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Abstract
Life is built upon amazingly sophisticated molecular machines whose behavior combines mechanical
and chemical action. Engineering of similarly complex nanoscale devices from first principles
remains an as yet unrealized goal of bioengineering. In this paper we formalize a simple model of
mechanical motion (mechanical linkages) combined with chemical bonding. The model has a natural
implementation using DNA with double-stranded rigid links, and single-stranded flexible joints and
binding sites. Surprisingly, we show that much of the complex behavior is preserved in an idealized
topological model which considers solely the graph connectivity of the linkages. We show a number
of artifacts including Boolean logic, catalysts, a fueled motor, and chemo-mechanical coupling, all
of which can be understood and reasoned about in the topological model. The variety of achieved
behaviors supports the use of topological chemical linkages in understanding and engineering complex
molecular behaviors.
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1 Introduction

Living cells, by far, show the most complex chemical behavior known. Their primary
functional parts are molecular machines that derive their behavior from internal mechanical
motion [2]. There are large gaps in our understanding of how function originates from
mechanical reconfiguration, and engineering such machines from scratch stands as the grand
challenge of bioengineering.

Even simple chemistry involves intricate physics, which makes it a challenge to model
molecular machines. But we may not need that intricacy to capture their rich behavior.
It would be interesting if the essence of their behavior could be reproduced by a simple
mechanical model. But how simple can the model be, what features should it include, and
how should its parts be assembled?

We look to linkages, a simple tool from mechanical engineering. A linkage is a set of
rigid rods (called links) connected at rotary joints. This well-studied tool has been shown to
be capable of very complex motion, such as tracing any arbitrary curve [9, 8]. Reference [4]
provides an excellent overview of the capabilities of linkages. Linkages have also found use in
studying biological mechanisms. In reference [14], linkages are used to model the mechanical
behavior of proteins. Most closely related to this paper, however, is Omabegho’s work

© Keenan Breik, Austin Luchsinger, and David Soloveichik;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on DNA Computing and Molecular Programming (DNA 27).
Editors: Matthew R. Lakin and Petr Petr Šulc; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DNA.27.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 Molecular Machines from Topological Linkages

introducing chemical linkages where joints can form chemical bonds [12]. There, chemical
linkages are used to model the role of allostery in enzyme behavior. Motivated by the above
work, we reimagine chemical linkages as a basic model for rich chemical behavior, and explore
the variety of behaviors that can be captured by the model.

Linkages seem like a minimal mechanical model of biochemistry, but we show how to
simplify them further and still produce complex behavior. The link lengths in a linkage
determine how the linkage can move. This in turn controls which joints can chemically bind.
Surprisingly, in many cases which joints can bind could be fully determined by just the
topology of the underlying graph. Focusing on simple graphs makes systems easier to design
and analyze.

On top of having interesting behavior theoretically, chemical linkages could also lead
to real molecular machines, like artificial enzymes. Their rich behavior comes from simple
parts: links, joints, binding sites. These may be possible to build directly. Double-stranded
DNA may be rigid enough to act as a link. Single-stranded DNA might implement a joint
as a so-called compliant mechanism. Orthogonal DNA sequences could act as binding sites.
However, this work does not further explore practical implementation.

The contributions of this work are as follows. We formalize chemical linkages, previously
described only informally in [12]. We also introduce a new topological model, which bases
bond formation on simple graph topology. To articulate our new model, we expand on
traditional characterizations of graph rigidity given by Laman [10] and Henneberg [5]. We
design artifacts (which work in both models) showing that surprisingly complex behavior
can be developed from first principles. The constructions include Boolean logic and signal
propagation, catalytic splitting reminiscent of ATP hydrolysis, fueled directed cycles, and
chemo-mechanical coupling. The latter constructions are motivated by the coupling of fuel
consumption with other processes prevalent in biological molecular machines such as kinesin,
myosin, and dynein [1, 3].

2 Examples

Mechanical linkages are well studied and common in mechanical engineering. Even one of
the most basic linkages, the lever, is found as a component in countless machines and tools.
Linkages have also been shown to be capable of very complex motion [11]. Adding binding
sites makes linkages interesting as a model of chemical machines. This section shows how
chemical linkages work by example, while Section 3 defines them formally.

In this work we consider a single-copy regime where, unless otherwise stated, a single
copy of each linkage is present in a given system (see Conclusion for additional discussion).

▶ Example 1 (Binding sites). As the following example shows, joints can have binding sites.
The star ∗ means a (solid dot) and a∗ (hollow circle) are complements and so can bind. For
their sites to bind, joints have to overlap. When an a and a∗ overlap, we may label them
together with just a. Unless noted otherwise, we consider strong bonds which may not break.
(Appendix A discusses the approximation of strong bonds using bonds that may break.)
Although bonds are strong, joints with the same binding sites may displace one another. So
to get from the left bound state to the right bound state, the right a∗ joint must colocalize
and displace the left a∗ joint. The four possible states of the system are the following.
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We consider a state to change only when the set of bonds changes. Physically, the shape
of a linkage can move among an infinite continuum of conformations. But it would move
rapidly and randomly among the conformations allowed by its bonds as Brownian motion
and low Reynolds number dominate molecular dynamics. This is why we say this example
has four discrete states and not an infinite continuum of states.

▶ Example 2 (Allostery). The following example shows that geometry can prevent comple-
ments from binding. There are two bonds that can form, the a bond and the b bond. But
after one forms, the other can no longer reach to overlap.

Note that links are allowed to cross over each other. Allowing link crossing simplifies the
mathematical model and is standard in the analysis of mechanical linkages. In a physical
realization, the links might be offset at different heights to allow such crossing.

▶ Example 3 (Simple catalysis). The following example is a system where there are two
states, left and right, that cannot reach each other. For each state, two of its (infinitely
many) conformations are shown with ≈ between them. The link lengths keep the small red
linkage from getting close enough to the opposite joint to displace onto it. (A small flag
represents irrelevant omitted parts, so the red linkage shown could be a portion of a larger
linkage that includes the joint with the flag.) So the red linkage stays bound to whichever
joint it starts bound to.

But we can add a linkage that allows the states to reach each other. In the following
example, consider adding the blue linkage at the top to mediate the state change. The blue
linkage with binding site c∗ can enter and displace the center bond. This allows the red
linkage to reach the opposite joint. Afterward, the blue linkage is displaced by the center
bond and leaves. Thus the blue linkage is unchanged, but the black linkage has changed
state. The blue linkage acts as a catalyst.

DNA 27



7:4 Molecular Machines from Topological Linkages

▶ Example 4 (Compound catalysis). The following is a catalytic system that involves three
catalysts, or one compound catalyst, depending on the reader’s perspective. The linkage can
again be in one of two states unable to reach each other. But when all three of the catalytic
linkages are present, the state can change. The intermediate displacement states are left out.

▶ Example 5 (Many binding sites). While each joint may only have one binding site, the effect
of multiple binding sites per joint may be achieved via zero-length edges. Below, zero-length
edges between joints are indicated by dashed lines. We omit these edges for visual clarity
but instead rely on color to disambiguate which binding sites are connected together with
zero-length edges. (Although some information is lost going from the top to bottom figure,
the bottom notation will be sufficient for our purposes.)

This effectively allows a joint to form multiple bonds at the same time.

▶ Example 6 (Signal cascade). The following is a system that transmits the signal of whether
a bond is formed. The signal travels along a sequence of links. The effect is that the flag
with binding site a and the flag with binding site c can never be free at the same time.
By repeating this pattern, we can get this effect across any number of links. Since signal
cascading is useful as a modular gadget, we abstract it with visual notation using blue arcs
as shown in the bottom half of the figure.

▶ Example 7 (Advanced cascades). The following systems show how cascades can be combined
for various effects. By combining two signal cascades with a common joint, signal cascades
may behave like a logical OR. The rightmost flag may be freed after either of the leftmost
flags have bonded.
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A logical AND may be achieved with signal cascades as well. Both of the leftmost flags (a and
a′) must bond to the linkage before the d flag can be freed. Using the notation introduced in
Example 5, directly adjacent binding sites indicate a single joint with multiple binding sites.

a'

a

b'

b

c'

c

c'

c
d d

By reversing the AND mechanism shown above, we can effectively implement a fanout.

▶ Example 8 (Active/inactive signal receptors and sequential AND gate). We now show a
construction for intermolecular signals and their corresponding receptors, with both capable
of activation and inactivation by other signals. In particular, we show an example which
mimics the sequential AND gates of reference [15] operating via DNA strand displacement.

In our construction, whether signals and their receptors are active depends on whether
their three binding sites can be simultaneously bound or not (shown below). We later refer
to such complete binding as docking. Docking is prevented by geometrical constraints if
either the signal (blue) or receptor (orange) is inactive. Intuitively, the distance between
the joints within signals and receptors needs to match exactly for them to dock. But this
cannot happen when either the signal or receptor has a joint distance that is fixed by another
linkage. In the figure, the green linkage fixes the distance between the a and b joints (or b∗

and c∗ for the receptor) to a length that is too short. So only active signals and receptors
may dock.

a b ca b c

receptorsignal

active inactive active inactive

The following figure shows a modification of the orange receptor which holds the output
(purple) signal linkage inactive until the input (blue) docks with it. Here, the blue triangular
symbol represents a cascade combination of an AND and a fanout. All three signal cascades
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7:6 Molecular Machines from Topological Linkages

entering the top of the triangle must fire before the two signals on bottom can fan out. This
gadget ensures that all three bonds a, b, and c must form between the signal and receptor
before the purple linkage is released. Notice that the output signal linkage can be an input
to another receptor downstream, and so such systems are composable.

a b c ba c

Modifying this scheme further, the following example shows a composable sequential
AND gate.

a cb

i j k

ba c

i j k

Written in terms of abstract chemical reactions, the above system implements the following
behavior:

X1 + G ⇌ W1 + H

X2 + H ⇌ W2 + Y

where X1 and X2 are the input signal linkages and Y is the output signal linkage. Observe
that the purple output signal linkage and the orange receptor are initially both in their
inactive states. The red input linkage must dock with the green receptor first in order to
activate the orange receptor (splitting complex G in the process). Then the blue input signal
linkage docks with the now active orange receptor, displacing and activating the purple
output signal linkage. Appendix B shows the state-change details for this construction.

Note that DNA strand displacement cascades are based upon the toehold sequestering
mechanism which allows activating and inactivating both signals and their displacement
targets. Targets (receptors) are activated by opening their toehold domains, while signals
are activated by opening their toehold binding domains. The above construction shows one
way in which signal and receptor activation can be recapitulated by chemical linkages.1

1 In the toehold sequestering mechanism, activation is a kinetic effect: toehold binding increases the
effective local concentration of the signal strand near the target, which promotes displacement. Dis-
placement can still occur without preceding toehold binding, but is much slower. Our chemical linkages
implementation does not attempt to capture such physical details of toehold sequestering but rather
the higher-level activation/inactivation behavior. The physical correlate for activation in our model is
geometric compatibility rather than an increase in local concentration. (Although beyond the scope of
this paper, a kinetic model of chemical linkages, for example operating via Gillespie kinetics, with weak
bonds representing toeholds (see Appendix A) is needed to capture the kinetic mechanism of toehold
sequestering.)
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Figure 1 (Left) A chemical linkage and a conformation p of that linkage. (Right) A motion q

of conformation p. Left to right: conformation q(0) of q, conformation q(t) where 0 < t < 1, and
conformation q(1). Notice q is a binding motion that forms a new bond.

3 Formal model

The previous section relied on intuitive explanations of chemical linkages, as does prior
work [12]. It would be useful to have a precise, general definition. This would support
engineering, guide simulations, and enable proofs. This section formally defines chemical
linkage systems and their state space.

3.1 Chemical linkages
A mechanical linkage is a pair (G, ℓ). G is a connected graph with vertices V and edges
E. We also call vertices joints and edges links. ℓ : E → R≥0 is a map that gives each link
a length. Link lengths alone are not enough to define how the graph sits in space. So to
uniquely determine the shape of a linkage, we use conformations.

A conformation of a linkage (G, ℓ) is a map p : V → R2 where |pu − pv| = ℓ(u, v) for each
pair u and v of linked joints.2 Intuitively, a conformation is a drawing of a linkage in the
plane with the right link lengths. In some drawings, joints may overlap. The overlap of a
conformation is the partition of its joints where each element is a set of joints that overlap.
For example, the partition {{u, v}, {w}, {x}} of {u, v, w, x} would mean that joints u and v

overlap while no joint overlaps w and no joint overlaps x.
A chemical linkage is a mechanical linkage with a function d : V → Σ that puts a binding

domain on each joint. Σ is an alphabet of starred and unstarred symbols called domains.
Domains x and x∗ are said to be complementary and thus capable of binding. Intuitively,
this evokes a chemistry where opposites bind like complementary DNA domains.3 Note that
we use the phrase “multiple binding sites” to refer to zero-length edges effectively allowing a
joint to have more than one binding domain (see Example 5). In this paper we use the word
linkage to refer to mechanical or chemical linkage if clear from context.

A matching of a conformation is a set of unordered pairs of its joints such that (1) each
pair consists of overlapping joints which have complementary domains and (2) no two pairs
share a common joint. A matching of a conformation is a binding if it is not a subset of any
other matching of that conformation (i.e. it is a maximal matching). Intuitively, elements of
the binding represent a bond between two joints. Since a binding is a maximal matching,
we consider bonds to form as soon as joints become overlapping. In the case where three or
more joints overlap, a conformation could have multiple bindings (for example consider the
lower middle state in Figure 3).

2 For simplicity, we focus on two dimensions in this work. It is an open question how some of this work
generalizes to three dimensions (see also Conclusion).

3 Other choices of domain chemistry are of course possible, where binding might be like-like. Such binding
rules are not explored in this work.
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b

a

a

b

Figure 2 This figure illustrates why bindings alone do not sufficiently capture the behavior of
chemical linkages. Middle left: a state where bonds a and b can form. If a bonds first, it can lead
to two different states. In one state (left), the binding of a prevents the binding of b due to link
lengths. In the other state (middle right), the green link can still reach a state where b is bonded
(right). Notice the left and middle right conformations have the same binding, but the conformation
geometry dictates which states can be reached.

The natural notion of motion captures how transformations may be applied to con-
formations. Let [0, 1] be the interval of real numbers from 0 to 1. A reconfiguration of
a conformation p is a map q : V → ([0, 1] → R2) where each q(t) is a conformation and
q(0) = p. Note that for convenience, q(t) = u 7→ qu(t) is the conformation at time t, and
qu = t 7→ qu(t) is the trajectory of joint u. A motion of a conformation p is a reconfiguration
q where each qu is continuous. Intuitively, this means a motion preserves link lengths and
never flips parts of a linkage: for example in Figure 2, transitioning from the left state to the
middle right state, without breaking bonds, is not a motion.

A motion q is a step motion if there exists a same binding of conformation q(t) for all
t ∈ [0, 1). A step motion is a binding motion if conformation q(0) has some binding that
is a subset of a binding of conformation q(1). Intuitively, a step motion maintains the
overlap of bound joints and a binding motion only ever (potentially) creates more bonds.
For conformations x and y, we write x → y if there exists a binding motion from x to y. We
write →∗ to mean the reflexive, transitive closure of →. We write x ↔ y if x → y and y → x.
Similarly, we write x ↔∗ y if x →∗ y and y →∗ x.

Although this work only uses binding motions, we can also define motions which are
allowed to reduce the number of bonds – for completeness. A step motion is a breaking
motion if conformation q(0) has a binding that is a superset of a binding of conformation
q(1).

3.2 Chemical linkage states and systems
Binding motions fully capture the behavior of chemical linkages. But most binding motions
do not lead to interesting changes in a given conformation. Such changes arise when a
conformation’s binding is altered by the binding motion (e.g., see Figure 2). In a sense, some
conformations are equivalent, while others are not. We use the notion of states to capture
conformation equivalence and identify the significant binding motions.

A state is an equivalence class of conformations defined as follows. Two conformations
are in the same state if they can both reach all of the same conformations through a binding
motion. Formally, two conformations x and y are in the same state if for every other
conformation z, x → z if and only if y → z. State b is directly reachable from a, written
a ⇀ b, if there exist conformations x in state a and y in state b such that x → y. If a ⇀ b

and b ⇀ a, we write a ⇌ b. We say state b is reachable from a, written a ⇀... b, if x →∗ y. If
a ⇀... b and b ⇀... a, we write a ⇌... b. Figure 3 (bottom) shows an example of state reachability.

We can treat a set of linkages exactly like a single linkage by forming the disjoint union
of its linkages. Intuitively, we pretend all its linkages are one big linkage. This way we
can use all the vocabulary of linkages for a set of linkages. We refer to sets of chemical
linkages as a system. Formally, a chemical linkage system is a pair (C, s) where C is a set of
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Figure 3 (Top) A chemical linkage c and two conformations of c which may be transformed into
one another via a sequence of binding motions. (Bottom) Three distinct states of c. In the middle
state, both of the two a binding sites and the a∗ binding site overlap. The left and middle states are
directly reachable from one another via the binding motion shown in red. Likewise, the middle and
right states are directly reachable from one another via the blue binding motion. The left and right
states are reachable from one another, but not directly reachable (since the binding changes in the
middle state).

chemical linkages and s is an initial state. As Figure 2 shows, the initial state is important
for determining state reachability for a given chemical linkage system. In a conformation of
a linkage system, we often call a set of linkages a complex if there exists a binding which
makes that set of linkages connected.

3.3 Complexity of simulation
With the formal model established, we now have a notion of how to describe the behavior
of chemical linkages. To understand and predict this behavior, we need to know a given
linkage’s state space. Computing the entire state space for a system is certainly a hard
problem. But being able to easily check if one state is directly (one step) reachable from
another would make it easier to design and analyze chemical linkage systems.

Unfortunately, the problem of deciding direct reachability between two states is PSPACE-
hard because the subproblem of finding a motion between conformations is PSPACE-hard [6]4.
This does not bode well for the future development of simulation tools for this model. For
such simulation tools, we would want to have a fast algorithm to check direct reachability.
This is part of our motivation for introducing the topological linkages model described in the
next section.

4 Topological linkages

Linkages provide a model of physical constraints that seems minimal. They involve only
two simple physical parts, links and joints, neither of which can be removed. Despite that
intuition, this section describes a surprising new simpler model that still has interesting
complex behavior. In fact, our simpler model captures the behavior of all of the examples in
Section 2.

4 While the general mover’s problem (reachability) was shown to be PSPACE-hard in [13], we can more
easily adopt the formulation of [6] by fixing some joints’ relative positions to each other via a rigid
“frame.” A study of motion planning can be found in [11].
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7:10 Molecular Machines from Topological Linkages

To distinguish the two models, we call the original metric and the simpler topological.

4.1 Topological motivation
In this section we build the case for a version of the chemical linkages model which ignores
link lengths. The utility of such a model may seem surprising given that the constructions
developed in previous sections relied on some joint being able or not being able to “reach” to
another joint in metric space. Rather than fixing link lengths beforehand and asking whether
a joint can reach another, we instead ask how constrained must the link lengths be for such
reach to be possible.

Recall Examples 2 and 3 from Section 2 and how certain states were not reachable due to
the choices of link lengths. We present these two examples again below, along with a third
example.

In each example, we consider the potential bonding of the b and b∗ joints. Without link
lengths being previously fixed, observe the link length constraints implied for each edge.
Once the lengths of the black links are fixed, we ask how constrained the red link lengths are.

In the right example, a range of lengths for the red link will allow bond b to form (as
long as the link has sufficient length). On the other hand, in the two examples on the left,
bond b may be formed only if the red links happen to be the exact right length. Assuming
link lengths are somehow “generically” chosen, bond b will not form in the left two examples
because the red link lengths will not reach. Note that from a practical perspective, avoiding
such exact-length coincidences is easy. Contrarily, setting lengths exactly in a molecular
implementation may be onerous.

Our key observation is that this exact-length constraint arises in these examples because
the forming of bond b would cause the red link to connect two joints which are already rigidly
connected (we refer to this later as overbracing). Note that we say two joints are rigidly
connected if their distance is fixed for every motion. In the left example it is clear that the
top-most link already fixes the distance of its two joints. In the middle example the rigidity
of the linked rhombus fixes the distance of the bottom-left and top-right joints.

Each of the constructions presented in Section 2 exhibit the behavior of these left two
examples. We will define the topological linkage model with regard to overbracedness, rather
than metric lengths. To formally define overbracing edges we must first discuss the notion of
rigidity.

4.2 Rigidity
Intuitively, a graph is rigid if all of its joints have to move together. A rigid graph is minimally
rigid if removing any edge results in a non-rigid graph. These properties naturally generalize
to subgraphs as well.

We provide a definition of graph rigidity based on the characterization captured by
Henneberg operations [5, 4]. Henneberg characterized minimally rigid graphs as the graphs
which can be constructed, starting from a single edge, by executing some sequence of two
types of operations. A V operation adds a new node u and two new edges that connect u to
two existing nodes in the graph. A T operation adds a new node u that splits an existing
edge and adds a new edge from u to an existing node. Figure 4 shows an example.
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Figure 4 A sequence of Henneberg operations. An edge to start, then two V operations, then
two T operations. The graph produced at each step is minimally rigid.

Figure 5 An overbraced graph (left) and its overbracing edges (dashed). If we remove an
overbracing edge (red), this graph happens to become minimally rigid (center). We can verify this
with Henneberg operations. If we remove a non-overbracing edge (blue), the graph is no longer
minimally rigid (right). We can verify this with Laman’s theorem.

So we say a graph G is minimally rigid if some sequence of Henneberg operations turns
a single edge into G. We build upon this definition to formalize overbracing discussed
previously. A graph G is overbraced if it has a subgraph H that is minimally rigid and G

contains an additional edge between two nodes of H. This edge is called an overbracing edge.
Figure 5 shows an example.

Naturally, these Henneberg operations are useful in verifying if a given graph is minimally
rigid. What they do not do, however, is provide an easy method for showing a graph is not
minimally rigid.

Luckily, when a graph is not rigid, Laman’s theorem [10] guarantees there is a simple
proof. To state this powerful theorem, say the excess of a graph with v vertices and e edges
is e − (2v − 3). Recall that for a graph G, an induced subgraph I is a graph formed from a
subset of vertices from G taking all edges connecting pairs of vertices in that subset.

▶ Theorem 9 (Laman’s theorem). A graph G is minimally rigid iff (1) the excess of G is 0,
and (2) the excess of any induced subgraph of G is at most 0.

Laman’s theorem lends itself to proving that a graph is not minimally rigid. We just show
that the graph has non-zero excess, or we give an induced subgraph with positive excess.

We now want to transition from checking minimal rigidity to checking overbracedness,
which is the real object of our attention since we use overbracedness as a substitute for
“being unable to reach”. First, the following corollary formally confirms our intuition that
a minimally rigid graph cannot be overbraced. Via this corollary, we can use Henneberg
operations or Laman’s theorem to show that a graph is not overbraced.

▶ Corollary 10. If a graph G is overbraced, then G is not minimally rigid.

Proof. Let G be an overbraced graph. By definition of overbraced, G has some minimally
rigid subgraph H = (V, E) and some additional edge e between two nodes of H. By
Theorem 9, the excess of H is 0. Let I = (V, E′) be the induced subgraph of G on nodes
V . Since e ∈ E′ and e ̸∈ E, the excess of I must be greater than 0. So, G is not minimally
rigid. ◀

Our constructions may not be minimally rigid as a whole (may have non-rigid parts)
as in Figure 5 (right). In this case, to argue that a graph is not overbraced we rely on the
following Lemma.
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7:12 Molecular Machines from Topological Linkages

▶ Lemma 11. If a graph G is a subgraph of some minimally rigid graph M , then G is not
overbraced.

Proof. We prove this by contrapositive. Let G be an overbraced graph. By definition of
overbraced, if we add edges and/or vertices to an overbraced graph it will still be overbraced.
This means that any graph M which has G as a subgraph must also be overbraced. By
Corollary 10, M is not minimally rigid. ◀

For the examples in Section 4.1, we relied on mechanical intuition to see that the endpoints
of the red edge are rigidly connected. We are now ready to show how formal rigidity arguments
can be used to show this.

The figure above shows the linkage from Example 2 (left) and its three states (middle).
We can prove that none of the three states are overbraced using Henneberg operations
and Lemma 11. Two minimally rigid graphs are shown (right), constructed via Henneberg
operations. The edge shading shows the order of the operations. This shows that each of
the three states is a subgraph of a minimally rigid graph. Thus, by Lemma 11, they are not
overbraced. However the following would-be state, not shown in the example, is prevented
not just by reach, but by mere rigidity.

This figure shows that the state (left) has a minimally rigid subgraph H and an edge between
two vertices in H (right). By definition, this state is overbraced.

The figure below shows similar analysis of the prevented state from Example 3.

Example 3 (left) and its prevented state (right). The state on the right is shown to be
overbraced, as it has a minimally rigid subgraph (solid black edge) and an edge connecting
two vertices from that subgraph (dashed edge). In fact, any graph with multiple edges
between vertices is overbraced by our definition. However, in the presence of the catalyst
no state in the transition sequence is overbraced. The reader can verify this again using
Henneberg operations. In fact, this kind of analysis may be applied to all the examples in
Section 2, verifying that the topological behavior of each follows the metric behavior.

Finally, we touch upon the computational complexity of checking overbracedness. Recall
that one of the motivations for the topological linkages model is that checking direct (one-
step) reachability in our original metric model was PSPACE-hard. Can we improve upon
this with the simplification of the topological model? Laman’s Theorem does not suggest
a fast algorithm since there might be exponentially many induced subgraphs. However,
a well-known algorithm called the pebble game does just that [7]. The algorithm runs in
quadratic time and reports whether the given graph is rigid, what its rigid components are if
it is not, and where it is overbraced.
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Figure 6 A topological linkage (left). Note that zero-length edges are denoted by adjacent
same-colored joints. An overlap and a binding for the given linkage (middle). The collapse of the
given overlap (right). Notice that the collapse is not overbraced, so it is a state.

4.3 Formal model

We define a kind of chemical linkage that completely ignores lengths. Figure 6 illustrates
these definitions. A topological linkage is a triple (G, d, ℓ). G is a connected graph with
vertices V and edges E. d : V → Σ is a map that puts a binding domain on each joint and
ℓ : E → {0, +} is a map that labels each edge as a zero-length edge or positive-length edge.
Recall that the use of zero-length edges in the metric model effectively describes multiple
binding sites on one joint. We distinguish between zero-length and positive-length edges for
the same effect here. A topological linkage has no other specified lengths or geometry. Its
only structure comes from the topology of its graph.

We define the state space of a topological linkage with no appeal to motion or conforma-
tions. Instead, we use a partition of the topological linkage’s joints that represents which
joints are meant to overlap. An overlap of a topological linkage is a partition of its joints such
that (1) no two joints are in the same partition part if they are connected by a positive-length
edge and (2) any two joints connected by a zero-length edge are in the same partition part.
Intuitively, joints connected by a zero-length edge already overlap, while joints connected by
a positive-length edge cannot overlap. A matching of an overlap is a set of unordered pairs
of its joints such that (1) each pair consists of joints from the same part of the overlap and
which have complementary domains and (2) no two pairs share a common joint. A matching
of an overlap is a binding if it is not a subset of any other matching of that overlap. Note
that an overlap may have multiple bindings. The collapse of a topological linkage relative to
an overlap is the graph that results from the following operations: (1) remove all zero-length
edges, and (2) perform vertex contraction on the vertices in each part of the overlap.5 A
state is an overlap whose collapse is not overbraced.6

Similar to metric linkages, we define a notion of reachability for topological linkage states.
State b is directly reachable from a, written a ⇀ b, if a has a binding that is a subset of a
binding of b. If a ⇀ b and b ⇀ a, we write a ⇌ b. We define ⇀... to be the reflexive, transitive
closure of ⇀ and say state b is reachable from a if a ⇀... b. If a ⇀... b and b ⇀... a, we write
a ⇌... b. Also similar to metric linkages, we define a topological linkage system as a pair (T, s),
where T is a set of topological linkages, and s is an initial state for that set of linkages.

5 We consider vertex contraction that may lead to a multigraph in cases where two vertices to be
contracted, vi and vj , are both adjacent to some other vertex w.

6 Another reasonable approach may be to allow a system’s initial state to be overbraced but to disallow
forming bonds that lead to additional overbracing. However, without loss of generality overbracing
edges could be removed from the initial state without affecting the behavior.
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5 Fueled machines

One of the goals of this paper is to recreate some of the rich behavior of molecular machines.
Thus far, we have presented constructions in the metric model (Section 2) and have shown that
these constructions also work in the topological model (Section 4.2). This section develops
additional complex behavior abstracting the ability of biological machines to consume fuel
and couple this consumption with driving other processes. These constructions, although
explained in the topological model, can also be understood in the metric model.

5.1 Hydrolysis
The molecular machines in living cells are fueled largely by ATP hydrolysis. We can imagine
the molecule ATP as composed of two parts, ADP and Pi. For our purposes, we write this
as ATP ⇌ ADP + Pi. The forward reaction is hydrolysis, which splits ATP. Normally,
hydrolysis and its reverse are slow, which makes ATP stable in isolation. But if ATP docks
with certain catalysts, both directions become fast. To make sure that hydrolysis happens
more than its reverse, cells keep the concentration of the wastes ADP and Pi low.

It is not clear how to engineer systems to turn hydrolysis into work. But we can start by
figuring out how to do so with linkages. The following linkage system abstracts a hydrolysis-
like splitting event. The top red bar plays the role ATP. The two small linkages below it
represent the catalyst that docks with it. Once the catalyst docks, the red bar can split.

For now, we will take these splitting pseudo-linkages as a primitive, as does prior work [12],
and we will focus on a construction that uses it.

5.2 Motor
Mechanical work can be coupled to the motion of the catalyst if the catalyst undergoes an
overall cyclic motion. A catalyst for binding and splitting ATP is shown below.

While we discuss the example in terms of topological states, we continue to use a visual
notation which contains implicit link lengths. In this way our visual representation shows a
particular metric implementation which remains compatible with the metric model.
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The catalyst is asymmetric in a way that yields the following behavior. If the catalyst
first binds ATP on the left (state B above), then it can subsequently bind on the right (state
D). However, if the catalyst first binds the ATP on the right (state C), it is prevented from
subsequently binding it on the left because that displacement passes through an overbraced
state (not shown). After ATP splits into ADP and Pi (state E), the catalyst can unbind in
any order (since the two binding sites are now split, no overbracing occurs).

Observe that the catalyst itself is always in one of three distinct states. The motion of
the catalyst is determined by the order of detachment for ADP and Pi. Shown below is a
depiction of how mechanical work is coupled to the motion of the catalyst from state to state.

If the catalyst unbinds on the right and then on the left, which is in the opposite order of
binding, then it undoes any mechanical work done in the process of binding. However, half
the time, the catalyst unbinds on the left and then on the right. This results in an overall
biased work cycle, capable of driving mechanical work.

5.3 ATP from linkages
The following construction shows that we do not need to assume ATP hydrolysis as a
primitive. Instead, here we present a pure linkage system that behaves from the outside just
like the primitive. So we can actually treat the primitive not as an assumption, but as an
abstraction.

The two states, whole (left) and split (right), cannot reach each other. Recall that a
dashed arc represents the gadget from Example 6. At least one of the binding sites at its
endpoints must be bound. The gadget does not physically attach the halves, so the split
state is two separate parts, despite a dashed arc appearing to connect them.

To go from whole to split, the long green link bound at the joint marked c would have to
relocate to the unbound joint marked c∗. That would have to break a bond, which is not
possible. But by adding the following catalyst, the long link can relocate.

When bound to the whole, the catalyst enables the following path between whole and split.
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It might seem that the above ATP construction and the motor construction of Section 5.2
require different parities for the ATP-catalyst interaction. In the motor, the ATP displaces
joints in the catalyst. In the ATP in this section, the catalyst displaces joints in the ATP.
Luckily, the two displacements can be combined as shown in Appendix C.

5.4 Chemo-mechanical coupling
Chemical coupling is a powerful tool. By chemical coupling we mean a reaction like A + B ⇌
C + D with no side reactions like A ⇌ C or B ⇌ D. Such a coupling allows a high
concentration of A to behave as fuel to drive B into D, even when B turning into D is
thermodynamically unfavorable.

Here we will develop a construction that achieves chemical coupling. The following
abstract diagram illustrates the target behavior. When the two linkages meet, they can only
dock if their states are complementary. While docked they can switch states as long as they
stay complementary. Otherwise, there is no docking and no state change.

The following are two simple linkages each with two states, left and right. For each
linkage, there is a barrier between its two states. The left state cannot reach the right state.

We can remove the barrier if we add an internal catalytic part. The following construction
shows an example of this. It adds an arm with two links. The new arm can displace the
matching domain of the original arm and carry it to the opposite side.

We can also allow the two linkages to interact by docking. The following construction
shows an example of this. It adds matching domains, a, x, c, to three joints on each linkage.
The dashed circle indicates a joint with two domains. The two linkages dock when the three
joints all bind their partner. Notice that the two linkages can dock only when their states
are complements since the result would be overbraced otherwise.
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The following construction shows how we can prevent catalysis unless docked. Recall
that the dashed lines represent the AND gadget from Example 7. So the internal catalytic
arm can come free only when all of the docking sites are bound. This way the following two
system states can reach each other, but only because their linkage states are complements.

The following figure shows the sequence of system states that flips the linkage states
atomically, as a unit. This implements the chemo-mechanical coupling A + B ⇌ C + D that
we had as our goal.

6 Conclusion

Along with defining the metric and topological chemical linkage models, we have provided
several examples of the complex behavior captured by them.

Throughout this work we have assumed a single-molecule regime where exactly one copy
of the linkages shown is present in the system. Indeed, having multiple copies introduces
potential problems. For example, in Example 3, two copies of the system can catalyze each
other’s state change even in the absence of the blue catalyst. Nonetheless, we imagine that an
implementation of a chemical linkage would utilize other kinds of geometry to prevent such
issues (e.g., through volume exclusion not captured by our linkage model). Indeed, linkages
have a history of being used as a small part of a whole system (e.g., the steam engine is not
entirely a linkage system, but the linkage model provided valuable insight into its function).

Some important theoretical and practical questions remain. One of the most immediate
questions is whether or not the topological model captures the full power of the metric model.
Are some behaviors easier to achieve when using explicit edge lengths? Also, this work
considered two-dimensional linkages. Can this be generalized to three dimensions? Note that
minimal rigidity can be generalized to 3D via Henneberg-like operations [16].

While the topological model simplifies the design and analysis of chemical linkages, what
about their actual construction? The lengths that were removed for topological analysis will
have to be added back in the real world. For this, we give the following conjecture:

▶ Conjecture 12. Given any topological chemical linkage system, there exists a metric
chemical linkage system which has the same reachable state space.

Ultimately, we believe that chemical linkages and other simple chemo-mechanical models
hold promise. Maybe they can help us understand the behaviors we see in living cells. And
maybe they can help us mimic them.
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A Weak bonds

In the work above, we rely on strong unbreakable bonds. We can extend consideration to
weak bonds which may break and reform. Indeed, we could consider weak bonds as a starting
point of our model and construct strong bonds from weak bonds. The following example
shows how a group of weak bonds (indicated as a diamond rather than a circle) can mimic
strong bond displacement.

https://www.biorxiv.org/content/10.1101/2021.04.20.440673v1
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This example combines three weak bonds. Each can break individually, but they are
unlikely to all break at the same time. So the only way the bottom blue linkage is likely to
replace the top red linkage is by gradually displacing it. Note that this is very similar to
DNA strand displacement. The bottom of the figure shows our standard representation of
strong bond displacement.

B Sequential AND details

Here we show the state change sequence for the sequential AND construction.

a cb i j k

ba c

i j k

In the initial system state (top left), the red linkage and blue linkage are separate from
the green, orange, and purple linkages (which are all bonded to one another). Since the red
signal and the green receptor are both active, they may dock with one another (top center).
This bonding triggers the AND/FANOUT gadget, displacing the linkage pair and activating
the orange receptor (top right). With the blue signal and the orange receptor both active
(bottom left), they may dock to trigger the displacement mechanism (bottom center). This
results in the purple signal linkage becoming active (bottom right) only when the red and
blue signal links have bonded with their corresponding receptors (in the correct order).

C Modified ATP and catalyst

In order to apply the ATP from Section 5.3 to the motor from Section 5.2, we need to ensure
that binding of the ATP and the catalyst results in displacement of joints both in the ATP
and the catalyst. We can achieve this by splitting the original binding sites x and z into
two different binding sites each of opposite complementarity allowing for a separation of
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responsibility. As shown below with respect to the x binding site, one site (x1) would be
responsible for triggering the signal cascades within the ATP linkage. The other (x2) would
similarly displace the black joint in the motor.

2

1 2

1
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