
The Randomized Competitive Ratio of Weighted
k-Server Is at Least Exponential
Nikhil Ayyadevara #

Indian Institute of Technology, New Delhi, India

Ashish Chiplunkar #

Indian Institute of Technology, New Delhi, India

Abstract
The weighted k-server problem is a natural generalization of the k-server problem in which the
cost incurred in moving a server is the distance traveled times the weight of the server. Even after
almost three decades since the seminal work of Fiat and Ricklin (1994), the competitive ratio of
this problem remains poorly understood even on the simplest class of metric spaces – the uniform
metric spaces. In particular, in the case of randomized algorithms against the oblivious adversary,
neither a better upper bound that the doubly exponential deterministic upper bound, nor a better
lower bound than the logarithmic lower bound of unweighted k-server, is known. In this paper,
we make significant progress towards understanding the randomized competitive ratio of weighted
k-server on uniform metrics. We cut down the triply exponential gap between the upper and lower
bound to a singly exponential gap by proving that the competitive ratio is at least exponential in k,
substantially improving on the previously known lower bound of about ln k.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases weighted k-server, competitive analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.9

Related Version Full Version: https://arxiv.org/abs/2102.11119

Funding Ashish Chiplunkar : partially supported by the Pankaj Gupta New Faculty Fellowship.

1 Introduction

The k-server problem of Manasse, McGeoch, and Sleator [12] is one of the cleanest, simple-
looking, and yet profound problems in online computation, and has been actively studied
for over three decades. The k-server problem concerns deciding movements of k mobile
servers on an underlying metric space to serve a sequence of online requests. Each request is
issued at some point of the metric space, and to serve such a request, a server must move
to the requested point (unless a server is already present there). The cost incurred in the
movement of a server is equal to the distance through which the server moves, and the goal
is to minimize the total cost.

Since an online algorithm is required to take its decisions only based on the past inputs,
it cannot output the optimal solution, in general. An online algorithm for a minimization
problem is said to be c-competitive if, on any instance, it produces a solution whose (expected)
cost is at most c times the cost of the optimum solution. The competitive ratio of an algorithm
is the minimum (technically, the infimum of all) c such that the algorithm is c-competitive.
The deterministic (resp. randomized) competitive ratio of an online minimization problem is
the minimum (technically, the infimum of all) c for which a c-competitive deterministic (resp.
randomized) algorithm exists. Note that, unless otherwise specified, we assume that in case
of randomized algorithms, the adversarial input is oblivious, that is, constructed with the
knowledge of the algorithm but not the random choices the algorithm makes.

© Nikhil Ayyadevara and Ashish Chiplunkar;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 9; pp. 9:1–9:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nikhil.ayyadevara@gmail.com
mailto:ashishc@iitd.ac.in
https://doi.org/10.4230/LIPIcs.ESA.2021.9
https://arxiv.org/abs/2102.11119
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 The Randomized Competitive Ratio of Weighted k-Server Is at Least Exponential

In their seminal work, Manasse, McGeoch, and Sleator [12] proved that the deterministic
competitive ratio of the k-server problem is at least k on every metric with more than k points.
They conjectured that the deterministic competitive ratio is, in fact, equal to k on any metric.
This conjecture is popularly called the deterministic k-server conjecture and it remains
unresolved to date. The deterministic algorithm with the best known competitive ratio
of 2k − 1 is due to Koutsoupias and Papadimitriou [10]. Surprisingly, no better algorithm
is known even using randomization. The randomized k-server conjecture states that a
randomized algorithm with competitive ratio O(log k) exists on all metrics, and this remains
unresolved after some recent progress [5, 11]. The k-server problem on uniform metric spaces
is particularly interesting because it is equivalent to the paging problem. In this case, several
deterministic algorithms including Least-Recently-Used (LRU) and First-In-First-Out (FIFO)
are known to be k-competitive. The randomized competitive ratio is known to be exactly
H(k) =

∑k
i=1 1/i ≈ ln k, where the lower bound is due to Fiat et al. [8] and the upper bound

is due to [13, 1].
The weighted k-server problem is a natural generalization of the k-server problem where

the objective is to minimize the weighted sum of the movements of servers. Specifically, the
k servers have weights β1 ≤ · · · ≤ βk, and the cost of moving the i’th server is βi times the
distance through which it moves. It is easy to see that a c-competitive k-server algorithm
has competitive ratio at most cβk/β1 for the weighted k-server problem, and therefore, the
challenge is to design an algorithm with competitive ratio independent of the servers’ weights.
Surprisingly, this innocuous-looking introduction of weights into the k-server problem makes
it incredibly difficult, and a competitive algorithm is known only for k ≤ 2 [14] (of which,
the k = 1 case is trivial).

1.1 Weighted k-Server on Uniform Metrics
Owing to the difficulty of the weighted k-server problem on general metrics, the problem
becomes particularly interesting on uniform metrics. The weighted k-server problem on
uniform metric spaces models the paging problem where the cost of page replacement is
determined by the location where the replacement takes place. Note that this problem is
different from weighted caching [15], where the cost of page replacement is determined by
the pages that get swapped in and out.

The seminal paper of Fiat and Ricklin [9] gave a deterministic algorithm for weighted
k-server on uniform metrics whose competitive ratio is doubly exponential in k: about 34k/3

specifically, but can be improved to 22k+2 = 162k due to the result of Bansal et al. [3] for a
more general problem. The fact that the deterministic competitive ratio is indeed doubly
exponential in k was established only recently by Bansal et al. [2], who proved a lower
bound of 22k−4 , improving the previously known lower bound of (k + 1)!/2 due to Fiat and
Ricklin [9].

The only known algorithm for the weighted k-server problem on uniform metrics which
makes non-trivial use of randomness is by Chiplunkar and Vishwanathan [6]. This algorithm
also achieves a doubly exponential competitive ratio of about c2k for c ≈ 1.59792. It
is, in fact, a randomized memoryless algorithm generalizing the algorithm by Chrobak
and Sgall [7] for k = 2, and it achieves the competitive ratio against a stronger form of
adversary called adaptive online adversary1. Chiplunkar and Vishwanathan also proved

1 An adaptive online adversary can see the movements of the algorithm’s servers even though the algorithm
is randomized. However, the adversary must also serve its requests in an online manner. The algorithm’s

N. Ayyadevara and A. Chiplunkar 9:3

that no randomized memoryless algorithm can achieve a better competitive ratio against
adaptive online adversaries. However, even when an algorithm is allowed to use both memory
and randomness, and the adversary is oblivious, no better upper bound is known. More
embarrassingly, for randomized algorithms, no better lower bound than the logarithmic
lower bound of (unweighted) k-server on uniform metrics is known, thus, leaving a triply
exponential gap between the upper and lower bounds.

In this paper, we cut down the triply exponential gap between the best known bounds
on the randomized competitive ratio of weighted k-server on uniform metrics by a doubly
exponential improvement in the lower bound. We prove,

▶ Theorem 1. The competitive ratio of any randomized algorithm for weighted k-server
on uniform metrics is at least exponential in k, even when the algorithm is allowed to use
memory and the adversary is oblivious.

Due to our result, we now have only a singly exponential gap between the best known
upper and lower bounds on the randomized competitive ratio of weighted k-server on uniform
metrics.

1.2 Comparison with the Deterministic Lower Bound
Our proof of the randomized lower bound for weighted k-server is inspired by the proof of
the deterministic lower bound by Bansal et al. [2]. Both proofs give adversaries which run
recursively defined strategies relying crucially on a certain set-system Q. However, our proof
differs in the following aspects.
1. The adversary in the deterministic lower bound proof is able to carefully pick from Q a

set of points that does not contain points covered by the algorithm’s heavier servers, and
run its strategy on that set. In contrast, our adversary is oblivious and is unable to see
the positions of the algorithm’s servers. Therefore, it merely picks a random set from
Q and hopes that none of the points in that set is covered by the algorithm’s heavier
servers.

2. The strategy of Bansal et al. to defeat deterministic algorithms ensures that whenever
an adversary’s server other than the heaviest moves, it is accompanied by an eventual
movement of a heavier server of the algorithm. Therefore, assuming that the weights
of the servers are well-separated, their task reduces to proving that the heaviest server
of the algorithm moves a large number of times as compared to the heaviest server
of the adversary. On the other hand, we are unable to charge the movement of an
adversary’s server to the movement of an algorithm’s heavier server. Consequently, we
need to carefully track the contributions of all k servers towards the algorithm’s and the
adversary’s costs.

2 Preliminaries

Let the weights of the k servers be 1, β, β2, . . . , βk−1 for some large integer β which we will
fix later. Define the sequence n0, n1, . . . inductively as follows. n0 = 1, and for ℓ > 0,

nℓ =
(⌈nℓ−1

2

⌉
+ 1

)
·
(⌊nℓ−1

2

⌋
+ 1

)
.

cost is compared with the cost of the adversary’s online solution to determine the competitive ratio.

ESA 2021

9:4 The Randomized Competitive Ratio of Weighted k-Server Is at Least Exponential

Observe that nk grows doubly exponentially with respect to k. Since nℓ ≥ n2
ℓ−1/4, it is easy

to prove using induction that nℓ ≥ 4 · (641/32)2ℓ for all ℓ ≥ 5. Let H denote the harmonic
function, that is, H(n) =

∑n
i=1 1/i. It is known that H(n) ≥ ln n. We will establish

Theorem 1 by proving the following bound.

▶ Theorem 2. The randomized competitive ratio of weighted k-server on uniform metric
spaces is at least H(nk−1) = Ω(2k).

We use the following version of Yao’s principle to prove the above bound.

▶ Proposition 3 (Yao’s principle). Suppose there exists a probability distribution D on the
instances of an online minimization problem such that for every deterministic online algorithm
A, we have,

EI∼D[A(I)] > α · EI∼D[OPT(I)],

where A(I) is the cost of the algorithm’s solution and OPT(I) is the cost of an optimal
solution to instance I. Then the problem does not have an α-competitive randomized online
algorithm.

Thus, in order to prove Theorem 2, our task is exhibit a distribution on instances of
weighted k-server on a uniform metric space such that the expected cost of any deterministic
online algorithm is greater than H(nk−1) times the expectation of the optimum cost. To
construct our distribution on instances, we use a combinatorial result with a constructive
proof given by Bansal et al. [2]. We reproduce its proof in Appendix A for completeness.
The result is as follows.

▶ Lemma 4. Let ℓ ∈ N and let P be a set of nℓ points. There exists a set-system Qℓ ⊆ 2P

satisfying the following properties.

1. Qℓ contains ⌈nℓ−1/2⌉ + 1 sets, each of size nℓ−1.

2. For every p ∈ P , there exists a set in Qℓ not containing p.

3. For every p ∈ P , there exists a q ∈ P such that every set in Qℓ contains at least one of p

and q.

3 Adversarial Strategy and Analysis

Consider the uniform metric space on a set S of nk−1 + 1 points. Our adversarial input
distribution is generated by the procedure adversary which uses a recursive procedure strategy,
an oblivious version of its counterpart in Bansal et al. [2]. These procedures are defined as
follows.

Procedure 1 adversary.

repeat infinitely many times
Pick a point p uniformly at random from S (with replacement);
Call strategy(k − 1, S \ {p});

N. Ayyadevara and A. Chiplunkar 9:5

Procedure 2 strategy(ℓ, P) (Promise: |P | = nℓ).

if ℓ = 0 (and therefore, |P | = n0 = 1) then
Request the unique point in P ;

else
Construct the set-system Qℓ ⊆ 2P using Lemma 4;
repeat (β − 1) · (⌈nℓ−1/2⌉ + 1) times

Pick a set P ′ uniformly at random from Qℓ (with replacement);
Call strategy(ℓ − 1, P ′);

Procedure strategy gets as input a non-negative number ℓ and a set P of nℓ points. In
the base case where ℓ = 0, the procedure issues a request to the unique point in P . In the
inductive case where ℓ > 0, the procedure constructs the set-system Qℓ with properties
stated in Lemma 4 on the set P . Then it repeatedly gives recursive calls, passing ℓ − 1 in
place of ℓ, on sets chosen uniformly at random from Qℓ. Recall that these sets have size
nℓ−1, as required. Procedure adversary takes a uniform metric space on nk−1 + 1 points. It
repeatedly picks a point p uniformly at random and calls the procedure strategy on the set of
points other than p.

For analysis, fix an arbitrary deterministic online algorithm and the initial positions of
its servers. We first consider requests given by one execution of procedure strategy(ℓ, P), and
bound the number of movements of the algorithm’s servers to serve those requests.

▶ Lemma 5. For every ℓ ∈ {0, . . . , k −1} the following holds. Let ρ0 be an arbitrary sequence
of requests and L be the set of positions of the algorithm’s heaviest k − ℓ servers after serving
ρ0. Let P be an arbitrary set of nℓ points disjoint from L. Suppose ρ0 is followed by a
random sequence ρ of requests given by a strategy(ℓ, P) call. For i = 1, . . . , k, let the random
variable Xi denote the number of movements of the algorithm’s i’th lightest server while the
algorithm serves ρ. Then we have,

k∑
i=1

βmin(i−1,ℓ) · E[Xi] ≥ (β − 1)ℓ.

We defer the proof of this lemma to Appendix B. On a high level, the proof goes as
follows. If the algorithm moves one of its heaviest k − ℓ servers while it serves ρ, then it
pays a lot already. If not, it must serve ρ using its lightest ℓ servers only. In this case,
each recursive call given by the strategy(ℓ, P) call is, with sufficient probability, on a set P ′

not containing the location of the algorithm’s ℓ’th lightest server. This enables us to use
induction hypothesis to bound the algorithm’s cost in each recursive call.

Intuitively, Lemma 5 gives a lower bound of (β − 1)ℓ on the expected cost incurred by
the algorithm in serving requests given by a strategy(ℓ, P) call, but with the following caveat:
movements of the heaviest k − ℓ − 1 servers are charged at a discounted rate of βℓ. However,
when ℓ is instantiated to k −1 in particular, no discount remains applicable. Thus, (β −1)k−1

becomes a lower bound on the expected actual cost of the algorithm in serving requests given
by a strategy(k − 1, P) call. With this observation, we immediately get the following bound
on the expected cost of the algorithm in serving requests given by each strategy call made by
the procedure adversary.

▶ Corollary 6 (to Lemma 5). The expected cost of the algorithm in serving requests given by
each strategy call made by adversary is at least (β − 1)k−1/(nk−1 + 1).

ESA 2021

9:6 The Randomized Competitive Ratio of Weighted k-Server Is at Least Exponential

Proof. Consider any strategy(k − 1, S \ {p}) call, where p is a uniformly random point
in S. Let r be the location of the algorithm’s heaviest server at the time the call is
made. Then Pr[r /∈ S \ {p}] = Pr[p = r] = 1/|S| = 1/(nk−1 + 1). Lemma 5 implies that
conditioned on r /∈ S \ {p}, the expected cost of the algorithm in serving requests given by
the strategy(k − 1, S \ {p}) call is at least (β − 1)k−1. Thus, the claim follows. ◀

Let us now turn our attention towards the adversary’s cost. We will show how the
adversary, having the ability to see the future requests, can ensure that whenever strategy(ℓ, P)
is called, it has at least one server other than its ℓ lightest servers occupying a point in P

already. On the contrary, recall that in Lemma 5, we relied on the algorithm not having any
of its servers except the ℓ lightest ones occupying points in P at the time strategy(ℓ, P) is
called. Intuitively, the adversary is able to obtain advantage over the algorithm by having
one server other than the ℓ lightest ones in P whereas the algorithm has none.

▶ Lemma 7. Define the sequence c0, c1, . . . inductively as follows: c0 = 0, and for ℓ > 0,

cℓ = βℓ−1 + β · (⌈nℓ−1/2⌉ + 1) · cℓ−1.

Suppose that the adversary has at least one server other than its ℓ lightest servers occupying
some point in P at the time strategy(ℓ, P) is called. Then the adversary is able to serve all
requests given in this call with cost at most cℓ by moving only its ℓ lightest servers.

Proof. We prove the claim by induction on ℓ. For the base case, suppose ℓ = 0. Then |P | = 1
and by assumption, the adversary has at least one server at the unique point in P . Therefore,
the adversary can serve the unique request given by strategy(0, P) with cost c0 = 0, without
moving any server.

For the inductive case, suppose ℓ > 0. We have assumed that the adversary has at
least one server other than its lightest ℓ servers occupying some point p in P . By the third
property of the set-system Qℓ from Lemma 4, there exists a point q ∈ P such that each set
in Qℓ contains at least one of p and q. The adversary moves its ℓ’th lightest server to such a
point q and keeps it there until the end of the strategy(ℓ, P) call. Due to this movement, the
adversary incurs cost βℓ−1, the first term in the definition of cℓ. As a result, both p and q

become occupied by the adversary’s servers other than the ℓ − 1 lightest ones. We now show
how the requests in all recursive calls made by strategy(ℓ, P) can be served by moving the
ℓ − 1 lightest servers only.

Consider any of the recursive calls made by strategy(ℓ, P). The set P ′ ∈ Qℓ on which
this call is made contains at least one of p and q. Both p and q were occupied by the
adversary’s servers other than the ℓ − 1 lightest ones before strategy(ℓ, P) made its first
recursive call. All the previous recursive calls were served by moving only the ℓ − 1 lightest
servers. Thus, at the time the current recursive call strategy(ℓ − 1, P ′) is made, points p and
q are still occupied by the adversary’s servers other than the ℓ − 1 lightest ones. Therefore,
at least one of these servers occupies a point in P ′. By induction hypothesis, the adversary
can serve all requests in the current recursive call strategy(ℓ − 1, P ′) with cost at most
cℓ−1 by moving only the ℓ − 1 lightest servers. Since the number of such recursive calls is
(β − 1) · (⌈nℓ−1/2⌉ + 1) ≤ β · (⌈nℓ−1/2⌉ + 1), the adversary serves all requests made in these
calls with cost at most β · (⌈nℓ−1/2⌉ + 1) · cℓ−1, the second term in the expression for cℓ. ◀

We now use Corollary 6 and Lemma 7 to prove Theorem 2.

▶ Theorem 2. The randomized competitive ratio of weighted k-server on uniform metric
spaces is at least H(nk−1) = Ω(2k).

N. Ayyadevara and A. Chiplunkar 9:7

Proof. We track the costs incurred by the algorithm and the adversary per strategy(k − 1, P)
call made by the procedure adversary, and show that the former is at least H(nk−1) times
the latter.

Here is how the adversary serves the requests. Let q denote the position of the adversary’s
heaviest server at the time a strategy(k − 1, P) call is made. If P = S \ {q}, that is, the
random point sampled from S turns out to be q, then the adversary finds the point q′

which is sampled farthest in future by the procedure adversary, and moves its heaviest server
there. These are the only movements of the adversary’s heaviest server. By the standard
coupon-collector argument, the expected number of samples from the current sample of q to
q′ is (nk−1 + 1)H(nk−1), because |S| = nk−1 + 1 and we have already sampled q. Thus, in
the long run, the cost of the adversary resulting from moving its heaviest server, per strategy
call made by the procedure adversary, is βk−1/((nk−1 + 1)H(nk−1)).

By moving its heaviest server as described above, the adversary ensures the following.
Before the adversary starts serving requests given by a strategy(k −1, S \{p}) call, its heaviest
server is located at some point different from p, and therefore, in S \ {p}. By Lemma 7, the
adversary is able to serve requests given by each strategy(k − 1, S \ {p}) with cost at most
ck−1 without moving its heaviest server. In other words, the contribution of the adversary’s
servers other than the heaviest towards its cost per strategy call is at most ck−1.

Thus, the adversary’s cost per strategy call made by the procedure adversary is at most
βk−1/((nk−1 + 1) · H(nk−1)) + ck−1, which, by unrolling the recurrence in the statement of
Lemma 7, is given by

βk−1

(nk−1 + 1) · H(nk−1) + ck−1 = βk−1

(nk−1 + 1) · H(nk−1) + βk−2 ·
k−1∑
i=1

k−2∏
j=i

(⌈nj

2

⌉
+ 1

)
.

Let ε be an arbitrarily small positive number. By choosing

β = ⌈ε−1⌉ · (nk−1 + 1) · H(nk−1) ·
k−1∑
i=1

k−2∏
j=i

(⌈nj

2

⌉
+ 1

)
,

the adversary’s cost per strategy call is bounded from above by

βk−1 · (1 + ε)
(nk−1 + 1) · H(nk−1) .

On the other hand, recall from Corollary 6 that the expected cost of the algorithm per
strategy call made by the procedure adversary is at least

(β − 1)k−1

nk−1 + 1 = βk−1

nk−1 + 1 ·
(

1 − 1
β

)k−1
≥ βk−1

nk−1 + 1 ·
(

1 − k − 1
β

)
≥ βk−1 · (1 − ε)

nk−1 + 1 ,

because β ≫ k/ε. Thus, modulo the (1 ± ε) factors, the algorithm’s cost per strategy call is
at least H(nk−1) times the adversary’s cost per strategy call. Since ε is arbitrarily small, we
use Proposition 3 to conclude that the competitive ratio of any randomized online algorithm
for weighted k-server on uniform metrics is at least H(nk−1). ◀

4 Concluding Remarks

Given our lower bound on the randomized competitive ratio of weighted k-server on uniform
metric spaces, the gap between the known upper and lower bounds has reduced from three
orders of exponentiation to one. The natural question that needs to be investigated is to
determine the randomized competitive ratio, or at least, prove upper and lower bounds that
match in the order of exponentiation.

ESA 2021

9:8 The Randomized Competitive Ratio of Weighted k-Server Is at Least Exponential

Our result also sheds light on the randomized competitive ratio of a generalization of
the weighted k-server problem on uniform metrics called the generalized k-server problem
on weighted uniform metrics. In this problem k servers are restricted to move in k different
uniform metric spaces that are scaled copies of one another. A request contains one point
from each copy and to serve it, one of the points must be covered by the server moving in
its copy. Our lower bound directly applies to the generalized k-server problem on weighted
uniform metrics and improves the previously known lower bound2 of Ω(k/ log2 k) by Bansal et
al. [3] to exponential in k. This also proves that the generalized k-server problem on weighted
uniform metrics is qualitatively harder than its unweighted counterpart, the generalized
k-server problem on uniform metrics, which has randomized competitive ratio O(k2 log k)
due to Beinkowski, Jeż, and Schmidt [4].

References
1 Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized pa-

ging algorithms. Theor. Comput. Sci., 234(1-2):203–218, 2000. doi:10.1016/S0304-3975(98)
00116-9.

2 Nikhil Bansal, Marek Eliás, and Grigorios Koumoutsos. Weighted k-server bounds via
combinatorial dichotomies. In FOCS, pages 493–504, 2017. doi:10.1109/FOCS.2017.52.

3 Nikhil Bansal, Marek Eliás, Grigorios Koumoutsos, and Jesper Nederlof. Competitive
algorithms for generalized k-server in uniform metrics. In SODA, pages 992–1001, 2018.
doi:10.1137/1.9781611975031.64.

4 Marcin Bienkowski, Łukasz Jeż, and Pawel Schmidt. Slaying hydrae: Improved bounds for
generalized k-server in uniform metrics. In ISAAC, volume 149 of LIPIcs, pages 14:1–14:14,
2019. doi:10.4230/LIPIcs.ISAAC.2019.14.

5 Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry.
k-server via multiscale entropic regularization. In STOC, pages 3–16, 2018. doi:10.1145/
3188745.3188798.

6 Ashish Chiplunkar and Sundar Vishwanathan. Randomized memoryless algorithms for the
weighted and the generalized k-server problems. ACM Trans. Algorithms, 16(1):14:1–14:28,
2020. doi:10.1145/3365002.

7 Marek Chrobak and Jiří Sgall. The weighted 2-server problem. Theoretical Computer Science,
324(2-3):289–312, 2004. doi:10.1016/j.tcs.2004.05.020.

8 Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator,
and Neal E. Young. Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991.
doi:10.1016/0196-6774(91)90041-V.

9 Amos Fiat and Moty Ricklin. Competitive algorithms for the weighted server problem.
Theoretical Computer Science, 130(1):85–99, 1994. doi:10.1016/0304-3975(94)90154-6.

10 Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. J. ACM,
42(5):971–983, 1995. doi:10.1145/210118.210128.

11 James R. Lee. Fusible HSTs and the randomized k-server conjecture. In FOCS, pages 438–449,
2018. doi:10.1109/FOCS.2018.00049.

12 Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive algorithms for
on-line problems. In STOC, pages 322–333, 1988. doi:10.1145/62212.62243.

13 Lyle A. McGeoch and Daniel Dominic Sleator. A strongly competitive randomized paging
algorithm. Algorithmica, 6(6):816–825, 1991. doi:10.1007/BF01759073.

14 René Sitters. The generalized work function algorithm is competitive for the generalized
2-server problem. SIAM J. Comput., 43(1):96–125, 2014. doi:10.1137/120885309.

15 Neal E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002. doi:10.1007/
s00453-001-0124-5.

2 This bound, in fact, holds for the unweighted counterpart, and to the best of the authors’ knowledge,
no better bound for the weighted problem was known.

https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1109/FOCS.2017.52
https://doi.org/10.1137/1.9781611975031.64
https://doi.org/10.4230/LIPIcs.ISAAC.2019.14
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1145/3365002
https://doi.org/10.1016/j.tcs.2004.05.020
https://doi.org/10.1016/0196-6774(91)90041-V
https://doi.org/10.1016/0304-3975(94)90154-6
https://doi.org/10.1145/210118.210128
https://doi.org/10.1109/FOCS.2018.00049
https://doi.org/10.1145/62212.62243
https://doi.org/10.1007/BF01759073
https://doi.org/10.1137/120885309
https://doi.org/10.1007/s00453-001-0124-5
https://doi.org/10.1007/s00453-001-0124-5

N. Ayyadevara and A. Chiplunkar 9:9

A Set-system Construction

▶ Lemma 4. Let ℓ ∈ N and let P be a set of nℓ points. There exists a set-system Qℓ ⊆ 2P

satisfying the following properties.
1. Qℓ contains ⌈nℓ−1/2⌉ + 1 sets, each of size nℓ−1.
2. For every p ∈ P , there exists a set in Qℓ not containing p.
3. For every p ∈ P , there exists a q ∈ P such that every set in Qℓ contains at least one of p

and q.

Proof (Bansal et al. [2]). Construct the set-system Qℓ as follows. Recall that

|P | = nℓ =
(⌈nℓ−1

2

⌉
+ 1

)
·
(⌊nℓ−1

2

⌋
+ 1

)
.

Let M be an arbitrary subset of P having size ⌈nℓ−1/2⌉ + 1, so that

|P \ M | =
(⌈nℓ−1

2

⌉
+ 1

)
·
⌊nℓ−1

2

⌋
.

Partition P \ M into ⌈nℓ−1/2⌉ + 1 sets of size ⌊nℓ−1/2⌋ each, and for each r ∈ M , name a
distinct set in the partition P ′

r. Next, for each r ∈ M , define Pr = (M \ {r}) ∪ P ′
r, and let

Qℓ = {Pr | r ∈ M}.
We now prove that Qℓ indeed satisfies the required properties. First, the number of sets

in Qℓ is equal to |M | = ⌈nℓ−1/2⌉ + 1, and the size of each set Pr ∈ Qℓ is

|Pr| = |M | − 1 + |P ′
r| =

⌈nℓ−1

2

⌉
+

⌊nℓ−1

2

⌋
= nℓ−1.

For the second property, observe that a point p ∈ M is not contained in the corresponding
set Pp ∈ Qℓ, whereas for a point p ∈ P ′

r, the only set in Qℓ that contains p is Pr. For the
third property, if p ∈ M , define q to be any other point in M , and if p ∈ P ′

r, define q = r,
and check that the property is indeed satisfied. ◀

B Analysis of the Algorithm’s Movements

We present the proof of Lemma 5 here, for which we need the following lemma.

▶ Lemma 8. Let Z1 and Z2 be non-negative random variables and E be an event on a
common sample space such that E[Z1 | E] ≥ b and E[Z2 | ¬E] ≥ b for some real number b.
Then E[Z1 + Z2] ≥ b.

Proof. We have,

E[Z1 + Z2] = E[Z1 + Z2 | E] · Pr[E] + E[Z1 + Z2 | ¬E] · Pr[¬E].

Since Z1 and Z2 are non-negative, we have,

E[Z1 + Z2] ≥ E[Z1 | E] · Pr[E] + E[Z2 | ¬E] · Pr[¬E] ≥ b · Pr[E] + b · Pr[¬E] = b,

as required. ◀

▶ Lemma 5. For every ℓ ∈ {0, . . . , k −1} the following holds. Let ρ0 be an arbitrary sequence
of requests and L be the set of positions of the algorithm’s heaviest k − ℓ servers after serving
ρ0. Let P be an arbitrary set of nℓ points disjoint from L. Suppose ρ0 is followed by a
random sequence ρ of requests given by a strategy(ℓ, P) call. For i = 1, . . . , k, let the random

ESA 2021

9:10 The Randomized Competitive Ratio of Weighted k-Server Is at Least Exponential

variable Xi denote the number of movements of the algorithm’s i’th lightest server while the
algorithm serves ρ. Then we have,

k∑
i=1

βmin(i−1,ℓ) · E[Xi] ≥ (β − 1)ℓ.

Proof. We prove the claim by induction on ℓ. For the base case, suppose ℓ = 0. Then
|P | = 1, and we are assured that L, the set of points occupied by all the algorithm’s servers,
is disjoint from P . In other words, none of the algorithm’s servers occupies the unique point
in P . Therefore, to serve the one request given by strategy(0, P), the algorithm must move
at least one of its servers, and thus,

k∑
i=1

βmin(i−1,ℓ) · E[Xi] =
k∑

i=1
E[Xi] ≥ 1 = (β − 1)ℓ,

as required.
For the inductive case, suppose ℓ > 0. We are assured that except for the lightest ℓ servers,

none of the servers of the algorithm occupies any point in P at the time the strategy(ℓ, P)
call is made. This call makes m = (β − 1) · (⌈nℓ−1/2⌉ + 1) = (β − 1) · |Qℓ| recursive calls. For
i = 1, . . . , k and j = 1, . . . , m, let the random variable Y j

i denote the number of movements
of the algorithm’s i’th lightest server to serve requests from the j’th recursive call. Thus, for
all i, Xi =

∑m
j=1 Y j

i .
Consider an arbitrary j ∈ {1, . . . , m}. Let Ej denote the event that the random variables

Y j′

i are all 0 for all i > ℓ and j′ < j. In words, Ej is the event that none of the algorithm’s
heaviest k − ℓ servers moves during the first j − 1 recursive calls. Recall that originally these
servers did not occupy any point in P . Therefore, if Ej happens, these servers are guaranteed
to be out of the set P ′ ⊆ P on which the j’th recursive call is made. Next, let E′

j denote the
event that the j’th recursive call is made on a set P ′ that does not contain the position of
the algorithm’s ℓ’th lightest server after the first j − 1 recursive calls. Thus, if both Ej and
E′

j happen, then P ′ is disjoint from the set of positions of the algorithm’s k − ℓ + 1 heaviest
servers. We can then apply the induction hypothesis to get,

k∑
i=1

βmin(i−1,ℓ−1) · E[Y j
i | Ej ∧ E′

j] ≥ (β − 1)ℓ−1. (1)

Next, let us understand the behavior of the random variables Y j
i conditioned on Ej only.

We have,

E[Y j
i | Ej] ≥ E[Y j

i | Ej ∧ E′
j] · Pr[E′

j | Ej] ≥
E[Y j

i | Ej ∧ E′
j]

|Qℓ|
. (2)

Here, the first inequality holds because Y j
i is non-negative. The second inequality holds

because, by the second property of the set-system Qℓ given by Lemma 4, for every possible
history before the j’th recursive call, Qℓ contains at least one set which does not contain
the position of the algorithm’s ℓ’th lightest server. This implies Pr[E′

j | Ej] ≥ 1/|Qℓ|. From
Equation 1 and Equation 2, we get,

k∑
i=1

βmin(i−1,ℓ−1) · E[Y j
i | Ej] ≥ (β − 1)ℓ−1

|Qℓ|
. (3)

N. Ayyadevara and A. Chiplunkar 9:11

By the non-negativity of the random variables Y j′

i and the definition of Ej , we trivially have,

k∑
i=ℓ+1

m∑
j′=1

E[Y j′

i | ¬Ej] ≥
k∑

i=ℓ+1

j−1∑
j′=1

E[Y j′

i | ¬Ej] ≥ 1,

and hence,

(β − 1)ℓ−1

|Qℓ|
·

k∑
i=ℓ+1

m∑
j′=1

E[Y j′

i | ¬Ej] ≥ (β − 1)ℓ−1

|Qℓ|
. (4)

From Equation 3 and Equation 4, using Lemma 8, we get,

k∑
i=1

βmin(i−1,ℓ−1) · E[Y j
i] + (β − 1)ℓ−1

|Qℓ|
·

k∑
i=ℓ+1

m∑
j′=1

E[Y j′

i] ≥ (β − 1)ℓ−1

|Qℓ|
.

The above inequality holds for all j ∈ {1, . . . , m}. Summing up over all j and recalling
Xi =

∑m
j=1 Y j

i , we get,

k∑
i=1

βmin(i−1,ℓ−1) · E[Xi] + m · (β − 1)ℓ−1

|Qℓ|
·

k∑
i=ℓ+1

E[Xi] ≥ m · (β − 1)ℓ−1

|Qℓ|
.

Recall that m = (β − 1) · |Qℓ|. Thus,

k∑
i=1

βmin(i−1,ℓ−1) · E[Xi] + (β − 1)ℓ ·
k∑

i=ℓ+1
E[Xi] ≥ (β − 1)ℓ. (5)

Finally, note that for i > ℓ, min(i − 1, ℓ − 1) = ℓ − 1, and since ℓ ≥ 1, we have (β − 1)ℓ ≤
βℓ−1(β − 1). Therefore, the multiplier of the E[Xi] term in Equation 5 is bounded as,

βmin(i−1,ℓ−1) + (β − 1)ℓ ≤ βℓ−1 + βℓ−1(β − 1) = βℓ = βmin(i−1,ℓ).

On the other hand, for i ≤ ℓ, min(i − 1, ℓ − 1) = min(i − 1, ℓ). Thus, for all i ∈ {1, . . . , k},
the multiplier of the E[Xi] term in Equation 5 is at most βmin(i−1,ℓ). Since the Xi’s are all
non-negative, we get,

k∑
i=1

βmin(i−1,ℓ) · E[Xi] ≥ (β − 1)ℓ,

as required. ◀

ESA 2021

	1 Introduction
	1.1 Weighted k-Server on Uniform Metrics
	1.2 Comparison with the Deterministic Lower Bound

	2 Preliminaries
	3 Adversarial Strategy and Analysis
	4 Concluding Remarks
	A Set-system Construction
	B Analysis of the Algorithm's Movements

