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Abstract
Since Simple Temporal Networks (STNs) were first introduced in 1991, there have been numerous
theoretic and algorithmic advances that have made them practical for a wide variety of applications.
However, the presentation of most of the important advances have been scattered across numerous
conference papers and journal articles. As a result, it is too easy for even experienced researchers to be
unaware of results that could positively impact their work. In this talk we review the most important
results about STNs for researchers in Artificial Intelligence who are interested in incorporating the
management of time and temporal constraints into their projects.
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1 Extended Abstract

Temporal networks are data structures for representing and reasoning about temporal con-
straints on activities. The most basic kind of temporal network is a Simple Temporal Network
(STN) which can accommodate such constraints as release times, deadlines, precedence con-
straints, and duration constraints [16]. The fundamental computational tasks associated
with STNs – checking consistency and managing execution – can be done in polynomial
time [16, 40].

STNs are used as temporal reasoning tools in numerous research projects and applications.
Currently, there are more than 2400 research papers in Google Scholar (more than 1200 in
Scopus) that employ STNs, either as the main temporal reasoning model or as the basis for
more expressive models. Considering only the most cited papers (more than 30 citations in
Scopus) that present a tool or a methodology based on STNs, the use of STNs falls into the
following two macro areas:
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planning for robots [30, 10, 25, 19, 1, 24, 27, 8, 7, 26, 31, 21],
industrial, business and health-care management systems [17, 3, 2, 45, 37, 20, 5, 12, 11, 9]

An STN contains a set of real-valued variables, called time-points, that typically represent
the starting or ending times of actions, together with a set of constraints on those time-points.
Each constraint in an STN has the form, Y − X ≤ δ, where X and Y are time-points, and δ

is a real number. Despite their limited form, the constraints in an STN can represent release
times, deadlines, precedence constraints, and duration constraints. For example, if X and Y

are the starting and ending times of an action, then Y − X ≤ 10 represents that the duration
of that action must be no more than 10. One advantage of STNs over earlier approaches is
that they allow flexibility: time-points need not be assigned values in advance, but may be
assigned in real time, during execution. In addition, STNs have an equivalent graphical form
that enables the use of algorithms from the vast literature on labeled, directed graphs.

The Simple Temporal Problem (STP) is the problem of determining whether a given
STN has a solution (i.e., is consistent, when viewed as a constraint satisfaction problem).
Many polynomial algorithms have been presented for solving the STP, their performance
differing depending on the structure of the STN graph. However, there are many other
computational problems that users of STNs need to be able to solve. For example, in most
applications, constraints are frequently inserted into the network incrementally, over time.
The incremental STP checks the consistency as new constraints are inserted [36, 18, 34]. In
addition, to take advantage of the flexibility offered by STNs, a system managing real-time
execution needs to be able to quickly determine when to execute each time-point while
preserving the network’s consistency. And, in cases where spurious events introduce an
inconsistency into the network, a system must be able to figure out modifications that will
restore a network’s consistency [14, 33]. For another example, in multi-agent scenarios with
limited communication, temporal networks may need to be decoupled to enable agents to
operate independently [22, 35, 4, 44]. All of these, and many other problems associated
with STNs have polynomial algorithms for solving them, making STNs a practical temporal
reasoning model for many real-world applications.

Because many real-world scenarios involve features that are not representable in STNs, the
STN model has been extended in many different ways. For example, an STNU accommodates
actions with uncertain durations (e.g., a taxi ride) [42, 43, 28], a CSTN accommodates
conditional constraints and test actions that generate information in real time [41, 13, 23],
and a DTN accommodates disjunctive constraints (e.g., action A must finish before action
B starts or vice-versa) [38, 39, 32]. Other extensions of STNs accommodate probabilistic
constraints [29, 15] and decisions (or choice points) [6].

Typically, the increase in expressiveness introduces a significant computational cost. (The
main exception is the STNU, for which many polynomial algorithms exist.) However, recent
advances have begun to make these extensions viable for practical applications. In each case,
the techniques applied to the more expressive networks builds on the theory and algorithms
for STNs.

This talk surveys the 30-year development of the theory and algorithms for Simple
Temporal Networks for researchers and application developers interested in incorporating
STNs into their projects.
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