio better than 3/2. On the other hand, the best algorithm so far
has an absolute approximation ratio of 2 + ε. In this paper, we present an algorithm with absolute
approximation ratio (3/2 + ε), which closes the gap between inapproximability and best algorithm
with exception of a negligible small ε.
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1 Introduction

In the single resource constraint scheduling problem, we are given m identical machines, a
discrete renewable resource with a fixed size R ∈ N and a set of n jobs J . Each job has a
processing time p(j) ∈ Q. We define the total processing time of a set of jobs J ′ ⊆ J as
p(J ′) :=

∑
j∈J ′ p(j). To be scheduled, each job j ∈ J needs one of the machines as well as

a fix amount r(j) ∈ N of the resource which it will allocate during the complete processing
time p(j) and which it deallocates as soon as it has finished its processing. Neither machine
nor any part of the resource can be allocated by two different jobs at the same time. We
define the area of a job as area(j) := r(j) · p(j) and the area of a set of jobs J ′ ⊆ J as
area(J ′) :=

∑
j∈J ′ r(j) · p(j).

A schedule σ : J → N maps each job j ∈ J to a starting point σ(j) ∈ Q. We say a
schedule is feasible if

∀t ∈ Q :
∑

j:t∈[σ(j),σ(j)+p(j))

r(j) ≤ R and (resource condition)

∀t ∈ Q :
∑

j:t∈[σ(j),σ(j)+p(j))

1 ≤ m. (machine condition)

Given a schedule σ where these two conditions hold, we can generate an assignment of
resources and machines to the jobs such that each machine and each resource part is allocated
by at most one job at a time, see [27]. The objective is to find a feasible schedule, which
minimizes the total length of the schedule called makespan, i.e., we have to minimize
maxj∈J σ(j) + p(j).
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53:2 Closing the Gap for Single Resource Constraint Scheduling

This problem arises naturally, e.g., in parallel computing, where jobs that are scheduled in
parallel share common memory or in production logistics where different jobs need a different
number of people working on it. From a theoretical perspective these problem is a sensible
generalization of problems like scheduling on identical machines, parallel task scheduling and
bin packing with cardinality constraint.

The algorithm with the best absolute ratio so far is a (2 + ε)-approximation by Niemeier
and Wiese [31]. In this paper, we close this gap between approximation and lower bound by
presenting an algorithm with approximation ratio (3/2 + ε).

▶ Theorem 1. There is an algorithm for single resource constraint scheduling with approx-
imation ratio (3/2 + ε) and running time O(n log(1/ε)) + O(n)(m log(R)/ε)Oε(1), where Oε

dismisses all factors solely dependent on 1/ε.

As a by-product of this algorithm, we also present an algorithm, which has an approx-
imation guarantee of (1 + ε)OPT + pmax. Note that we can scale each instance such that
pmax = 1 and hence we can see pmax as a constant independent of the instance. Algorithms
with an approximation guarantee of the form (1 + ε)OPT + c fore some constant c are called
asymptotic polynomial time approximation schemes (APTAS). Note that this algorithm is
a (2 + ε)-approximation as well, but improves this ratio, in the case that pmax is strictly
smaller than OPT and for pmax < OPT/2 improves the approximation ratio of the algorithm
from Theorem 1.

▶ Theorem 2. There is an APTAS for single resource constraint scheduling with an additive
term pmax and running time O(n log(1/ε + n)) + O(n)(m log(R)/ε)Oε(1).

In the schedule generated by this APTAS, almost all jobs are completed before (1 +
O(ε))OPT, except for a small set J ′ of jobs that all start simultaneously at (1 + O(ε))OPT,
after the processing of all other jobs is finished. The processing of this set J ′ causes the
additive term pmax.

Methodology and Organization of this Paper

In Section 2, we will present the main results to generate the APTAS from Theorem 2.
The general structure of the algorithm can be summarized as follows. First, we simplify
the instance by rounding the processing time of the jobs and partitioning them into large,
medium, and small corresponding to their processing time. Afterward, we use some linear
programming approaches to find a placement of these jobs inside the optimal packing. The
few jobs that are placed fractional with this linear program will be placed on top of the
packing contributing to the set J ′ which was mentioned before.

As usual for this kind of algorithms for packing and scheduling problems, we divide the
jobs into large, medium and small jobs. While for the placement of medium and small jobs,
we use techniques already known, see e.g. [21], we used a new technique to place the large
jobs. For the following (3/2 + ε) approximation, it is important to guarantee that only Oε(1),
i.e. constant in 1/ε, large jobs are not placed inside the optimal scheduling area. To find such
a schedule, we divide the schedule into Oε(1) time slots and guess the machine requirement
and a rounded resource requirement of large jobs during this slot. Afterward, the large jobs
are placed inside this profile using a linear program, which schedules only Oε(1) of these
jobs fractionally. We have to remove these Oε(1) fractionally scheduled jobs, as well as only
one extra job per time slot due to the rounded guess, and assign them to the set J ′.

Afterward, in Section 3, we present the (3/2 + ε)-approximation and prove Theorem
1. Instead of placing the fractional jobs on top of the packing, we stretch the packing by
(1/2 + O(ε))OPT, and place the fractional scheduled large jobs inside a gap in this stretched
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schedule. This stretching allows us to define a common finishing point of (almost) all the
jobs, which have a processing time larger than OPT/2 and, thus, we avoid scheduling them
fractionally with the linear program. While the general idea of creating such a gap was used
before, e.g., in [19], the novelty of this approach is to search for this gap at multiple points
in time while considering two and not only one constraint. This obstacle of considering two
instead of one constraint while searching for a gap requires a more careful analysis of the
shifted schedule, as was needed in other gap constructions.

Related Work

The problem resource constraint scheduling is one of the classical problems in scheduling.
It was first studied in 1975 by Garey and Graham [10]. Given m identical machines and
capacities R1, . . . , Rs of s distinct resources such that each job requires a share of each of
them, they proved that the greedy list algorithm produces a schedule of length at most
(s + 2 − (2s + 1)/m)OPT. This corresponds to an approximation ratio of (3 − 3/m) for the
case of s = 1 i.e., the problem studied in this paper. In the same year Garey and Johnson
[11] showed that this general scheduling problem is NP-complete even if just one resource
is given, i.e., s = 1. Lately, Niemeier and Wiese [31] presented a (2 + ε)-approximation for
single resource constraint scheduling, and this is the best known ratio so far.

Note that the problem single resource constraint scheduling contains multiple problems
as subproblems. When all the processing times are equal to one, this problem corresponds to
bin packing with cardinality constraint. Hence there is no algorithm with an approximation
guarantee better than 3/2 for this problem unless P = NP. For bin packing with cardinality
constraint Epstein and Levin [8] presented an AFPTAS. This AFPTAS was improved and
extended to work for single resource constraint scheduling by Jansen et al. [21]. It has an
additive term of O(pmax log(1/ε)/ε).

On the other hand, if the number of machines m is larger than n, the constraint that only
m jobs can be processed at the same time is no longer a restriction. The resulting problem
is known as the parallel task scheduling problem. This problem is strongly NP-complete for
R ≥ 4 [17] and there exists a pseudo polynomial algorithm for R ≤ 3 [7]. Furthermore, for R

constant and R ∈ nO(1) there exists polynomial time approximation schemes by Jansen and
Porkolab [22] as well as Jansen and Thöle [26] respectively. For an arbitrary large R there
exists no algorithm with approximation ratio smaller than 3/2 unless P = NP . The best
algorithm for this scenario is a (3/2 + ε) approximation by Jansen [19].

Finally, if each job requires at most R/m from the resource, the used resources are no
longer a restriction. The corresponding problem is known as the NP-hard problem makespan
scheduling on identical machines. For this problem several algorithms are known, see, e.g.,
[13, 18, 2, 20].

An interesting extension of the considered problem is the consideration of resource
dependent processing times. In this scenario, instead of a fixed resource requirement for
the jobs, each jobs processing time depends on the amount of allocated resources. The first
result for this extension was achieved by Grigoriev et al. [14]. They studied a variant where
the processing time of a job depends on the machine it is processed on as well as the number
of assigned resources and described a 3.75-approximation. For the case of identical machines
this result was improved by Kellerer [28] to a (3.5 + ε)-approximation. Finally, Jansen at al
[21] presented an AFPTAS for this problem with additive term O(πmax log(1/ε)/ε), where
πmax is the largest occurring processing time considering all possible resource assignments.

Closely related to single resource constraint scheduling is the strip packing problem.
Here we are given a set of rectangular items that have to be placed overlapping free into a
strip with bounded width and infinite height. We can interpret single resource constraint
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53:4 Closing the Gap for Single Resource Constraint Scheduling

scheduling as a Strip Packing problem by setting the jobs processing time to the height
of a rectangular item and the resource requirement to its width. The difference to strip
packing is now, that when placing an item, we are allowed to slice it vertically as long
as the lower border of all slices are placed at the same vertical level. Furthermore, we
have an single resource constraint scheduling carnality condition that allows only m items
to intersect each horizontal line through the strip. The strip packing problem has been
widely studied [3, 4, 5, 6, 12, 16, 25, 29, 32, 33, 34, 35]. The algorithm with approximation
ratio (5/3 + ε), which is the smallest so far, was presented by Harren, Jansen, Prädel, and
van Stee [15]. On the other hand, using a reduction from the partition problem, we know
that there is no polynomial-time algorithm with an approximation ratio smaller than 3/2.
Closing this gap between the best approximation ratio and lower bound represents an open
question. Strip packing has also been studied with respect to asymptotic approximation
ratio [3, 6, 12, 29]. The best algorithms in this respect are an AFPTAS with additive term
O(1/ε log(1/ε))hmax [35, 5] and an APTAS with additive term hmax [25], where hmax is
the tallest height in the set of given items. Finally, this problem has been studied with
respect to pseudo-polynomial processing time [36, 26, 30, 9, 23, 1], where the width of the
strip is allowed to occur polynomial in the running time of the algorithm. There is no
pseudo-polynomial algorithm with an approximation ratio smaller than 5/4 [17] and a ratio
of (5/4 + ε) is achieved by the algorithm in [24].

2 APTAS with additive term pmax

In this section, we present an asymptotic PTAS for the single resource constraint scheduling
problem which has an approximation guarantee of (1 + ε)OPT + pmax and a running time
of O(n log(n)) + (m log(R))Oε(1), i.e., we prove Theorem 2 in this section. Due to space
limitations the proofs of this section can be found in the appendix.

Simplifying the input instance. In the first step of the algorithm, we simplify the given
instance such that it has a simple structure and a reduced set of processing times. Consider
the lower bound on the optimal makespan T := min{pmax, area(J )/R, p(J )/m}. By the
analysis of the greedy list schedule, as described in [31], we know that the optimal schedule
has a size of at most 1

m p(J ) + 2
R area(J ) + pmax ≤ 4T , giving us appropriate bounds for a

dynamic search framework.
In the next step, we will create a gap between jobs with a large processing time and

jobs with a small processing time, by removing a set of medium sized jobs. We want to
schedule this set of medium sized jobs in the beginning or end of the schedule using the
greedy list schedule. However this schedule of the medium sized items should add at most
O(ε)OPT to the makespan. The schedule generated by the greedy list schedule algorithm
has a makespan of at most 1

m p(J ) + 2
R area(J ) + pmax ≤ 4OPT. Hence, we choose the set of

medium jobs JM such that pmax(JM ) ≤ εOPT, i.e. the maximal processing time appearing
in the set of medium jobs is bounded by εOPT. On the other hand, the total area and the
total processing time of the medium jobs should be small enough.

▶ Lemma 3. Consider the sequence γ0 = ε, γi+1 = γiε
4. There exists an i ∈ {1, . . . , 1/ε}

such that

1
m

p(Jγi) + 2
R

area(Jγi) ≤ ε

(
1
m

p(J ) + 2
R

area(J )
)

, (1)

where Jγi
:= {j ∈ J | p(j) ∈ [γiT, γi−1T )} and we can find this i in O(n + 1/ε).



K. Jansen and M. Rau 53:5

Let i ∈ {1, . . . , 1/ε} be the smallest value such that Jγi has the property from Lemma 3
and define µ := γi and δ := γi−1. Note that γi = ε1+4i and hence δ ≥ ε4/ε+1. Using these
values for δ and µ, we partition the set of jobs into large JL := {j ∈ J |p(j) ≥ δT}, small
JS := {j ∈ J |p(j) < µT} and medium JM := {j ∈ J |µT ≤ p(j) < δT}.

▶ Lemma 4. The medium jobs can be scheduled in O(n log(n)) operations with makespan
O(ε)T

The final simplification step is to round the processing times of the large jobs using the
rounding in Lemma 5 to multiples of εδT .

▶ Lemma 5 (See [23]). Let be δ ≥ εk for some value k ∈ N. At loss of a factor (1 + 2ε)
in the approximation ratio, we can round the processing time of each job j with processing
time εl−1T ≥ p(j) ≥ εlT for some l ∈ N ≤ k such that it has a processing time kjεl+1T for
a value kj ∈ {1/ε, . . . 1/ε2 − 1}. Furthermore, the jobs can be started at a multiple of εl+1T .

In this step, we reduce the number of different processing times of large jobs to O(logε(δ)/ε2) =
O(1/ε3). However, we lengthen the schedule at most by the factor (1 + 2ε). Furthermore,
this rounding reduces the starting times of these jobs to at most O(1/(εδ)) possibilities since
all the large jobs start and end at multiples of εδT and the optimal makespan of the rounded
instance is bounded by (1 + 2ε) · 4T .

Scheduling Large Jobs. In this section, we describe how to schedule the large jobs when
given the size of the makespan T ′ := lεT of the rounded schedule. For a given set S of
start and endpoints of long jobs, we define a layer li as the processing time between two
consecutive starting times si, si+1 ∈ S. Notice that, during the processing of a layer in a
rounded optimal schedule, the resource requirement and number of machines used by large
jobs stays unchanged since the large jobs only start and end at the starting points in S.

▶ Lemma 6. Let γ ∈ (0, 1] and T ′ = lεT ≥ OPT for some l ∈ N, and J̄ be a set of
jobs for which an optimal schedule exists such that all jobs in J̄ have their starting and
endpoints in S. There exists an algorithm that finds in O((m log(R))Oε(1)|S|/γ) operations
O((m log(R))Oε(1)/γ) schedules with the following properties
1. In each of the schedules, all large jobs are scheduled except for a set J ′ ⊆ J̄ of at most

|J ′| ∈ 3|S| jobs and a total resource requirement of at most R(J ′) ≤ γR.
2. In at least one of the schedules, in each layer given by S, the total number of machines

and resources not used by jobs in J̄ is as large as in a rounded optimal schedule.

In the APTAS we will use the algorithm from Lemma 6 with J̄ := JL and S ′ := S.

Scheduling Small Jobs. We will schedule small jobs inside the layers using the residual
free resources and machines given by the guess for the large jobs. We define m

(S)
s as the

number of machines in layer s not used by jobs with processing times larger than δT and
analogously define R

(S)
s as the number of resources not used by jobs with processing times

larger than δT during the processing of this layer in an optimal schedule.

▶ Lemma 7. Define for each layer s ∈ S a box with processing time (1 + ε)εδT , m
(S)
s

machines and R
(S)
s resources, where the values m

(S)
s and R

(S)
s are at least as large as in a

rounded optimal schedule. There exists an algorithm with time complexity O(n) · Oε,|S|(1),
that places the jobs inside the boxes and an additional horizontal box with m machines, R

resources, and processing time O(ε)T .

This algorithm uses the same techniques as the AFPTAS designed by Jansen et al. [21].
For the sake of completeness the ideas can be found in the appendix.
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53:6 Closing the Gap for Single Resource Constraint Scheduling

The AFPTAS. We can summarize the algorithm as follows. We define T := min{pmax,

area(J )/R, p(J )/m} and simplify the instance as described above. Then via a binary search
framework, we try values T ′ ∈ [T, 4T ] as optimal makespan. For each of the considered
values T ′, we use the algorithm from Lemma 6 to generate several scheduled for the large
jobs each wit makespan at most T ′. If we cannot find a feasible schedule, the value T ′ was
to small. Otherwise, we use the algorithm from Lemma 7 to schedule the small jobs inside
each of the generated schedules for the large jobs. If T ′ was large enough, we can place the
small jobs inside the layers, by increasing the schedule by a factor of at most O(ε). If the
small jobs do not fit in one of the schedules for large jobs, the chosen T ′ was to small. If
we have found a schedule for the small jobs, we try the next smaller value for T ′ in binary
search fashion. In the final step, we use greedy list schedule to schedule the medium jobs
and place the set J ′ of non scheduled large jobs at the top.

3 A (3/2 + ε)-Approximation

We aim to find a schedule with makespan (3/2 + O(ε))T ′, where T ′ is the assumed optimal
makespan given by a binary search framework. Consider Lemma 6. If one of the jobs in
J ′ has a processing time larger than T ′/2 + O(ε)T , we exceed the aspired approximation
ratio of (3/2 + O(ε))T , when placing the set J ′ on top of the schedule. We call this set of
critical jobs huge jobs, i.e., JH := {j ∈ J |p(j) > T ′/2}, and redefine the set of large jobs as
JL := {j ∈ J |δT ≤ p(j) ≤ T ′/2} respectively.

Notice that the processing of all huge jobs has to intersect the time T ′/2 in each schedule
with makespan at most T ′ and each machine can contain at most one of these jobs. If we
could guess the starting positions of these huge jobs, and schedule only the large jobs with
the algorithm from Lemma 6, the discarded jobs J ′ would have a processing time of at most
T ′/2 and could be placed on top of the schedule, resulting in a schedule of makespan at
most (3/2 + O(ε))T ′. Sadly this guessing step is not possible in polynomial time since there
are up to m of these jobs and iterating all combinations of their starting position needs
Ω((1/εδ)m) operations. Our idea is to let almost all the huge jobs end at a common point
in time, e.g. T ′, and thus avoid the guessing step. To solve the violation of the resource or
machine condition, we shift up all the jobs which start after ⌈T ′/2⌉εδT by ⌈T ′/2⌉εδT such
that they now start after T ′, where we denote by ⌈T ′/2⌉εδT the integer multiple of εδT that
is the first which has a size of at least T ′/2.

While this shift fixes the start positions of the huge jobs, the large jobs are again placed
with the techniques described in Section 2. Since Lemma 6 states that each of the generated
schedules may not schedule a subset J ′ of the large jobs, we need to find a gap in the shifted
schedule where we can place them. In the following, we will consider optimal schedules and
the possibilities to rearrange the jobs. Depending on this arrangement, we can find a gap of
processing time ⌈T ′/2⌉εδT for the fractional scheduled large jobs.

Let us assume that we have to schedule k := |J ′| ∈ Oε(1) ≤ m/4 jobs with total resource
requirement at most γR ≤ R/(3|S|). We consider an optimal schedule, after applying the
simplification steps and the corresponding transformed optimal schedule, where each large
job starts at a multiple of εδT and each huge job starts at a multiple of ε2T . Furthermore,
we will assume that there are more than 4k = Oε(1) huge jobs. Otherwise, we can guess
their starting positions in O((1/εδ)4k) and place the fractional scheduled large jobs on top
of the schedule.

In the following, we will prove that by extending it by ⌈T ′/2⌉εδT , we can transform the
rounded optimal schedule OPTrounded such that all the huge jobs, except for O(k) of them,
end at a common point in time and we can place k further narrow large jobs without violating
the machine or the resource constraint.
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T ′/2

T ′

τ

JL,τ,>,pre

Jτ,≥,pre

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

k machines
unused

Figure 1 In this and the following figures we present the processing time on the y-axis, while
the resource requirements of jobs can be found on the x-axis. While the machines are not visually
represented in these figures, the machine condition has to apply for each horizontal cut through
the schedule. On the left: A rounded optimal schedule. The hatched rectangles are the jobs that
start after T ′/2 and intersect τ , the dark gray area corresponds to large jobs, which start before
T ′/2 and end after τ and the dark gray rectangles on the left are huge jobs. On the right: The
corresponding shifted schedule.

▶ Lemma 8. Let k := |J ′| ≤ m/4 and γ ≤ 1/(3|S|). Furthermore, let a rounded optimal
schedule OPTrounded with makespan at most T ′ and at most |S| starting positions for large
jobs be given.

Without removing any job from the schedule, we can find a transformed schedule OPTshift
with makespan at most T ′ + ⌈T ′/2⌉εδT , with the following properties:
1. We can guess the end positions of all huge jobs in polynomial time.
2. There is a gap of processing time ⌈T ′/2⌉εδT with k empty machines and γR free resources

where we can schedule the jobs in J ′.
3. There is an injection which maps each layer s in OPTrounded with ms,S machines and

Rs,S resources not used by huge and large jobs to a layer in OPTshift where there are at
least as many machines and resources not used by these jobs.

Proof. We will prove this lemma by a careful analysis of the structure of the schedule
OPTrounded. First, however, we introduce some notations. Let s ∈ S, with s > T ′/2 be
any starting point of large jobs. We say a job j ∈ J intersects s or is intersected by s if
σ(j) < s < σ(j) + p(j). We will differentiate sets of jobs that start before T ′/2 and those
that start at or after T ′/2 by adding the attribute pre to sets of jobs that contain only jobs
starting before T ′/2, and the attribute post to those that contain only jobs that start at or
after T ′/2. Furthermore, we will identify the sets of jobs that intersect certain points of time.
We will add the attribute s,≥ to denote a set of jobs that is processed at least until the point
in time s ∈ S, i.e., we denote by Js,≥,pre := {j ∈ J |p(j) ≥ δT, σ(j) < T ′/2, σ(j) + p(j) ≥ s}
the set of large and huge jobs starting before T ′/2 and ending at or after s. On the other
hand, if we are only interested in the jobs that intersect the time s, we add the attribute s,>

to the set and mean Js,>,pre := {j ∈ J |p(j) ≥ δT, σ(j) < T ′/2, σ(j) + p(j) > s}. Finally, we
will indicate if the set contains only huge or only large jobs, by adding the attribute H or L.

Let τ ∈ {s|s ∈ S, T ′/2 ≤ s ≤ T ′} be the smallest value such that there are at most
m − k jobs (huge or large) that start before T ′/2 and intersect τ , i.e., end after τ . We
partition the set of large jobs intersected by τ into two sets. Let JL,τ,>,pre := {j ∈ JL|σ(j) <

T ′/2, σ(j) + p(j) > τ} be the set of large jobs which start before T ′/2 and end at or after τ .
Further let JL,τ,>,post := {j ∈ JL|T ′/2 ≤ σ(j) < τ, σ(j) + p(j) > τ} be the set of large jobs,
which are started at or after T/2 but before τ and end after τ , see Figure 1.
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53:8 Closing the Gap for Single Resource Constraint Scheduling

Note that by the choice of τ in each point between τ and T ′/2 in the schedule there are
more than m − k machines used by Jτ,≥,pre. As a result there are at most k − 1 machines
used by jobs starting after T ′/2 at each point between T ′/2 and τ , implying |JL,τ,>,post| < k.

We now construct a shifted schedule. Starting times in this schedule will be denoted by
σ′. We shift each job j ∈ J with σ(j) ≥ T ′/2 and σ(j) + pj ≥ τ exactly ⌈T ′/2⌉εδT upwards,
i.e., we define σ′(j) := σ(j) + ⌈T ′/2⌉εδT for these jobs. Furthermore, each huge job j ∈ JH

intersecting τ is shifted upwards such that it ends at T ′, i.e., we define σ′(j) := T ′ − pj for
these jobs j, see Figure 1. Note that there are at most k huge jobs ending strictly before τ .
If the total number of huge jobs ending before or at τ is larger than k, we choose arbitrarily
from the set of jobs ending at τ and shift them until there are exactly k huge jobs ending
before or at τ .

▷ Claim 9. After this shift there are at least k machines at each point between τ and
τ + ⌈T ′/2⌉εδT that are not used by any other job.

Proof. Up to T ′, there are k free machines, because there is no new job starting between τ

and T ′ since we shifted all of them up such that they start after ⌈T ′/2⌉εδT . On the other
hand, only jobs from the set JL,τ,>,post are processed between T ′ and τ + ⌈T ′/2⌉εδT . Since
|JL,τ,>,post| < k and m − k ≥ k this leaves k free machines which proves the claim. ◁

The idea is to place the gap at τ since there are enough free machines. However, it can
happen that at a point between τ and τ + ⌈T ′/2⌉εδT there is not enough free resource for
the gap. In the following, we carefully analyze where we can place the k jobs, dependent on
the structure of the optimal schedule OPTrounded

Case 1: r(Jτ,≥,pre) ≤ R − γR. In this case there are at least γR free resources at each
point in the shifted schedule between τ and T ′ since there are no jobs starting between
these points of time. To place the k fractional scheduled jobs, we have to generate a gap of
processing time ⌈T ′/2⌉εδT . In this gap there have to be k unused machines and γR unused
resources. For the time between τ and T ′, we have this guarantee, while for the time between
T ′ and τ + ⌈T ′/2⌉εδT , we have k free machines, but might have less than γR free resource.
The only jobs overlapping in this time window are the jobs from the set JL,τ,>,post, see
Figure 1. If these jobs have a small resource requirement, we have found our gap, see Case
1.1. and, otherwise, we have to look more careful at the schedule.

Case 1.1: r(JL,τ,>,post) ≤ R − γR. In this case, the required gap is positioned between
τ and τ + ⌈T ′/2⌉εδT , see Figure 2. In this shifted optimal schedule there are at most k

huge jobs ending before τ . In the algorithm, we will guess τ dependent on a given solution
for the large jobs and guess these k huge jobs and their start points in O(mkSk), which is
polynomial in the input size, see Section 3 for an overview.

Case 1.2: r(JL,τ,>,post) > R − γR. In this case, there is a point t ∈ [τ, T ′] such that
after this point there are less than γR free resources. Therefore, we need another position to
place the fractionally scheduled jobs. We partition the set JL,τ,>,post into at most |S|/2 sets
J ι

L,τ,>,post by the their original finishing points ι ∈ S>τ , i.e., each job in J ι
L,τ,>,post finishes

at ι in the non shifted rounded optimal schedule.

▷ Claim 10. One of the sets J ι
L,τ,>,post, ι ∈ S>τ , has a resource requirement of at least γR.
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Case 1.1

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

Gap

Case 1.2

i

i

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

ι + ⌈T ′/2⌉εδT

ι

Figure 2 Examples for the two Cases 1.1. and 1.2. In Case 1.1 the gap is positioned between τ

and τ + ⌈T ′/2⌉εδT . In Case 1.2 the jobs in the set J ι
L,τ,>,post are shifted back down. At each point

between ι and ι + ⌈T ′/2⌉εδT there are at least γR unused resources.

Proof. The jobs in JL,τ,>,post use more than R − γR resource in total. Since γ ≤ 1/(3|S|) ≤
1/(|S|/2 − 1), it holds that

R − γR

|S|/2 ≥ (1 − 1/(|S|/2 − 1))R
|S|/2 = R/(|S|/2 − 1) ≥ γR.

Hence, by the pigeon principle, one of the sets, say J ι
L,τ,>,post, must have a resource

requirement of at least γR. ◁

Let J ι
L,τ,>,post be this set. To generate a gap, we shift down all jobs in J ι

L,τ,>,post back to
their primary start position, see Figure 2.

▷ Claim 11. As a result of this shift, there are at least γR free resources at each point
between ι and ι + ⌈T ′/2⌉εδT .

Proof. At each point between ι and T ′ there were γR unused resources before. Each job
which starts between T ′ and τ + ⌈T ′/2⌉εδT is an element of JL,τ,>,post and was therefore
scheduled in parallel to the jobs in J ι

L,τ,>,post. Therefore, at each point between T ′ and
τ + ⌈T ′/2⌉εδT at least γR resources are unused. From τ + ⌈T ′/2⌉εδT to ι + ⌈T ′/2⌉εδT the
jobs J ι

L,τ,>,post were scheduled, so there are at least γR free resources. ◁

We now have to differentiate if there are at least k machines unused between τ +⌈T ′/2⌉εδT

and ι + ⌈T ′/2⌉εδT , see Figure 2. Let ρ ∈ {s|τ ≤ s ≤ T, s ∈ S} be the first point in the
schedule where at most k jobs from Jτ,≥,pre are scheduled in the given optimal schedule
(not the shifted one), i.e., ρ is the first point in time where |Jρ,>,pre| ≤ k. Note that as a
consequence |Jρ,≥,pre| ≥ k since otherwise there would have been a point in time before ρ,
where at most k machines are used by jobs starting before T ′/2. We know that between T ′

and ρ + ⌈T ′/2⌉εδT there always will be k machines unused since before the first shift they
were blocked by jobs in Jτ,≥,pre.

Case 1.2.1: ρ ≥ ι. In this case, at each point between ι and ι + ⌈T ′/2⌉εδT there are k

machines unused. Between ι and T ′ there are k free machines by the choice of τ and between
T ′ and ρ + ⌈T ′/2⌉εδT there are k free machines by the choice of ρ. Therefore, there is a
gap between ι and ι + ⌈T ′/2⌉εδT , see Figure 3. Similar as in Case 1.1. the total number of
guesses needed to place the huge jobs is bounded by mO

ε (1), although we have to add the
guess for ρ.
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Case 1.2.1

i

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

ι + ⌈T ′/2⌉εδT

ι

Gap

Case 1.2.2

i

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

ρ

ρ + ⌈T ′/2⌉εδT

ι + ⌈T ′/2⌉εδT

ι

Gap

Figure 3 Examples for the shifted schedule and the position of the gap in the Cases 1.2.1 and
1.2.2.

Case 1.2.2: ρ < ι. Let JH,ρ := {j ∈ JH |sj + pj > ρ} be the set of huge jobs, which are
still scheduled after ρ. It holds that |JH,ρ| ≤ k. As a consequence, it is possible to guess their
starting positions in polynomial time. Therefore, the algorithm will schedule each job in JH,ρ

as in the original simplified schedule OPTrounded. The other huge jobs, which end between
τ and ρ, are scheduled such that they end at ρ, i.e., we define σ′(j) := ρ − p(j) for each of
these huge jobs j. Next, we shift the all the jobs j with starting time σ′(j) ≥ ρ + ⌈T ′/2⌉εδT

downwards such that they start as they had started before the first shift. As a result between
T ′ and T ′ + ⌈T ′/2⌉εδT , there are just jobs left which overlap the time from τ + ⌈T ′/2⌉εδT to
ρ + ⌈T ′/2⌉εδT , see Figure 3. By the choice of ρ and τ at each point between τ + ⌈T ′/2⌉εδT

and ρ + ⌈T ′/2⌉εδT there are at most m − k jobs which use at most R − γR resource since the
job i was scheduled there before. Since each job between T ′ and T ′ + ⌈T ′/2⌉εδT overlaps this
area there are at least k free machines and γR free resources in this area. Hence, we position
the gap at T ′. In the algorithm, we will guess τ and ρ dependent on a given fractional
solution for the large jobs and guess the at most k jobs ending before τ and the k jobs ending
after ρ in O(m2k−1). For each of these jobs, we have to guess its starting time out of at most
|S|/2 possibilities.

Case 2: r(Jτ,≥,pre) > R − γR. In this case, the gap has to start strictly after τ since
at τ there is not enough free resource. Let JL,T ′/2 be the set of large jobs intersecting
the point in time T ′/2. Remember that Jτ,≥,pre contains huge and large jobs. Since
r(Jτ,≥,pre) > R − γR at least one of these stets of jobs (huge or large) has to contribute a
large resource requirement to r(Jτ,≥,pre). In the following, we will find the gap, depending
on which of both sets contributes a suitable large resource requirement.

Case 2.1: r(JL,T ′/2) ≥ 2γR. Let τ ′ ∈ {s ∈ S|τ ≤ s ≤ T ′} be the first point in time
where r(JL,T ′/2) − r(JL,τ ′,>,pre) ≥ γR. Note that τ ≤ τ ′ since, otherwise, there would be
γR free resources at τ .

▷ Claim 12. By this choice at each point between τ ′ and τ ′ + ⌈T ′/2⌉εδT there are at least
γR free resources.

Between τ ′ and T ′ there are γR free resources since jobs form JL,T ′/2 with a resource
requirement of at least γR end before τ ′. On the other hand, before the shift there was at
least γR resource blocked by jobs from JL,T ′/2 between T ′/2 and τ ′ and hence after the shift
there is at least γR free resource at any time between T ′ and τ ′ + ⌈T ′/2⌉εδT . Moreover, as in
Case1.2, let ρ ∈ {s|τ ≤ s ≤ T ′, s ∈ S} be the first point in the schedule where |Jρ,>,pre| ≤ k,
i.e., where at most k jobs are scheduled that start before T ′/2.
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Case 2.1.1

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ ′

τ ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

ρ

ρ + ⌈T ′/2⌉εδT

Gap

Case 2.1.2

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ ′
ρ

τ

τ ′ + ⌈T ′/2⌉εδT
ρ + ⌈T ′/2⌉εδT

τ + ⌈T ′/2⌉εδT

Gap

Figure 4 Examples for the shifted schedules and the position of the gap in Cases 2.1.1 and Case
2.1.2.

▷ Claim 13. By this choice at each point between τ and ρ + ⌈T ′/2⌉εδT there are at least k

unused machines.

From τ to T ′ there are k unused machines, by the choice of τ . On the other hand, at each
point in time between T ′ and ρ + ⌈T ′/2⌉εδT there where k machines blocked by jobs from
that started before T ′/2 and these machines are now unused.

Similar as in Cases 1.2.1 and 1.2.2, we will find the gap dependent of the relation between
τ ′ and ρ.

Case 2.1.1: ρ ≥ τ ′. In this case between τ ′ and τ ′ + ⌈T ′/2⌉εδT there are at least k unused
machines. Therefore, we have a gap between these two points, which is large enough, see
Figure 4. In the algorithm, we have to guess the k huge jobs, which end before τ and their
start point, as well as the points τ , τ ′ and ρ. All the guesses for this case can be iterated in
polynomial time.

Case 2.1.1: ρ < τ ′. In this case, we act like in Case 1.2.2 and shift all huge jobs, but the
at most k jobs ending after ρ, downwards such that they end at ρ, see Figure 4. Furthermore,
we shift all jobs starting after ρ + ⌈T ′/2⌉εδT back downwards such that they again start
at their primary start position. Now after T ′ there are just jobs having their start or end
position between τ + ⌈T ′/2⌉εδT and ρ + ⌈T ′/2⌉εδT . At each point between these two points
there are at least k unused machines and γR unused resource with the same arguments as in
Case 1.2.2. Hence, we have a gap with the right properties between T ′ and T ′ + ⌈T ′/2⌉εδT .
All the guesses for this case can be iterated in polynomial time.

Case 2.2: r(JL,T ′/2) < 2γR. Since we have r(Jτ,≥,pre) > R−γR (by Case 2.) and it holds
that (JH ∩Jτ,≥,pre) ∪ (JL,T ′/2 ∩Jτ,≥,pre) = Jτ,≥,pre we get that r(JH ∩Jτ,≥,pre) ≥ R − 3γR.
Similar as before, let ρ ∈ {s|τ ≤ s ≤ T, s ∈ S} be the first point in the schedule where less
than k jobs are scheduled that start before T ′/2. By the same argument as in Case 2.1, we
know that at every point between τ and ρ + ⌈T ′/2⌉εδT there are at least k unused machines
in the shifted schedule.

Case 2.2.1: r(Jρ,≥,pre) ≥ γR. In this case, we can construct a schedule in the same
way as in case 1.2.2 or 2.1.2 by shifting down the jobs that start after ρ + ⌈T ′/2⌉εδT and
positioning the gap at T ′, see Figure 5. This is possible because the jobs that are scheduled
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Case 2.2.1

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

ρ

ρ + ⌈T ′/2⌉εδT
Gap

Case 2.2.2

T ′/2

T ′

T ′ + ⌈T ′/2⌉εδT

τ

τ + ⌈T ′/2⌉εδT

ρ

ρ + ⌈T ′/2⌉εδT

ρ′

ρ′ + ⌈T ′/2⌉εδT

Gap

Gap

Figure 5 The shifted schedule and the position of the gap in Cases 2.2.1 and 2.2.2. Note that in
Case 2.2.2 the gap is not displayed continuously. However, by swapping the used resource, we can
make it continuous. We only need the fact that at each point in time there are enough free resources
and machines.

between τ + ⌈T ′/2⌉εδT and ρ + ⌈T ′/2⌉εδT can use at most R − γR resources in this case since
r(Jρ,≥,pre) ≥ γR and hence at least γR resources are blocked by the jobs in Jρ,≥,pre. All
the guesses for this case can be iterated in polynomial time.

Case 2.2.2: r(Jρ,≥,pre) < γR. Let ρ′ ∈ {iδ2|τ/δ2 ≤ i ≤ ρ/δ2, i ∈ N} be the smallest
value, where r(Jρ′,≥,pre) ≤ γR. Remember, we had r(JH ∩ Jτ,≥,pre) ≥ R − 3γR so huge
jobs with summed resource requirement of at least R − 4γR are finished till ρ′. We partition
the huge jobs that finish between τ and ρ by their processing time. Since each job has
a processing time of at least ⌈T ′/2⌉εδT , we get at most O(1/εδ) ≤ |S|/2 sets. As seen in
Section 2, we have to discard at most k ≤ 3|S| large jobs, which have to be placed later on.

▷ Claim 14. There exists a set in the partition, which uses at least 3γR resource total.

Proof. Since γ ≤ 1/(2|S|) ≤ 1/(3|S|/2 + 4) it holds that

R − 4γR

|S|/2 ≥ (1 − 4/(3|S|/2 + 4))R
|S|/2 = 3R/(3|S|/2 + 4) ≥ 3γR.

Therefore, by the pigeon principle, there must be one set in the partition, which has summed
resource requirement of at least 3γR. ◁

We sort the jobs in this partition by non increasing order of resource requirement. We
greedily take jobs from this set, till they have a summed resource requirement of at least
γR and schedule them such that they end before ρ′. If there was a job with more than γR

resource requirement, it had to be finished before ρ′ since the resource requirement of huge
jobs finishing after ρ′ is smaller than γR and we only chose it. Otherwise, the greedily chosen
jobs have summed resource requirement of at 2γR. Since the considered set has a summed
resource requirement of at least 3γR, jobs of this set with summed resource requirement at
least 2γR end before ρ′. Therefore, we do not violate any constraint by shifting down these
jobs such that they end at ρ′, see Figure 5.

Concerning property three, note that since we only use the free area (machines and
resources) to schedule the k large jobs inside the gap, there is a layer s′ in the shifted
schedule, for each layer s ∈ S that has at least as many machines and resources not used by
large and huge jobs as the layer s. ◀
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Algorithm Summary. Given a value T ′ := iε′T , we determine the set S and call the
algorithm from Lemma 6 with γ = 1/(3|S| + 4) to generate the set of schedules for the large
jobs. One of these schedules uses in each layer at most as many machines and resources for
large jobs, as the rounded optimal schedule, or the value T ′ is to small. Furthermore, the
set of not scheduled large jobs J ′ has a total machine requirement of at most 3|S|, a total
resource requirement of at most γR, and each job has a processing time of at most T ′/2.

For each of these schedules, the algorithm iterates all values for τ and ρ and all possibilities
for the at most 2k huge jobs ending before or after these values and their starting positions.
Then, we identify the case and the other variables dependent on the guesses and the solution
schedule for the large jobs. By this we generate a new set of schedules, for which it will try
to place the small jobs. We refer to the full version for more details.

To bound the total number of guesses that we add by this procedure, note that we have
to guess τ , ρ and ρ′ from at most O(|S|) possibilities. Further, we for each of these guesses,
the algorithm guesses at most 2k huge jobs and their starting positions. The total number
of these guesses is bounded by (m/ε2)O(k), since the huge jobs start at multiples of ε2T .
Therefore, the total number of guesses for the large jobs is bounded by (m/ε2)O(k) · O(|S|3).
Since k ≤ 3|S|, this guess for the huge jobs lengthens the running time by a factor of at most
(m/ε)1/εO(1/ε2) . This concludes the proof of Theorem 1.
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