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1 Introduction

Our main contribution is a polynomial-time algorithm to reduce a k-colorable gammoid to a
(2k — 2)-colorable partition matroid. Before elaborating on the statement of this result, we
first give the necessary definitions, and the most relevant prior work. After stating the result
we then explain some of the algorithmic ramifications.

1.1 Definitions

A set system is a pair M = (S,Z) where S is a universe of n elements and Z C 2° is a
collection of subsets of S. Sets in Z are called independent and the rank r is the maximum
cardinality of a set in Z. A partition C1,Co,...,Cy of S into independent sets is a k-coloring
of M. The coloring number of M is the smallest k& such that a k-coloring exists.

If each element s € S has an associated list A of allowable colors, then a list coloring
is a coloring C',Cy,...,C}; such that if an s € S is in C; then 7 € A,. The list coloring
number of M is the smallest k that guarantees that if for s € S it is the case that if |A4| > &
then a list coloring exists.

If R C S then the restriction of M to R, denoted by M | R, is a set system where the
universe is S N R and where a set I C S is independent if and only if ] C Rand I € Z.
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A hereditary set system is a set system where if AC BC Sand BeZthen A€Z. A
matroid is an hereditary set system with the additional properties that ) € Z and if A € Z,
B € T, and |A| < |B] then there exists an s € B\ A such that AU {s} € Z. The intersection
of matroids (S,Z;),...,(S,Z¢) on common universe is a hereditary set system with universe
S where a set I C S is independent if and only if for all ¢ € [1, /] it is the case that I € Z,.

A gammoid is a matroid that has a graphical representation (D = (V, E), S, Z), where
D = (V,E) is a directed graph, S C V is a collection of source vertices and Z C V is a
collection of sink vertices. In the gammoid that is represented by D a set I C S is in Z if
and only if there exists |I| vertex-disjoint paths from the vertices in I to some subcollection
of vertices in Z. A partition matroid is a type of matroid that can be represented by a
partition X of S. In the partition matroid that is represented by the partition X aset Y C S
is in Z if and only if [Y N X| < 1forall X € X. 1

A matroid N is a reduction (also called weak map) of a matroid M, with the same
universe, if and only if every independent set in IV is also an independent set in M. If N is a
partition matroid, then we say that there exists a partition reduction from M to N. [5]
defined the following decomposability concept, which generalizes partition reduction.

» Definition 1. A matroid M = (S,Z) is (b, c)-decomposable if S can be partitioned into
sets X1, Xa, ..., Xy such that:
For alli € [£], it is the case that | X;| < ¢k, where k is the coloring number of M.
For a set Y ={v1,...,v¢}, consisting of one representative element v; from each X;, the
matroid M |Y is b colorable.
If b = 1 then Xy, Xo,..., X, represents a partition matroid. Thus (1, ¢)-decomposability
means there exists a partition reduction where the coloring number increases by at most a
factor of c.

1.2 Prior Work

There are two prior, independent, papers in the literature that are directly relevant to our
results. [3] showed that any gammoid M admits a (1, (2 — £))-decomposition. This proof is
constructive, and can be converted into an algorithm. The resulting algorithm is essentially
a local search algorithm that selects a neighboring solution in the dual matroid in such a way
that an auxiliary potential function always decreases. But there seems to be little hope of
getting a better than exponential bound on the time, at least using techniques from [3] as the
potential can be exponentially large. Further [3] shows that no better bound is achievable.

[5] gave a polynomial-time algorithm to construct a (18, 1)-decomposition of a gammoid.
The reduction was shown by leveraging prior work on unsplittable flows [6]. Both paper [3, 5]
also observed that partition reductions are relatively easily obtainable for other common
types of combinatorial matroids. In particular transversal matroids are (1,1)-decomposable
[3, 5], graphic matroids are (1,2)-decomposable [3, 5] and paving matroids are (1, [-"5])-
decomposable if they are of rank r [3].

The main algorithmic result from [5] is:

» Theorem 2 ([5]). Consider matroids My, Ma, ..., M, defined over a common universe,
where matroid M; has coloring number k;. There is a polynomial-time algorithm that,
given a (b, ¢;)-decomposition of each matroid M;, computes a coloring of the intersection of

My, Ms, ..., M, using at most (Hie[k] bi) . (Zie[k] ci) k* colors, where k* = max;cp k;.

1 Technically one can generalize this to let there be a separate upper bound for each X; on the number of
elements Y can obtain from X;, but in this paper we only consider partition matroids where the bound
is one.
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Combining Theorem 2 with the decompositions in [3, 5] one obtains O(1)-approximation
algorithms for problems that can be expressed as coloring problems on the intersection of
O(1) common combinatorial matroids. Several natural examples of such problems are given
in [5]. [1] showed that for two matroids M; and M, over a common universe with coloring
numbers k; and ks, the coloring number k of M; N My is at most 2max(kq, k2). The proof
in [1] uses topological arguments that do not directly give an algorithm for finding the
coloring. The list coloring number of a single matroid equals its coloring number [9]. For the
intersection of two matroids [3] observed that a list coloring could be efficiently computed by
partition reducing each of the matroids. A consequence of the results in [3] is a constructive
proof that the list coloring number of M; N M5 is at most 2 max(kq, ko) if M7 and M are
each one of the standard combinatorial matroids. Further a consequence of the results in [5]
is an efficient algorithm to compute such a list coloring if M; and Ms are each one of the
standard combinatorial matroids besides a gammoid.

For hereditary set systems the coloring number is equal to the set cover number. Set
cover has been studied extensively in the field of approximation algorithms. The greedy
algorithm has an approximation ratio of H, ~ Inn and this is essentially optimal assuming
P # NP [10, 11].

1.3 Our Main Result and Its Algorithmic Applications

We are now ready to state our main result:

» Theorem 3. A partition reduction from a k-colorable gammoid to a (2k — 2)-colorable
partition matroid can be computed in polynomial time given a directed graph D that represents
M as input.

Recall that [3] showed that the (2k — 2) bound is tight.

Combining our main result, Theorem 3, with Theorem 2 from [5] we obtain significantly
better approximation guarantees for matroid intersection coloring problems in which one of
the matroids is a gammoid. One example is given by the following problem. Initially assume
that the input consists of a directed graph D with a designated file server location (a sink) and
a collection of clients requesting files from the server at various locations in the networks (the
sources). The goal is to as quickly as possible get every client the file that they want from the
server, where in each time step one can service any collection of clients for which there exist
disjoint paths to the server. This is a matroid coloring problem that can be solved exactly in
polynomial-time [4]. Now assume that additionally the input identifies the company to which
each client is employed by, and for each company there is a Service Level Agreement (SLA)

that upper bounds on how many clients from that company can be serviced in one time unit.

Now, the problem becomes a matroid intersection coloring problem, where the intersecting
matroids are a gammoid and a partition matroid. Using the (18, 1)-decomposition of a

gammoid and Theorem 2 from [5] one obtains a polynomial-time 36-approximation algorithm.

However, combining the (2k — 2)-partition reduction of a gammoid from Theorem 3 with
Theorem 2 from [5] we now obtain a polynomial-time 3-approximation algorithm.?
Another algorithmic consequence is an efficient algorithm to list coloring the intersection
M N Ms of a ki-colorable matroid M; and a ks-colorable matroid M, if the list of allowable
colors for each element has cardinality at least 2 max(kq, k2), and each of the matroids is

2 This is because Theorem 2 is a (1, 2)-decomposition of a gammoid and a partition matroid is in itself a
(1, 1)-decomposition, so Theorem [5] states the approximation is 3.
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Figure 1 Example of trees created. Here k = 3. Source portals are matched to sink portals along
a path not in the trees. All sink portals will have k units of flow entering them and source portals
have k units leaving.

either a graphic matroid, paving matroid, transversal matroid, or gammoid. Casting this
into the context our running file server example implies that additionally each client has a
list of allowable times when the file transfer may be scheduled. Our partition reduction of a
gammoid then yields an efficient algorithm to find a feasible schedule as long as the cardinality
of allowable times for each client is at least 2max(kq, ko), where k; is time required if the
network had infinite capacity (so only the SLA constraints come into play), and ks is the
time required if the SLA allowed infinitely many file transfers (so only the network capacity
constraints come into play).

Set cover is a canonical algorithmic problem. So there is considerable interest in discovering
examples of natural special types of set cover instances where o(logn) approximation is
possible. For example, several geometrically based types of instances are known, for example
covering points in the plane using a discs [7], where a polynomial time approximation scheme
is known. Our results provide another example of such a natural special case, namely when
the sets come from the intersection of a small number of standard combinatorial matroids.

Theorem 3 and its proof reveal structural properties of gammoids that would seem likely
to be of use to address future research on gammoids.

1.4 Overview of Techniques

Given a graphic representation of a gammoid, an optimal coloring can be computed in
polynomial-time [4]. By superimposing the source-sink paths for the various color classes one
can obtain a flow f from the sources to the sinks that moves at most k units of flow over any
vertex. Using standard cycle-canceling techniques [2] one can then convert f to what we call
an acyclic flow. A flow f is acyclic if for every undirected cycle C' in D at least one edge in
C either has flow k or has no flow. Thus by deleting edges that support no flow in f, as they
are unnecessary, we are left with a forest 7 of edges that have flow in the range [1,k — 1]
and a collection of disjoint paths, which we call highways, that have flow k. See Figure 1.
Now each part X in the computed partition X will be entirely contained in one tree
T € T, and the parts X in a tree T' € T are computed independently of other trees in 7.
There can be four types of vertices in T": (1) sources s that have outflow 1, (2) source portals
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§, which are vertices that have a highway directed into them, and which have outflow k in T,
(3) sink portals Z, which are vertices that have a highway directed out of them, and which
have inflow k in 7', and (4) normal vertices. Again see Figure 1.

We give a recursive partitioning algorithm for forming the parts X in a tree T'€ 7. On
each recursive step our algorithm first identifies a single part X of at most 2k — 2 sources
and an associated sink portal that are in some sense near each other on the edge of 7. The
algorithm then removes these sources and sink portal from 7', and reconnects disconnected
sources back into appropriate places in T'. The algorithm then recurses on this new tree T.

Most of the proof that our partitioning algorithm produces a (1,2 — %)-decomposition
focuses on routing individual trees in 7. So let Y be a collection of sources such that for all
XeX|YnX| <L

The first key part is proving that as the partitioning algorithm recurses on a tree T, it
is always possible to route both the flow coming into 7', and the flowing emanating within
T, out of T', without routing more than k£ units of flow through any vertex in 7. Note that
as the algorithm recurses the tree T loses a sink portal (which reduces the capacity of the
flow that can leave T by k) and loses up to 2k — 2 sources (which means there is less flow
emanating in 7' that has to be routed out).

The second key part is to prove that there is a vertex-disjoint routing from the source
portals in 7" and the sources in T'NY to the sink portals in 7. To accomplish we trace our
partitioning algorithm’s recursion backwards. So in each step a new collection X of sources
and a sink portal is added back into 7. We then prove by induction that no matter how the
previously considered sources in Y were routed, there is always a feasible way to route the
chosen source in Y N X to a sink portal in T'. Then we finish by observing that unioning the
routings constructed within the trees with the highways gives a feasible routing for Y.

2 Preliminaries

This section introduces notation and other necessary definitions. Let D = (V, E) be a
directed graph that represents a gammoid. Let S C V be a set of sources, and Z C V be the
collection of sinks. We may assume without loss of generality that:

Each vertex v € V has either out-degree 1 or in-degree 1.

Each source s € S has in-degree 0 and out-degree 1.

Each sink z € Z has in-degree 1 and out-degree 0 and |Z| = r.

If uv is an edge in E then vu is not an edge in E.

We assume without loss of generality that all color classes have full rank, that is |S| = rk.
This can be assumed by adding dummy sources to S.

» Definition 4. A feasible flow in a digraph D from a collection S’ C S is a collection
of paths {p° | s € S’} such that (1) p® is a simple path from s to some sink, and (2) no
verter or edge in D has more than k such paths passing through it.

A feasible routing in a digraph D from a collection S' C S is a collection of paths
{p* | s € §'} such that (1) p* is a simple path from s to some sink, and (2) no vertex or
edge in D has more than one such path passing through it.

3 The Partition Reduction Algorithm

This section gives the Partition Reduction Algorithm. First, we define a corresponding flow
graph. Using a Cycle-Canceling Algorithm, we decompose the flow graph into a collection of
trees. Then we algorithmically create the partitions from the local structure in these trees.
The analysis of the algorithm is deferred to the next section.
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3.1 Defining the Flow Graph

Given the digraph D we can compute a minimum k such that M is k-colorable in polynomial
time using a polynomial-time algorithm for matroid intersection [8]. Further we can compute
the collection of resulting color classes C = {C1,C5,...,Ck}. So C is a partition of the
sources S, and for each C; € C there exist r vertex-disjoint paths p},...,pl in the digraph
D from the r sources C; to Z. We create an f where the flow f(u,v) on each edge (u,v) is
initialized to the number of paths p{ that traverse (u,v), that is

k r
flu,v) = Z Z Ly vyep?

i=1 j=1

A flow f is acyclic if for every undirected cycle C in D at least one edge in C' either has
flow k or has no flow in f. An arbitrary flow can be converted acyclic by finding cycles in a
residual network D”. This is standard [2], but for completeness we define it here.

For every directed edge (u,v) with f(u,v) < k there exists a forward directed edge (u,v)
in D" with capacity ¢, (u,v) := k — f(u,v). For every directed edge (u,v) with f(u,v) >0
there exists a backward directed edge (v,u) in D" with capacity ¢,(v,u) := f(u,v). An
augmenting cycle in D" is a simple directed cycle with strictly more than two edges.

Cycle-Canceling Algorithm. While there exists an augmenting cycle C' do the following:
Let ¢ := ming, ,)ec ¢-(u,v) be the minimum capacity of an edge in C.
For each forward edge (u,v) € C, increase f(u,v) by c.
For each backward edge (u,v) € C, decrease f(u,v) by c.

As every iteration increases the number of edges that have flow k£ in f or that have no
flow in f by 1, the Cycle-Canceling Algorithm terminates after at most |E| iterations. The
following observations are straight-forward.

» Observation 5. The following properties hold when the Cycle-Canceling Algorithm termi-
nates:
f s a feasible flow of kr units of flow from all the sources.
Every undirected cycle C' in D contains at least one edge with flow k in f or one edge
with no flow in f.
The collection of edges in D that has flow strictly between 0 and k in f forms a forest.
The collection of edges in D with flow k in f are a disjoint union of directed paths, which
we will call highways.

3.2 Properties of the Acyclic Flows

We now give several definitions and straightforward observations about our acyclic flow f
that will be useful in our algorithm design and analysis.

» Definition 6.

A wvertex v is a source portal if its in-degree in D is 1, and it has k units of flow passing
through it in f.

A vertex v is a sink portal if its out-degree in D is 1, and it has k units of flow passing
through it in f.

Let T be the forest consisting of edges in D that have flow in f strictly between 0 and k.
For a tree T € T and a vertex v € T define T, to be the forest that results from deleting
the vertex v from T.
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» Observation 7. Fach sink z € Z is in a tree T € T that consists solely of z.

Proof. By assumption, the sink z has in-degree 1 in D and all color classes C have full rank.

Hence, k units of flow are entering z through a unique edge. |

As our partition reduction algorithm partitions each tree T' € T independently, it will
be notationally more convenient to fix an arbitrary tree T' € T, and make some definitions
relative to this fixed 7', and make some observations that must hold for any such T. To a
large extent these observations are intended to show that the Figure 2 is accurate.

» Definition 8.
Let S be the collection of source portals in tree T.
Let Z be the collection of sink portals in tree T.
A normal verter is a vertex that is none of a source, a sink, a source portal, nor a sink
portal.

» Definition 9.

A feasible flow in T from a collection S’ C S is a collection of paths, one path p* for
each s € S and k paths ps,...,p; for each source portal § € S such that (1) p° is a
simple path from s to some sink portal, (2) each pi is a simple path from § to a sink
portal, and (3) no vertez or edge in T has more than k such paths passing through it.

A feasible routing in T from a collection S’ C S is a collection of paths, one path p*
for each s € 8" and one path p* for each source portal 5 € S such that (1) p® is a simple
path from s to some sink portal, (2) p° is a simple path from § to a sink portal, and (3)
no vertex or edge in T has more than one such paths passing through it.

This following observation holds for trees in 7 initially and gives intuition for the
structure of 7. We remark that this observation may not hold throughout the execution of
our algorithm for all trees.

» Observation 10. The number of sources in T is an integer multiple of k.

Proof. This follows from the fact that each source portal § € T' has exactly k units of flow
coming into T" via § in the flow f and each sink portal Z € T has exactly k units of flow
leaving T via Z in f. <

» Definition 11.
For two vertices u,v € T, let P(u,v) be the unique undirected path from u to v in T.
The backbone B of T is the subgraph of T' consisting of the union of all paths in between
pairs of sink portals in T, that is B = Ucz Uscz P(9,2).
For the backbone B, let B, be the induced forest that results from deleting v from B.
A vertex v in a backbone B is a branching vertex if either:
v s not a sink portal and the forest B, contains at least two trees that each contain
exactly one sink portal, or
v is a sink portal and the forest B, contains at least one tree that contains exactly one
sink portal.
Let H be the forest that results from deleting the edges in B from the tree T'.
For two vertices u,v € B, let S(P(u,v)) be the sources s € S such that there exists a tree
H € H such that s € H and such that H contains a vertex w € P(u,v). Intuitively these
are the sources in trees in H hanging off vertices of the path P(u,v).
Let S(v) denote S(P(v,v)).
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Legend
a Sink Portal
e Source Portal
o Source
—— Edgesin H

—— Edges in backbone B

Figure 2 Backbone of a tree.

» Observation 12. If § € S is a source portal in T then § is in the backbone B and
degh(3) > 2, that is § has out-degree at least 2 in B.

Proof. By definition § has a unique incoming edge, which is saturated in f, at least one
outgoing edge in T that is not saturated in f. Hence, degg (§) > 2. By flow conservation,
there has to be at least two directed paths from § to two different sink portals in 7. This
implies that § is in the backbone B. <

» Observation 13. If B contains at least two sink portals, then B contains a branching
vertex v.

Proof. Consider an arbitrary vertex v € B. If v is not a branching vertex, then there must
be a subtree 7" € B, that contains two sink portals. One can then recurse on 7" to find a
branching vertex. |

» Observation 14. [fs € S is a source in T then s is not in the backbone B.

Proof. As s has out-degree 1 in D, it can not be on any path between sink portals in T. =

» Observation 15. For each tree H € H it must be the case that all edges in H are directed
towards the unique vertex w in H that is also in B.

Proof. This follows from the fact that H \ {w} can not contain a sink portal. <

» Observation 16. Assume that T has at least two sink portals. Let v be a branching vertez.
Let T' be a tree in the forest B, that contains exactly one sink portal z. Then the following
must hold:

T =P(v,2)\ {v}.

If T' contains a source portal §, then degh(8) = 2.

The path T' contains at most one vertex y such that degg (y) =2.

Proof. The first statement follows from the definition of B and the fact that 7" only contains
one sink portal. The second statement follows since every vertex on a path other than its
endpoints has degree two. For the last statement assume to reach a contradiction that there
were two such y’s, y; and yo with y; being closer to v in B. Then the flow leaving y; toward
Z could not be feasibly routed through ys. <
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3.3 Description of the Partition Reduction Algorithm

Given the collection of trees 7, our Partition Reduction Algorithm returns a partition X of
the sources in S. The algorithm iterates through the trees 7" in 7 and partitions the sources
in T based on their locality in 7. So let us consider a particular tree T € T

The algorithm performs the first listed case below that applies, with the base cases being
checked before the other cases. In the non-base cases the tree T' will be modified, and the
algorithm called tail-recursively on the modified tree. We will show after the algorithm
description that the algorithm maintains the invariant that there is a feasible flow on the
tree T' throughout the recursion.

Base Case A. If T contains no sources then the recursion terminates, and the algorithm
moves to the next tree in 7.

Base Case B. Otherwise if T' contains at most 2k — 2 sources and no source portal then
these sources are added as a part X in X'. The recursion terminates, and the algorithm then
moves to the next tree in 7.

We perform the following recursively on 7" if neither base case holds. Let v be an arbitrary
branching vertex in B. We will show this must exist in Observation 17.

Let Z; be a sink portal in some tree T7 in T, that only contains one sink portal. If v is
not a sink portal, let Z; be a sink portal in some tree T, where T} # T3, in T, that only
contains one sink portal. If v is a sink portal let Zo = v.

The algorithm’s cases are broken up as follows. Case 1 is executed when there is a source
portal at v or in T} or in T. Case 2 is executed when there is a vertex of out-degree 2 in T
or Ty and there is no source portal. Case 3 is everything else.

Recursive Case 1la. The vertex v is a source portal. In this case T is modified as follows:
(1) for each source s € T} a directed edge (s,v) is added to T, (2) v is converted into a
normal vertex, and (3) all the nonsources in T} are deleted from 7. The algorithm then
recurses on this new 7.

Recursive Case 1b. In this case for some i € {1,2} the path P(v, Z;) \ {v} contains a source
portal. In this case T is modified as follows: (1) for each source s € T; a directed edge (s,v)
is added to T, and (2) all the nonsources in T; are deleted from 7. The algorithm then
recurses on this new 7.

Case la: i v=3 Case 1b: )

Z1 Zi

Recursive Case 2a. In this case for some i € {1, 2}, the path P(v, Z;) \ {v} contains a vertex
y with degh(y) = 2 and |S(P(y, %))| < 2k — 2. Add the sources in S(P(y, %)) as a part X
to X. The tree T is then modified as follows: (1) for each source s € T; — X a directed edge
(s,v) is added to T, and (2) the sources in X and all the nonsources in T; are deleted from
T. The algorithm then recurses on this new 7.
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Recursive Case 2b. In this case for some ¢ € {1,2}, the path P(v, 2;) \ {v} contains a vertex
y with degh(y) = 2 and |S(y)| = k. In this case the algorithm adds the k sources in S(y)
as a part X to X. The tree T is then modified as follows: (1) for each source s € T; — X a
directed edge (s,v) is added to T', and (2) the sources in X and all the nonsources in T; are
deleted from T. The algorithm then recurses on this new T

Case 2a: v Case 2b: QU

Recursive Case 2c. In this case for some i € {1,2}, the path P(v, %) \ {v} contains a
vertex y with degh(y) = 2 and |S(P(y, ) \ {y})| = k. In this case the algorithm adds the &
sources in S(P(y, Z;) \ {y}) as a part X to X. The tree T is then modified as follows: (1) for
each source s € T; — X a directed edge (s,v) is added to T, and (2) the sources in X and all
the nonsources in T; are deleted from T'. The algorithm then recurses on this new 7.

Case 2c:
5 U

Recursive Case 3a. In this case for some i € {1,2} T; contains exactly k sources. Add the
sources in T; as a part X to X. The tree T is modified by deleting T;. The algorithm then
recurses on this new 7.

Recursive Case 3b. The set of sources in T7 U T5 are added as a part X in X. The tree T
is modified by deleting the vertices in 77 and T5. Add a new sink portal Z together with a
directed edge (v, Z) to T. The algorithm then recurses on this new 7.

Case 3a: é v : v Case 3b:

4  Analysis of the Partition Reduction Algorithm

Our goal is to show that the partition matroid, represented by the partition constructed
from the trees, indeed corresponds to a feasible partition reduction from the gammoid. The
analysis has the following key components.
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Every tree T has a corresponding feasible flow throughout the algorithm.

Every part X of the partition has size at most 2k — 2 and all sources are in some part.
Any collection of sources Y such that |[Y N X| <1 for all X € X is in Z and, therefore,
can each route a unit of flow to the sink in D.

4.1 The Trees Always Have a Feasible Flow

This section’s goal is to show that each tree has a feasible flow as defined in Definition 8
throughout the execution of the algorithm. We will later use this to prove that our partition
indeed represents a partition matroid that corresponds to a feasible partition reduction in
the following section.

We begin by showing various invariants hold for each tree when a feasible flow exists.
In particular, this will show that a branching vertex exists if any of the recursive cases are
executed. Moreover, arriving at Cases (3a) and (3b) ensure the existence of Ty and Th. All
together this with the fact that each tree has a feasible flow will establish that the algorithm
always has a case to execute if T is non-empty.

This observation shows a branching vertex exists if neither base case holds.

» Observation 17. Fix a tree T € T during the execution of the algorithm and say T supports
a feasible flow as defined in Definition 8. If neither of the base cases apply then T contains
at least two sink portals. Moreover a branching vertex must exist in T in this case.

Proof. This observation holds because 7" must contain either more than 2k — 2 sources or
a source portal along with at least one source. In either case, we require two sink portals
to support the strictly more than k& units of flow from these sources and source portal. A
branching vertex must then exist by Observation 13. |

» Observation 18. Fiz a tree T € T during execution of the algorithm and say T supports
a feasible flow as defined in Definition 8. Say that T has a branching vertex v with a tree
T; containing exactly one sink Z;. Moreover say that there is no verter with out-degree 2 in
P(v, 2;). It is the case that P(v, 2;) is a directed path from v to Z;.

Proof. No vertex with out-degree 2 is in P(v, 2;). Thus, P(v, 2;) is either a path from v to
Z; or from Z; to v. Sink portals always have out-degree 0 in 7', so the observation follows. We
note that, sink portals have out-degree 0 in T initially and are never given outgoing edges by
the algorithm. |

The next observation shows that a branching vertex is not a sink portal when Cases (3a) or
(3b) are executed.

» Observation 19. Fiz a tree T € T during execution of the algorithm and say T supports
a feasible flow as defined in Definition 8. Say that T has a branching vertex v and a
corresponding tree T; with exactly one sink Z;. If P(v, Z;) \ {v} does not contain a vertex of
out-degree 2 in B, then v is not a sink portal.

Proof. Observation 18 implies that P(v, 2;) is a directed path form v to Z;. Sink portals
always have out-degree 0 in T, so the observation follows. We note that, sink portals have
out-degree 0 in 7" initially and are never given outgoing edges by the algorithm. <

The previous observations guarantee the algorithm always has a case to execute if a
feasible flow exists in all trees. The next lemma guarantees the existence of a feasible flow.

» Lemma 20. Fiz any tree T' during the execution of the algorithm. There must be a feasible
flow in T as described in Definition 8.

62:11

ESA 2021



62:12

An Efficient Reduction of a Gammoid to a Partition Matroid

4.2 Bounding the Size of the Parts in the Partition

This section shows that every source is in some part X in X and that every X € X has size
at most 2k — 2. Thus we have a valid partition with each part having the desired size.

» Lemma 21. It is the case that | X| < 2k — 2 for all X € X. Moreover, every source in S
is in some set in X.

Proof. It is easy to see that every source in S is in some set in X'. This is because sources
are always contained in some tree of 7 until they are added to a set placed in X and the
algorithm stops once there is no tree in 7.

Now we show how to bound the size of sets in X'. Cases (1la) and (1b) do not add a set
to X. Cases (2b), (2¢) and (3a) add a set to X of size k by definition. Case (2a) adds a set
of size 2k — 2.

Case (3b) is more interesting. Consider the execution of this case on a tree T with
branching vertex v. Let Z; and Z2 be the corresponding sinks. We know v is not a sink portal
by Observation 19 and therefore 77 and 75 both exist. By Observation 18, the paths from
v to Z; and Z; are directed paths from v to Z; and from v to Z3. Hence, neither 77 nor Ts
contains more than k sources. Since case (3a) does not hold, T} and T3 has strictly less than
k sources. Thus, there are at most 2k — 2 sources in the set added to X. |

4.3 Routing Sources within a Tree

In this section, we show that the algorithm is indeed a partition reduction from a k-colorable
gammoid to a (2k — 2)-colorable partition matroid. That is, we show that every set Y, that
is independent in the partition matroid represented by X is also independent in the gammoid.
More specifically, for any set Y where |Y N X| < 1 for all X € X it is the case that Y € T or,
equivalently, there is a feasible routing in the digraph D from the sources in Y. The key to
this will be Lemma 22 which essentially states that there exists a feasible routing in each
tree T € T.

» Lemma 22. Let T be an arbitrary tree in T. Let X1 be the parts in X that are also in T.
For a setY with [Y N X| <1 forall X € X, let Yr be the subset of sources in'Y that are
also in T. Then there is a feasible routing R in T from Y.

» Lemma 23. Let Y C S such that for all X € X it is the case that | X NY| < 1. Then
there exists a feasible routing from Y in the digraph D.

Proof. This follows from Lemma 22 and the fact there is a unique highway into each source
portal in each tree and a unique highway leaving each sink portal in every tree. |
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