Improved Lower and Upper Bounds on the Tile
Complexity of Uniquely Self-Assembling a Thin
Rectangle Non-Cooperatively in 3D

David Furcy &
Computer Science Department, University of Wisconsin Oshkosh, WI, USA

Scott M. Summers &
Computer Science Department, University of Wisconsin Oshkosh, WI, USA

Logan Withers =
Computer Science Department, University of Wisconsin Oshkosh, WI, USA

—— Abstract

We investigate a fundamental question regarding a benchmark class of shapes in one of the simplest,
yet most widely utilized abstract models of algorithmic tile self-assembly. More specifically, we study
the directed tile complexity of a k x N thin rectangle in Winfree’s ubiquitous abstract Tile Assembly
Model, assuming that cooperative binding cannot be enforced (temperature-1 self-assembly) and that
tiles are allowed to be placed at most one step into the third dimension (just-barely 3D). While the
directed tile complexities of a square and a scaled-up version of any algorithmically specified shape
at temperature 1 in just-barely 3D are both asymptotically the same as they are (respectively) at
temperature 2 in 2D, the (nearly tight) bounds on the directed tile complexity of a thin rectangle at
temperature 2 in 2D are not currently known to hold at temperature 1 in just-barely 3D. Motivated
by this discrepancy, we establish new lower and upper bounds on the directed tile complexity of
a thin rectangle at temperature 1 in just-barely 3D. The proof of our upper bound is based on
the construction of a novel, just-barely 3D temperature-1 self-assembling counter. Each value of
the counter is comprised of k — 2 digits, represented in a geometrically staggered fashion within k
rows. This nearly optimal digit density, along with the base of the counter, which is proportional to
N ﬁ, results in an upper bound of O (N = +log N ), and is an asymptotic improvement over
the previous state-of-the-art upper bound. On our way to proving our lower bound, we develop
a new, more powerful type of specialized Window Movie Lemma that lets us bound the number
of “sufficiently similar” ways to assign glues to a set (rather than a sequence) of fixed locations.
Consequently, our lower bound, 2 (N %), is also an asymptotic improvement over the previous

state-of-the-art lower bound.
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1 Introduction

A key objective in algorithmic self-assembly is to characterize the extent to which an algorithm
can be converted to an efficient self-assembling system comprised of discrete, distributed and
disorganized units that, through random encounters with, and locally-defined reactions to
each other, coalesce into a terminal assembly having a desirable form or function. In this
paper, we study a fundamental theoretical question regarding a benchmark class of shapes in
one of the simplest yet most popular abstract models of algorithmic self-assembly.

Ubiquitous throughout the theory of tile self-assembly, Erik Winfree’s abstract Tile
Assembly Model (aTAM) [26] is a discrete mathematical model of DNA tile self-assembly [23]
that augments classical Wang tiling [25] with a mechanism for automatic growth. In the
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Tile Complexity of Uniquely Self-Assembling Thin Rectangles

aTAM, a DNA tile is represented by a unit square (or cube) tile type that may neither
rotate, reflect, nor fold. Each side of a tile type is decorated with a glue consisting of both a
non-negative integer strength and a string label, the symbols of which are drawn from some
fixed alphabet. A tile set is a finite set of tile types, from which infinitely many tiles of each
type may be instantiated. If one tile is positioned at an unoccupied location Manhattan
distance 1 away from another tile and their opposing glues are equal, then the two tiles bind
with the strength of the adjacent glues. A special seed tile type is designated and a seed
tile, which defines the seed-containing assembly, is placed at some fixed location. During the
process of self-assembly, a sequence of tiles bind to and never detach from the seed-containing
assembly, provided that each one, in a non-overlapping fashion, binds to one or more tiles
in the seed-containing assembly with total strength at least a certain positive integer value
called the temperature. If the temperature is greater than or equal to 2, then it is possible
to enforce cooperative binding, where a tile may be prevented from binding at a certain
location until at least two adjacent locations become occupied by tiles. Otherwise, only
non-cooperative binding is allowed (temperature-1 self-assembly). A fundamental theoretical
question in tile self-assembly is determining the effect of the value of the temperature on the
computational and geometric expressiveness of tile self-assembly.

To that end, temperature-1 self-assembly has been shown to hinder the efficient self-
assembly of shapes when tile assemblies are required to be fully connected [22] or contain no
glue mismatches [16]. Temperature-1 self-assembly is also neither intrinsically universal [17,19],
nor capable of bounded Turing computation [19]. Recently and quite remarkably, Meunier,
Regnault and Woods [18] established a general pumping lemma for temperature-1 self-
assembly, nearly proving a conjecture by Doty, Patitz and Summers [6] on the computational
weakness of temperature-1 self-assembly.

Interestingly, temperature-1 self-assembly does not limit the computational or geometric
expressiveness of generalizations of the aTAM [4,5,7,8,12]. This is also true even when the
generalization only adds a small number of additional features to the model, like a single
negative glue [20], duple tiles [13], or another plane in which (cubic) 3D tiles are allowed to be
placed [3,9-11]. The latter variant is colloquially known as “just-barely” 3D self-assembly. In
this paper, we study the limitations of temperature-1 self-assembly for unique shape-building
in the just-barely 3D aTAM. We are specifically interested in studying the directed tile
complezity of a given target shape, or the size of the smallest tile set that, regardless of the
order in which tiles bind to the seed-containing assembly, always self-assembles into a unique
terminal assembly of tiles that are placed on and only on points of a given target shape.

Although temperature-1 self-assembly cannot enforce cooperative binding, there is a
striking resemblance of its computational and geometric expressiveness in just-barely 3D,
to that of temperature-2 self-assembly in 2D, with respect to the directed tile complexity
of two benchmark shapes: a square and a scaled-up version of any algorithmically specified

shape. Adleman, Cheng, Goel and Huang [1] proved, using optimal base conversion, that the

log N
loglog N

directed tile complexity of an N x N square at temperature 2 in 2D is O ( ), matching
a corresponding lower bound for all Kolmogorov-random N and all positive temperature
values, set by Rothemund and Winfree [22]. The lower bound also holds in just-barely

3D. An O ( log V ) upper bound for the directed tile complexity of an N x N square at

log log N
temperature 1 in just-barely 3D was established by Furcy, Micka and Summers [9] via a
just-barely 3D, optimal encoding construction at temperature 1. Just-barely 3D, optimal
encoding at temperature 1 was inspired by, achieves the same result as, but is drastically
different from the 2D optimal encoding at temperature 2 developed by Soloveichik and
Winfree [24], who proved that the directed tile complexity of a scaled-up version of any



D. Furcy, S. M. Summers, and L. Withers

algorithmically specified shape X at temperature 2 is © (%), where K (X) is the size
of the smallest Turing machine that outputs the list of points in X. This tight bound for
temperature-2 self-assembly in 2D was shown to hold for temperature-1 self-assembly in

just-barely 3D by Furcy and Summers [10].

Another benchmark shape, for positive integers k, N, is the k x N rectangle, where
k< TogTog lelgolglog g N’ making it “thin”. A thin rectangle is an interesting testbed because
its restricted height creates a limited channel through which tiles may propagate information,

for example, the current value of a self-assembling counter. In fact, Aggarwal, Cheng,

Goldwasser, Kao, Moisset de Espanés and Schweller [2] used an optimal, base- [N %—‘ counter
that uniquely self-assembles within the restricted confines of a thin rectangle to derive an
upper bound of O (N F k) on the directed tile complexity of a £ x N thin rectangle at
temperature 2 in 2D. They then leveraged the limited bandwidth of a thin rectangle in a

1
counting argument for a corresponding lower bound of € (Nkk)

The previous theory for a square and an algorithmically specified shape would suggest
that these thin rectangle bounds should hold at temperature 1 in just-barely 3D. Yet, we
currently do not know if this is the case. Thus, the power of temperature-1 self-assembly
in just-barely 3D resembles that of temperature-2 self-assembly in 2D, with respect to the
directed tile complexities of a square and a scaled-up version of any algorithmically specified
shape, but not a thin rectangle.

Motivated by this theoretical discrepancy, we prove new lower and upper bounds on the
directed tile complexity of a thin rectangle at temperature 1 in just-barely 3D, where Ri’ N
is a just-barely 3D k x N rectangle if it satisfies {0,1,...,N —1} x {0,1,...,k—1} x {0} C
R%N c{0,1...,N—1} x{0,1...,k—1} x {0,1}. See Tables 1 and 2 for a quick summary
of our results and how they compare with previous state-of-the-art results.

Table 1 State-of-the-art directed tile complexity for benchmark shapes in the aTAM, where
K (X) is the size of the smallest Turing machine that outputs the list of points in X.

2D Temperature 2 Just-barely 3D Temperature 1
Lower bound ‘ Upper bound || Lower bound ‘ Upper bound
N x N Square S} <lolg°i ngN> Same as 2D Temperature 2
Algorithmically-defined shape X S} <%> Same as 2D Temperature 2
1 1 -
k x N rectangle Q(NTA) O(N%-i-k') Q(N}fk> O(NL%J +logN>

Table 2 In this table, we highlight our improved lower and upper bounds on the directed
tile complexity of rectangles, the two main contributions of this paper, and compare them with
corresponding bounds in 2D at temperature 2. Note that, for thin rectangles, the additive logarithmic

log ¥V ~ > Which implies that log N <

term disappears, since, for a thin rectangle, k < TogTos N oz o 0%

Nt < N ﬁ, for sufficiently large k and N.

2D Temperature 2 Just-barely 3D Temperature 1
Lower bound | Upper bound || Lower bound Upper bound
k x N rectangle Q (%) o(nt+k) | @(Nt) | 0(NFT+10gN)
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Tile Complexity of Uniquely Self-Assembling Thin Rectangles

First, we have our upper bound:

» Theorem 1. The directed tile complexity of a just-barely 8D k x N rectangle at temperature
1isO (Nﬁ +1ogN),

Theorem 1 is an asymptotic improvement over the previous state-of-the-art upper bound:

O(N 5] +log N | [11]. The latter bound is based on the self-assembly of a just-barely

3D counter that uniquely self-assembles at temperature 1, but whose base M depends on
the dimensions of the target rectangle, where each digit is represented geometrically and in
binary within a just-barely 3D region of space comprised of ©(log N) columns and 3 rows.
In a construction like this, the number of rows used to represent each digit affects the base of
the counter, which, for a thin rectangle, turns out to be the asymptotically-dominating term
in the tile complexity. For example, in the Furcy, Summers and Wendlandt construction,

the number of rows per digit is 3, so the base is set to © (N L%] ) Intuitively, “squeezing”

more digits into the counter for the same rectangle of height k& will result in a decrease in the
base and therefore the tile complexity.

Our construction for Theorem 1 is based on the self-assembly of a just-barely 3D counter
similar to the Furcy, Summers and Wendlandt construction, but the geometric structure
of our counter is organized according to digit regions, or just-barely 3D regions of space
comprised of k rows and © (Nﬁ) columns, in which k — 2 base-© (Nﬁ) digits are
represented in a staggered fashion. This increase in digit density is the main reason why the
« L%J ” term from the Furcy, Summers and Wendlandt upper bound is replaced by a “k — 1”
term in Theorem 1. Finally, we have our lower bound:

» Theorem 2. The directed tile complexity of a just-barely 8D k x N rectangle at temperature
1isQ (N,

Theorem 2 is an asymptotic improvement over the previous state-of-the-art lower bound:
Q N,f’“) . Technically, the latter bound is not explicitly proved (or even stated) and therefore
cannot be referenced, but it can be derived via a straightforward application of the standard
Window Movie Lemma introduced in [17]. On our way to proving Theorem 2, we prove
Lemma 5, which is essentially a new, more powerful type of Window Movie Lemma technique,
specifically designed for temperature-1 self-assembly within a just-barely 3D, rectangular
region of space. We conjecture that the conclusion of Lemma 5 can be generalized to give
a powerful tool for proving even better lower bounds on the directed tile complexity of 3D
non-rectangular shapes at temperature-1 than what would otherwise be possible with the
standard Window Movie Lemma. Lemma 5 lets us develop a more refined counting argument
based on upper bounding the number of “sufficiently similar” ways for an assembly sequence
to assign glues to a fixed set of locations abutting a plane. Intuitively, two assignments are
sufficiently similar if, up to translation, they respectively agree on: the set of locations to
which glues are assigned, the local order in which certain consecutive pairs of glues appear,
and the glues that are assigned to a certain set (of roughly half) of the locations.
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2 Formal definition of the abstract Tile Assembly Model

In this section, we briefly sketch a strictly 3D version of Winfree’s abstract Tile Assembly
Model (see also [14,21,22]).

All logarithms in this paper are base-2. A grid graph is an undirected graph G = (V, E),
where V' C Z3, such that, for all {c?, 5} e B, ad-— b is a 3-dimensional unit vector. The
full grid graph of V is the undirected graph G, = (V, E), such that, for all #,4 € V,
{Z,9} e E < ||Z —¥|| =1, i.e., if and only if & and ¥ are adjacent in the 3-dimensional
integer Cartesian space.

A 3-dimensional tile type is a tuple t € (X* x N)%, e.g., a unit cube, with six sides, listed
in some standardized order, and each side having a glue g € ¥* x N consisting of a finite
string label and a nonnegative integer strength. We assume a finite set of tile types, but an
infinite number of copies of each tile type, each copy referred to as a tile. A tile set is a set
of tile types and is usually denoted as T'.

A configuration is a (possibly empty) arrangement of tiles on the integer lattice Z3, i.e.,
a partial function a : Z3 --» T. Two adjacent tiles in a configuration bind, interact, or are
attached, if the glues on their abutting sides are equal (in both label and strength) and have
positive strength. Each configuration « induces a binding graph G2, a grid graph whose
vertices are positions occupied by tiles, according to a, with an edge between two vertices if
the tiles at those vertices bind. An assembly is a connected, non-empty configuration, i.e., a
partial function « : Z® --» T such that GY__  is connected and dom « # ). Given 7 € Z7,
« is T-stable if every cut-set of G2 has weight at least 7, where the weight of an edge is the
strength of the glue it represents. When 7 is clear from context, we say « is stable. Given
two assemblies «, 3, we say « is a subassembly of 5, and we write o C 3, if dom o C dom f3
and, for all points p € dom «, a(p) = B(p).

A 3-dimensional tile assembly system (TAS) is a triple T = (T, 0, 7), where T is a tile
set, o : Z® --» T satisfying |dom o| = 1 is the seed assembly (trivially T-stable), and
T € Z% is the temperature. Given two T-stable assemblies «, 3, we write a —7 3 if a C 3
and |dom f\dom a| = 1. In this case we say o T-produces 3 in one step. If a =] B,
dom B\dom a = {p}, and ¢t = 3(p), we write 8 = a + (p' — t). The T -frontier of « is the
set 0Ta = Uaﬁfﬁ(dom B\dom «), i.e., the set of empty locations at which a tile could
stably attach to a. The t-frontier of a, denoted 9/ a, is the subset of 7 o defined as
{ped’a |a—T Band B(p) =t }.

Let AT denote the set of all assemblies of tiles from 7', and let AL _ denote the set of
finite assemblies of tiles from 7. A sequence of k € ZT U {co} assemblies a@ = (ap, aq, .. .)
over AT is a T-assembly sequence if, for all 1 <14 < k, a;_1 —] ;. The result of an assembly
sequence @, denoted as res(@), is the unique limiting assembly (for a finite sequence, this is
the final assembly in the sequence). We write a —7 3, and we say a T -produces 3 (in 0 or
more steps), if there is a T-assembly sequence ag, a1, ... of length k¥ = |[dom S\dom o] + 1
such that (1) a = ap, (2) dom 8 = {Jj<;.\, dom a4, and (3) for all 0 < i < k, a; E 3. We say

a is T-producible if o —7 «, and we write A[T] to denote the set of T-producible assemblies.

An assembly « is T-terminal if o is 7-stable and 07 a = (. We write Ag[T] € A[T] to
denote the set of T-producible, T-terminal assemblies. If | Ag[T]| =1 then T is said to be
directed. We say that a TAS T uniquely self-assembles a shape X C Z3 if An[T] = {a} and
dom a = X.

The directed tile complezity of a shape X at temperature 7 is the minimum number of
distinct tile types of any TAS that uniquely self-assembles (USA) X, denoted by K[;g4(X) =
min{n | 7T = (T,0,7),|T| =n and T uniquely self-assembles X }.

4:5
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3  The upper bound

In this section, we prove Theorem 1, our upper bound, namely that K}]SA (R%N) =

0] (N =4 log N ) In order to do so, we construct a TAS that uniquely self-assembles a
sufficiently large rectangle (of any height k > 3) R% n- Specifically, we construct a TAS

T = (T,0,1) so that it simulates a base B = [Nﬁ—‘, W = k — 2 digit counter, henceforth
referred to as the counter, that starts counting at a specified starting value and stops after
the maximum value is incremented, before rolling over to 0. In the remainder of this section,
we will describe the self-assembly of the counter.

Each W-digit, base-B value of the counter is represented in a corresponding just-barely
3D rectangular region of space called a digit region. There are two types of digit regions, one
for each type of counter step: copy and increment. The former duplicates the value from the
previous increment region and the latter increments the value from the previous copy region.
The counter alternates between increment and copy steps.

Counter digits are represented geometrically and in binary, using the bit bump technique
by Cook, Fu and Schweller [3]. Each digit is comprised of b + 2 = [log B] + 2 bit bumps
that protrude from a row of tiles. Each bit bump geometrically encodes one bit. The two
most significant (westernmost) bits of a digit are its indicator bits: 10 — most significant,
01 — least significant, 00 — neither, 11 — both. The rest of the bits represent a base-B value.
Bumps of a digit in increment (copy) regions protrude to the south (north). If the bump is
in the z = 0 (2 = 1) plane, then it represents a 0 (1). The W digits in a digit region are
staggered like the steps of a staircase, descending (ascending) in a copy (increment) region.
Figure 1 shows the layout of the two types of digit regions, positioned consecutively as they
would be in the counter, which is self-assembling to the east.

ds ‘ do dy 5 3(b+2) 9 3(b+2) 9 3(b+2) 1
IEREIEIE A0
,,,,,,,,,,,,,,,,,,,,,,, 0Jd0Jo0Ho

0109170 oW YT 04 1400
1 30 +2) 10 30 +2) 10 30 +2) Ted d; d; ds

Figure 1 A copy region (west) and an increment region (east). The numeric quantities below and
above each region indicate a number of columns. Note that W = 3, so k = 5 (not drawn to scale).

Digit regions (Figure 1): We assume that the most significant bit of a digit is represented
by the westernmost bit bump (to the east of the indicator bits), which means that we have
dy = 2 (least significant digit), da = 2 and dy = ds = 1 (most significant digit). Thus, the
base-3 value 122 in the copy region is incremented to 200 in the increment region. The
orange column represents a variable number of e = B — (2W (3(b + 2)) + 50) extra columns.
The extra columns ensure that the combined width of two consecutive digit regions is B.
The idea is that the terminal assembly of 7 is a sequence of copy-increment digit region
pairs with one pair per value of the counter. Since each value of the counter corresponds to a
pair of consecutive digit regions and e is such that the width of two consecutive digit regions
is B columns, assuming the counter starts counting at 0, the width of the k-row terminal

k—2 _
assembly that 7~ will produce is B- BY = [Nﬁ_‘ . [Nﬁ > NI . Ni=t > N. Then,
T can be modified to produce a unique terminal assembly of height & and width N, by using
a positive starting value and O (N mod B) additional tile types.
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Figures 2 through 10 illustrate the self-assembly of an increment step for an artificial
example with B = 3, k = 5 and starting value 122.

SOSERESE L0 T b
o] (= W=l EEEE)] @ - =N
CEC OB e X

Figure 2 The initial value assembly.

The initial value (Figure 2): The initial value is represented inside a copy region. The
green tile is the seed tile. We use big (small) squares to represent tiles placed in the z =0
(z =1) plane. A glue between a z = 0 tile and z = 1 tile is denoted as a small disk. Glues
between z = 1 (z = 0) tiles are denoted as thin (thick) lines. Each three-tile-wide bit bump
geometrically encodes one bit. The bits of a digit are comprised of white tiles. In every copy
region, the bump in the z = 1 plane immediately east of digit d; for ¢ > 1 does not represent
a bit, but rather a portion of the assembly that will eventually block the self-assembly of a
subsequent path of repeating tiles (for example, the path of red tiles in Figure 6). The two
easternmost tiles in the z = 0 plane will also block the self-assembly of a subsequent path of
repeating tiles (for example, the path of blue tiles in Figure 4). The tiles that traverse the
orange column represent paths of e tiles. In general, we can hard-code a path of tiles that
uniquely self-assembles a corresponding initial value assembly, from the seed to the z = 0
purple tile, where the glues of each tile type along the path encode the relative location of
the tile in the path. In general, such a path contributes O(e + kb) = O(B + log N) tile types
to T'. After the initial value self-assembles, the counter executes an increment step. A bit
indicating the presence of an arithmetic carry, the carry bit, initially set to 1, is introduced
in the east-facing glues of both purple tiles that specifically start reading d; for an increment
step. The purple tiles that start reading d; for i > 1 propagate the carry bit.

SO EEE

=
]
]

Cigal

0
ol
o) [®

Figure 3 The purple tiles are reading d; from most to least significant bit (west to east).

Read digit (Figure 3): The purple tiles are reading the four bits of d; in the copy region,
starting with its most significant (westernmost) bit. In general, the counter reads the value
of a digit as follows. Below the westernmost purple tile in the z = 1 plane, another purple
tile attaches in the z = 0 plane (see also the purple tiles in Figure 2) and they both have
east-facing glues. The east-facing glue on the z = 1 (z = 0) tile encodes 0 (1), but, due
to the presence of the westernmost bit bump, only one is exposed. For each 1 <1i < b+ 2
and x € {0,1}*71, there corresponds a reader gadget that reads a 0 in bit position 4 (for
notational convenience, ¢ = 1 is the position of the most significant bit of a digit). Such a
reader gadget self-assembles a horizontal path of three tiles in the z = 1 plane and a tile
below the easternmost z = 1 tile (in the z = 0 plane), such that, the west-facing input glue
of its westernmost tile encodes x0, the east-facing output glue of its easternmost z = 0 tile
encodes 01 and the east-facing output glue of its easternmost z = 1 tile encodes x00. A
reader gadget that reads a 1 is defined similarly. All reader gadgets also propagate the carry
bit. A reader gadget that reads the bit in position b 4 2 is similar to previous reader gadgets
but has only one output glue, which is on a tile in the z = 0 plane and encodes the value
of its input glue. It also initiates the self-assembly of a path of repeating tiles, along which

4:7
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the value of the digit that was just read, the carry bit and a bit indicating whether d; was
just read are propagated. The presence of all b + 2 bit bumps ensures a unique assembly
sequence of b+ 2 corresponding reader gadgets. In general, for each 1 < i < b+ 2, we need
0] (2‘) reader gadgets that read a bit in position ¢. Thus, in general, all the reader gadgets
contribute O (2b) = O(B) tile types to T'. Our reader gadgets are inspired by the simulation

macro tiles depicted in Figures 3 and 6 of [3].

T
)
=it

sifaeE] =)

Figure 4 The path of repeating blue tiles propagates di and the carry bit to the increment region.

Propagate digit (Figure 4): After the bits of any digit in a copy region are read, a blue
tile type with equal west and east glues self-assembles in a path of repeating tiles to the east,
propagating the value of the digit that was just read and the carry bit. A previous portion
of the assembly blocks the self-assembly of this path, at which point the south-facing glue of
the easternmost blue tile in the path is exposed, from which a fixed size, hard-coded path of
gray tiles self-assembles to the location immediately west of the most significant bit of d; in
the increment region. The path of repeating blue tiles, all of the same type, propagate the
value of a base-B digit, the carry bit and a bit indicating whether d; was just read, thus,
in general, contributing O(B) tile types to T'. Similarly, the hard-coded path, in general,
contributes O(B) tile types to T. We use two different types of hard-coded paths: one for
d; and another for d; for ¢ > 1. The latter self-assembles a bump in the z = 1 plane that
eventually blocks a subsequent path of repeating tiles.

*

Figure 5 The bits of di, read in Figure 3, are written.

Write digit (Figure 5): In this example, the value of d; is incremented from 2 and rolls
over to 0, resulting in a carry out. The bits are written using fixed size writer gadgets, that
work in a fashion similar to the reader gadgets, where we have a corresponding writer gadget
for each bit position and each one propagates the carry bit (the first writer gadget receives
the carry bit, updates it accordingly and propagates it). Thus, just like the reader gadgets,
the writer gadgets contribute O(B) tile types to T'. The two easternmost z = 0 tiles will
eventually block the self-assembly of a subsequent path of repeating blue tiles (for example,
the blue tiles in Figure 4 but after reading a different digit). The path of tiles, starting with
the gray tile immediately east of the least significant bit and ending at the westernmost
z = 1 black tile is hard-coded and propagates the carry bit, thus, in general, contributing
O(b) = O(log N) tile types to T. Note that, in general, the same tile types are used for the
self-assembly of similar paths that self-assemble after writing every digit except dw in an
increment region.

F
4
4
-4
-4

s e e e s o e e o e e e s o e e o e s

8][d ; CHE] el s s s o) o bl ] Hmil
]
!

Figure 6 Return to the copy region to read the next digit, ds.
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Return to read another digit (Figure 6): We use a red tile type with equal west and east
glues to self-assemble a path of repeating tiles to the west, starting six tiles to the west
of the most significant bit of the digit that was just written in the increment region. A
previous portion of the assembly, namely the bump in the z = 1 plane that is east of the
least significant bit of each digit d; for i > 1 in a copy region blocks the self-assembly of the
path of repeating red tiles, at which point the south-facing glue of the westernmost red tile
in the path is exposed, from which a hard-coded path of tiles self-assembles, ending at the
z = 0 purple tile. The red tile types propagate the carry bit, thus, in general, contributing
O(1) tile types to T. The hard-coded path also propagates the carry bit, thus, in general,
contributing O(b) = O(log N) tile types to T. Note that the same tile types are used for the
self-assembly of similar paths that self-assemble after writing every digit except dy in an
increment region.

S KNS S O A o Rt G

O {00

Figure 7 A conceptual depiction of the complete self-assembly of an increment region (bottom),
given the initial value copy region (top).

109 1 404140
N L | [ elalate] |y
3 g

Increment step high-level assembly sequence and corresponding full assembly (Figures 7
and 8): The assembly sequence begins at the location of the green seed tile in the copy
region. The gray (black) lines are hard-coded paths of tiles in the z = 0 (z = 1) plane.
The blue (red) lines are paths of repeating tiles in the z = 0 (z = 1) plane. The purple
zig-zag lines represent the reader gadgets. A corresponding full assembly is shown in Figure 8.
The counter concludes an increment step after it writes dy in the increment region. The

purple zig-zag line through dy in the increment region represents the first sequence of tile
placements for the next copy step. Note that if the carry bit is 1 after writing dy in the
increment region, then the counter can stop counting.

Figure 8 The full assembly of the initial value copy region is on the top and the next increment
region is on the bottom. A producible, non-terminal assembly results when the latter is translated
so that its westernmost column is immediately east of the easternmost column of the former.

Copy step high-level assembly sequence: (Figures 9 and 10): After an increment step
concludes, a copy step is executed. A copy step is carried out in a fashion similar to an
increment step, using a specific set of tile types. In a copy step, the digits are read from the
previous increment region and written in the next copy region in the order dy to d; (reverse
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of an increment step). Regardless, the tile types for a copy step, in general, contribute
O(B + log N) tile types to T'. Moreover, all the tile types used for an increment step are
defined to be disjoint from those for a copy step, which has no effect on the asymptotic size
of T.

o 1L 10, 11.10
: Ll O L 0
D O‘mg 010010, -

1404140
'>0000>0100>f»

Figure 9 A conceptual depiction of the self-assembly of a copy region (bottom) from a given
increment region (top), which begins at the most significant bit of dw in the increment region
(outlined in green). A copy step concludes after the self-assembly of the hard-coded path of tiles,
starting at the least and ending at the most significant bit of di (copy region). This hard-coded
path contributes O(e) tile types to T'.

Figure 10 The full assembly of the completed increment region is on the top (see also the bottom
assembly of Figure 8) and the next copy region is on the bottom. A producible, non-terminal
assembly results when first the latter is translated so that its westernmost column is immediately
east of the easternmost column of the former and then this assembly is translated so its westernmost
column is immediately east of the easternmost column of the top assembly shown in Figure 8.

Tile complexity and correctness: From the preceding discussion, generalized to arbitrary
k and N, we have |T| = O(B +1logN) = O (Nﬁ +logN), from which the bound for
Theorem 1 follows. Formal correctness can be shown using the method of Conditional
Determinism by Shutters and Lutz [15].

4 The lower bound

In this section, we prove Theorem 2, our lower bound, namely that K}]SA (RzN) =Q (N%).
We first give some notation that will be used throughout the remainder of this section. Let
T = (T,0,7 =1) be a 3D TAS with a € Ag[T]. Assume s = (Zy, %1,...,Tm) is a simple
path in G2, such that, #; = dom 0. We say that @ follows s if there is a T-assembly
sequence @& = (o; | 0 <4 < m + 1) that satisfies the next two conditions: ag = o, and for all
0 <i<m, dom a;\dom ;1 = {Z;}.

This paragraph contains definitions that were taken directly from [17]. A window w is
a set of edges forming a cut-set of the full grid graph of Z3. Given a window w and an
assembly «, a window that intersects « is a partitioning of « into two configurations (i.e.,
after being split into two parts, each part may or may not be disconnected). In this case
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(a) A subassembly of (b) A portion of (c) The glue window (d) The restricted

« and a window w the simple path s movie Mg . glue window sub-
induced by a transla- through G%. movie Mg o, [ .

tion of the y-axis.

Figure 11 An assembly, a simple path, and two types of glue window movies in 2D. Here, we
have Mg w = (U1, 91), (U2, 92), (U3, 93), (Us, 94), (U5, 95), (s, g6), (U7, 97), (s, g8), (o, g9), (10, g10),

(U11,911), (V12, g12), (13, 913), where g1 = g2, g3 = g4, g6 = g7, g8 = g9, g11 = g1z and gi3 = gio.

Note that Mg ., [ s only includes the location-glue pairs where the glues actually form bonds between
locations in s. For example, 010 and 713 are excluded from Mg ., [ s because the glues that connect
them are not part of the path of glue that follow s.

we say that the window w cuts the assembly « into two non-overlapping configurations ay,
and ap, satisfying, for all ¥ € dom ar, a(Z) = ar (%), for all ¥ € dom ag, a(¥) = ar(L),
and «o(7) is undefined at any point 7 € Z3\ (dom oy Udom ag). Given a window w, its
translation by a vector &, written w+ A is simply the translation of each one of w’s elements
(edges) by A. All windows in this paper are assumed to be induced by some translation of
the yz-plane. Each window is thus uniquely identified by its  coordinate. For a window w
and an assembly sequence &, we define a glue window movie M to be the order of placement,
position and glue type for each glue that appears along the window w in &, regardless of
whether the glue (eventually) forms a bond. Given an assembly sequence @ and a window w,
the associated glue window movie is the maximal sequence Mg ., = (U1, 91) , (U2, 92), ... of
pairs of grid graph vertices U; and glues g;, given by the order of appearance of the glues
along window w in the assembly sequence &. We write Mg o, + A to denote the translation
by A of Mg ., yielding (171 + &,gl) , (172 + &,gg) e

If & follows s, then the notation Mg ., [ s denotes the restricted glue window submovie
(restricted to s), which consists of only those steps of Mg ,, that place glues that immediately
form positive-strength bonds that cross w at locations belonging to the simple path s. Let ¢
denote the location of the starting point of s (i.e., the location of ¢). Let ¥; and ¥;41 denote
two consecutive locations in Mg ., [ s that are located across w from each other. We say

that these two locations define a crossing of w, where a crossing has exactly one direction.

We say that this crossing is away from ¢ (or away from o) if the x coordinates of ¥ and ¥;
are equal or the x coordinate of ¥; is between the z coordinates of ¢ and ;1 1. In contrast,
we say that this crossing is toward ¥ (or toward o) if the & coordinates of ¢ and ¥;4, are
equal or the = coordinate of ¥ is between the z coordinates of ¥ and v;. See Figure 11 for
2D examples of Mg ., and Mg ,, [ s, where o is located west of w and the locations ¢; and
U form an away crossing, whereas the locations ¢3 and ¢ form a crossing toward o.

We say that two restricted glue window submovies are “sufficiently similar” if they have
the same (odd) number of crossings, the same set of crossing locations (up to horizontal
translation), the same crossing directions at corresponding crossing locations, and the same
glues in corresponding “away crossing” locations.
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» Definition 3. Assume: T = (T,0,1) is a 3D TAS, a € A[T], s is a simple path in G
starting from the location of o, & is a sequence of T -producible assemblies that follows s,
w and w' are windows, o is not located between w and w’, A £ 0 is a vector satisfying
w = w+ 5, e and €' are two odd numbers, and M = Mz, | s = (U1,01) ;- -, (T2e, G2e)
and M' = Mz | s = (01,91),---, (U, ghe) are both non-empty restricted glue window
submovies. We say that M and M’ are sufficiently similar if the following are satisfied:
1. same number of crossings: e = €',
2. same set of crossing locations (up to translation):

{s+d|1=i<oe} = {7 ] 1552},
3. same crossing directions at corresponding crossing locations:

{1741'72—1-& ‘ 1§i§%}={1721j_2 ’ 1§j§% }, and
4. same glues in corresponding “away crossing” locations:

foralll <i,j << if Tyj_o = Vai—2 + A, then 9ij—2 = Gai-3-

See Figure 12 for an example of two restricted glue window submovies that are sufficiently
similar. The following result basically says that we must examine only a “small” number
of distinct restricted glue window submovies in order to find two different ones that are
sufficiently similar.

» Lemma 4. Assume: T = (T,0,1) is a 3D TAS, G is the set of all glues in T, k, N € Z*,
s is a simple path starting from the location of o such that s C R%N, a is a sequence of
T -producible assemblies that follows s, m € Z*, for all 1 <1 < m, w; s a window, for
alll <l <l <m, Al,l’ #* 0 satisfies wy = w; + 51711, and for all 1 <1 < m, there is an
odd 1 < e; < 2k such that Mg, | s is a non-empty restricted glue window submovie of
length 2e;. If m > |G|* - k - 16%, then there exist 1 <1 < 1" < m such that e; = ey = e and
Mgw, | 5= (U1,01),-,(V2e,92¢) and Mg, | 5= (V1,91),-., (U, g5.) are sufficiently
similar non-empty restricted glue window submouvies.

To prove Lemma 4, we first count the number of ways to choose the set {v7,..., U }.
Then, we count the number of ways to choose the set {1742-_2 | 1< < % } Finally, we
et1). After summing over
all odd e, we get the indicated lower bound on m that notably neither contains a “factorial”
term nor a coefficient on the “k” in the exponent of “|G|”. The full proof of Lemma 4 is
omitted from this version of the paper.

The following result is the cornerstone of our lower bound machinery. It basically says that
if, for some directed TAS T, two distinct restricted glue window submovies are sufficiently

similar, then T does not self-assemble R‘}i N-

count the number of ways to choose the sequence (gfi | i=1,...,

» Lemma 5. Assume: T is a directed, 3D TAS, k,N € ZT, s C R%N is a simple path,
in the full grid graph of RzN, from the location of the seed of T to some location in the
furthest extreme column of R%,z\n a is a T-assembly sequence that follows s, w and w' are

windows, such that, A £ 0 is a vector satisfying w' = w + 5, and e is an odd number
satisfying 1 < e < 2k. If M = Mz | s = (U1,91) -+, (V2e, 92e) and M' = Mg | s =
(T1,91) -, (Uhe, g5.) are sufficiently similar non-empty restricted glue window submovies,
then T does not self-assemble R%N.

See Figures 12 and 13 for a 2D example of Lemma 5. We now give some notation that
will be useful for proving Lemma 5. The definitions and notation in the following paragraph
are inspired by notation that first appeared in [17].
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113G U1y

Figure 12 A 2D example of the hypothesis of Lemma 5 for £k = 10 and e = 9. Since the example
is 2D, we use Ry v = {0,1,...,N — 1} x {0,1,...,k — 1}, rather than Rz,N. Note that @ follows a
simple path s from the location of o to a location in the furthest extreme column. The restricted
glue window movies are sufficiently similar because their glues are at the same locations (up to
translation), oriented in the same direction (away or toward o), and each pair of glues that are
placed by & at an “away crossing” of one of the windows is equal to its translated counterpart in
the other window, e.g., the two topmost glues that touch w and w’ are both light gray. The same
constraint holds for all glue pairs shown with a solid shade of gray or a striped pattern. On the
other hand, the glues adjacent to w’ that are placed by @ at a “toward crossing”, for example ¢,
and g}., are decorated with a letter in order to represent the fact that we do not assume that these
glues are equal to their translated counterparts that touch w (i.e., gi15 and gi¢).

Ry.n

C

Lo s
T Tl

w w' =w+A

Figure 13 A 2D example of the conclusion of Lemma 5, corresponding to example of the
hypothesis from Figure 12. Given the fact that 7 is directed and the way E is defined, every pair of
glues that touch w must be equal to the corresponding pair of glues that touch w’ (if any). Thus,
e.g., the glue pairs labelled b and h in Figure 12 must really be equal to the glue pairs a and g,
respectively. After B places a tile at location @77, it will mimic how & got from ¥ig to the tile in the
extreme column of Ry n, as depicted in Figure 12. Since A # 0, this always results in at least one
tile placement outside of Ry, n. In this example, 8 also happens to exit Ry n earlier in its assembly
sequence, i.e., in the sub-path from ¥, to ¥75.
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For a T-assembly sequence & = (a; | 0 < i < I), we write |@| = . We write &[i] to
denote & — ¢, where & and ¢ are such that ;41 = a; + (Z — t). We write @[i] + A, for some
vector A, to denote (:E’—l— &) —t. If ajp1 = a; + (£ t), then we write Pos (d[i]) = & and
Tile (A[i]) = t. Assuming |&] > 0, the notation & = @ 4 (Z — t) denotes a tile placement
step, namely the sequence of configurations (a; | 0 <4 < I+ 1), where ¢ is the configuration
satisfying, «; (£) = ¢ and for all ¥ # &, oy (¥) = ay—1 (§). Note that the “+” in a tile
placement step is different from the “4” used in the notation “8 = a + (§+— t)”. However,
since the former operates on an assembly sequence, it should be clear from the context which
operator is being invoked. The definition of a tile placement step does not require that
the sequence of configurations be a 7-assembly sequence. After all, the tile placement step
a = d+ (Z — t) could be attempting to place a tile at a location that is not even adjacent
to (a location in the domain of) a;—;1. Or, it could be attempting to place a tile at a location
that is in the domain of a;_1, which means a tile has already been placed at Z. So we say
that such a tile placement step is correct if (a; | 0 < i <1+ 1) is a T-assembly sequence.
If |&] = 0, then & = & + (¥ — t) results in the T-assembly sequence (ag), where oy is the
assembly such that g (£) =t and ag (%) is undefined at all other locations ¥ # &.

—

Algorithm 1 The algorithm for .

1 Initialize 7 = 1, n = 0 and E: 0

2 while Pos (a[n]) # v}, _, do /* Loop 1 */
3 B =p+dln]
4 n=n+1
5 while vj; , # U + A do /* Loop 2 */
6 Let i be such that 4i — 2 is the index of vjj; , — Ain M
7 Let n be such that Pos (&[n]) = U—2
8 while Pos (d[n]) # vy; do /* Loop 2a */
9 g:5+(&[n]+&)
10 n=n+1
11 Let j’ be such that 45 is the index of @y + A in M’
12 | Let n be such that Pos (d[n]) = v},
13 While Pgs (@[n]) # v} 4o do /* Loop 2b */
14 B =B+ an]
15 n=n+1
16 ji=j3+1
17 Let n be such that Pos (@[n]) = ¥,
18 while n < |@| do /* Loop 3 */
19 | f=43+ (c’i[n]—&-&)
20 n=n+1

21 return 5

The proof of Lemma 5 relies on Algorithm 1 that uses @ to construct a new assembly
sequence E such that the tile placement steps by ﬁ on the far side of w’ from the seed mimic
a (possibly strict) subset of the tile placements by & on the far side of w from the seed.

When 5 is on the near side of w’ to the seed, it mimics @, although E does not necessarily
mimic every tile placement by @ on the near side of w’ to the seed. When 5 crosses w’, going
away from the seed, by placing tiles at ¥); 5 and U};_, in this order, then the tile it places
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; : K40 ; : K40
X AL R AL
o o Xy
T T
L L L 50 LI
@r /) T anln
- DO
L L L L
L L L L
anl anl
L L L L
(a) Right after Loop 1 has completed: The & sub- (b) Right after Loop 2a has completed for the
path from o to 7] was used to initialize j3. first time: The @ sub-path from v14 to v15 was
translated by A and appended to 3.
: ; K40 ‘ ; K40
i'-f*ﬁ/ . g

]

]
T
T
L]

il

'fﬁé*W*i'.f]i:f}*D
e —— -

u w'=w+ A Ii,' w'=w+ A
(c) Right after Loop 2b has completed for the (d) Right after Loop 2a has completed for the
first time: The & sub-path from 171’2 to 171’3 was second time: The @ sub-path from ¥19 to 11 was

appended to 5 translated by A and appended to 5
, if , K40
Ry Ry s ..v..:[\?l
)
N
w W A w w = w+ &

(e) Right after Loop 2b has completed for the (f) Right after Loop 3 (and the algorithm) has
second time: The @ sub-path from ¥4 to ¥ was completed: The & suffix starting with 715 was
appended to . translated by A and appended to S.

Figure 14 The trace of Algorithm 1 when applied to the assembly sequence & shown in Figure 12.

In each sub-figure, the new sub-path is bolded and is a continuation of the sub-path in the previous
one. The last sub-figure above shows the same assembly sequence § depicted in Figure 13.
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at vUlj; o is of the same type as the tile that @ places at viy; o = ¥j; 5 — A. After § crosses
w’ by placing a tile at 171];2, B places tiles that & places along s from v4;_o to ¥U4;_1, but the
tiles 5 places are translated to the far side of w’ from the seed. When B is about to cross w’,
going toward the seed, by placing a tile at 174’1]»71, then, since T is directed, the type of tile
that it places at this location is equal to the type of tile that & places at ﬁéjfr This means
that B may continue to follow s but starting from ﬁﬁlj. Eventually, E will finish crossing w’
going away from the seed for the last time by placing a tile at ¥, + A. Then, /5" places tiles
that & places along s, starting from ¥, but the tiles that B places are translated to the
far side of w’ from the seed. Since A #* 0, 5 will ultimately place a tile that is not in R%’N,
which means 7 does not self-assemble R} .

We illustrate the behavior of this algorithm in Figure 14, where we apply it to the
assembly sequence @ shown in Figure 12. The full proof of Lemma 5 is omitted from this
version of the paper. The following result combines Lemmas 4 and 5 and we will use its
contrapositive to prove our main lower bound.

» Lemma 6. Assume: T = (T,0,1) is a 3D TAS, G is the set of all glues in T, k, N € Z*,
s C R%N s a simple path, in the full grid graph of Ri,N, from the location of o to some
location in the furthest extreme column of R%N, a is a T-assembly sequence that follows
s, m €LY, foralll <1< m, w is a window, for all1 <1 < I' < m, &l’l/ £ 0 satisfies
wy = w; + &l’y, and for all 1 <1 < m, there is an odd 1 < e; < 2k such that Mg, | 5 is a
non-empty restricted glue window submovie of length 2e;. If m > |G|F - k- 16*, then T does
not self-assemble R%N.

The proof of Lemma 6 is omitted from this version of the paper. Here is our main lower
bound:

> Theorem 2. K}, (R ) =0 (N1).

Proof. Assume 7 = (T,0,7 = 1) is a directed, 3D TAS that self-assembles Ri’ - Assume
a € Ag[T] with dom a = R%N. Let s = (Zo, %1, ..., Tm) be a simple path in G2, such that,
Zo = dom o and Z,, is in the furthest extreme (westernmost or easternmost) column of
R‘z’ y from the location of o, in either z plane. Since 7 = 1, there is a T-assembly sequence
a that follows s. Assume N > 3. Since s is a simple path from the location of the seed
to some location in the furthest extreme column of R% N> in either z plane, there is some
positive integer m > [%J > %
R%N, for all 1 <1 <1’ < m, there exists &Ll’ #* 0 satisfying wy = w; + &u/, and for each
1 <1 < m, there exists a corresponding odd number 1 < ¢; < 2k such that Mg, | s is
a non-empty restricted glue window submovie of length 2¢;. Since T self-assembles Rz’ N
(the contrapositive of) Lemma 6 says that m < |G|¥ - k- 16¥. We also know that & < m,
which means that & < |G|¥ - k-16*. Thus, we have N < 3-|G|¥ - k- 16" and it follows that

1 1 L
712 G2 g oy > ey = g =0 (V). «
(3-k-16%) % (3k.2k.16%) %

such that, for all 1 <1 < m, w; is a window that cuts

Lemma 5, upon which our proof of Theorem 2 crucially depends (via Lemma 6), assumes
that 7 is directed. If T is not assumed to be directed, then it is possible to construct an
undirected 3D TAS 7T that satisfies all the other conditions of the hypothesis of Lemma 5,
but T self-assembles R} y. The full construction of such an undirected 7 is omitted from
this version of the paper.
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Conclusion

In this paper, we gave improved lower and upper bounds on K} g 4 (Rz N), namely (2 (N %)

and O (N = +log N ) We leave open the question of determining tight bounds for

Khga (R;N> as well as for K}, (R%N).
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