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Abstract
We present approximation and exact algorithms for piecewise regression of univariate and bivariate
data using fixed-degree polynomials. Specifically, given a set S of n data points (x1, y1), . . . , (xn, yn) ∈
Rd × R where d ∈ {1, 2}, the goal is to segment xi’s into some (arbitrary) number of disjoint pieces
P1, . . . , Pk, where each piece Pj is associated with a fixed-degree polynomial fj : Rd → R, to minimize
the total loss function λk +

∑n

i=1(yi − f(xi))2, where λ ≥ 0 is a regularization term that penalizes
model complexity (number of pieces) and f :

⊔k

j=1 Pj → R is the piecewise polynomial function
defined as f |Pj = fj . The pieces P1, . . . , Pk are disjoint intervals of R in the case of univariate data
and disjoint axis-aligned rectangles in the case of bivariate data. Our error approximation allows
use of any fixed-degree polynomial, not just linear functions.

Our main results are the following. For univariate data, we present a (1 + ε)-approximation
algorithm with time complexity O( n

ε
log 1

ε
), assuming that data is presented in sorted order of

xi’s. For bivariate data, we present three results: a sub-exponential exact algorithm with running
time nO(

√
n); a polynomial-time constant-approximation algorithm; and a quasi-polynomial time

approximation scheme (QPTAS). The bivariate case is believed to be NP-hard in the folklore but
we could not find a published record in the literature, so in this paper we also present a hardness
proof for completeness.
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1 Introduction

Line, or curve, fitting is a classical problem in statistical regression and data analysis, where
the goal is to find a simple predictive model that best fits an observed data set. For instance,
given a set of two-dimensional points (xi, yi), i = 1, . . . , n, the least-square line fitting problem
is to find a linear function f : y = ax+b minimizing the cumulative error

∑n
i=1(yi−(axi+b))2.

This problem is easily solved in O(n) time because the coefficients of the optimal line have a
simple closed form solution in terms of input data. In most cases, however, a single line is a
poor fit for the data, and instead the goal is to segment the data into multiple piece, with
each piece represented by its own linear function. This problem of poly-line (or piecewise
linear) fitting has been studied widely in computational geometry, where the goal is either
to minimize the total error for a given number of pieces [8, 10], or to minimize the number
of pieces for a given upper bound on the error [8], under a variety of error measures. In a
related but technically different vein of work on “curve simplification”, the approximation
must also form a polygonal chain – that is, the pieces representing neighboring segments
must form a continuous curve, and it is conjectured that finding a polygonal chain of k

pieces with minimum L2 error is NP-hard [8]. In our regression setting, such continuity is
not required.
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63:2 Piecewise Polynomial Regression

These best-fit formulations with a “hard-coded” value for the number of pieces k, however,
suffer from the problem of having to specify k, rather than letting the structure in the data
dictate the choice. This can be circumvented by running the algorithm for multiple values
of k, and then stopping with the smallest number of pieces with an acceptable error. A
significant issue, however, is the inherent tradeoff between the number of pieces and the error
– the larger number of pieces, the smaller the error – which is recognized as the problem of
“overfitting” in statistics and machine learning. In order to avoid this overfitting problem,
regression typically uses “regularization” and includes a penalty term for the size of the
representation (model) in the objective, often called the “loss” function. By optimizing the
loss function, the algorithm automatically balances the two competing criteria: number of
pieces k and approximation error.

In particular, suppose we have a set of data points (xi, yi) ∈ Rd × R, for i = 1, . . . , n.
We call (xi, yi) univariate data if d = 1 and bivariate if d = 2. We will consider piecewise
approximation of these data points using polynomial functions of any fixed degree g, where
linear functions are the special case when the degree is one. Our goal is to segment xi’s into
some (arbitrary) number of disjoint pieces P1, . . . , Pk, each associated with a constant-degree
polynomial function fj , to minimize the total loss function

λk +
n∑

i=1
(yi − f(xi))2,

where λ > 0 is a pre-specified penalty term for regularizing the model complexity (number of
pieces) and f :

⊔k
j=1 Pj → R is the piecewise polynomial function defined as f |Pj = fj . The

pieces P1, . . . , Pk are disjoint intervals in R in the case of univariate data and are disjoint
axis-aligned rectangles in R2 in the case of bivariate data.

Even for piecewise linear approximation of univariate data, the best bound currently
known is Ω(kn2) [2, 9, 15], and it is an important open problem to either find a sub-quadratic
algorithm or prove a Ω(n2) lower bound. We make progress on this problem by presenting a
linear-time approximation scheme for this problem.

▶ Theorem 1. There exists a (1 + ε)-approximation algorithm for univariate piecewise
polynomial regression which runs in O( n

ε log 1
ε ) time (excluding the time for pre-sorting).

For bivariate data, we obtain the following results, including a sub-exponential exact
algorithm, a constant-factor approximation in polynomial time, and a quasi-polynomial
approximation scheme (QPTAS).

▶ Theorem 2. There exists an exact algorithm for bivariate piecewise polynomial regression
which runs in nO(

√
n) time.

▶ Theorem 3. There exists a constant-factor approximation algorithm for bivariate piecewise
polynomial regression which runs in polynomial time.

▶ Theorem 4. There exists a QPTAS for bivariate piecewise polynomial regression.

Finally, while the bivariate case (and hence the case of more than two variables) is believed
to be NP-hard in the folklore, we could not find a published record in the literature, so we
also present a hardness proof for completeness.

▶ Theorem 5. Bivariate piecewise regression is NP-hard for all fixed degree polynomials,
including piecewise constant or piecewise linear functions.
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Related work. Curve fitting and piecewise regression related problems have been studied
in computational geometry [6, 8], statistics [16] and machine learning [1, 9] as well as in
database theory under the name histogram approximation [11, 14]. The main focus of research
in computational geometry has been to approximate a curve, or a set of points sampled
from a curve, by a fixed-size polygonal chain to minimize some measure of error, such as
L1, L2, L∞ error or Hausdorff error. For instance, Goodrich [10] presented an O(n log n)-time
algorithm to compute a polyline (or a connected piecewise linear function) in the plane
that minimizes the maximum vertical distance from a set of n points to the polyline, which
improves upon the algorithms of [12, 17]. Aronov et al. present an FPTAS for the polyline
fitting problem with the min-sum and least-square error measure, and conjecture that finding
a polygonal chain of k pieces with minimum L2 error is NP-hard [8]. Agarwal et al. [6]
consider approximation under Hausdorff and Frechet distances.

Unlike these computational geometric models, in statistics, machine learning and database
theory, the piecewise approximation is typically not required to be “connected”; instead, the
goal is to partition the data into a given number k of pieces, each represented by a simple
function. Such an optimal histogram (piecewise approximation) can be constructed in O(kn2)
time using dynamic programming, where k is the number of pieces [11, 14]. A similar dynamic
programming algorithm can also compute an optimal “regularized” piecewise approximation,
where k is the number of pieces in the optimal solution [15]. It is an important open problem
to either find a sub-quadratic algorithm or prove a Ω(n2) lower bound.

In machine learning, Acharya et al. [2] study a “segmented regression” problem where
the goal is to recover a function f , which is promised to be “nice” (say, piecewise linear with
k pieces), and the sampled data from f has a small random noise. The quality of recovery is
measured by the mean squared error. In this model, they present an algorithm for computing
a function with O(k) linear pieces in O(n log n) time [2]. An extension to multi-dimensional
data with similar results is presented in [9]. Our focus is a little different from these results
because (1) we do not assume a fixed value of k, and (2) we judge the error of our regression
against worst-case input that is not necessarily drawn from a hypothetical k-piece input with
small random noise. Thus, these two lines of research are complementary.

Finally, for bivariate data, Agarwal and Suri [7] considered the problem of computing a
piecewise linear surface with smallest number of pieces whose vertical distance from data
points is at most ε. They showed that the problem is NP-hard and gave a polynomial-time
O(log n)-approximation algorithm.

Organization. Section 2 introduces some basic notations and concepts used throughout the
paper. Our linear-time approximation scheme for univariate data (Theorem 1) is presented
in Section 3, while our algorithms for bivariate data are presented in Section 4. Finally, in
Section 5, we conclude the paper and pose some open questions. Due to limited space, the
algorithm of Theorem 2 and the hardness result of Theorem 5 (as well as some proofs and
details) are omitted in this version, which will appear in the full paper.

2 Basic notations and concepts

We begin with basic notation and concepts that are used throughout the paper. For an
integer g ≥ 0, we use R[x]g and R[x, x′]g to denote the family of all univariate and bivariate
polynomial functions with degree at most g. A univariate (resp., bivariate) piecewise
polynomial function of degree at most g is a function f :

⊔k
j=1 Pj → R, where P1, . . . , Pk are

disjoint intervals in R1 (disjoint axis-parallel rectangles in R2) and f |Pj
= fj |Pj

for some
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63:4 Piecewise Polynomial Regression

fj ∈ R[x]g (resp., fj ∈ R[x, x′]g), for all j ∈ {1, . . . , k}. The intervals (resp., rectangles)
P1, . . . , Pk are the pieces of f , and the number k is the complexity of f , denoted by |f |. The
notion of piecewise polynomial functions generalizes to higher dimensions (multi-variables),
where the pieces becomes axis-parallel boxes but in this paper we only study univariate and
bivariate piecewise polynomial functions.

Let Γ d
g denote the family of piecewise polynomial functions with d variables and of degree

at most g. For a set of n points S = {(xi, yi) ∈ Rd×R}n
i=1, we define the error of a function

f ∈ Γ d
g for S as

σS(f) = λ · |f |+
n∑

i=1
(yi − f(xi))2,

where λ > 0 is a pre-specified (regularizer) parameter. We assume σS(f) =∞ if the domain
of f does not cover all xi’s. For a fixed constant g, the piecewise polynomial regression
problem takes S and λ as the input, and aims to find the function f∗ ∈ Γ d

g that minimizes the
error σS(f∗). By appropriate scaling of the y-values in the input, we can assume without loss
of generality that λ = 1. Therefore, for convenience, we make this assumption throughout
the paper.

3 Algorithm for univariate data

The input to the univariate regression problem is a dataset S = {(xi, yi) ∈ R×R}n
i=1, where

x1 ≤ · · · ≤ xn, and the goal is to find the function f∗ ∈ Γ 1
g minimizing σS(f∗), for some

fixed constant g ≥ 0, where we assume λ = 1, as mentioned earlier. This problem can be
solved in O(n2) time with a straightforward dynamic program, and no subquadratic-time
(even approximation) algorithm is known. Our main result in this section is a linear-time
approximation scheme, which for any ε > 0 computes in O( n

ε log 1
ε ) time a piecewise function

f ∈ Γ 1
g whose error is at most (1 + ε) · opt, assuming that the points in S are pre-sorted by

their x-coordinates.
In order to explain the main ideas behind our algorithm, it is helpful to first briefly

review the quadratic-time dynamic programming algorithm. That algorithm performs n

iterations, where the ith iteration computes an optimal piecewise regression for the subset of
points (x1, y1), . . . , (xi, yi). If the rightmost piece in the optimal solution for this subproblem
covers the points (xj , yj), . . . , (xi, yi), then the solution combines the optimal regression for
(x1, y1), . . . , (xj−1, yj−1) with the best fitting degree g polynomial for (xj , yj), . . . , (xi, yi).
By dynamic programming, the former is already computed in the (j− 1)th iteration, and the
latter can be computed for all subproblems with an O(n2)-time preprocessing step. There are
O(i) candidates for the rightmost piece, and so the ith iteration takes O(i) time, resulting in
an O(n2) time algorithm.

A natural idea for improving the dynamic program’s time complexity is to reduce the
number of guesses needed for the rightmost piece in each iteration: ideally, we would like to
find the “best” rightmost piece without trying all possibilities. This, however, seems quite
difficult if we want the exact optimal solution. Our main idea is to show that this is possible
if we only need a (1 + ε) approximation of the minimum error. Our algorithm builds on
three key steps. First, we prove a structural lemma (Lemma 7) showing that there exists an
approximate solution f in which the squared error of each piece (essentially) is bounded by
O(1/ε), and therefore contributes between 1 and 1 + O(1/ε) to the final objective σS(f). The
second key idea is to show that, for each i ∈ [n], there exist a set of O( 1

ε log 1
ε ) “candidate”

pieces with right endpoint xi such that a (1 + ε)-approximate solution can be found using
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only these pieces (Lemma 8). Thus, assuming that these candidate pieces and their best fit
degree g polynomials are known, we only have to make O( 1

ε log 1
ε ) guesses in each iteration,

which leads to an O( n
ε log 1

ε )-time algorithm. The final, and third, step is to compute all the
candidate pieces efficiently, which we show can be done using prefix sum and the standard
formula for least-square polynomial regression–the details of this part will appear in the full
paper.

With this preamble, we are ready to describe our algorithm in detail. For a, b ∈ [n]
satisfying a ≤ b, we define

f [a, b] = arg min
f∈R[x]g

b∑
i=a

(yi − f(xi))2 and δ[a, b] = min
f∈R[x]g

b∑
i=a

(yi − f(xi))2.

That is, f [a, b] is the best-fit polynomial in R[x]g for the set of points (xa, ya), . . . , (xb, yb)
(in terms of square error) and δ[a, b] is the square error of f [a, b]. We have the following
simple observation.

▶ Lemma 6. If a′ ≤ a and b′ ≥ b, then δ[a′, b′] ≥ δ[a, b]. Furthermore, for a sequence of
numbers a0, a1, . . . , ar where a−1 ≤ a0 < · · · < ar ≤ b, we have δ[a, b] ≥

∑r
j=1 δ[aj−1 +1, aj ].

Let ε be the approximation factor, which we assume is sufficiently small, say 0 < ε ≤ 1.
Let ε̃ > 0 be such that it satisfies (1 + ε̃)2 = 1 + ε. Then, we have ε/3 ≤ ε̃ ≤ ε since ε ≤ 1.
For an index i ∈ [n], we say i is a left (resp., right) break point if xi−1 < xi (resp., xi+1 > xi).
For a function f ∈ Γ 1

g and a piece P of f , the cost of P is defined as
∑

xi∈P (yi − f(xi))2.
Thus, the total error σS(f) is simply |f | plus the cost of all the pieces of f .

▶ Lemma 7. There exists a function f ∈ Γ 1
g such that σS(f) ≤ (1 + ε̃) · opt and each piece

of f either has cost at most 2/ε̃ or is a singleton point.

Proof. Let f∗ ∈ Γ 1
g be an optimal solution, and so σS(f∗) = opt. Consider a piece of f∗, say,

P ∗ = [xa, xb] where a is a left break point and b is a right break point and a, b ∈ [n]. Since f∗

is optimal, the cost of P ∗ is δ[a, b]. We replace P ∗ with r < ε̃ · δ[a, b] + 1 pieces P1, . . . , Pr as
follows. We say a pair (a′, a′′) of indices with a′ ≤ a′′ is legal if xa′ = xa′′ or δ[a′, a′′] ≤ 2/ε̃.
Starting with a0 = a − 1, we create a sequence a0, a1, a2, . . . of indices, where ai+1 is the
largest right break point in {ai + 1, . . . , b} such that (ai + 1, ai+1) is legal. The sequence ends
at some ar = b, and we claim that r < ε̃ · δ[a, b] + 1. We first observe that since ai+1 is the
largest right break point for which (ai + 1, ai+1) is legal, we have δ[ai + 1, ai+2] > 2/ε̃ for all
i ∈ {0, 1, . . . , r − 2}. Now consider the sum

∑⌊r/2⌋−1
i=0 δ[a2i + 1, a2(i+1)]. Each summand of

this sum is greater than 2/ε̃. On the other hand, we have δ[a, b] ≥
∑⌊r/2⌋−1

i=0 δ[a2i + 1, a2(i+1)]
by Lemma 6. It directly follows that ⌊r/2⌋ < ε̃ · δ[a, b]/2 and hence r < ε̃ · δ[a, b] + 1. We
define Pi = [xai−1+1, xai ] for i ∈ [r]. We replace P ∗ of f∗ with P1, . . . , Pr, and call them the
sub-pieces of P ∗. We do this for all pieces of f∗, which gives us our function f ∈ Γ 1

g , as
follows. First, clearly, the domain of f is contained in the domain of f∗. Next, for each piece
P = [xa, xb] of f , the function f|P is simply the polynomial f [a, b] restricted to P , whose cost
is δ[a, b]. All that remains is to bound the total error σS(f). Consider a piece P ∗ = [xa, xb] of
f∗ and its sub-pieces P1, . . . , Pr. Let c(P ∗) be the total cost of all the sub-pieces P1, . . . , Pr

plus r. By Lemma 6, the total cost of all the sub-pieces P1, . . . , Pr is at most δ[a, b], and since
r < ε̃ · δ[a, b] + 1 and c∗(P ∗) = δ[a, b] + 1, we get c(P ∗) ≤ (1 + ε̃) · c∗(P ∗). This inequality
holds for each piece of f∗, and so we get our result that σS(f) ≤ (1 + ε̃) · σS(f∗). ◀

For convenience, we say a function f ∈ Γ 1
g is S-light if each piece of f is either a singleton

point or of cost at most 2/ε̃. Similarly, for a subset S′ ⊆ S, we say a function f ∈ Γ 1
g is

S′-light if each piece of f is either a singleton point or of cost with respect to S′ (i.e., the
sum of only the square error of the points in S′) at most 2/ε̃.

ESA 2021



63:6 Piecewise Polynomial Regression

For a right break point b ∈ [n] and an integer i ≥ 0, let ai(b) ∈ [b] be the smallest left
break point such that δ[ai(b), b] ≤ (1 + ε̃)i − 1; if such a left break point does not exist, we
set ai(b) to be the largest left break point that is smaller than or equal to b. We define an
index set A(b) = {ai(b) : i ≥ 0 and (1 + ε̃)i−1 − 1 ≤ 2/ε̃}. We say an interval I is canonical
if I = [xa, xb] for some a, b ∈ [n] such that b is a right break point and a ∈ A(b). A function
f ∈ Γ 1

g is canonical if all pieces of f are canonical intervals. The following lemma shows that
we can limit our search to canonical functions.

▶ Lemma 8. There exists a canonical function f ∈ Γ 1
g such that σS(f) ≤ (1 + ε) · opt.

Proof. We claim that for any S-light function f0 ∈ Γ 1
g , there exists a canonical function

f ∈ Γ 1
g with σS(f) ≤ (1 + ε̃) · σS(f0). This claim in combination with Lemma 7 proves the

lemma. We prove the claim using induction on the number r of distinct x-coordinates of the
points in S, i.e., distinct elements in {x1, . . . , xn}. If r = 1, then x1 = · · · = xn and the interval
I = [x1, xn] is a singleton point. Furthermore, in this case, 1 is the unique left break point,
hence 1 ∈ A(n) and I is canonical. Therefore, the claim clearly holds. Assume that the claim
holds if the number of distinct x-coordinates of the points in S is less than r, and consider the
case where the number is r. Let f0 ∈ Γ 1

g be a S-light function, and we want to show that there
exists a canonical function f ∈ Γ 1

g such that σS(f) ≤ (1 + ε̃) ·σS(f0). Consider the rightmost
piece P of f0. Without loss of generality, we may assume that P = [xa, xn] for some left break
point a ∈ [n]. Let c(P ) be the cost of P . We consider two cases, c(P ) ≤ 2/ε̃ and c(P ) > 2/ε̃.
If c(P ) ≤ 2/ε̃, we define i as the smallest integer such that (1 + ε̃)i ≥ c(P ) + 1. Therefore,
(1 + ε̃)i−1 ≤ c(P ) + 1 ≤ (1 + ε̃)i. Since c(P ) ≤ 2/ε̃, we have (1 + ε̃)i−1 − 1 ≤ 2/ε̃ and hence
ai(n) ∈ A(n). By the definition of ai(n), we have ai(n) ≤ a and δ[ai(n), n] ≤ (1 + ε̃)i − 1,
i.e., δ[ai(n), n] + 1 ≤ (1 + ε̃)i. Since (1 + ε̃)i−1 ≤ c(P ) + 1, we further deduce that
δ[ai(n), n] + 1 ≤ (1 + ε̃) · (c(P ) + 1). Now we define S′ = {(x1, y1), . . . , (xa−1, ya−1)} ⊆ S

and S′′ = {(x1, y1), . . . , (xai(n)−1, yai(n)−1)} ⊆ S. Let f ′
0 ∈ Γ 1

g be the function obtained by
restricting f0 to the union of the pieces other than P . Then f ′

0 is both S′-light and S′′-light.
Note that the number of distinct x-coordinates of the points in S′′ is strictly less than r, as
ai(n) is a left break point. Therefore, by our induction hypothesis, there exists some canonical
function f ′′ ∈ Γ 1

g with σS′′(f ′′) ≤ (1 + ε̃) · σS′′(f0) ≤ (1 + ε̃) · σS′(f0), and we can assume
without loss of generality that all pieces of f ′′ are contained in the range (−∞, xai(n)−1].
We define our function f as the “combination” of f ′′ and f [ai(n), n]. Specifically, the pieces
of f consists of all pieces of f ′′ and the interval [xai(n), xn]. On the piece [xai(n), xn], f is
the same as f [ai(n), n]. On the other pieces, f is the same as f ′′. Clearly, f ∈ Γ 1

g , and it is
canonical because f ′′ is canonical and [xai(n), xn] is a canonical interval. Finally, we have

σS(f) = σS′′(f ′′) + δ[ai(n), n] + 1
≤ (1 + ε̃) · σS′(f0) + (1 + ε̃) · (c(P ) + 1)
= (1 + ε̃) · σS(f0).

In the case c(P ) > 2/ε̃, P must be a singleton point as f0 is S-light. Thus, xa = xn and a is
the largest left break point smaller than or equal to n, which implies a0(n) = a and hence P

is canonical. By our induction hypothesis, there exists some canonical function f ′′ ∈ Γ 1
g with

σS′(f ′′) ≤ (1+ ε̃) ·σS′(f0), where S′ = {(x1, y1), . . . , (xa−1, ya−1)}. Without loss of generality,
we may assume all pieces of f ′′ are contained in the range (−∞, xa−1]. Similarly to the
above, We define f as the combination of f ′′ and f [a, n]. Since σS′(f ′′) ≤ (1 + ε̃) · σS′(f0)
and the cost of P is at least δ[a, n], we have σS(f) ≤ (1 + ε̃) · σS(f0). ◀
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We can find a canonical function f ∈ Γ 1
g minimizing σS(f) using dynamic programming,

as shown in Algorithm 1. By Lemma 8, the result is a (1 + ε)-approximation of the univariate
regression problem.

Algorithm 1 Approximate-Regression-1D(S).

1: t← 0 and opt0 ← 0
2: for t from 1 to n do
3: if t is a right break point then
4: ã← arg mina∈A(t){opta−1 + (δ[a, t] + 1)}
5: optt ← optã−1 + (δ[ã, t] + 1)
6: return optn

The correctness of Algorithm 1 is clear. To analyze its time complexity, we observe that
|A(b)| = O( 1

ε log 1
ε ) for all right break points b ∈ [n]. Therefore, assuming that we know

all the index sets A(b) and all the f [a, b] and δ[a, b], where a ∈ A(b), Algorithm 1 can be
directly implemented in O(n

ε log 1
ε ) time. The details of how to compute all A(b) and all

f [a, b], δ[a, b], where a ∈ A(b), in O( n
ε log 1

ε ) time will appear in the full paper. The following
theorem states the main result of this section.

▶ Theorem 1. There exists a (1 + ε)-approximation algorithm for univariate piecewise
polynomial regression which runs in O( n

ε log 1
ε ) time (excluding the time for pre-sorting).

4 Algorithms for bivariate data

In this section, we present our algorithms for piecewise polynomial regression for bivariate
data. The input of the problem is a dataset S = {((xi, x′

i), yi) ∈ R2 ×R}n
i=1, and our goal is

to find a function f∗ ∈ Γ 2
g that minimizes σS(f∗) (recall that λ = 1 by assumption).

We present three algorithms for this problem. The first is a polynomial-time constant-
factor approximation. This is the simplest of the three results. The second algorithm
computes the exact solution in sub-exponential time nO(

√
n)), which makes use of the planar

separator theorem (this one will appear in the full paper). The third result is a quasi-
polynomial time approximation scheme, and is technically the most sophisticated of the three
algorithms.

We begin with a brief overview of the high-level ideas underlying our algorithms. We
first observe that a piecewise function corresponds to an orthogonal partition of the plane
(induced by the pieces of the function). Therefore, the problem of finding the optimal function
f∗ ∈ Γ 2

g is (essentially) equivalent to computing an optimal orthogonal partition of the
plane (Lemma 9). Our constant-approximation algorithm (Section 4.1) follows easily from
the observation that there always exists a binary orthogonal partition whose “cost” is a
constant factor of the optimal solution (Lemma 11), and we can compute such a partition in
polynomial-time using dynamic programming. To obtain our subexponential-time algorithm,
we observe that an orthogonal partition of the plane forms a planar graph, and so we can use
a divide-and-conquer approach by utilizing balanced separators of this graph. Finally, our
QPTAS (Section 4.2) is more complicated. It is also based on a planar separator theorem,
together with a cutting lemma (Lemma 13) of [3]. The basic idea is to guess a balanced
separator of the planar graph of the cutting and do divide-and-conquer. We then carefully
analyze the quality of the solution computed by this divide-and-conquer process (Lemma 15
and Corollary 16), and show it is indeed a (1 + ε)-approximation.
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We begin with introducing some notations and concepts. Let ∆ > 0 be a sufficiently
small number such that 3∆ ≤ |xi − xj | for all i, j ∈ [n] with xi ̸= xj and 3∆ ≤ |x′

i − x′
j |

for all i, j ∈ [n] with x′
i ̸= x′

j . Define X = {xi − ∆ : i ∈ [n]} ∪ {xi + ∆ : i ∈ [n]} and
X ′ = {x′

i−∆ : i ∈ [n]}∪{x′
i +∆ : i ∈ [n]}. We say a rectangle [x−, x+]× [x′

−, x′
+] is regular if

x−, x+ ∈ X ∪ {−∞,∞} and x′
−, x′

+ ∈ X ′ ∪ {−∞,∞}. Let Rreg denote the set of all regular
rectangles. The total number of different regular rectangles is O(n4), i.e., |Rreg| = O(n4),
because |X| = O(n) and |X ′| = O(n). Note that if R is a regular rectangle, then for any
i ∈ [n], the point (xi, x′

i) is either contained in the interior of R or outside R. We say a
regular rectangle R is nonempty if (xi, x′

i) ∈ R for some i ∈ [n], and empty otherwise. For a
nonempty rectangle R, we define

δR = 1 + min
f∈R[x,x′]g

∑
(xi,x′

i
)∈R

(yi − f(xi, x′
i))2.

Note that δR can be computed in nO(1) time using the standard approach for least-square
polynomial regression. For a set R of regular rectangles, denote by R• ⊆ R the subset of
nonempty rectangles, and define σS(R) =

∑
R∈R•

δR. A regular region refers to a subset of
R2 that is the union of regular rectangles.

An orthogonal partition (OP) Π of a region K ⊆ R2 is a set of interior-disjoint (axis-
parallel) rectangles whose union is K (see Figure 1 for an illustration). An OP Π is regular if
all rectangles in Π are regular. The following lemma shows that our problem can be reduced
to computing a regular OP Π of the plane which minimizes σS(Π).

K

Figure 1 An orthogonal partition (OP) of the region K.

▶ Lemma 9. For any f ∈ Γ 2
g , there exists a regular OP Π of R2 such that |Π| ≤ 5|f |+ 1

and σS(Π) ≤ σS(f). Conversely, given a regular OP Π of R2, one can compute in nO(1)

time a function f ∈ Γ 2
g such that σS(f) = σS(Π).

Using the reduction of Lemma 9, we establish our algorithms for piecewise polynomial
regression for bivariate data. Section 4.1 presents a polynomial-time constant-approximation
algorithm (Theorem 3), and Section 4.2 presents a QPTAS (Theorem 4).

4.1 A polynomial-time constant-approximation algorithm
In this section, we present a polynomial-time constant-approximation algorithm for the
problem. Let Π∗ be a regular OP of R2 that minimizes σS(Π∗). In order to describe our
algorithm, we need to introduce the notion of binary OP (and regular binary OP).

▶ Definition 10 (binary OP). Let R be an axis-parallel rectangle. A binary OP of R is an
OP defined using the following recursive rule:

The trivial partition {R} is a binary OP of R.
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R

Figure 2 A binary OP of the rectangle R.

If ℓ is a horizontal or vertical line that partitions R into two smaller rectangles R1 and
R2, and Π1 (resp., Π2) are binary OPs of R1 (resp., R2), then Π1 ∪Π2 is a binary OP
of R.

A binary OP is regular if it only consists of regular rectangles.

See Figure 2 for an illustration of binary OP. The basic idea of our approximation
algorithm is to, instead of computing an optimal regular OP, compute an optimal binary
regular OP, i.e., a regular binary OP Π of R2 that minimizes σS(Π). This task can be solved
in polynomial time by a simple dynamic programming algorithm as follows. Suppose we
want to compute an optimal binary regular OP Π of a regular rectangle R. Then Π is either
the trivial partition {R} of R, or there exists a horizontal or vertical line ℓ separating R

into two rectangles R1 and R2, and Π = Π1 ∪Π2 where Π1 (resp., Π2) is a regular binary
OPs of R1 (resp., R2). In the latter case, the equation of the line ℓ must be x = x̃ for some
x̃ ∈ X or x′ = x̃′ for some x̃′ ∈ X ′, because Π has to be a regular OP. This implies that
R1 and R2 are regular rectangles. Furthermore, Π1 and Π2 must be optimal regular binary
OPs of R1 and R2, respectively, in order to minimize σS(Π). Therefore, if we already know
the optimal regular binary OPs of all regular rectangles R′ such that area(R′) < area(R),
then an optimal regular binary OPs of R can be computed in O(n) time. The details of our
algorithm is shown in Algorithm 2, which computes an optimal regular binary OP of R2.
Since |Rreg| = O(n4), it is clear that Algorithm 2 runs in polynomial time.

Let Πbin be the optimal regular binary OP of R2 computed by Algorithm 2 and Π∗ be
the regular OP of R2 that minimizes σS(Π∗). We shall show that σS(Πbin) = O(σS(Π∗)).
To this end, we need the following two lemmas.

▶ Lemma 11. For any regular OP Π of R2, there exists a regular binary OP Π ′ of R2 such
that |Π ′| = O(|Π•|) and for any R′ ∈ Π ′

• there exists R ∈ Π• such that R′ ⊆ R.

▶ Lemma 12. Let Π and Π ′ be two regular OP of R2. If for any R′ ∈ Π ′
• there exists

R ∈ Π• such that R′ ⊆ R, then we have σS(Π ′)− σS(Π) ≤ |Π ′
•| − |Π•|.

By Lemma 11, there exists a regular binary OP Π ′ of R2 such that |Π ′
•| ≤ O(|Π∗

• |)
and for any R′ ∈ Π ′

• there exists R ∈ Π∗
• such that R′ ⊆ R. Then by Lemma 12,

we have σS(Π ′)/σS(Π∗) = 1 + (σS(Π ′) − σS(Π∗))/σS(Π∗) ≤ 1 + (|Π ′
•| − |Π∗

• |)/|Π∗
• | =

|Π ′
•|/|Π∗

• | = O(1). Because Πbin is an optimal regular binary OP of R2, we further have
σS(Πbin) ≤ σS(Π ′) ≤ O(σS(Π∗)). We have σS(Π∗) ≤ opt by the first statement of Lemma 9,
and hence σS(Πbin) ≤ O(opt). Using the second statement of Lemma 9, we then compute a
function f ∈ Γ 2

g in O(n · |Πbin|) = O(n5) time such that σS(f) = σS(Πbin) ≤ O(opt).

▶ Theorem 3. There exists a constant-factor approximation algorithm for bivariate piecewise
polynomial regression which runs in polynomial time.
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Algorithm 2 OptBinPartition(S).

1: N ← |Rreg|
2: sort the rectangles in Rreg as R1, . . . , RN such that area(R1) ≤ · · · ≤ area(RN )
3: for i from 1 to N do
4: Π[Ri]← {Ri} and opt[Ri]← σS(Π[Ri])
5: suppose Ri = [x−, x+]× [x′

−, x′
+]

6: for all z ∈ X such that x− < z < x+ do
7: R′

i ← [x−, z]× [x′
−, x′

+] and R′′
i ← [z, x+]× [x′

−, x′
+]

8: if opt[Ri] > opt[R′
i] + opt[R′′

i ] then
9: Π[Ri]← Π[R′

i] ∪Π[R′′
i ] and opt[Ri]← σS(Π[Ri])

10: for all z′ ∈ X ′ such that x′
− < z′ < x′

+ do
11: R′

i ← [x−, x+]× [x′
−, z′] and R′′

i ← [x−, x+]× [z′, x′
+]

12: if opt[Ri] > opt[R′
i] + opt[R′′

i ] then
13: Π[Ri]← Π[R′

i] ∪Π[R′′
i ] and opt[Ri]← σS(Π[Ri])

14: return Π[R2]

4.2 A quasi-polynomial-time approximation scheme
In this section, we design a quasi-polynomial-time approximation scheme (QPTAS) for the
problem, that is, a (1 + ε)-approximation algorithm which runs in nlogO(1) n time for any
fixed ε > 0. To this end, we borrow an idea from the geometric independent set literature
[3, 4, 5, 13], which combines the cutting lemma and the planar separator theorem. We need
the following cutting lemma.

▶ Lemma 13. Given a set R of interior-disjoint regular rectangles and a number 1 ≤ r ≤ |R|,
there exists a regular OP Π of R2 with |Π| = O(r) such that each rectangle in Π intersects
at most |R|/r rectangles in R.

Proof. This lemma follows directly from a result of [3] (Lemma 3.12). The original statement
in Lemma 3.12 of [3] only claims the existence of a partition Π of R2 satisfying the desired
properties. However, by the construction in [3], if R consists of regular rectangles, then the
partition Π is a regular OP. ◀

Using the above cutting lemma and the (weighted) planar separator theorem, we obtain the
following corollary.

▶ Corollary 14. Given a set R of interior-disjoint regular rectangles in R2 and a number
1 ≤ r ≤ |R|, there exists a set Σ of O(

√
r) interior-disjoint regular rectangles such that each

rectangle in Σ intersects at most |R|/r rectangles in R and for any regular region K ⊆ R2,
the closure of each connected component U of K\(

⋃
R∈Σ R) entirely contains at most 2

3 |R|
rectangles in R.

Proof. We shall used the following weighted version of the planar separator theorem. Let
G = (V, E) be a planar graph with m vertices where each vertex has a non-negative weight,
and W be the total weight of the vertices. The weighted planar separator theorem states
that one can partition the vertex set V into three parts V1, V2, Σ such that (i) there is no
edge between V1 and V2, (ii) |Σ| ≤ O(

√
m), and (iii) the total weight of the vertices in Vi is

at most 2
3 W for i ∈ {1, 2}.

Let Π be the regular partition of R2 described in Lemma 13 satisfying that |Π| = O(r)
and each rectangle in Π intersects at most |R|/r rectangles in R. Consider the planar graph
GΠ induced by Π. We assign each vertex of GΠ (i.e., each rectangle in Π) a non-negative
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weight as follows. For each rectangle R ∈ R, let m(R) be the number of rectangles in Π

that intersects R. The weight of each rectangle R′ ∈ Π is the sum of 1/m(R) for all R ∈ R
that intersects R′. Note that the total weight W is equal to |R| because each rectangle in R
contributes exactly 1 to the total weight. Applying the weighted planar separator theorem
to the vertex-weighted graph GΠ , we now partition Π into three parts V1, V2, Σ such that
(i) there is no edge between V1 and V2 in GΠ , (ii) |Σ| ≤ O(

√
r), and (iii) the total weight

of the vertices in Vi is at most 2
3 |R| for i ∈ {1, 2}. The separator Σ is just the desired set of

interior-disjoint regular rectangles described in the corollary. The fact that each rectangle
in Σ intersects at most |R|/r rectangles in R follows directly from the property of Π. So
it suffices to show that for any regular region K ⊆ R2, (the closure of) each connected
component of K\(

⋃
R∈Σ R) intersects at most 2

3 |R| rectangles in R. Let U be a connected
component of K\(

⋃
R∈Σ R). The rectangles in Π that are contained in the closure of U

induces a connected subgraph of GΠ , and hence they either all belong to V1 or all belong to
V2 (because there is no edge between V1 and V2 in GΠ). It follows that the total weight of
these rectangles is at most 2

3 |R|, which further implies that the number of rectangles in R
that are (entirely) contained in the closure of U is at most 2

3 |R|. ◀

With the above corollary in hand, we are ready to describe our QPTAS. Roughly speaking,
our algorithm “guesses” the set Σ in Corollary 14 for the optimal regular OP R (and some
parameter r polynomial in log n and 1/ε) and then recursively solve the sub-problem in each
rectangle in Σ and in each connected component of the complement of

⋃
R∈Σ R. The nice

properties of Σ described in Corollary 14 can be used to show (with a careful analysis) that
the final solution we compute is a (1 + ε)-approximation of the optimal solution.

Formally, let r = ω(1) be an integer parameter to be determined later and c be a
sufficiently large constant. For a regular region K ⊆ R2 and an integer m, we denote by
optK,m as the minimum σS(Π) for a regular OP Π of K with |Π•| ≤ m. We shall design a
procedure AppxPartition(S, K, m), which computes a regular OP Π of the regular region
K such that σS(Π) is “not much larger” than optK,m (note that we do not require |Π•| ≤ m);
what we mean by “not much larger” will be clear shortly.

Algorithm 3 AppxPartition(S, K, m).

1: Πopt ← ∅ and opt←∞
2: for all Π ⊆ Rreg with |Π| ≤ r do
3: if the rectangles in Π are interior-disjoint and contained in K then
4: construct an arbitrary regular OP Π ′ of K such that Π ⊆ Π ′

5: if σS(Π ′) < opt then Πopt ← Π ′ and opt← σS(Π ′)
6: if m ≤ r then return Πopt

7: for all Σ ⊆ Rreg with |Σ| ≤ c
√

r do
8: if the rectangles in Σ are interior-disjoint then
9: U ← Components(K\(

⋃
R∈Σ R))

10: ΠR ← AppxPartition(S, K ∩R, m/r) for all R ∈ Σ

11: ΠU ← AppxPartition(S, Closure(U), 3
4 m) for all U ∈ U

12: Π ← (
⋃

R∈Σ ΠR) ∪ (
⋃

U∈U ΠU )
13: if σS(Π) < opt then Πopt ← Π and opt← σS(Π)
14: return Πopt

Algorithm 3 shows how AppxPartition(S, K, m) works step-by-step, and here we provide
an intuitive explanation of the algorithm. Let Π∗ be a (unknown) regular OP of K such
that |Π∗| ≤ m and σS(Π∗) = optK,m. We consider two cases separately: |Π∗

• | ≤ r and
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|Π∗
• | > r. The for-loop of Line 2-6 handles the case |Π∗

• | ≤ r. We simply guess the (at
most) r rectangles in Π∗

• . Note that when we correctly guess Π∗
• , i.e., Π = Π∗

• in Line 2,
any regular OP Π ′ of K such that Π ⊆ Π ′ satisfies σS(Π ′) = σS(Π) = σS(Π∗

• ) = σS(Π∗),
because (xi, x′

i) /∈ K\(
⋃

R∈Π R) for all i ∈ [n]. Therefore, in the case |Π∗
• | ≤ r, we already

have |Πopt| ≤ optK,m after the for-loop of Line 2-6. The remaining case is |Π∗
• | > r, which

implies m > r. This case is handled in the for-loop of Line 8-15. We guess the set Σ

described in Corollary 14 with R = Π∗
• (Line 8 of Algorithm 3), which consists of at most

c
√

r interior-disjoint regular rectangles (recall that c is sufficiently large). Let U be the set
of connected components of K\(

⋃
R∈Σ R). By Corollary 14, for each R ∈ Σ, the regular

region K ∩ R intersects at most |Π∗
• |/r (and hence at most m/r) rectangles in R, and

for each U ∈ U , the closure of U contains at most 2
3 |Π

∗
• | rectangles (and hence at most

2
3 m) in R. We then recursively call AppxPartition(S, K ∩ R, m/r) for all R ∈ Σ and
AppxPartition(S, Closure(U), 3

4 m) for all U ∈ U ; see Line 11-12 of Algorithm 3. Each
recursive call returns us a regular OP of the corresponding sub-region of K; we set Π to be
the union of all the returned regular OPs, which is clearly a regular OP of K (Line 13 of
Algorithm 3). Intuitively, σS(Π) should be “not much larger” than σS(Π∗) if our guess for
Σ is correct. More precisely, we have the following observation.

▶ Lemma 15.
∑

R∈Σ optK∩R,m/r +
∑

U∈U optClosure(U), 3
4 m ≤ (1 + O(1/

√
r)) · σS(Π∗).

Proof. We first show that there exists a regular OP Π of K satisfying (i) |Π•| − |Π∗
• | =

O(|Π∗
• |/
√

r), (ii) each rectangle in Π is either contained in some R ∈ Σ or interior-disjoint
with all R ∈ Σ, (iii) each R ∈ Σ contains at most m/r nonempty rectangles in Π and
Closure(U) contains at most 3

4 m nonempty rectangles in Π for each U ∈ U . Consider the
regular OP Π∗ of K. We further partition each rectangle R∗ ∈ Π∗ into smaller (regular)
rectangles as follows. Let m(R∗) denote the number of rectangles in Σ that intersect (the
interior of) R∗. Since the rectangles in Σ are interior-disjoint, the boundaries of these
m(R∗) rectangles cut R∗ into m(R∗) + 1 regions (which are not necessarily rectangles). Now
we construct the vertical decomposition the boundaries of these m(R∗) rectangles inside
R∗ as follows (similarly to what we did in the proof of Lemma 9). For each top (resp.,
bottom) vertex of the m(R∗) rectangles, if the vertex is contained in the interior of R∗,
we shoot an upward (resp., downward) vertical ray from the vertex, which goes upwards
(resp., downwards) until hitting the boundary of R∗ or the boundary of some other R ∈ Σ.
See Figure 3 for an illustration. Including one ray cuts R∗ into one more piece, and the
total number of the rays we shoot is at most 4m(R∗). Therefore, the vertical decomposition
induces a regular OP of R∗ into at most 5m(R∗)+1 rectangles. We do this for every rectangle
R∗ ∈ Π∗. After that, we obtain our desired regular OP Π. Next, we verify that Π satisfies

Figure 3 The vertical decomposition inside R∗. The grey rectangles are those in Σ. The rectangle
with bolder boundary is R∗.
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the three conditions. We have |Π•| ≤
∑

R∗∈Π∗
•
(5m(R∗) + 1) =

∑
R∗∈Π∗

•
5m(R∗) + |Π∗

• |
since each rectangle R∗ ∈ Π∗

• is partitioned into at most 5m(R∗) + 1 smaller rectangles in
Π (note that the rectangles in Π∗\Π∗

• do not contribute any nonempty rectangle to Π).
Because |Σ| = O(

√
r) and each rectangle in Σ intersects at most |Π∗

• |/r = |Π∗
• |/r rectangles

in Π∗
• , we have

∑
R∗∈Π∗

•
m(R∗) = O(|Π∗

• |/
√

r). It follows that |Π•| − |Π∗
• | = O(|Π∗

• |/
√

r),
i.e., Π satisfies condition (i). Conditions (ii) follows directly from our construction of Π.
It suffices to show condition (iii). Let R ∈ Σ be a rectangle. By our construction of Π,
inside each R∗ ∈ Π∗ that intersects (the interior of) R, there is exactly one rectangle in
Π that is contained in R. Since R only intersects at most |Π∗

• |/r nonempty rectangles
in Π∗ and |Π∗

• | ≤ m, R contains at most m/r nonempty rectangles in Π. Let U ∈ U
be a connected component of K\(

⋃
R∈Σ R). Denote by Π∗

• (U) ⊆ Π∗
• be the subset of

rectangles that intersect U . Clearly, the number of nonempty rectangles in Π that are
contained in Closure(U) is at most

∑
R∗∈Π∗

• (U)(5m(R∗) + 1) = |Π∗
• (U)|+ O(|Π∗

• |/
√

r). By
Corollary 14, Closure(U) entirely contains at most 2

3 |Π
∗
• | rectangles in Π∗

• (U). All the other
rectangles in Π∗

• (U) are partially contained in Closure(U). Note that if a rectangle is partially
contained in Closure(U), then it intersects some R ∈ Σ. Therefore, the number of rectangles
in Π∗

• (U) that are partially contained in Closure(U) is bounded by O(|Π∗
• |/
√

r), because
|Σ| = O(

√
r) and each rectangle in Σ intersects at most |Π∗

• |/r rectangles in Π∗
• . It follows

that |Π∗
• (U)| = 2

3 |Π
∗
• |+O(|Π∗

• |/
√

r) and the number of rectangles in Π that are contained in
Closure(U) is bounded by 2

3 |Π
∗
• |+O(|Π∗

• |/
√

r), which is no more than 3
4 m because |Π∗

• | ≤ m

and we require r = ω(1).
Now we are ready to prove the lemma. Let Π be the regular OP of K we constructed

above. Condition (ii) above guarantees that each rectangle in Π is either contained in some
R ∈ Σ or contained in Closure(U) for some U ∈ U . For each R ∈ Σ, let Π(R) ⊆ Π denote
the subset of rectangles contained in R. Similarly, for each U ∈ U , let Π(U) ⊆ Π denote
the subset of rectangles contained in Closure(U). Condition (iii) above guarantees that
|Π(R)•| ≤ m/r for all R ∈ Σ and |Π(U)•| ≤ 3

4 m for all U ∈ U . So we have

σS(Π) =
∑
R∈Σ

σS(Π(R)) +
∑

R∈U∈U
σS(Π(U)) ≥

∑
R∈Σ

optK∩R,m/r +
∑
U∈U

optClosure(U), 3
4 m.

On the other hand, we have σS(Π)−σS(Π∗) ≤ |Π•|− |Π∗
• | = O(|Π∗

• |/
√

r) by Lemma 12 and
condition (i) above. Because |Π∗

• | ≤ σS(Π∗), we further have σS(Π) ≤ (1+O(1/
√

r))·σS(Π∗).
Combining the two inequalities above gives us the inequality in the lemma. ◀

▶ Corollary 16. Let Πopt be the regular OP of K returned by AppxPartition(S, K, m).
Then we have σS(Πopt) ≤ (1 + O(1/

√
r))O(log m) · optK,m.

Proof. As before, let Π∗ be a (unknown) regular OP of K such that |Π∗
• | ≤ m and σS(Π∗) =

optK,m. We prove that σS(Πopt) ≤ (1 + O(1/
√

r))log3/4 m · optK,m by induction on m. In the
base case where m ≤ r, we have σS(Πopt) ≤ σS(Π∗) = optK,m after the for-loop of Line 2-6
(as argued before). Now suppose m > r. If |Π∗

• | ≤ r, then we still have σS(Πopt) ≤ optK,m

after the for-loop of Line 2-6 (as argued before). So it suffices to consider the case |Π∗
• | > r.

We show that when we correctly guess the set Σ in Line 8, the regular OP Π of K we construct
in Line 13 satisfies σS(Π) ≤ (1 + O(1/

√
r))log3/4 m · optK,m. Let U be the set of connected

components of K\(
⋃

R∈Σ R), as in Line 10. We have Π = (
⋃

R∈Σ ΠR) ∪ (
⋃

U∈U ΠU ) where
ΠR = AppxPartition(S, K ∩ R, m/r) and ΠU = AppxPartition(S, Closure(U), 3

4 m).
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Recall that r = ω(1), and hence m/r ≤ 3
4 m. By our induction hypothesis and Lemma 15,

σS(Π) =
∑
R∈Σ

σS(ΠR) +
∑
U∈U

σS(ΠU )

≤ (1 + O(1/
√

r))log3/4 m−1 ·

(∑
R∈Σ

optK∩R,m/r +
∑
U∈U

optClosure(U), 3
4 m

)
≤ (1 + O(1/

√
r))log3/4 m−1 · (1 + O(1/

√
r)) · σS(Π∗)

= (1 + O(1/
√

r))log3/4 m · σS(Π∗),

which completes the proof. ◀

By Corollary 16, if we set r = c′ · (log2 n/ε2) for a sufficiently large constant c′, then
for any regular region K and any m = O(n), the procedure AppxPartition(S, K, m) will
return a regular partition Πopt of K such that σS(Πopt) ≤ (1 + ε) · optK,m. To solve our
problem, we only need to call AppxPartition(S,R2, 5n + 1), which will return a regular
partition Πopt of R2 such that σS(Πopt) ≤ (1 + ε) · optR2,5n+1. By the first statement of
Lemma 9, we have optR2,5n+1 ≤ opt. Therefore, it suffices to use the second statement of
Lemma 9 to compute a function f ∈ Γ 2

g such that σS(f) = σS(Πopt) ≤ (1 + ε) · opt.

Time complexity. If m ≤ r, the procedure AppxPartition(S, K, m) takes nO(r) =
nO(log2 n/ε2) time. In the case m > r, there are nO(

√
r) sets Σ to be considered in Line 8.

For each Σ, we have c
√

r recursive calls in Line 11 and nO(1) recursive calls in Line 12,
and all the other work in the for-loop of Line 8-15 can be done in nO(1) time. In addi-
tion, Line 1-6 takes nO(r) time. Therefore, if we use T (m) to denote the running time of
AppxPartition(S, K, m), we have the recurrence

T (m) =
{

nO(
√

r) · T (m/r) + nO(
√

r) · T
( 3

4 m
)

+ nO(r) if m > r,

nO(r) if m ≤ r,

which solves to T (m) = nO(
√

r log m+r). Since our initial call is AppxPartition(S,R2, 5n+1),
the total running time of our algorithm is nO(

√
r log n+r) = nO(log2 n/ε2).

▶ Theorem 4. There exists a QPTAS for bivariate piecewise polynomial regression.

5 Conclusion and future work

In this paper, we studied the regression problem for univariate and bivariate data using
piecewise polynomial functions. The loss of a k-piece polynomial function is measured as the
sum of λk and its square error, where λ ≥ 0 is a pre-specified parameter. For univariate data,
we gave a (1 + ε)-approximation algorithm that runs in O( n

ε log 1
ε ) time, assuming the data

points are pre-sorted. For bivariate data, we presented three results, a subexponential-time
exact algorithm, a polynomial-time constant-approximation algorithm, and a QPTAS. Finally,
for completeness, we also proved the problem for bivariate data is NP-hard.

Our work suggests several open problems and future research directions. The complexity
of solving the problem exactly for the univariate data remains a challenging open problem. Is
there a subqudratic time algorithm, or is there a (conditional or unconditional) near-quadratic
lower bound? For bivariate data, does there exist a PTAS, namely, a polynomial-time (1 + ε)-
approximation algorithm for any fixed ε > 0? Finally, designing efficient approximation
algorithms for regression problems with more than two variables is an interesting problem.
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