
Model Checking Timed Recursive CTL
Florian Bruse #

School of Electrical Engineering and Computer Science, University of Kassel, Germany

Martin Lange #

School of Electrical Engineering and Computer Science, University of Kassel, Germany

Abstract
We introduce Timed Recursive CTL, a merger of two extensions of the well-known branching-time
logic CTL: Timed CTL is interpreted over real-time systems like timed automata; Recursive CTL
introduces a powerful recursion operator which takes the expressiveness of this logic CTL well
beyond that of regular properties. The result is an expressive logic for real-time properties. We show
that its model checking problem is decidable over timed automata, namely 2-EXPTIME-complete.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Program specifications

Keywords and phrases formal specification, temporal logic, real-time systems

Digital Object Identifier 10.4230/LIPIcs.TIME.2021.12

Acknowledgements The open access publication of this article was supported by the Alpen-Adria-
Universität Klagenfurt, Austria.

1 Introduction

Temporal logics are widely used as formal languages for the specification of properties of
reactive systems. The most widely known such logics are LTL [19] and CTL [12], having
achieved this status partially due to their simplicity as extensions of propositional logic by
a small set of intuitive temporal operators. This simplicity in syntax is also reflected by
relatively low expressive power; both do not even reach up to full regularity in the sense that
they are not equi-expressive to finite-state word, resp. tree automata.

Regular expressive power is a cornerstone in the study of the theory of temporal specific-
ation languages, as logics not exceeding this expressivity limit typically possess appealing
properties like decidability of their model and satisfiability checking problems.

On the other hand, there are also interesting program properties which are not regular
and can therefore not be expressed in such logics, like the absence of buffer over-/underflows,
assume-guarantee properties, etc. The literature contains several non-regular extensions of
temporal logics or related modal fixpoint logics, e.g. PDL[CFL] [13], FLC [18] and HFL [21].
These have certain features in common: a syntax that makes it difficult to understand the
meaning of formulas, and – despite undecidability of their satisfiability problems – a decidable
model-checking problem over finite structures [15, 16, 5]. The upshot to take from this is
that model checking need not become undecidable when going beyond regular expressiveness.

In order to overcome issues with unintuitive syntaxes in expressive temporal logics, we
recently proposed Recursive CTL (RecCTL) [10], an extension of the basic branching-time
temporal logic CTL with a single recursion operator which takes formulas as arguments that
can be manipulated using other operators and passed into a recursive call. This achieves
expressive power, capturing all regular branching-time properties and many non-regular
ones. At the same time, model checking is decidable albeit exponentially worse: it is
EXPTIME-complete compared to P-completeness for CTL.

© Florian Bruse and Martin Lange;
licensed under Creative Commons License CC-BY 4.0

28th International Symposium on Temporal Representation and Reasoning (TIME 2021).
Editors: Carlo Combi, Johann Eder, and Mark Reynolds; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florian.bruse@uni-kassel.de
mailto:martin.lange@uni-kassel.de
https://doi.org/10.4230/LIPIcs.TIME.2021.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Model Checking Timed Recursive CTL

Another way of extending the expressive power of temporal logics, which has been followed
in the literature for quite some time, is more semantic in nature: the labelled transition
systems that logics like CTL are interpreted over model the evolution of time very abstractly
by discrete steps taken when passing from one state to another. Hence, the only real timing
properties expressible in such logics are unitless and non-quantitative like “at some point in
the future” etc. This is not sufficient for the modelling of embedded or real-time systems
where concrete timing constraints play a role in correctness properties, for instance as in
“within 5 milliseconds of receiving a signal, a control command is issued.”

In order to capture such effects, transition systems have been extended to model the
flow of time more realistically with non-negative, real-numbered delays between time point.
Timed Automata [3] are a popular model for the finite representation of such systems. Their
great expressiveness compared to ordinary discrete systems shows by the fact that the basis
for temporal logics, the simple reachability problem, is already PSPACE-complete.

One of the most popular temporal logics for expressing more complex reachability
properties of Timed Automata is Timed CTL [2], an extension of CTL that is capable of
making simple assertions about the amount of time that passes before certain events occur
on some, resp. all paths. Its model checking problem over Timed Automata is not more
difficult than simple reachability: it is also PSPACE-complete, cf. [17].

Here we introduce and study Timed Recursive CTL (TRCTL), a logic that arises from
combining the extensions to real-time on one hand, and to non-regular properties on the
other. We show that TRCTL retains decidability of model checking over timed automata,
but the combination increases the complexity to 2-EXPTIME-completeness.

The paper is organised as follows. In Sect. 2 we recall necessary preliminaries about Timed
Automata and TCTL, about RecCTL, and characterise doubly exponential time complexity.
In Sect. 3 we introduce TRCTL formally. In Sect. 4 we establish 2-EXPTIME-completeness
of its model checking problem. The upper bound is obtained by an exponential reduction to
the RecCTL model checking problem, making use of the known region graph abstraction. The
lower bound requires a fair amount of encoding large numbers as propositions interpreted over
timed automata. TRCTL is then capable of mimicking the aforementioned characterisation
of doubly exponential time. We conclude in Sect. 5 with remarks on further work.

2 Preliminaries

2.1 Doubly Exponential Time Complexity
The main result of this paper is 2-EXPTIME-completeness of an expressive extension of
Timed CTL interpreted over Timed Automata. For the lower bound we reduce from a
problem that is essentially a reformulation of the problem to decide whether a deterministic
Turing Machine (DTM) accepts the empty word in 22n steps, given some n ≥ 0.

Suppose Q is the set of states and Γ the tape alphabet of a DTM M, containing a
special □ symbol and not containing #. Let Γ̂ := Γ ∪ (Q× Γ) ∪ {#}. Let f : N → N. The
unique f(n)-time-bounded computation of M on the empty input can be represented by
a square, containing f(n) rows, representing time, each of which contains f(n) symbols
from Γ̂, representing a configuration, or space. Each row is of the form #w# for some
w ∈ (Γ̂ \ {#})f(n)−2, and, if q0, qacc are M’s starting and accepting states, the bottom row
is #(q0,□)□f(n)−3#, and the top row is of the form #(qacc,□)w# for some w ∈ Γ̂f(n)−3.

Now suppose that δ is M’s transition function. This gives rise to a relation δ̂ ⊆ Γ̂ such
that (y1, y2, y3, x) ∈ δ̂ iff whenever y1, y2, y3 are consecutive symbols in row t at positions
s− 1, s, s+ 1, then x is the symbol at position s in row t+ 1.

F. Bruse and M. Lange 12:3

An f(n)-certificate (for M and given n) is a set of mutually recursive predicates Certa :
[f(n)] × [f(n)] → {⊤,⊥}, one for each a ∈ Γ̂ with the following properties. Intuitively,
Certa(t, s) = ⊤ iff the s-th symbol in the t-the configuration of the unique computation of
M on the empty input is a. Clearly, t, s ≤ f(n). Formally,

Cert(qacc,□)(f(n) − 1, 0) = ⊤,
for all t ∈ {1, . . . , f(n) − 1}, s ∈ {1, . . . , f(n) − 2} and a ∈ Γ̂ \ {#} with Certa(t, s) there
are b1, b2, b3 ∈ Γ̂ with (b1, b2, b3, a) ∈ δ̂ and

Certy1(t− 1, s− 1) ∧ Certy2(t− 1, s) ∧ Certy3(t− 1, s+ 1) ,

for all t ∈ {0, . . . , f(n) − 1}, s ∈ {0, f(n) − 1} we have Certa(t, s) iff a = #,
Certa(0, 1) iff a = (q0,□), and for all s = 2, . . . , f(n) − 2: Certa(0, s) iff a = □.

Note that the last two clauses determine the values of a in Certa(t, s) uniquely for the left,
lower und right edge of the square defined by the coordinates t, s, and determinism of the
TM A then determines the values at the inner coordinates uniquely as well.

This characterisation of acceptance in deterministic time-bounded Turing Machines is
taken from [11] and can also be used to establish a generic 2-EXPTIME-hardness result.

▶ Proposition 1. It is 2-EXPTIME-hard to decide, given a DTM M and an n ∈ N encoded
unarily, whether or not there is a 22n-certificate for M and n in the sense above.

2.2 Models of Real-Time Systems

Timed Transition Systems. A timed labelled transition system (TLTS) over a finite set
Prop of atomic propositions is a T = (S,−→, s0, λ) such that

S is a set of states containing a designated starting state s0,
−→ ⊆ S × S ∪ S × R≥0 × S is the transition relation, consisting of two kinds:

discrete transitions of the form s−→ t for s, t ∈ S, and
delay transitions of the form s d−→ t for s, t ∈ S and d ∈ R≥0, satisfying s 0−→ t iff s = t

for any s, t ∈ S, and

∀d, d1, d2 ∈ R≥0,∀s, t ∈ S : d = d1+d2 and s d−→ t ⇔ ∃u ∈ S s.t. s d1−−→u and u
d2−−→ t ,

λ : S → 2Prop labels the states with the set of atomic propositions that hold true in it.

Here we consider TLTS over a singleton set of discrete actions. This is purely done since the
temporal logics based on CTL here do not consider different actions. It would be possible to
extend the entire theory to TLTS over several discrete transition relations a−→, b−→, . . ., and
make the logics aware of these. The extended transition relations d=⇒, d ∈ R≥0, are obtained
by padding discrete transitions with delays:

s
d=⇒ t iff ∃d1, d2 ∈ R≥0, s′, t′ ∈ S s.t. s d1−−→ s′, s′ −→ t′, t′

d2−−→ t and d = d1 + d2

A trace is a sequence π = s0
d0=⇒ s1

d1=⇒ . . .

An (untimed) labeled transition system (LTS) is a TLTS over an empty delay transition
relation. It is finite if the set of its states is finite.

TIME 2021

12:4 Model Checking Timed Recursive CTL

Clock Constraints. Let X = {x, y, . . .} be a set of R≥0-valued variables called clocks. By
CC (X) we denote the set of clock constraints over X which are conjunctive formulas of the
form ⊤ or x ⊕ c for x ∈ X , c ∈ N and ⊕ ∈ {≤, <,≥, >,=}.

A clock evaluation is an η : X → R≥0. A clock constraint φ is interpreted in a clock
evaluation η in the obvious way:

η |= ⊤ holds for any η,
η |= φ1 ∧ φ2 if η |= φ1 and η |= φ2,
η |= x ⊕ c if η(x) ⊕ q for ⊕ ∈ {≤, <,≥, >,=}.

Given a clock evaluation η, d ∈ R≥0 and a set R ⊆ X , we write η+d for the clock
evaluation that is defined by (η+d)(x) = η(x) + d for any x ∈ X , and η|R for the clock
evaluation that is defined by η|R(x) = 0 for x ∈ R and η|R(x) = η(x) otherwise.

Timed Automata. As with TLTS, here we consider timed automata whose transitions are
always taken with a single action which is consequently not named. As above, the reason for
considering this simplified model is purely the fact that CTL-based logics as defined – the
main object of study in this paper – are oblivious of differences in actions anyway.

A timed automaton (TA) over Prop is a A = (L,X , ℓ0, ι, δ, λ) where
L is a finite set of so-called locations containing a designated initial location ℓ0 ∈ L,
X is a finite set of clocks,
ι : L → CC (X) assigns a clock constraint, called invariant, to each location,
δ ⊆ L × CC (X) × 2X × L is a finite set of transitions. We write ℓ g,R−−−→ ℓ′ instead of
(ℓ, g, R, ℓ′) ∈ δ. In such a transition, g is called the guard, and R ⊆ X are the reset clocks
of this transition.

The index of the TA A is the largest constant occurring in its invariants or guards, denoted
m(A). The size of A is

|A| = |δ| · (2 · (logL) + |X | + logm(A)) + |L| · 2 · (log |X | + logm(A)) + |L| · |Prop|.

Note that the size is only logarithmic in the value of constants used in clock constraints as
they can be represented in binary notation for instance.

TA are models of state-based real-time systems. The semantics, resp. behaviour of a TA
A = (L,X , ℓ0, ι, δ, λ) is given by an TLTS TA over the time domain R≥0 as follows.

The state set is S = {(ℓ, η) | ℓ ∈ L, η ∈ (X → R≥0) such that η |= ι(ℓ)} consisting of pairs
of locations and clock evaluations that satisfy the locations’s invariant.
The initial state is s0 = (ℓ0, η0) where η0(x) = 0 for all x ∈ X .
Delay transitions retain the underlying location and (possibly) advance the value of clocks
in a state: for any (ℓ, η) ∈ S and d ∈ R≥0 we have (ℓ, η) d−→(ℓ, η+d) if η+d |= ι(ℓ).
Discrete transitions possibly change the location and reset clocks: for any (ℓ, η) ∈ S,
ℓ′ ∈ L and R ⊆ X we have (ℓ, η) −→(ℓ′, η|R) if there is g ∈ CC (X) such that (ℓ, g, R, ℓ′) ∈ δ

and η|R |= ι(ℓ′).
The propositional label of a state is inherited from the propositional label of the underlying
location: λ(ℓ, η) = λ(ℓ).

In other words, a TA finitely represents a TLTS. Clearly, not every TLTS is finitely repres-
entable, so only a subset is captured by TA.

For a detailed introduction into timed automata we refer to the literature [3, 6]. Here
we give an example which will be used later on in the lower bound proof in Sect. 4. The
TA here act as gadgets which means that they have defined locations by which they can be
connected to form larger TA. This may entail putting guards or resets onto transitions which
do not connect locations in this gadget, as they will be connected later on. The example TA
in Fig. 1 are used to encode a counter of some width.

F. Bruse and M. Lange 12:5

Reset i if φi
ℓ0

z=0
ℓ1

z=0
. . . ℓn

z=0z:=0

¬φ0

φ0

x0:=0

¬φ1

φ1

x1:=0

¬φn−1

φn−1

xn−1:=0

Reset i
if xi=1 ∧∧

j<i
xj>1

Reset i
if xi=2 ∨∧

j≤i
xj=3

Reset i
if xi>1

Reset i
if xi=2y:=0

y=1

y:=0

y=1

y:=0

y=1

y:=0

y=1

Figure 1 Examples of timed automata: Reset i if φi for arbitrary clock constraints φ0, . . . , φn−1

(upper TA), and Incrx̄ (lower TA).

▶ Definition 2. Let x̄ = (x0, . . . , xn−1). An environment η is called a small x̄-counter if
η(xi) ∈ {0, 1} for all i = 0, . . . , n− 1. Its value is ⟨ηx̄⟩ =

∑n−1
i=0 η(xi) · 2i.

We drop the annotation by x̄ if it is clear from context. Now consider the TA Reset i if φ

(read “for i = 0, . . . , n− 1 reset the i-th clock if φi holds”) and Incrx̄ in Fig. 1.

▶ Observation 3.
Suppose φ̄ = (φ0, . . . , φn−1) is a tuple of clock constraints over the clocks in x̄. Then,
in the TLTS associated to the TA Reset i if φ, there is a path from (ℓ0, η) to (ℓn, η

′) iff
η′ = η|{xi|φi}.
Suppose η is small counter encoding the value m ∈ [2n] over n clocks in x̄. Then, if
entering the sub-TLTS generated by the gadget Incrx̄ from some state (ℓ, η), this sub-TLTS
is left towards some (ℓ′, η′) such that η′ encodes m+ 1 modulo 2n.

Clearly, there is a gadget similar to Incrx̄ that decreases the value encoded in these clocks.
We denote it by Decrx̄. Note that technically, Incrx̄ is not a TA since the conditions on the
resets, resp. their negations, which are used as guards in the reset gadget, contain disjunctions.
However, in this case, the guards can be brought into disjunctive normal form at a minimal
blowup, whence a disjunction ψ1 ∨ . . .∨ψk in a supposed guard can be replaced by k separate
transitions.

The Region Abstraction. There is a well-known abstraction of an TLTS arising from a TA
A into a finite LTS known as the region graph RA, used in decidability proofs for decision
problems on TA.

In the following we only consider TLTS TA that arise from some TA A = (L,X , ℓ0, ι, δ, λ).
The region abstraction is a mapping of such R≥0-TLTS into finite LTS. It is based on an
equivalence relation ≃m, for m ∈ N, on clock evaluations defined as follows.

η ≃m η′ iff for all x ∈ X : η(x) > m and η′(x) > m

or ⌊η(x)⌋ = ⌊η′(x)⌋ and frac(η(x)) = 0 ⇔ frac(η′(x)) = 0
and for all y ∈ X with η(y) ≤ m and η′(y) ≤ m :

frac(η(x)) ≤ frac(η(y)) ⇔ frac(η′(x)) ≤ frac(η′(y))

Here, frac(r) denotes the fractional part of a real number. It is easy to see that ≃m is
indeed an equivalence relation for any m. It is lifted to states of the TLTS TA in the most
straight-forward way:

(ℓ, η) ≃m (ℓ′, η′) iff ℓ = ℓ′ and η ≃m η′ .

We write [η]m for the equivalence class of η under ≃m and likewise for [(ℓ, η)]m. When m is
clear from the context we may also drop it and simply write [η], resp. [(ℓ, η)].

TIME 2021

12:6 Model Checking Timed Recursive CTL

This is not only an equivalence relation on the state space of TA but in fact even a
congruence w.r.t. the labelling and discrete and delay transitions when m ≥ m(A). This is
what makes it usable in order to abstract the uncountable state space of TA into a finite
discrete state space as follows.

The region graph RA of the TA A is the LTS obtained as the quotient of TA under the
congruence relation ≃m (with m = m(A)), together with an additional collapse of delay
transitions for different delays into a single “some-delay” value τ . Its components are as
follows.

The state space is {(ℓ, [η]) | ℓ ∈ L, η ∈ (X → R≥0), η |= ι(ℓ)}. The initial state is (ℓ0, [η0]).
Discrete transitions from one state to another are obtained by possibly delaying, then
performing a discrete transition in the timed space and then possibly delaying again
afterwards. We have

(ℓ, [η]) −→(ℓ′, [η′]) if there are d, d′ ∈ R≥0, η̂, η̂′ s.t. (ℓ, η) d1−−→(ℓ, η̂) −→(ℓ′, η̂′) d2−−→(ℓ′, η′)

for any ℓ, ℓ′ ∈ L, η, η′ ∈ X → R≥0.
The propositional labelling is given as λ(ℓ, [η]) = λ(ℓ, η) = λ(ℓ).

We obtain the following proposition:

▶ Proposition 4 ([3]). Let A be a TA over n clocks with ℓ locations and of index m. Then
RA is an (untimed) LTS of size ℓ · 2O(n(log n+log m)), i.e. exponential in |A|, and there is a
trace s0

d0=⇒ s1
d1=⇒ . . . in TA iff there is a path [s0] −→[s1] −→ . . . in RA.

2.3 Temporal Logics
We recall the two most relevant temporal logics which form the basis for the definition of
Timed Recursive CTL in Sect. 3: Timed CTL, the extension of pure CTL by operators to
quantitatively speak about the passage of time, and Recursive CTL, the extension of CTL
by a recursion operator which gives it much greater expressive power.

Timed Computation Tree Logic. As before, let Prop be a set of atomic propositions.
Formulas of Timed CTL (TCTL) are given by the following grammar.

φ ::= q | φ ∧ φ | ¬φ | E(φ UJ φ) | A(φ UJ φ)

where q ∈ Prop and J denotes a natural-number bounded interval in R≥0, i.e. it takes one of
the forms [n,m], (n,m], [n,m), (n,m), [n,∞), (n,∞) with n,m ∈ N, n ≤ m.

Other Boolean connectives are defined as abbreviations in the usual way: tt := q ∨ ¬q for
some q ∈ Prop, φ∨ψ := ¬(¬φ∧¬ψ), φ → ψ := ¬φ∨ψ, etc. Likewise, other familiar temporal
operators can be obtained as abbreviations as well: QFJφ := Q(tt UJ φ) for Q ∈ {E, A},
QGJφ := ¬QFJ¬φ where E = A and A = E. We also use an intuitive way of the form ⊕n
with ⊕ ∈ {≤, <,≥, >,=} for denoting intervals when possible, for instance EF>2q stands for
EF(2,∞)q, and AG≤5q stands for AG[0,5]q.

Formulas of TCTL are interpreted over R≥0-timed transition systems T = (S,−→, s0, λ):
JφKT denotes the set of states in T in which φ holds, defined inductively as follows.

JqKT := {s | q ∈ λ}
Jφ ∧ ψKT := JφKT ∩ JψKT

J¬φKT := S \ JφKT

JE(φ UJ ψ)KT := {s ∈ S | there is a trace π = s, . . . s.t. π |= φ UJ ψ}
JA(φ UJ ψ)KT := {s ∈ S | for all traces π = s, . . . we have π |= φ UJ ψ}

F. Bruse and M. Lange 12:7

and for a non-zeno trace π = s0
d0=⇒ s1

d1=⇒ s2
d2=⇒ . . . we have π |= φ UJ ψ iff

∃i ≥ 0,∃d ∈ [0, di],∃s′ s.t. si
d=⇒ s′ and (

i∑
h=0

di) + d ∈ J and T , s′ |= ψ and

∀j < i,∀d′ ∈ [0, dj],∀s′ s.t. sj
d′

=⇒ s′ we have T , s′ |= φ ∨ ψ and

∀d′ ∈ [0, d),∀s′ s.t. si
d′

=⇒ s′ we have T , s′ |= φ ∨ ψ.

We write T , s |= φ if s ∈ JφKT for arbitrary s ∈ S, and also T |= φ if T , s0 |= φ.
The model checking problem for TCTL is the following: given a TA A and a TCTL

formula φ, decide whether or not RA |= φ.

▶ Proposition 5 ([1, 17]). The model checking problem for TCTL is PSPACE-complete,
even for TA over a single clock.

Temporal Logic with Recursion. We briefly present Recursive CTL (RecCTL), the other
building block besides TCTL that make up Timed Recursive CTL, to be defined in the
following section.

Let Prop be a set of atomic propositions. Formulas of RecCTL are obtained by addition
of the recursion operator to the (purely modal part of) CTL. Let V1 = {x, y, . . .} be a set of
propositional variables and V2 = {F , . . .} be a set of so-called recursion variables. Formulas
of RecCTL are given by the following grammar.

φ ::= q | x | φ ∧ φ | ¬φ | EXφ | Φ(φ, . . . , φ) Φ ::= F | rec F(x1, . . . , xk; y1, . . . , yh). φ

where x, xi, yi ∈ V1, F ∈ V2.
A formula derived from φ in this grammar is called propositional, those derived from

Φ are called first-order. Formulas are interpreted over (untimed) LTS T over some state
set S. A propositional formula φ denotes a predicate JφKT ∈ 2S , i.e. a set of states just
like any CTL formula does; a first-order formula however denotes a predicate transformer
JΦKT : 2S × . . .× 2S → 2S .

We do not give the details of the formal semantics here. It suffices to note that the
recursion operator is interpreted as the least fixpoint in the corresponding complete lattice
of first-order functions called predicate transformers. For this to work seamlessly, i.e. these
fixpoints to exist, we need to guarantee that any variable F is used monotonically in φ

inside of rec F(x⃗; y⃗). φ only. The fact that the logic features negation (¬) and application
(Φ(φ1, . . . , φk)) requires a slightly more involved syntactic criterion for monotonicity. In
particular, in order to know whether some variable is used monotonically, it may be required
to know this for others as well. This is why the formal parameters x1, . . . , xk; y1, . . . , yh

(k, h ≥ 0) to a recursion operator are separated into two parts: those left of the divider “;”
are used monotonically, those to the right are used antitonically. RecCTL employs a small
type system to ensure these properties. For details we refer to the literature [10] or the next
section where the machinery is carried out for full Timed Recursive CTL anyway.

An important result on RecCTL to notice here, as it will be used later on in Sect. 4, is
decidability of its model checking problem.

▶ Proposition 6 ([10]). The model checking problem for RecCTL over finite LTS is
EXPTIME-complete.

TIME 2021

12:8 Model Checking Timed Recursive CTL

3 Timed Recursive Computation Tree Logic

The formal syntax. Let Prop be a set of atomic propositions. The syntax of Timed Recursive
CTL (TRCTL) is similar to that of RecCTL in that we distinguish between propositional
and first-order formulas. We also need two kinds of variables again: first-order variables
V2 = {F ,G, . . .} to form recursion anchors and propositional variables V1 = {x, y, . . .} for
formal parameters of recursive formulas. Formulas are then given by

φ ::= p | x | φ ∧ ψ | ¬φ | E(φ UJ φ) | Φ(φ, . . . , φ) Φ ::= F | rec F(x1, . . . , xk). φ

where p ∈ Prop, k ≥ 0, x, x1, . . . , xk ∈ V1, F ∈ V2 and J denotes an interval in R≥0 with
integer bounds as in the syntax for TCTL. We write m(φ) to denote the largest constant
that occurs in interval annotations of the Until operators in φ.

Note that CTL features the Next operators QX as well as the Until operators QU. The
former is missing in TCTL since there is no “next” moment in dense real time. RecCTL,
however, seems to feature the Next but not the Until. This is simply because Q(φUψ) is
expressible via QX using the recursion operator which is stronger than propositional fixpoints,
i.e. Q(φUψ) ≡ (rec F(). ψ∨(φ∧QXF()))(), written more conveniently as rec F . ψ∨(φ∧QXF),
along the lines of the embedding of CTL into the modal µ-calculus. This does not work for
the time-bounded Until operator anymore. Hence, TRCTL features such the Until but not
the Next operator just like TCTL.

Other Boolean and temporal operators are defined in the usual way, for instance EFJφ :=
E(tt UJ φ), AGJφ := ¬EFJ¬φ, etc. and will be used freely henceforth.

Vectorial form. The semantics of the recursion operator will be explained using least
fixpoints in complete function lattices. This makes the Bekic̀ Lemma [7] available which
allows formulas with mutual dependencies between recursion variables to be written down in
a more readable form. A formula in vectorial form, cf. [4] for its use in Lµ, is a

rec i

 F1(x1, . . . , xk) . φ1
...

Fn(x1, . . . , xk) . φn

 (ψ1, . . . , ψk).

Informally, this defines not just one but several functions F1, . . . ,Fn which may all depend
on each other in a mutually recursive way formalised in the φj ’s. In the end, the function
named by Fi is applied to the initial arguments ψ1, . . . , ψk.

Well-formed formulas. Not every formula generated by the formal syntax as introduced
above is well-formed. For instance, when a recursion formula has k formal parameters
as in Φ = rec F(x1, . . . , xk). φ, it should only be applied to a tuple of k arguments as in
Φ(φ1, . . . , φk). The same goes for any subformula of the form F(ψ1, . . . , ψk).

More importantly, a well-defined semantics can only be given to recursive formulas when
the recursion variable occurs monotonically in the defining fixpoint formula only. Here we
refrain from giving further formalities in terms of a type system that ensures well-formedness.
For what follows, it suffices to work with the intuitive notion of “occurring only monotonically”.
For formal details we refer to [10] where the notion of well-formedness is made precise for
RecCTL. The same principles can be applied here to this real-time extension of this logic.

F. Bruse and M. Lange 12:9

The formal semantics. As with TCTL, (propositional) formulas of TRCTL are interpreted
in states of an TLTS T = (S,−→, s0, λ). In fact, it suffices to extend the semantics of TCTL to
those operators (propositional variables and first-order formulas) which do not already occur
in the syntax of TCTL. Due to the presence of variables, we need variable interpretations
ϑ in order to explain the meaning of a formula inductively. Such a ϑ maps propositional
variables to sets of states, ϑ(x) ∈ 2S for x ∈ V1, and first-order variables to functions of
corresponding arity over these: ϑ(F) : 2S × . . .× 2S → 2S .

These functions form a complete Boolean lattice ordered pointwise, hence least fixpoints of
monotone functionals mapping one such function to another exist due to the Knaster-Tarski
Theorem [20]. These are used to explain the meaning of the recursion operator. For details,
we refer to the exposition on RecCTL [10] or on HFL [21] that this idea goes back to – the
only difference is that there, S is the state space of an untimed LTS rather than a TLTS.

A propositional formula φ gives rise to a set JφKT
ϑ of states that satisfy it under the

variable interpretation ϑ, and similarly for first-order formulas and corresponding first-order
functions. The semantics is defined as follows. The clauses presented for φ ∈ TCTL apply
here as well under the provision that each J·KT is replaced by J·KT

ϑ . Additionally,

JxKT
ϑ := ϑ(x) for x ∈ V1 , JΦ(φ1, . . . , φk)KT

ϑ := JΦKT
ϑ (Jφ1KT

ϑ , . . . , JφkKT
ϑ)

for propositional formulas, while for first-order formulas we set JFKT
ϑ := ϑ(F) if F ∈ V2 and

Jrec F(x1, . . . , xk). φKT
ϑ :=

l
{f : (2S)k → 2S | ∀S1, . . . , Sk : JφKT

ϑ[F7→f,x1 7→S1,...,xk 7→Sk] ⊆ f(S1, . . . , Sk)}

where ⊓ denotes the point-wise intersection for functions: (f ⊓ g)(S) := f(S) ∩ g(S).

Examples. We illustrate the use of the recursion operator in TRCTL to form structurally
complex properties which cannot be expressed in TCTL. We refer to [10] for more exposition
regarding RecCTL. It is helpful, though, to imagine the recursive formulas to be unrolled so
that new arguments are being built and these to be plugged in for the formal parameters.

▶ Example 7. Consider φag :=
(

rec F(x, y). (x ∧ ¬y) ∨ F(AF≤3x, AF≤2y)
)
(p, p). Unrolling

of the recursion shows that it is equivalent to∨
i≥0

AF≤3AF≤3 . . . AF≤3︸ ︷︷ ︸
i times

p ∧ ¬ AF≤2AF≤2 . . . AF≤2︸ ︷︷ ︸
i times

p

stating “there is an i such that on all paths we see i occurrences of p in distances of at
most 3 seconds, but not in distances of at most 2 seconds.” Negating this to ¬φag then
formalises “whenever it is possible to see p in distances of 3 seconds i times on a path, then
it is also possible to do so in distances of 2 seconds on some path.” This is inspired by the
formalisation of assume-guarantee properties in HFL [21].

▶ Example 8. Note that the context-free grammar G with productions

F1 → F2F3 , F2 → out | inF2F2 , F3 → ε | inF3 | outF3

generates the set of all in, out-sequences such that some prefix contains more out’s than in’s.
It can be seen as the set of all finite computations in which a buffer underflow occurs. Now
consider the TRCTL formula

φbuf := rec 1

 F1(x) . F2(F3(x))
F2(x) . E(pout U≥1 x) ∨ E(pin U≥1 F2(F2(x)))
F3(x) . x ∨ E(pin U≥1 F3(x)) ∨ E(pout U≥1 F3(x))

 (tt) .

TIME 2021

12:10 Model Checking Timed Recursive CTL

It states that there is a path forming a buffer underflow, provided that consecutive traversal
of states satisfying pin, resp. pout for at least 1sec are taken as input/output actions for the
buffer. Then ¬φbuf formalises absence of such underflows under this interpretation.

4 The Complexity of Model Checking

In this section we show that the model checking problem for TRCTL is 2-EXPTIME-complete.
We begin with the upper bound.

Upper Bound. We follow the same principles as usual decidability proofs for problems on
TA, using so-called untiming constructions like the one for the region graph. Let φ ∈ TRCTL
and A be a TA not using the clock z. Let Az result from it by simply adding the clock z to
it (which is not accessed or manipulated anywhere). Let RAz be the corresponding region
graph. Note that its states are of the form (ℓ, [η]), where ℓ is a location of A and [η] is a
region, i.e. an equivalence class of a clock evaluation η that is also defined on z now.

We construct a new LTS Rφ
Az by extending RAz = (S,−→, s0, λ) in the following two ways:

For each state (ℓ, [η]) and each c ≤ m(φ), add new proposition pz⊕c to λ(ℓ, [η]) if η |= z⊕c
for ⊕ ∈ {≤, <,≥, >,=}.
For each state (ℓ, [η]) introduce a new state sℓ,[η] with the sole label {rz}, and add
transitions (ℓ, [η]) −→ sℓ,[η] −→(ℓ, [η|{z}]).

This has introduced new traces in this region graph: at any moment, it is now possible to
reset clock z, and then continue some original trace. Moreover, the resetting of z becomes
visible through the traversal of a state that satisfies rz. Since z is not used in A, this is
the only way that it is being reset. Moreover, the values of z are also accessible through
propositions of the form pz⊕c.

Next we rewrite φ so that it can make use of these propositions. The formula φz results
from φ by replacing each subformula of the form

E(ψ1 U[c,d] ψ2) by EX(rz ∧ EXE((¬rz ∧ ψ1) U (¬rz ∧ pz≥c ∧ pz≤d ∧ ψ2))), resp.
A(ψ1 U[c,d] ψ2) by EX(rz ∧ EXA((¬rz → ψ1) U (¬rz → pz≥c ∧ pz≤d ∧ ψ2))).

For open intervals on one side, the p-propositions are amended accordingly to pz>c etc.
The following forms the basis of an exponential reduction of TRCTL model checking to

RecCTL model checking.

▶ Lemma 9. Let A be a TA, φ ∈ TRCTL.
(a) φz is a formula of (untimed) RecCTL and is constructible in time O(|φ|).
(b) Rφ

Az is an (untimed) LTS of size at most (singly) exponential in |A| and m(φ) and also
constructible in such time.

(c) TA |= φ iff Rφ
Az |= φz.

Parts (a) and (b) are easily checked. Part (c) can be proved by simple induction on the
structure of φ using Prop. 4.

▶ Theorem 10. The model checking problem for TRCTL over TA is decidable in 2-
EXPTIME.

Proof. Let a TA A and a TRCTL formula φ be given. To check whether TA |= φ holds, first
construct Rφ

Az and φz. According to Lemma 9, this can be done in exponential time, and it
suffices to check whether or not Rz

A |= φz holds. According to Prop. 6, the latter can be
solved in exponential time. Altogether, this gives a doubly exponential upper bound on the
time complexity of model checking TRCTL over TA. ◀

F. Bruse and M. Lange 12:11

ℓ1Incr∗
x̄ ℓ2 . . . ℓ3 Incrx̄ ℓ4y:=0

y=0

x0=0

xn−1=0

y=4

y:=0

y=0

p
x=0Incr∗

x̄ Decr∗
x̄i dA

Figure 2 A gadget for arbitrary incrementation (upper part), the TA A (lower part).

Encoding Large Numbers. We now want to encode numbers in the range [22n] in TRCTL.
We have seen in Obs. 3 how numbers in the range [2n] can be encoded in small counters and
that there is a polynomially-sized gadget such that passing through (the TLTS generated by)
that gadget increases the value encoded in the counter by 1. We now extend this to larger
numbers. Clearly, increasing the number of clocks involved is not sufficient unless we use
exponentially many clocks. However, note that a TA already generates an exponentially large
TLTS through the values of its associated clocks, even after the region graph abstraction.
This stems from the fact that both locations and clock values in a TA contribute to the TLTS,
and with multiple clocks present, one location may generate many TLTS states. Informally
put, the question whether some proposition holds at some location, and for which small
counter values, already has exponentially many possible answers. We use small counters
to represent the bits in binary numbers of exponential width, exactly enough to represent
numbers of doubly exponential size. Hence, large counters are sets of TLTS states that agree
on the location component, say ℓ. What varies are the clock values. Intuitively, we shall
consider a bit b ∈ [2n] set in the representation of a number through such a set, if said set
contains the state (ℓ, η) such that η is a small counter with ⟨η⟩ = b.

▶ Definition 11. Consider the TLTS TA generated by the TA A, depicted in the upper part
of Fig. 2. Let x̄ = (x0, . . . , xn−1). A set S of states of the form (p, η), where η is a small
x̄-counter, is called a large (x̄)-counter. Its value is ⟨S⟩ =

∑2n−1
i=0 bi · 2i where bi = 1 if the

small counter with value i belongs to S, and bi = 0 otherwise.

For example, the empty set encodes m = 0 since (p, η) ∈ S for no η. Any set that contains
all states of the form (p, η) encodes m = 22n − 1, since (p, η) ∈ S for all small counters η.
On the other hand, a set that contains only (p, η) such that ⟨η⟩ = 0 encodes m = 1, while a
set that contains all states but those with ⟨η⟩ = 0 encodes m = 22n − 2. Note that the first
two sets are expressible in TRCTL via ff and tt. In fact, every TRCTL-formula of the form
p ∧ ψ defines a large counter, whence we write φ = ⟨m⟩ for a formula that defines a counter
that encodes m.

Now assume that the gadget Decr∗
x̄ is obtained from Incr∗

x̄ , by replacing Incrx̄ by Decrx̄

and by replacing the test for 0 by a test for 1. We use the following lemma.

▶ Lemma 12. Consider TA where A is the TA in the lower part of Fig. 2. Let (p, η) and
(p, η′) be states in TA such that η, η′ are small counters. If (p, η′) is reachable from (p, η)
by passing exactly once through the sub-TLTS generated by the gadget Incr∗

x̄ and η encodes
m ∈ 2n − 1, then η′ encodes a value in in {m + 1, . . . , 2n − 1}. Moreover, for each such
m′ ∈ {m+ 1, . . . , 2n − 1}, there is a path through the gadget such that the η′ encodes m′, and
there is no such path if m = 2n − 1. The analogue holds for Decr∗

x̄.

TIME 2021

12:12 Model Checking Timed Recursive CTL

Proof. In Incr∗
x̄ , time flows only between ℓ3 and ℓ4, namely for exactly 4 units in Incrx̄ (cf.

Obs. 3). Now assume that the sub-TLTS generated by Incr∗
x̄ is entered from (p, η). When

passing directly from ℓ3 to ℓ4, the value encoded in η is increased by 1. Moreover, passing
from ℓ1 to ℓ3 and, hence to the end of the gadget, is only possible if at least one of the xi is
0, i.e. if η encodes a number less than 2n − 1. Finally, it is not hard to see that the return
path from ℓ4 to ℓ1 can be taken without making it impossible to leave the gadget as long
as at least one of the xi is 0, whence the gadget can be left with any value in the range
{m+ 1, . . . , 2n − 1} encoded in η. ◀

We use Lem. 12 to manipulate large counters by TRCTL-formulas. Recall that, when
incrementing a binary number m given as b0 · · · bn−1 with least significant bit left, a bit is
set in the representation of m+ 1 iff it is already set in (the representation) of m, and there
is a bit of lesser significance that is not set, or if it is not set in m, but all bits of lesser
significance are. We now apply this to large counters. Let m be a number encoded in a large
counter S. Then the set that encodes m + 1 comprises exactly all states (p, η) such that
(p, η) is already included in X and there is η′ with ⟨η′

x̄⟩ < ⟨ηx̄⟩ such that (p, η) /∈ S, and all
such (p, η) such that (p, η) /∈ S, but for all (p, η′) with ⟨η′

x̄⟩ < ⟨ηx̄⟩ we have (p, η′) ∈ S. This,
incrementation, and a test for 0 are expressed by the following formulas:

inc(X) = (X ∧ E(¬(p ∨ i) U>0 (p ∧ ¬X))) ∨ (¬X ∧ A(¬p U>0 (i ∨ p ∧X)))
dec(X) = (X ∧ E(¬(p ∨ i) U>0 (p ∧X))) ∨ (¬X ∧ A(¬p U>0 (i ∨ p ∧ ¬X)))
eq0(X) = ¬X ∧ A(¬p U>0 (p ∧ ¬X))

▶ Lemma 13. Let S be a large counter in TA such that S encodes m for m ∈ [22n].
Then inc(S) encodes m + 1 modulo 22n and dec(X) encodes m − 1 modulo 22n . Finally,
(p, η) ∈ eq0(S) iff S encodes 0.

Proof. We show the claim for inc(). Let S encode m. The left part of the disjunction
concerns the case of a bit that is already set in the representation of m, i.e. (p, η) ∈ S such
that ⟨η⟩ is some k ∈ [2n]. Then (p, η) is in the representation of m+ 1 modulo 22n iff there
is k′ ∈ [k] such that (p, η′) /∈ S if η′ encodes k′. This is formalised in the EU-formula, which
requires the existence of a path of length different than 0 where, at the first occurrence of
p after the initial state, ¬S holds. Moreover, since i can also not hold, that path must go
exactly once through the gadget Decr∗

x̄ . By Lem. 12, respectively its analogue for Decr∗
x̄ , we

obtain that, for each k′ < k, there is a path through this gadget such that x̄ encodes k′ after
leaving it, and no other paths through this gadget exist. Hence, the EU-formula only holds if
there is k′ ∈ [k] representing the bit of lesser significance than k not set in the representation
of m. The other disjunct follows the same pattern, except here, the AU-formula formalises
the forall quantifier in the logic of binary incrementation, and the proposition i moves to
formalise that each path either goes through i and, hence, is of no concern, or ends up in the
location p such that the corresponding lower bit is set.

The formula for decrementation follows the same logic. Finally, a set S encodes 0 iff it
contains no states (p, η) with η of any kind. In other words, (p, η) is in (the semantics of)
eq0(S) iff it is not in S and, no matter which path is taken through one of the two gadgets,
one ends up outside of S upon reaching the location p for the first time, i.e. no matter how
the clocks in x̄ are changed, one cannot reach S. ◀

We add that the following are also expressible via the formulas given below: The fact that a
large counter encodes 1, the fact that it encodes a number greater than 0 or 1, and the fact
that it encodes a number less than 22n − 1:

eq1(X) = eq0(dec(X)) eq22n −1(X) = eq0(inc(X)) gt1(X) = ¬eq0(X) ∧ ¬eq0(dec(X))
gt0(X) = ¬eq0(X) lt22n −1(X) = ¬eq0(dec(X))

F. Bruse and M. Lange 12:13

Lower Bound. A matching lower bound can be obtained by a polynomial reduction from
problem stated in Prop. 1. We construct, given such a DTM M and an n ∈ N, a TA AM,n

and a TRCTL formula φM,n each of polynomial size in |M| and n, such that AM,n |= φM,n

iff there is a 22n-certificate for M and n. Given the previous work on encodings or large
numbers, the existence of such a certificate is easily defined in TRCTL, as we will see below.
▶ Theorem 14. The model checking problem for TRCTL over Timed Automata is 2-
EXPTIME-hard.
Proof. Let M and n be given. Let Γ̂ = {a1, . . . , am} and δ̂ be as defined in Sect. 2.1,
resulting from M’s state set, tape alphabet and transition function. Let

φM,n := rec (qacc,□)


...

Cai
(t, s) . chkai

(t, s) ∨
∨

(b1,b2,b3,ai)∈δ̂

nxtb1,b2,b3(t, s)

...

 (⟨22n

− 1⟩, ⟨0⟩)

where

chka(t, s) :=


eq0(s) ∨ eq22n −1(s) , if a = #
eq0(t) ∧ eq1(s) , if a = (q0,□)
gt1(s) ∧ lt22n −1(s) , if a = □

ff , otherwise

nxtb1,b2,b3(t, s) := gt0(t) ∧ gt0(s) ∧ lt22n −1(s) ∧
Cb1(dec(t), dec(s)) ∧ Cb2(dec(t), s) ∧ Cb3(dec(t), inc(s))

Let A be the TA from Fig. 2. Then TA |= φM,n iff there is a 22n-certificate for M. This
follows from the fact that the definition of the C mirrors the pattern of the certificate Cert
described in Sec. 2.1. The arithmetic used is described above. Note that φM,n is well-defined
w.r.t. monotonocity of the C since all of them occur only positively in nxtb1,b2,b3(t, s). The
variables s and t occur both positively and negatively but they are not recursion variables,
so this is unproblematic. ◀

5 Conclusion & Further Work

We have introduced Timed Recursive Temporal Logic (TRCTL) and shown that its model-
checking problem is 2-EXPTIME-complete. Its satisfiability problem is undecidable, this
is inherited from Recursive Temporal Logic [10]. TRCTL is strictly stronger in expressive
power than its two constituent parts RecCTL and TCTL since either can express properties
that the other cannot, namely higher-order properties (cf. [10]) or real-time properties. A
fine-grained analysis of the expressive power of TRCTL, i.e. which properties of e.g. TLTS
become accessible that are not accessible in TCTL, is still to be done. It should be noted
that our lower bounds already hold in the setting with just two clocks, the constructions
from [17] carry over with few adaptations.

Further research concerns two angles: practicability and extensions in expressive power.
With respect to the former, the 2-EXPTIME-complete model checking problem might seem
prohibitive, yet higher-order algorithms are open to optimisations that can yield surprisingly
competitive algorithms [9, 14]. The latter angle includes straightforward extensions such as
propositions that test for the value of some clock that are unlikely to require new methods,
but also more intricate ones like diagonal constraints etc. which, of course, are also likely to
lead to undecidability [8].

TIME 2021

12:14 Model Checking Timed Recursive CTL

References
1 R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In Proc. 5th

Ann. IEEE Symp. on Logic in Computer Science, LICS’90, pages 414–427. IEEE Computer
Society Press, 1990. doi:10.1109/LICS.1990.113766.

2 R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Inform. and Comp.,
104(1):2–34, 1993. doi:10.1006/inco.1993.1024.

3 R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–
235, 1994. doi:10.1016/0304-3975(94)90010-8.

4 A. Arnold and D. Niwiński. Rudiments of µ-calculus, volume 146 of Studies in Logic and the
Foundations of Mathematics. North-Holland, 2001.

5 R. Axelsson, M. Lange, and R. Somla. The complexity of model checking higher-order fixpoint
logic. Logical Methods in Computer Science, 3:1–33, 2007. doi:10.2168/LMCS-3(2:7)2007.

6 C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
7 H. Bekić. Programming Languages and Their Definition, Selected Papers, volume 177 of LNCS.

Springer, 1984.
8 P. Bouyer, F. Laroussinie, N. Markey, J. Ouaknine, and J. Worrell. Timed temporal logics.

In Models, Algorithms, Logics and Tools - Essays Dedicated to Kim Guldstrand Larsen on
the Occasion of His 60th Birthday, volume 10460 of LNCS, pages 211–230. Springer, 2017.
doi:10.1007/978-3-319-63121-9_11.

9 F. Bruse, J. Kreiker, M. Lange, and M. Sälzer. Local higher-order fixpoint iteration. In Proc.
11th Int. Symp. on Games, Automata, Logics, and Formal Verification, GandALF’20, volume
326 of EPTCS, pages 97–113, 2020. doi:10.4204/EPTCS.326.7.

10 F. Bruse and M. Lange. Temporal logic with recursion. In Proc. 27th Int. Symp. on Temporal
Representation and Reasoning, TIME’20, volume 178 of LIPIcs, pages 6:1–6:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.TIME.2020.6.

11 A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.
doi:10.1145/322234.322243.

12 E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthes-
ize synchronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.
doi:10.1016/0167-6423(83)90017-5.

13 D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of nonregular programs. Journal
of Computer and System Sciences, 26(2):222–243, 1983. doi:10.1016/0022-0000(83)90014-4.

14 Y. Hosoi, N. Kobayashi, and T. Tsukada. A type-based HFL model checking algorithm. In
Proc. 17th Asian Symp. on Programming Languages and Systems, APLAS’19, volume 11893
of NCS, pages 136–155. Springer, 2019. doi:10.1007/978-3-030-34175-6_8.

15 M. Lange. Model checking propositional dynamic logic with all extras. Journal of Applied
Logic, 4(1):39–49, 2005. doi:10.1016/j.jal.2005.08.002.

16 M. Lange and C. Stirling. Model checking fixed point logic with chop. In Proc. 5th Conf. on
Foundations of Software Science and Computation Structures, FOSSACS’02, volume 2303 of
LNCS, pages 250–263. Springer, 2002. doi:10.1007/3-540-45931-6_18.

17 F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking timed automata with one or
two clocks. In Proc. 15th Int. Conf. on Concurrency Theory, CONCUR’04, volume 3170 of
LNCS, pages 387–401. Springer, 2004. doi:10.1007/978-3-540-28644-8_25.

18 M. Müller-Olm. A modal fixpoint logic with chop. In Proc. 16th Symp. on Theoretical
Aspects of Computer Science, STACS’99, volume 1563 of LNCS, pages 510–520. Springer,
1999. doi:10.1007/3-540-49116-3_48.

19 A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. on Foundations of Computer
Science, FOCS’77, pages 46–57, Providence, RI, USA, 1977. IEEE. doi:10.1109/SFCS.1977.
32.

20 A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific Journal of
Mathematics, 5:285–309, 1955. doi:10.2140/pjm.1955.5.285.

21 M. Viswanathan and R. Viswanathan. A higher order modal fixed point logic. In CONCUR’04,
volume 3170 of LNCS, pages 512–528. Springer, 2004. doi:10.1007/978-3-540-28644-8_33.

https://doi.org/10.1109/LICS.1990.113766
https://doi.org/10.1006/inco.1993.1024
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.2168/LMCS-3(2:7)2007
https://doi.org/10.1007/978-3-319-63121-9_11
https://doi.org/10.4204/EPTCS.326.7
https://doi.org/10.4230/LIPIcs.TIME.2020.6
https://doi.org/10.1145/322234.322243
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1016/0022-0000(83)90014-4
https://doi.org/10.1007/978-3-030-34175-6_8
https://doi.org/10.1016/j.jal.2005.08.002
https://doi.org/10.1007/3-540-45931-6_18
https://doi.org/10.1007/978-3-540-28644-8_25
https://doi.org/10.1007/3-540-49116-3_48
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.1007/978-3-540-28644-8_33

	1 Introduction
	2 Preliminaries
	2.1 Doubly Exponential Time Complexity
	2.2 Models of Real-Time Systems
	2.3 Temporal Logics

	3 Timed Recursive Computation Tree Logic
	4 The Complexity of Model Checking
	5 Conclusion & Further Work

