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Abstract
The thermodynamic binding networks (TBN) model [9] is a tool for studying engineered molecular
systems. The TBN model allows one to reason about their behavior through a simplified abstraction
that ignores details about molecular composition, focusing on two key determinants of a system’s
energetics common to any chemical substrate: how many molecular bonds are formed, and how
many separate complexes exist in the system. We formulate as an integer program the NP-hard
problem of computing stable (a.k.a., minimum energy) configurations of a TBN: those configurations
that maximize the number of bonds and complexes. We provide open-source software [13] solving
this integer program. We give empirical evidence that this approach enables dramatically faster
computation of TBN stable configurations than previous approaches based on SAT solvers [3].
Furthermore, unlike SAT-based approaches, our integer programming formulation can reason about
TBNs in which some molecules have unbounded counts. These improvements in turn allow us to
efficiently automate verification of desired properties of practical TBNs. Finally, we show that
the TBN has a natural representation with a unique Hilbert basis describing the “fundamental
components” out of which locally minimal energy configurations are composed. This characterization
helps verify correctness of not only stable configurations, but entire “kinetic pathways” in a TBN.
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1 Introduction

Recent experimental breakthroughs in DNA nanotechnology [5] have enabled the construction
of intricate molecular machinery whose complexity rivals that of biological macromolecules,
even executing general-purpose algorithms [23]. A major challenge in creating synthetic
DNA molecules that undergo desired chemical reactions is the occurrence of erroneous “leak”
reactions [16], driven by the fact that the products of the leak reactions are more energetically
favorable. A promising design principle to mitigate such errors is to build “thermodynamic
robustness” into the system, ensuring that leak reactions incur an energetic cost [14, 20, 22]
by logically forcing one of two unfavorable events: either many molecular bonds must break –
an “enthalpic” cost – or many separate molecular complexes (called polymers in this paper)
must simultaneously come together – an “entropic” cost.

The model of thermodynamic binding networks (TBNs) [9] was defined as a combinatorial
abstraction of such molecules, deliberately simplifying substrate-dependent details of DNA
in order to isolate the foundational energetic contributions of forming bonds and separating
polymers. A TBN consists of monomers containing specific binding sites, where binding
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2:2 Computing Properties of Thermodynamic Binding Networks: An IP Approach

site a can bind only to its complement a∗. A key aspect of the TBN model is the lack of
geometry: a monomer is an unordered collection of binding sites such as {a, a, b∗, c}. A
configuration of a TBN describes which monomers are grouped into polymers; bonds can only
form within a polymer.1 One can formalize the “correctness” of a TBN by requiring that its
desired configuration(s) be stable: the configuration maximizes the number of bonds formed,
a.k.a., it is saturated, and, among all saturated configurations, it maximizes the number of
separate polymers.2 See Figure 1 for an example. Stable configurations are meant to capture
the minimum free energy structures of the TBN. Unfortunately, answering basic questions
such as “Is a particular TBN configuration stable?” turn out to be NP-hard [3].
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Figure 1 Example of a simple thermodynamic binding network (TBN). There are four monomers:
m1 = {a∗, b∗}, m2 = {a, b}, m3 = {a}, m4 = {b}, with seven configurations shown: four of these
configurations are saturated because they have the maximum of 2 bonds. Of these, three have 2 polymers
and one has 3 polymers, making the latter the only stable configuration. Despite the suggestive lines
between binding sites, the model of this paper ignores individual bonds, defining a configuration solely
by how it partitions the set of monomers into polymers, assuming that a maximum number of bonds
will form within each polymer. (Thus other configurations exist besides those shown, which would merge
polymers shown without allowing new bonds to form.)

1.1 Our contribution

Our main contribution is a reduction that formulates the problem of finding stable con-
figurations of a TBN as an integer program (IP). Of course, the problem, appropriately
formalized, is “clearly” an NP search problem, so the mere existence of such a reduction
is not particularly novel. However, our formulation is notable in three respects: 1) We
carefully avoid certain symmetries (particularly those present in the existing SAT-based
formulation of Breik et al. [3]), which dramatically increases the search efficiency in practice.
2) We use the optimization ability of IP solvers as a natural way to maximize the number of
polymers in any saturated configuration. 3) Our formulation leads to a natural interpretation
of the Hilbert basis [7] of a TBN as its minimal saturated polymers, which intuitively are
the polymers existing in any local energy minimum configuration. Since highly optimized
software exists for calculating Hilbert bases [1], this expands the range of TBN behaviors
that can be automatically reasoned about.

1 A primary goal of the TBN model is to establish that certain undesired configurations impose an
energetic cost, i.e., to demonstrate impossibility results. From this perspective, the lack of geometric
constraints means that such impossibility results give stronger guarantees than if geometric constraints,
such as unpseudoknottedness of DNA secondary structure, were imposed on the allowable configurations.
For example, “leakless” DNA strand displacement systems [20, 22] retain their leaklessness even if
pseudoknotted structures are permitted.

2 This definition captures the limiting case (often approximated in practice in DNA nanotechnology)
corresponding to increasing the strength of bonds, while diluting (increasing volume), such that the
ratio of binding to unbinding rate goes to infinity.
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This formulation allows us to automate portions of formal reasoning about TBNs, helping
verify their correctness. The TBN model abstracts away the continuous nature of real free
energy into discrete integer-valued steps. In the limit of dilute solutions (bringing together
polymers incurs a large energy cost) and very strong bonds (breaking a bond incurs a huge
energy cost), even one integer step of energy difference is considered significant. Furthermore,
in a catalytic system, the presence (or absence) of even a single polymer may have a very large
impact on the system’s trajectory, an indication that system analyses are very numerically
sensitive, and thus their behavior is not well-described by approximation methods. For these
reasons it is crucial when verifying such systems that we identify the exact solution to the
optimization problem, rather than settling for more efficiently computable approximations
(e.g., via continuous relaxation [6] or local search [18]).

1.2 Related work
Breik, Thachuk, Heule, and Soloveichik [3] characterize the computational complexity of
several natural problems related to TBNs. For instance, it is NP-complete to decide whether
a saturated configuration exists with a specified number of polymers, and even NP-hard to
approximate within any constant factor the number of polymers in a stable configuration
(i.e., the maximum in any saturated configuration).

Breik et al. also developed software using a SAT solver to produce stable configurations
of a TBN. This formulation requires “labelled” monomers (where two different instances
of the same monomer type are represented by separate Boolean variables), which become
nodes in a graph, and polymers are realized as connected components within the graph. By
labelling the monomers they become unique copies of the same monomer type; n copies
of a monomer type increases the size of the search space by factor n! by considering these
symmetric configurations separately. Furthermore, the software explicitly explores all possible
symmetries of bonding arrangements within a polymer. For instance, monomers {a∗, a∗}
and {a, a} can bind in two different ways (the first a∗ can bind either the first or second
a), even though both have the same number of bonds and polymers. This over-counting of
symmetric configurations prevents the software from scaling to efficiently analyze certain
TBNs with large counts of monomers. Our IP formulation avoids both types of symmetry.

2 Preliminaries

2.1 Definitions
A multiset is an unordered collection of objects allowing duplicates (including countably
infinite multiplicities), e.g., v = {2 · a, b, ∞ · d}. Equivalently, a multiset with elements from a
finite set U is a vector v ∈ (N ∪ {∞})U describing the counts, indexed by U ; in the example
above, if U = {a, b, c, d}, then v(a) = 2, v(b) = 1, v(c) = 0, and v(d) = ∞. The cardinality
of a multiset v ∈ NU is |v| =

∑
u∈U v(u); a finite multiset v obeys |v| < ∞. A site type is a

formal symbol, such as a, representing a specific binding site on a molecule; in Figure 1 the
site types are a, a∗, b, b∗. Each site type has a corresponding complement type denoted by a
star, e.g. a∗. Complementarity is an involution: (a∗)∗ = a. A site and its complement can
form an attachment called a bond. We follow the convention that for any complementary
pair of sites a, a∗, the total count of a∗ across the whole TBN is at most that of a, i.e., the
starred sites are limiting. A monomer type is a finite multiset of site types.3

3 Concretely, in a DNA nanotech design, a monomer corresponds to a strand of DNA, whose sequence is
logically partitioned into binding sites corresponding to long (5-20 base) regions, e.g., 5′-AAAGG-3′,
intended to bind to the complementary sequence 3′-TTTCC-5′ that is part of another strand.

DNA 27



2:4 Computing Properties of Thermodynamic Binding Networks: An IP Approach

A thermodynamic binding network (TBN) is a multiset of monomer types; equivalently,
a vector in (N ∪ {∞})m, if m is the number of monomer types and we have fixed some
standardized ordering of them. We allow some monomer counts to be infinite in order to
capture the case where some monomers are added in “large excess” over others, a common
experimental approach [16,17]. A polymer P is a finite multiset of monomer types, equivalently,
a vector in Nm, where m is the number of monomer types in a standardized ordering;4
thus |P| represents the number of monomers in P. Note that despite the suggestive lines
representing bonds in Figure 1, this definition does not track which pairs of complementary
sites are bound within a polymer. Indeed, it is allowable in the model for a polymer to
consist of monomers that cannot be connected by bonds, e.g., the polymer {{a}, {b}} using
monomers from Figure 1. In general we study configurations that minimize the number of
merges necessary to reach them, and merges that create such polymers in general would not
be useful in such a setting.

Given a TBN T , let ST (respectively, S∗
T ) be the set of unstarred (resp., starred) site

types of T . For a monomer m and site type s ∈ ST , let m(s) denote the count of s minus
the count of s∗ in m (intuitively, m(s) is the “net count” of s in m, negative if there are
more s∗.) For s∗ ∈ S∗

T let m(s∗) = −m(s). The exposed sites of a polymer P are a finite
multiset of site types that results from removing as many (site, complement) pairs from a
polymer as possible, described by the net count of sites when summed across all monomers in
the polymer. For example, in the polymer {{a∗, b∗, c∗}, {a, c}, {a, b, c}, {c, d∗}}, the exposed
sites are {a, 2 · c, d∗}.

A configuration of a TBN is a partition of the monomers of the TBN into polymers; we
write |γ| to denote the number of polymers in configuration γ. A polymer is self-saturated
if it has no exposed starred sites. A configuration is saturated if all of its polymers are
self-saturated. Since we assume that, across the entire configuration, starred sites are limiting,
this is equivalent to stipulating that the maximum possible number of bonds are formed.
Write ΓT to denote the set of all saturated configurations of the TBN T . A configuration is
stable if it is saturated and has the maximum number of non-singleton polymers among all
saturated configurations.

Since the number of polymers may be infinite, we will use the equivalent notion that stable
configurations are those that can be constructed by starting with the “melted” configuration
whose polymers are all singletons containing only one monomer, performing the minimum
number of polymer merges necessary to reach a saturated configuration. In general this
quantity could be infinite, but we consider only TBNs in which a saturated configuration
is reachable via a finite number of merges. For example, consider the TBN consisting of
monomer types t = {a}, b = {a∗}, with counts ∞·t and 2·b. The unique stable configuration
has polymers {2 · {b, t}, ∞ · t}, since two merges of a b and a t are necessary and sufficient
to create this configuration from the individual monomers.

2.2 Solvers

The problems addressed in this paper are NP-hard. To tackle this difficulty, we cast the
problems as integer programs and use the publicly available IP solver SCIP [11].

4 The term “polymer” is chosen to convey the concept of combining many atomic objects into a complex,
but it is not necessarily a linear chain of repeated units.
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We also use the open-source software OR-tools [15], which is a common front-end for
SCIP [11], Gurobi [12], and a bundled constraint programming solver CP-SAT. Though we
model our problems as IPs, we would also like to be able to solve for all feasible/optimal
solutions rather than just one, which CP-SAT can do. This flexible front-end lets us switch
seamlessly between the two types of solvers without significant alterations to the model.

We use the software package 4ti2 [1] to calculate Hilbert Bases as described in Section 4.

3 Computing stable configurations of TBNs

Section 3.1 formally defines the stable configurations problem. Section 3.2 explains our IP
formulation of the problem. Section 3.3 shows empirical runtime benchmarks.

3.1 Finding stable configurations of TBNs
We consider the problem of finding the stable configurations of a TBN. Given a TBN T , let
ΓT denote the set of all saturated configurations of T .

Recall that a configuration γ ∈ ΓT is defined as a partition of the monomers of T into
polymers, so its elements P ∈ γ are polymers, i.e., multisets of monomers. For any γ ∈ ΓT , we
define the corresponding partial configuration γ = {P ∈ γ : |P| > 1} that excludes polymers
consisting of only a single monomer. Note that in the context of T , the mapping γ 7→ γ is
one-to-one. We consider only partial configurations with finite-sized polymers. The notion of
partial configuration will be useful in reasoning about TBNs with infinite monomer counts
but finite size polymers, since all but finitely many monomers will be excluded from the
partial configurations we consider.

Now we define the number of elementary merge operations required to reach a saturated
configuration γ from the configuration of all singletons. We can calculate this directly as the
difference in the counts of the monomers and polymers in the partial configuration, since
each merge reduces the number of polymers by one:

m(γ) =

∑
P∈γ

|P|

− |γ| (1)

We can then define the stable configurations as those saturated configurations that minimize
the number of merges required to reach them from the all-singletons configuration.

StableConfigs(T ) = {γ ∈ ΓT : (∀γ′ ∈ ΓT ) m(γ) ≤ m(γ′)}

Note that m(γ) = m(γ). Thus the StableConfigs problem may be equivalently posed as
finding the set of saturated partial configurations γ that minimize m(γ).

We now describe how to handle infinite counts. A configuration is saturated if and only
if none of its starred sites (elements of S∗

T ) are exposed. Thus we focus on the subset of
monomers that contain starred sites: the limiting monomers TL = {m ∈ T : m ∩ S∗

T ̸= ∅}.
Limiting monomers are required to have finite count, whereas nonlimiting monomers (those
with all unstarred sites) are allowed to be finite or infinite count. Our IP representation of
a configuration explicitly accounts for all the limiting monomers, but only the nonlimiting
monomers (in T \ TL) in a polymer with some limiting monomer; implicitly every other
nonlimiting monomer is unbound (i.e., in its own singleton polymer). This allows us to
describe infinite configurations where all but finitely many of the infinite count monomers
are unbound, guaranteeing that the number of merges counted in Equation (1) is finite.
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2:6 Computing Properties of Thermodynamic Binding Networks: An IP Approach

3.2 Casting StableConfigs as an IP

3.2.1 Finding a single stable configuration

We first describe how to find a single element from StableConfigs(T ) by identifying
its partial configuration in T . We begin by fixing an upper bound B on the number of
non-singleton polymers in any partial configuration. If no a priori bound for B is available,
conservatively take B = |TL|, the total number of limiting monomers.

3.2.1.1 Nonnegative integer variables

Assume an arbitrary ordering of the m monomer types m1, m2, . . . . Our IP formulation uses
B · m + B nonnegative integer variables describing the solution via its partial configuration:

Count(m, j): count of monomer type m ∈ T in polymer Pj where j ∈ {1, 2, . . . , B}
Exists(j): false (0) if polymer Pj is empty, possibly true (1) otherwise, j ∈ {1, 2, . . . , B}

▶ Remark 1. The constraints described below allow Exists(j) = 0 even if polymer j is nonempty,
even though the variables ultimately aim to count exactly the number of nonempty polymers
(as

∑m
j=1 Exists(j)). A false negative undercounts the number of polymers, overcounting

the number of merges in Equation (1). However, the number of merges is being minimized
by the IP. For a given setting of Count variables, the minimum is achieved (subject to the
constraints) by setting each Exists(j) = 1 if and only if polymer j is nonempty.

▶ Example 2. Recall the TBN of Figure 1. Suppose the TBN has 1 each of m1 =
{a∗, b∗}, m2 = {a, b}, m3 = {a}, m4 = {b}, with upper bound B = 2 on the number of
non-singleton polymers. TL = {m1} since m1 is the only monomer with starred sites. The
linear constraints (see below for details) do not require all copies of m2, m3, m4 ∈ T \ TL

to be included in a polymer. The stable configuration on the right of Figure 1 (partition
{m1, m2}, {m3}, {m4}) is represented in the IP by setting Count(m1, 1) = Count(m2, 1) = 1,

Count(m3, 1) = Count(m4, 1) = 0 (monomers 1 and 2 are in polymer 1, but monomers 3 and
4 are not), and setting Count(mi, 2) = 0 for i = 1, 2, 3, 4 (no monomers are in polymer 2),
Exists(1) = 1 (polymer 1 is non-empty), and Exists(2) = 0 (polymer 2 is empty).

▶ Example 3. Suppose a TBN with the same monomer types as Example 2 has 3 of m1
and infinitely many of the remaining monomers (allowed since they are not limiting), with
B = 4. The partial configuration where two copies of m1 are each bound to a single m2
(forming two polymers with two monomers each, as in the stable configuration of Figure 1),
and the third m1 is bound to an m3 and an m4 (forming one polymer with three monomers,
as in the rightmost non-stable saturated configuration of Figure 1) is represented in the IP
by setting Exists(1) = Exists(2) = Exists(3) = 1 and Exists(4) = 0, and

Count(m1, 1) = 1, Count(m2, 1) = 1, Count(m3, 1) = 0, Count(m4, 1) = 0,

Count(m1, 2) = 1, Count(m2, 2) = 1, Count(m3, 2) = 0, Count(m4, 2) = 0,

Count(m1, 3) = 1, Count(m2, 3) = 0, Count(m3, 3) = 1, Count(m4, 3) = 1,

Count(m1, 4) = 0, Count(m2, 4) = 0, Count(m3, 4) = 0, Count(m4, 4) = 0.

3.2.1.2 Linear constraints

Let T (m) denote the number of monomers of type m in the TBN T . Recall that m(s) is
the net count of site type s ∈ ST in monomer type m (negative if m has more s∗ than s).



D. Haley and D. Doty 2:7

Exists(j) ≤ 1 ∀j ∈ {1, 2, . . . , B} (2)
B∑

j=1
Count(m, j) = T (m) ∀m ∈ TL (3)

B∑
j=1

Count(m, j) ≤ T (m) ∀m ∈ T \ TL (4)

∑
m∈T

Count(m, j) · m(s) ≥ 0 ∀j ∈ {1, 2, . . . , B}, ∀s ∈ ST (5)∑
m∈TL

Count(m, j) ≥ Exists(j) ∀j ∈ {1, 2, . . . , B} (6)

Constraint (2) enforces that Exists variables are Boolean. Constraints (3) and (4) intuit-
ively establish “monomer conservation” in the partial configuration. Constraint (3) enforces
that we account for every limiting monomer in T . Constraint (4) establishes that for non-
limiting monomers, we cannot exceed their supply (trivially satisfied for any infinite-count
monomer); any leftovers are assumed to be in singleton polymers in the full configuration,
but are not explicitly described by Count variables. Constraint (5) ensures that all polymers
are self-saturated. Specifically, the count of site s ∈ ST within polymer j must meet or
exceed that of s∗. Lastly, Constraint (6) enforces that nonempty polymers contain at least
one limiting monomer. Ideally, this constraint should enforce that if a polymer contains no
monomers at all, then it cannot be part of the nonempty polymer tally; however, if the con-
straint were modeled in this way, the formulation would admit invalid partial configurations
that include explicit singleton polymers.

3.2.1.3 Linear objective function

Subject to the above constraints, we minimize the number of merges needed to go from
a configuration where all monomers are separate to a saturated configuration. For finite
count TBNs, this is the number of monomers minus the number of polymers in the partial
configuration. Equivalently (and applying to infinite TBNs), this is the sum over all nonempty
polymers of its number of monomers minus 1. Formally, the IP minimizes (7):

B∑
j=1

[(∑
m∈T

Count(m, j)
)

− Exists(j)
]

(7)

If polymer j is empty (
∑

m∈T Count(m, j) = 0), then constraint (6) forces Exists(j) = 0;
otherwise Exists(j) = 1 minimizes (7). Thus the outer sum is over the nonempty polymers.

3.2.2 Finding all stable configurations

While an IP formulation for finding a single stable configuration is well-defined above, without
modification it is ill-suited as a formulation to find all stable configurations. In addition,
tightening the available constraints (e.g., enforcing Exists(j) ⇐⇒ polymer j is nonempty,
described below) provides a more robust framework to which to add custom constraints (e.g.
specifying a fixed number of polymers).
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2:8 Computing Properties of Thermodynamic Binding Networks: An IP Approach

3.2.2.1 IP to find optimal objective value, CP to enumerate optimal solutions

One straightforward improvement is to solve for the optimal value of the objective function
using a dedicated IP solver such as SCIP, whose primal-dual methods exploit the underlying
real-valued geometry of the search space to find an objective value more efficiently than
Constraint Programming (CP) solvers such as CP-SAT. Then, use this optimal value to
bootstrap the CP formulation, which is better suited to enumerating all solutions with a
given objective value. This works particularly well in our experiments: use SCIP to solve the
optimization problem (but SCIP has no built-in ability to enumerate all feasible solutions),
then use CP-SAT (which takes longer than SCIP to find the objective value) to locate all
feasible solutions to the IP obtaining the objective value found by SCIP.

3.2.2.2 Enforcing that Exists variables exactly describe nonempty polymers

Constraint (5) enforces that Exists(j) = 0 if polymer Pj is empty, but it does not enforce the
converse. However, when using CP-SAT with a fixed objective value, we can no longer rely
on the minimization of Equation (7) to enforce that Exists(j) = 1 ⇐⇒ Pj is nonempty.

We add a new constraint to handle this. Let

C = 1 +
∑

s∈ST

∑
m∈T

T (m) · m(s∗). (8)

C is an upper bound on the largest number of monomers in a polymer in any valid partial
configuration of T minimizing Equation (7). This corresponds to the worst case in which a
single polymer contains every limiting monomer, and each starred site is bound to its own
unique monomer. The following constraint enforces that if Exists(j) = 0, then polymer Pj

contains no monomers:∑
m∈TL

Count(m, j) ≤ C · Exists(j) ∀j ∈ {1, 2, . . . , B} (9)

3.2.2.3 Eliminating symmetries due to polymer ordering

In the formulation of Section 3.2, many isomorphic solutions exist in the feasible region. For
instance, one could obtain a “new” solution by swapping the compositions of polymers P1
and P2. The number of isomorphic partial configurations grows factorially with the number
of polymers. Before asking the solver to enumerate all solutions, we must add constraints
that eliminate isomorphic solutions. We achieve this by using the (arbitrary) ordering of the
monomer types to induce a lexicographical ordering on the polymers, then add constraints
ensuring that any valid solution contains the polymers in sorted order.

Sorting non-binary vectors in an IP is generally a difficult task (for instance, see [21]).
The primary reason for this difficulty is that encoding the sorting constraints involves logical
implications (p =⇒ q), which, being a type of disjunction (¬p OR q), are difficult to encode
into a convex formulation described as a conjunction (AND) of several constraints. However,
we do have an upper bound C on the values that the Count variables can take, making
certain “large-number” techniques possible.

Intuitively, when comparing two lists of scalars (i.e., vectors) to verify that they are
correctly sorted, one must proceed down the list of entries until one of the entries is larger
than its corresponding entry in the other list. For as long as the numbers are the same, they
are considered “tied”. When one entry exceeds the corresponding other, the tie is considered
“broken”, after which no further comparisons need be conducted between the two vectors.
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We introduce B · m new Boolean (0/1-valued) variables (Tied(mi, j) for each i = 1, . . . , m

and j = 1, . . . , B), that reason about consecutive pairs of polymers Pj−1, Pj . We describe
constraints enforcing that for each h ≤ i, Tied(mi, j) = 1 ⇐⇒ Count(mh, j − 1) =
Count(mh, j).

Let C be defined as in (8). For simplicity of notation below, define the constants
Tied(m0, j) = 1 for all j = 1, . . . , B. The meaning of the sorting variables is then enforced
by the following constraints, which we define for i ∈ {1, 2, . . . , m} and j ∈ {2, 3, . . . , B}:

Tied(mi, j) ≤ Tied(mi−1, j) (10)
Count(mi, j − 1) − Count(mi, j) ≤ C · (1 − Tied(mi, j)) (11)
Count(mi, j − 1) − Count(mi, j) ≥ −C · (1 − Tied(mi, j)) (12)
Count(mi, j − 1) − Count(mi, j) ≥ 1 − C ·

(
1 + Tied(mi, j) − Tied(mi−1, j)

)
(13)

Intuitively, (10) enforces Tied(mi, j) =⇒ Tied(mi−1, j): a tie in the current entry is only
relevant if the tie was not resolved before. (11) and (12) together enforce Tied(mi, j) =⇒(
Count(mi, j − 1) = Count(mi, j)

)
: ties can only continue for as long as the corresponding

entries are equal.
(13) enforces Tied(mi−1, j) ∧ ¬Tied(mi, j) =⇒

(
Count(mi, j − 1) > Count(mi, j)

)
: ties

can only be broken if the tie was not broken previously and the current entries are ordered
correctly. Thus any solution satisfying these constraints must sort the polymers.

3.3 Empirical running time measurements

For our empirical tests we use as a benchmark the autocatalytic TBN described in [2,
Section 4.2.2 and Fig. 6]. This TBN features two large monomers of size n2 in which n is
a parameter in the design, as well as a variable number of additional monomers (“fuels”)
intended to be present in large excess quantities.

In addition to the formulation we give in this paper, we also tested a number of formu-
lation variants, including the StableGen algorithm originally posed in [3] for solving the
StableConfigs problem, justifying some of our design choices. “No Heuristic” performs a
thorough accounting of all monomers (not just those needed to achieve saturation against the
limiting monomers). “Labelled Monomers” assumes that the monomers are provided as a set,
rather than a multiset. “Network Model” is a modification of StableGen with an alternate
saturation constraint which does not require the explicit invocation of site-level bonds.

Each data point represents the average of three runs, and the solver was allowed to run
for up to 100 seconds before a timeout was forced. Figure 2 (left) shows the runtimes as they
increase with the parameter n, holding the count of each fuel at 2. Figure 2 (right) fixes
n = 3 and shows the runtimes as they increase with the multiplicity of the fuel monomers.
Note that our formulation can solve the case when fuels are in unbounded excess, while the
variant formulations require bounded counts of all monomers.

Figure 2 (bottom) shows the runtime of our formulation in the case of unbounded fuels as
it grows with increasing size parameter n. The rote specification of the benchmark problem
is quadratic in n, and the empirical runtime growth appears polynomial with exponent close
to this lower bound (2.71). However, we note that this is just a single family of problem
instances, and we expect the runtime to be exponential in the worst case, since the problem
is NP-hard.
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Figure 2 Empirical tests solving StableConfigs for our benchmark problem based upon its complexity
parameter n (left and bottom), and the multiplicity of the unstarred “fuel” strands (right). Our formulation
is tested against several variations on the approach (which are described in the text) and the StableGen
algorithm from [3]. The TBN is parameterized by n and contains the monomers Gn = {x∗

ij : 1 ≤ i, j ≤ n},
Hi = {xij : 1 ≤ j ≤ n} for all 1 ≤ i ≤ n, and Vj = {xij : 1 ≤ i ≤ n} ∪ {xij : j ≤ i ≤ n} for all 1 ≤ j ≤ n.
See Fig. 6 from [2] for a detailed explanation of this TBN and its operation. The vertical axis is log scale.
Points at the top of the scale timed out after 100 seconds. The alternate formulations cannot solve the
instance in the case of infinite fuel strands.

4 Computing bases of locally stable configurations of TBNs

We now shift attention to locally stable configurations: those in which no polymer can be
split without breaking a bond. Such a configuration may not be stable, but the only paths to
create more polymers, without breaking any bonds, require first merging existing polymers
(i.e., going uphill in energy before going down). The saturated configurations are precisely
those obtained by merging polymers starting from some locally stable configuration. In this
section we describe a technique for computing what we call the polymer basis: the (finite) set
of polymers that can exist in locally stable configurations. In Section 4.1, we show that an
algebraic concept called the Hilbert basis [7] characterizes the polymer basis. In Sections 4.2
and 4.3 we show how the polymer basis can be used to reason about TBN behavior.

4.1 Equivalence of polymer bases and Hilbert bases
We note that the connection between Hilbert bases and polymer bases is not particularly
deep and does not require clever techniques to prove. Once the definitions are appropriately
set up, the equivalence follows almost immediately. (Though we provide a self-contained
proof.) The primary insight of this section is that casting TBNs in our IP formulation sets
up the connection with Hilbert bases. Since highly optimized software exists for computing
Hilbert bases [1], this software can be deployed to automate reasoning about TBNs.



D. Haley and D. Doty 2:11

Let M be a set of monomer types with m = |M |. Let SM denote the TBN schema of M ,
the set of all TBNs containing only monomers from M , such that starred sites are limiting
(i.e., such that saturated configurations have all starred sites bound). Let AM be the matrix
representation of the monomer types in SM , describing the contents of each monomer type:
formally, the row-i, column-j entry of AM is mj(si), the net count of site type si in monomer
type mj (as an example, {a∗, b, a, a, a, c, c∗, c∗} has net count 2 of a, 1 of b, and −1 of c).
Formally, a TBN T ∈ SM if and only if AM T ≥ 0.

Recall that ΓT is the set of saturated configurations of the TBN T , and that a polymer
P is self-saturated if it has no exposed starred sites, i.e., AM P ≥ 0. Define the polymer basis
BSM

to be the set of all polymers P with the following properties:
(∃T ∈ SM )(∃α ∈ ΓT ) P ∈ α (i.e., P appears in some saturated configuration of a TBN
using only the monomer types from M .)
There is no partition of P into two (or more) self-saturated polymers.

For example, consider the monomers G = {a∗, b∗, c∗, d∗}, H1 = {a, b}, H2 = {c, d}, V1 =
{a, c}, V2 = {b, d} and let M = {G, H1, H2, V1, V2}. The polymer basis BSM

is { {G, H1, H2},

{G, V1, V2}, {H1}, {H2}, {V1}, {V2} }. All other self-saturated polymers are unions of these.
To show that polymer bases can be characterized by Hilbert bases, we must first define

some additional terms. A conical combination of a set of vectors is a linear combination of
the vectors using only nonnegative coefficients. An integer conical combination of a set of
vectors is a conical combination of the vectors using only integer coefficients. A (polyhedral)
convex cone C = {λ1a1 + · · · + λnan : λ1, . . . , λn ≥ 0} is the space of all conical combinations
of a finite set of vectors {a1, . . . , an} (and is said to be generated by {a1, . . . , an}). C is
pointed if C ∩ (−C) = {0}. A set of the form {x ∈ Rm : Ax ≥ 0 and x ≥ 0} is always a
pointed convex cone [7].

A set is inclusion-minimal with respect to a property if it has no proper subset that
satisfies the same property. The Hilbert basis of a pointed convex cone C is the unique
inclusion-minimal set of integer vectors such that every integer vector in C is an integer
conical combination of the vectors in the Hilbert basis. For example, the Hilbert basis
of the convex cone generated (with nonnegative real coefficients) by (1, 3) and (2, 1) is
{(1, 1), (1, 2), (1, 3), (2, 1)}; note that 2

5 · (1, 3) + 4
5 · (2, 1) = (2, 2), which is not an integer

combination of (1, 3) and (2, 1), but 2 · (1, 1) = (2, 2).
Recall that the matrix-vector product AM P gives the number of exposed sites of each

type in the polymer, so that AM P ≥ 0 iff the polymer is self-saturated (i.e. none of the
starred sites are exposed).

We are then interested in vectors contained in {P ∈ Nm : AM P ≥ 0}. Noting that
Nm = {P ∈ Rm : P ≥ 0} ∩Zm, we can equivalently state that we are interested in all integer
vectors contained in the pointed convex cone {P ∈ Rm : AM P ≥ 0 and P ≥ 0}.

▶ Theorem 4. Let SM be a TBN schema and let AM be the matrix representation of its
monomer types. Then the polymer basis BSM

of SM is the Hilbert basis of {P ∈ Rm : AM P ≥
0 and P ≥ 0}.

Proof. Note that the integer vectors in {P ∈ Rm : AM P ≥ 0 and P ≥ 0} are precisely the
polymers that appear in saturated configurations of TBNs in SM , since AM P ≥ 0 ⇐⇒
polymer P is self-saturated, and SM is defined to have starred sites limiting, so that a
configuration is saturated if and only if each of its polymers is self-saturated.

We must show two properties to establish that BSM
is the Hilbert basis. First we must

show that every polymer in saturated configurations of TBNs in SM is a nonnegative integer
combination of polymers in BSM

. Next, to establish inclusion-minimality, we must show that
no polymer can be removed from BSM

while satisfying the first property.
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To see the first property, consider a polymer P in a saturated configuration of some
TBN in SM . If it cannot be split into multiple self-saturated polymers, then we are done
since it is in BSM

(it is the integer combination consisting of one copy of itself). Otherwise,
we can iteratively split P into polymers P1, . . . , Pk that themselves cannot be split into
self-saturated polymers. Then P = P1 + · · · + Pk.

To see the second property, suppose for the sake of contradiction that a polymer P ∈ BSM

can be removed while maintaining the first property. By the definition of polymer basis, all
polymers in BSM

are self-saturated, so P is self-saturated. If P can be removed from BSM

while maintaining the first property, then P is the nonnegative integer sum of some polymers
remaining in BSM

\ {P}, and these polymers must also be self-saturated by virtue of being
in BSM

. This means that P can be partitioned into multiple self-saturated polymers, but
then P does not satisfy the second constraint required to be in BSM

to begin with. ◀

4.2 Using the polymer basis to reason about TBN behavior
The complexity of computing the polymer basis in general can be very large; however, once it
is calculated, reasoning about the stable configurations becomes a simpler task. For instance,
in a previous example we had BSM

= { {G, H1, H2}, {G, V1, V2}, {H1}, {H2}, {V1}, {V2} }.
We can see from the above basis that in saturated configurations, G can only be present
one of two unsplittable polymer types: {G, H1, H2} or {G, V1, V2}, and we can optimize the
number of polymers in a configuration by taking the other monomers as singletons (which
is allowed, as these singletons are in the polymer basis). More generally, reasoning about
stable configurations amounts to determining the number of each polymer type to use from
the polymer basis so that the union of all polymers is the TBN, while using the maximum
number of polymers possible. Our software can also solve for stable configurations in this
way; specifically, for a TBN T , it can calculate the polymer basis (abbreviated here as B)
and then solve for the stable configurations using the following IP:

max
c∈N|B|

∥c∥1 subject to
|B|∑
i=1

ciBi = T

Alternately, one can solve for the stable systems via an augmentation approach (see [7]).
If the goal is simply to solve the StableConfigs problem, we do not expect that solving

for the stable configurations in this way will be more efficient than the previous formulation,
as the time spent computing the Hilbert basis alone can require a great deal longer than
solving via the formulation of the previous section. Instead, the true value of the basis is in
its ability to describe all saturated configurations of a TBN.

For instance, in [2], the authors define an augmented TBN model in which a system
can move between saturated configurations by two atomic operations: polymers can be
pairwise merged (with an energetic penalty, i.e., higher energy) or they can be split into two
so long as no bonds are broken (with an energetic benefit, i.e., lower energy; for instance
{a, b}, {a∗, b∗}, {a}, {a∗} can be split into {a, b}, {a∗, b∗} and {a}, {a∗}, whereas {a}, {a∗}
cannot be split). Any saturated polymer not in the basis can split into its basis components
without breaking any bonds. Thus the polymer basis contains all polymers that can form in
a local minimum energy configuration, i.e., one where no polymer can split.

When designing a TBN, the designer will typically have a sense for which polymers are
to be “allowed” in local energy minima. Proving that the system observes this behavior was
not previously straightforward, but we can now observe that the TBN will behave ideally
when its expected behavior matches its polymer basis.



D. Haley and D. Doty 2:13

4.3 A case example: Circular Translator Cascade
We now discuss an example of using the polymer basis to reason about a TBN’s kinetic
behavior, studying a TBN known as a circular translator cascade, first defined in [2]:

{{a, b, c}, {b, c, d}, {c, d, e}, {d, e, f}, {e, f, a}, {f, a, b},

{a∗, b∗}, {b∗, c∗}, {c∗, d∗}, {d∗, e∗}, {e∗, f∗}, {f∗, a∗}}

There are two stable configurations of this TBN, shown in Figure 3.

cba

b*a*

dcb

c*b*

edc

d*c*

fed

e*d*

fe a

f*e*

f a b

f* a*

cba

b*a*

dcb

c*b*

edc

d*c*

fed

e*d*

fe a

f*e*

f a b

f* a*

Figure 3 The two stable configurations of a variant of the circular translator cascade described in [2].
In the left configuration, the unstarred monomers are bound to their “left-side” companions (e.g. {a, b, c} is
bound to {a∗, b∗}), and in the right configuration, the unstarred monomers are bound to their “right-side”
companions (e.g. {a, b, c} is bound to {b∗, c∗}).

We consider now the “pathways” by which one of the stable configurations can “transition”
to another. This process is described formally in [2]; here we give an intuitive description.
Informally, we admit as atomic operations the ability for two polymers to merge or for one
polymer to split into two polymers, so long as the resulting configuration remains saturated.
In essence, these operations are modelling the physical phenomenon of solutes colocalizing
in solution before reactions occur, specifically in dilute solutions in which enthalpic bond
rearrangements occur on a timescale much faster than the timescale for entropic colocalization.
If many polymers must be merged in some intermediate configuration to transition between
stable configurations, then since each merge is individually unlikely, the successive merges
required are exponentially unlikely i.e., a large energy barrier exists to transition between
the configurations.

The design intention of this TBN is to have two stable configurations with a large energy
barrier to transition between them. For the largest possible energy barrier, the transition
should require the simultaneous merging of all of the polymers into a single polymer as an
intermediate step. However, this is not the case for the TBN of Figure 3; the polymer basis
gives insight into why. See [2, Section A.2] for an argument why more domain types and
monomer types are required. We interpret this as a design error. We now explain how the
error can be detected by reasoning about the polymer basis of the system, justifying that
the automated computation of the polymer basis by our software enables one to automate
some reasoning about the correct behavior of TBNs.

If it were true that the polymer basis contained only the 12 polymer types that are present
in the two stable configurations of Figure 3, then that would be sufficient to prove the high
energy barrier. To see why this is true, suppose there were a locally stable intermediate
configuration that is part of a lower barrier transition. Since the configuration is locally stable,
it is saturated, and none of its polymers can be partitioned into self-saturated polymers.
By definition, the polymer basis should then contain all of the polymers present in this
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intermediate configuration. However, all of the polymers in the basis have exactly two
monomers, and so there must be 6 polymers in the intermediate configuration. The stable
configurations also have 6 polymers, and so the intermediate configuration is also stable, but
this contradicts that there are only two stable configurations.
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Figure 4 A counterexample to the claim that transitioning between stable configurations of this
TBN requires the simultaneous merger of all monomers into a single polymer. Starting from the stable
configuration on the left, by merging the four polymers within the red dotted outline, it is possible to
re-arrange bonds and then split to the middle configuration. Then from the middle configuration, by
merging the three polymers in the red dotted online, it is possible to re-arrange bonds and then split
to the stable configuration on the right. Such intermediate configurations are evident by examining the
elements of the polymer basis.

In fact, the polymer basis for this TBN has 57 entries (determined via our software), not
12, and we can use this basis to disprove the high energy barrier, i.e, to show that there
is a sequence of merges and splits that transitions between the two stable configurations,
without all monomers ever being merged into a single polymer. To discover a pathway that
demonstrates the lower energy barrier, consider one unexpected entry in the polymer basis:
P = {{a, b, c}, {d, e, f}, {c∗, d∗}, {f∗, a∗}}. Its existence in the polymer basis tells us that
there must be some saturated configuration that contains it. If we examine where these
monomers were in one of the original stable configurations (Figure 3, left), we see that these
were originally in polymers

{{a, b, c}, {a∗, b∗}}, {{c, d, e}, {c∗, d∗}}, {{d, e, f}, {d∗, e∗}}, {{f, a, b}, {f∗, a∗}}.

From the starting configuration, if only these four polymers were merged, then they could
then iteratively split into P, {{c, d, e}, {d∗, e∗}}, and {{f, a, b}, {a∗, b∗}}. Since the latter
two polymers are part of the target configuration, one could now greedily merge all polymers
except for these latter two and then split into the target configuration. At no point in the
interim were all polymers merged together into a single polymer. The resulting pathway is
illustrated in Figure 4.

The difference between intended and actual barrier in this design becomes more pro-
nounced if it is scaled up to include more site types and monomers. In [2] it is shown that
by modifying the design, it is possible to achieve a linear energy barrier by using a quadratic
number of site types.

5 Conclusion

In our investigation we observed that it was generally more efficient to solve Saturated-
Configs by finding the optimal objective value using an IP solver as a first step, followed by
using a CP solver on the same formulation with the objective value now constrained to the
value found by the IP solver. Are further computational speedups possible by using IP as a
callback during the CP search, instead of only in the beginning? How would one formulate
the subproblems that would need to be solved in these callbacks?
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In this paper we also note the value of polymer bases that are derived from the matrix
containing the monomer descriptions. Such polymer bases can be used to describe all saturated
configurations of a TBN, and so provide a valuable tool for analyzing potential behavior
of a TBN when the model is augmented with rules that allow for dynamics. In practice,
rather than discover unexpected behavior by calculating the polymer basis, a designer would
instead like to begin with a set of behaviors and then create a TBN that respects them. Can
we begin from verifiable polymer/Hilbert bases, encoding desired behavior, and transform
them into TBN/DNA designs?

The full TBN model [2] can also be used to describe the regime in which there is a more
modest tradeoff between the two energetic penalties of breaking bonds and merging complexes
(i.e., saturation is not guaranteed). For example toehold-length binding sites in DNA strand
displacement systems [4, 16,19, 24,25] are intended to dissociate over timescales comparable
to association. Indeed, our software [13] includes an implementation of the StableConfigs
formulation in which this relative weighting factor is included in the objective function.
Under what conditions can a comparable polymer basis for such a system be found? Within
the context of integer programming, it is known that by adding constraints to the design, one
can reduce the complexity of finding/verifying Hilbert bases (and related Graver bases) [10],
but it is not clear how to interpret these numeric constraints within the context of TBNs.

Satisfiability Modulo Theory (SMT) formulations have the ability to express TBN concepts
(such as reachability along kinetic paths) without converting to a linear algebra framework,
and existing solvers can solve SMT instances with surprising efficiency (for example, Z3 [8]).
Can such solvers reason about TBNs directly within a reasonable time frame? Can they
efficiently extract information beyond what is contained in the polymer basis?
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