
Efficient Anytime Computation and Execution of
Decoupled Robustness Envelopes for Temporal
Plans
Michael Cashmore #

Strathclyde University, Glasgow, UK

Alessandro Cimatti #

Fondazione Bruno Kessler, Trento, Italy

Daniele Magazzeni #

Kings College London, UK

Andrea Micheli #

Fondazione Bruno Kessler, Trento, Italy

Parisa Zehtabi #

Kings College London, UK

Abstract
One of the major limitations for the employment of model-based planning and scheduling in practical
applications is the need of costly re-planning when an incongruence between the observed reality
and the formal model is encountered during execution. Robustness Envelopes characterize the set of
possible contingencies that a plan is able to address without re-planning, but their exact computation
is expensive; furthermore, general robustness envelopes are not amenable for efficient execution.

In this paper, we present a novel, anytime algorithm to approximate Robustness Envelopes,
making them scalable and executable. This is proven by an experimental analysis showing the
efficiency of the algorithm, and by a concrete case study where the execution of robustness envelopes
significantly reduces the number of re-plannings.

2012 ACM Subject Classification Computing methodologies → Robotic planning

Keywords and phrases Temporal Planning, Robustness Envelopes

Digital Object Identifier 10.4230/LIPIcs.TIME.2021.13

Acknowledgements The open access publication of this article was supported by the Alpen-Adria-
Universität Klagenfurt, Austria.

1 Introduction

When planning and scheduling techniques are employed in practical applications, one of the
major problems is the need for on-line re-planning when the observed contingencies are not
aligned with the ones that were considered at planning time. These situations are common,
because it is arguably impossible to predict the entire range of situations an autonomous
system can encounter, especially when the planning domain encompasses time and temporal
constraints. Unfortunately, re-planning can be costly in terms of time, and computational
resources can be scarce on-board, so limiting the use of re-planning is very important for
practical purposes. In principle, it is also possible to continue with the execution of a plan
even when the observed contingencies are unexpected, optimistically hoping for a successful
completion. However, this approach offers no formal guarantee, and is prone to the risk of
continuing execution of a plan that is bound to fail.

© Michael Cashmore, Alessandro Cimatti, Daniele Magazzeni, Andrea Micheli, and Parisa Zehtabi;
licensed under Creative Commons License CC-BY 4.0

28th International Symposium on Temporal Representation and Reasoning (TIME 2021).
Editors: Carlo Combi, Johann Eder, and Mark Reynolds; Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michael.cashmore@strath.ac.uk
https://orcid.org/0000-0002-8334-4348
mailto:cimatti@fbk.eu
https://orcid.org/0000-0002-1315-6990
mailto:daniele.magazzeni@kcl.ac.uk
https://orcid.org/0000-0002-1934-3447
mailto:amicheli@fbk.eu
https://orcid.org/0000-0002-6370-1061
mailto:parisa.zehtabi@kcl.ac.uk
https://orcid.org/0000-0003-1146-046X
https://doi.org/10.4230/LIPIcs.TIME.2021.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Efficient Anytime Computation and Execution of DRE for Temporal Plans

Several approaches have been proposed in the literature to address this problem (see [13]
for a survey focused on robotics). Some authors propose to post-process plans and generalize
them relying on the scheduling constraints that are relevant for execution [17, 15, 10]. Another
line of research focuses on the creation of “least commitment plans”, i.e. plans that are left
partially open by the planner so that the execution can be adapted to some variation in the
contingencies [11, 20, 9, 4, 19]. Others tackled the idea of transforming temporal plans with
no adaptability into flexible plans [7]. Finally, one can explicitly model the uncertainties in
the planning problem and construct a plan that offers formal guarantees with respect to
such a model. Examples include Conformant and Contingent Planning [12], Probabilistic
Planning [14] and Strong Temporal Planning with Uncertain Durations [5] that considers
temporal uncertainty in the durations of actions.

Recently, Robustness Envelopes (REs) have been proposed to overcome several limitations
of the approaches mentioned above. REs formally capture the possible contingencies that
a given temporal plan, obtained by planning in a deterministic domain, can deal with,
without having to re-plan [2]. REs are regions defined over a set of numeric parameters
that represent possible contingencies, and contain all the parameter valuations ensuring
plan validity. In general, REs may be non-convex, and can express dependencies between
the parameters. However, the technique proposed in [2] has two main drawbacks limiting
its practical applicability. First, the exact computation of REs is extremely expensive: the
proposed approach is doubly exponential in the size of the planning problem. Second, REs in
their general form are not suited for efficient execution: the dependencies among parameters
might require run-time reasoning.

In this paper, we overcome these limitations, achieving scalability and executability.
We focus on Decoupled Robustness Envelopes (DREs), i.e. hyper-rectangular REs where
the dependencies among parameters are not present, and are thus much easier to execute.
Our first contribution is a novel and scalable algorithm for computing DREs as sound
approximations of REs. A sound approximation ensures that every point within the DRE
belongs within the RE. The algorithm is anytime, and proceeds by incrementally under-
approximating the RE with increasingly large DREs. The algorithm can be stopped at
any time, providing a meaningful result already amenable to start execution. In its general
formulation, the RE for a given plan is naturally modeled as a quantified first order formula
in the theory of Linear Real Arithmetic. Our algorithm does not need to precisely compute
the quantifier-free description of the RE (which requires an expensive step of quantifier
elimination, and is ultimately responsible for the inefficiency demonstrated in [2]). Rather, it
starts from a degenerate DRE consisting of a single point, and progressively tries to enlarge
it along different dimensions, checking if each extension is contained in the RE, until a given
precision is reached. The algorithm relies on quantifier-free queries to a Satisfiability Modulo
Theory [1] solver.

Our second contribution is to demonstrate the practical use of DREs in a robotic executor,
extending the classical flow from planning to execution to re-planning, as follows. First,
a plan is generated from a deterministic model using temporal planning technologies, and
transformed into a Simple Temporal Network (STN) formulation [6]; at this point, we
parametrize the durations of some of the actions in the plan and/or the consumption rates
in the domain specification. DREs are then computed for the introduced parameters and
passed to the executor. In turn, the dispatching of the actions in the STN plan begins and
continues until one observed duration or consumption rate happens to be outside of the DRE.
At this point, the executor detects that the plan is no longer guaranteed to succeed, and
re-planning is triggered.



M. Cashmore, A. Cimatti, D. Magazzeni, A. Micheli, and P. Zehtabi 13:3

The proposed approach was implemented in the ROSPlan [3] framework, and experiment-
ally evaluated along two directions. The algorithm for DRE generation was compared against
the base line in [2], demonstrating orders-of-magnitude improvements compared to the exact
computation of REs, and the ability to deal with a much larger number of parameters. The
overall execution loop has been evaluated on a family of concrete case studies in a logistic
domain, showing that the use of DREs, compared to the optimistic executor in ROSPlan,
significantly reduces the number of re-plannings and improves the execution success-rate.

2 Background

We consider planning problems expressed in the PDDL 2.1 [8] temporal planning language;
for the sake of brevity we do not report the full syntax and semantics of such planning
problems, but we directly introduce the parametrized planning problem idea adapted from [2].

▶ Definition 1. A parametrized planning problem PΓ is a tuple ⟨Γ, P⟩, where Γ is a
finite set of real-valued parameters {γ1, · · · , γn} and P is a PDDL 2.1 planning problem in
which action conditions, action effects, goals and initial states can all contain parameters.

Intuitively, symbols (from a known set Γ) can be used in expressions where real-typed
constants are usually allowed.

As customary in many cases of plan execution, we use plans expressed as Simple Temporal
Networks (STN) [6]. An STN plan is a set of constraints of the form ti − tj ≤ k where ti and
tj are time points linked to action happenings (i.e. either the start or the end of an action
instance in the plan) and k ∈ Q. In addition, we allow parameters in the plan specification
by generalizing the notion of STN plans.

▶ Definition 2. A parametrized STN plan πΓ for a parametrized planning problem
PΓ

.= ⟨Γ, P⟩ is an STN Plan where some constraints are in the form ti − tj ≤ γi where ti

and tj are time-points of the STN plan and γi ∈ Γ.

We define the Robustness Envelope (RE) for a parametrized problem and plan as the set of
possible values for the parameters that make the plan valid when the symbols are substituted
with values in the plan and problem specifications. In order to compute the RE, [2] defines a
set of logical formulae that characterize the RE and use quantifier elimination techniques
(e.g. [18]) to explicitly construct the region. The encoding is divided in three expressions:
indicated as encπΓ

tn , encπΓ
eff and encπΓ

proofs. The formula encπΓ
tn encodes the temporal constraints

imposed by πΓ limiting the possible orderings of time points. The formula encπΓ
eff encodes

the effects of each time point on the state variables, while encπΓ
proofs encodes the validity

properties of the plan, namely that the conditions of each executed action are satisfied,
that the goal is reached, and that the ϵ-separation constraint [8] imposed by PDDL 2.1 is
respected. Then, let X̄ be the set of all the variables appearing in the formulae above except
the parameter values, the RE is characterized by all the models of the following formula.

∃X̄.(encπΓ
tn ∧ encπΓ

eff ) ∧ ∀X̄.((encπΓ
tn ∧ encπΓ

eff ) → encπΓ
proofs)

As observed in [2], any under-approximation of the RE gives sound information on
the contingencies in which the plan is guaranteed to be valid; in particular, a convenient
restriction for the representation and handling of REs is to associate a closed interval of
possible values to each parameter, defining an hyper-rectangle. If such hyper-rectangle is
contained in the RE, we have a “Decoupled Robustness Envelope” (DRE) that retains the
guarantees of the RE but avoids the complexity of inter-dependencies among parameters.

TIME 2021



13:4 Efficient Anytime Computation and Execution of DRE for Temporal Plans

PDDL 2.1
Planning
Problem

Planning and
Scheduling

ESTEREL
Transformer Parametrization

Parametrized
Planning
Problem

IRR STN Dispatcher
πtt πstn πΓ

πΓ

ρ

Re-Planning

Figure 1 Overview of the proposed flow.

▶ Definition 3. A Decoupled Robustness Envelope for a parametrized planning problem
PΓ and STN plan πΓ is a bound assignment ρ : Γ → Q>=0 ×Q>=0, such that any parameter
assignment v : Γ → Q>=0, with l ≤ v(γ) ≤ u and ⟨l, u⟩ .= ρ(γ), is contained in the RE for
PΓ and πΓ.

Note that many DREs are possible for a given problem and plan: it suffices that all the
assignments allowed by the DRE are points in the RE. In this paper, we elaborate on this
idea and propose an algorithm that incrementally builds DREs that are contained within
the unconstrained RE without paying the cost of explicitly computing the RE itself.

Finally, we highlight that given any two DREs ρ1 and ρ2 three cases are possible: either
ρ1 is subsumed by ρ2 (i.e. for each parameter γ, ρ1(γ) ⊆ ρ2(γ)), or ρ1 subsumes ρ2, or the
two DREs are incomparable. Hence, there is no absolute best DRE in general: we aim for a
DRE that is not subsumed by any other, but there can be multiple DREs with this property.

3 Execution Flow

The general idea we pursue in this paper is to exploit the information and the generalization
provided by the synthesis of REs to limit the number of re-plannings and increase the
success-rate in execution. In particular, we propose the flow from planning to execution
depicted in Figure 1. Starting from a planning problem formulation expressed in PDDL 2.1,
we use any off-the-shelf temporal planner1 to compute a timed sequence of actions that
reaches the goal from the initial state. We call this plan “time-triggered” (indicated with πtt)
in the picture. This plan is not natively amenable for execution because it defines one
specific trace that does not allow any adaptability: it is extremely unlikely for a real system
to be perfectly controlled to satisfy a specific trace. Hence, πtt needs to be converted in
a flexible, executable STN (πstn) by the ESTEREL transformer of ROSPlan. The usual
flow would pass this STN directly to the dispatcher for translating the plan actions into
commands for the robotic platform at the proper time. Instead, here we pre-process this

1 Several existing PDDL planners are unable to generate flexible STNs either because of an implementation
limitation or because the technique does not allow it (e.g. SAT-based planners). Our approach is able
to generate DREs from these planners as well, and work in concert with existing algorithms for the
execution of STNs.



M. Cashmore, A. Cimatti, D. Magazzeni, A. Micheli, and P. Zehtabi 13:5

plan using REs in the hope of generalizing its applicability and reducing the number of
re-plannings. In particular, the STN plan is passed to a parametrization component that
re-reads the planning problem formulation and enriches it with parameters, generating a
Parametric Planning Problem and a parametric STN plan (πΓ). Those are the inputs for the
computation of the RE. In our flow, for performance reasons and to avoid complex run-time
reasoning, instead of computing the exact, unconstrained RE, we use a novel algorithm,
called Incremental Rectangular-Robustification (IRR for short), that computes a DRE. The
algorithm is anytime, so that it is possible to retrieve unfinished computations and exploit
them in execution: in fact, any under-approximation of the final result retains the needed
properties of the RE. At this point, we pass the DRE (ρ) together with the parametrized
STN plan to the STN dispatcher. We modified the dispatching algorithm to exploit the
information in the DRE to limit the re-plannings to situations where they are needed. In
particular, the dispatcher translates the actions, while checking that the observed values
for the parameters (being either action durations, resources or rates) fall within the bounds
imposed by ρ. If this is not the case, re-planning is needed and the whole flow is re-executed.

Parametrization. The first non-standard step highlighted in Figure 1 is the parametrization.
In fact, there are multiple ways in which parameters can be added to a deterministic
temporal planning problem to characterize useful quantities for execution. In general, one
can parametrize any numeric quantity in the planning problem whose value might differ
from the environment in which the plan will be executed. In order to be useful for the STN
dispatcher, however, such quantities must be eventually observable (directly or indirectly).
Otherwise, it is impossible for the executor to check whether the RE is still satisfied or if
a re-planning is needed. In this paper experimentation, we focused on two such quantities,
namely the durations of actions and resource consumption rates. The former is a classical
source of uncertainty when temporal planning is employed in a robotics scenario, the latter
is another source of uncertainty that can perturbate the execution of a plan, for example
when the resource harvesting is not fully controllable (e.g. a solar panel yield depends on the
weather) or when the consumption is not fully predictable (e.g. the battery consumption is
very hard to precisely estimate as it depends on temperature, exact capacity and so on).

4 Incremental Rectangular-Robustification

We now present our novel algorithm for incrementally computing decoupled robustness
envelopes. We call this algorithm “Incremental Rectangular-Robustification” (IRR).

The idea behind the algorithm is to construct incrementally better hyper-rectangular
under-approximations of the RE for a given problem and plan. In fact, this constitutes a
direct way of computing a DRE by generate-and-test. The starting point is the de-generated
hyper-rectangle composed of the single point given by the parameter values of the original
plan. The algorithm tries to extend the hyper-rectangle along one dimension (i.e. it tries
to widen the interval of possibilities associated to one of the parameters) and checks if the
resulting hyper-rectangle is in fact an under-approximation of the RE. If it is, the new
hyper-rectangle is kept as it is guaranteed to be a valid DRE. Otherwise, another dimension
or another increment is chosen for the algorithm to proceed. The general intuition behind
the algorithm is depicted in Figure 2.

Algorithm 1 reports the pseudo-code of IRR. The formula encvalid is computed once and
off-line. It corresponds to the basic requirements for the hyper-rectangle to be a valid DRE:
only parameter values that are not contradicting the STN plan and the causal flow of effects

TIME 2021



13:6 Efficient Anytime Computation and Execution of DRE for Temporal Plans

γ1

γ2

•1 2
3

Figure 2 A graphical representation of IRR: starting from the parameter values from the original
plan (depicted as the black point), IRR tries to construct increasingly better under-approximations
(the colored rectangles) of the RE (the gray area), without actually computing it. Upon termination,
each edge of the resulting DRE is guaranteed to be at most β apart from the border of the actual
region.

are admissible. This is the same as the first piece of the logical formulation in [2], but luckily
it is the easier part of the quantification and can be efficiently computed. Then, the IRR
function is in charge of computing a hyper-rectangle R maintaining the following invariant:
at each step, R is a subset of the RE of the problem. The hyper-rectangle R is represented
as a pair of bounds (lower- and upper-) assigned to each parameter (this directly models a
DRE as per Definition 3), and is initialized (line 3) with the values of the non-parametric
plan π. The algorithm uses two functions to control how the hyper-rectangle is transformed
from one cycle to the next. ∆ associates to each parameter a number that is the value used
to increase the upper-bound or to decrease the lower-bound for that parameter. The initial
value for ∆ is the original value of the parameter scaled by a weight for such parameter, but
any positive number bigger than β is enough to guarantee soundness and termination of the
algorithm. Note that these weights can be used to express preferences on the parameters: a
higher weight pushes the algorithm to expand a specific parameter more than others. The
function Θ is used to decide in which direction the interval of a parameter can be extended.
Two directions are possible: UB indicates that we want to extend the upper-bound and LB
indicates that we want to decrease the lower-bound (line 10). Initially both directions are
possible, but when we discover (line 13) that one direction is infeasible with the current
∆, we remove this direction from the possibilities. This process will be continued with the
current ∆ values until expansion in all directions is infeasible. At this stage the value of
∆ is halved, eventually reaching a value lower than β. Each time that the values of ∆ are
updated, we reset Θ to allow expansion in both directions once again.

The main loop of the algorithm continues until all the values of ∆ are lower than β:
this is to guarantee that the minimum distance from each border of the hyper-rectangle
and the border of the actual RE is at most β. The algorithm picks a parameter γ̃ to be
analyzed among the parameters having at least one direction available in Θ and that have not
converged already (line 7); then, it generates a candidate hyper-rectangle R′ by extending
either the lower- or the upper- bound of γ̃. At this point, we check if R′ is contained in the
RE or not (line 12). If it is, we keep it and continue the loop, otherwise, we discard this
hyper-rectangle and we record that with the current ∆ we cannot extend γ̃ in this direction
by removing the direction θ from Θ(γ̃). Moreover, if no direction is left for γ̃, we halve its
value of ∆ and reset Θ so that γ̃ can be tentatively extended again using a smaller step (lines
15–16).



M. Cashmore, A. Cimatti, D. Magazzeni, A. Micheli, and P. Zehtabi 13:7

Algorithm 1 Incremental Rectangular-Robustification.

1: encvalid ← QuantifierElimination(∃X̄.encπΓ
tn ∧ encπΓ

eff )
2: function IRR(β : Q>0)
3: R← {γ → [π(γ), π(γ)] | γ ∈ Γ}
4: ∆← {γ → max(π(γ)× ωγ , β) | γ ∈ Γ}
5: Θ← {γ → {UB, LB} | γ ∈ Γ}
6: while ∃γ ∈ Γ.∆(γ) ≥ β do
7: γ̃ ← Pick({γ | γ ∈ Γ ∧Θ(γ) ̸= ∅ ∧∆(γ) ≥ β})
8: θ ← Pick(Θ(γ̃))
9: [l, u]← R(γ̃)

10: if θ = UB then u← (u + ∆(γ̃)) else l← (l −∆(γ̃))
11: R′ ← {γ → R(γ) | γ ∈ Γ ∧ γ ̸= γ̃} ∪ {γ̃ → [l, u]}
12: if CheckInEnvelope(R′) then R← R′

13: else
14: Θ(γ̃)← Θ(γ̃) \ θ

15: if Θ(γ̃) = ∅ then
16: ∆(γ̃)← ∆(γ̃)/2; Θ(γ̃)← {LB, UB}
17: return R

18: function CheckInEnvelope(R)
19: encR ←

∧
γ∈Γ,[l,u]=R(γ) l ≤ γ̄ ∧ γ̄ ≤ u

20: if IsSAT(encR ∧ ¬encvalid) then return false
21: else
22: return IsValid((encπΓ

tn ∧ encπΓ
eff ∧ encR)→ encπΓ

proofs)

The core part of the algorithm consists in checking a candidate hyper-rectangle for
containment in the actual RE, without explicitly computing the region itself. This is done
via the CheckInEnvelope function that performs two SMT checks corresponding to the
two quantifiers appearing in the RE logical formulation of [2]. The first check looks for points
belonging to R that are not parts of the validity region encvalid, the second checks if the
rectangle (together with the guarantees from the plan and the effects) implies the proof
requirements characterizing the REs. The important point here, is that both checks are
quantifier-free, i.e. no quantifier elimination is involved.

▶ Theorem 4. The CheckInEnvelope(R) function returns true if and only if R is a valid
DRE.

Proof. The algorithm logically checks the following formula: ¬(∃Γ̄.encR ∧ ¬encvalid) ∧
∀Γ̄, X̄.(encπΓ

tn ∧ encπΓ
eff ∧ encR) → encπΓ

proofs, that can be rewritten as ∀Γ̄.encR → (encvalid ∧
(∀X̄.(encπΓ

tn ∧ encπΓ
eff ) → encproofs)) that states that encR is a subset of the encoding of the

RE. Then, for Definition 3, R is the encoding of a valid DRE. ◀

An interesting feature of the algorithm is that it is “anytime”, i.e. at each time, we can
take the hyper-rectangle R and we have the guarantee that R is contained in the RE and is
thus a valid DRE. Moreover, the algorithm is guaranteed to terminate if the RE is finite in
all dimensions.

▶ Theorem 5. If the robustness envelope is bounded in all dimensions, IRR always terminates.

Proof. All the values in ∆ are initially positive and whenever the candidate rectangle is
found to exit the RE (line 13) one of the values in ∆ is halved. Eventually all the parameters
will be considered and they will be eventually found to exit the RE because it is bounded in
all dimensions. Therefore, all the values of ∆ will become smaller than β. ◀

TIME 2021



13:8 Efficient Anytime Computation and Execution of DRE for Temporal Plans

0 5 10 15 20 25 30
Instances Solved

10 1

100

101

102

103
So

lv
in

g 
Ti

m
e

IRR
CCMMZ
IRR First Widening

(a) AUV Domain.

0 5 10 15 20 25
Instances Solved

100

101

102

103

So
lv

in
g 

Ti
m

e

(b) Solar-Rover Domain.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Instances Solved

100

101

102

103

So
lv

in
g 

Ti
m

e

(c) Generator Linear Domain.

Figure 3 Scalability experiments on [Cashmore et al., 2019] domains: the number of solved
instances (sorted by difficulty for each solver) is considered on the X axis and is compared with the
logarithmic time needed to solve each instance (lower, longer lines are better).

We highlight that IRR is in fact an optimization procedure that incrementally maximizes
the size of a starting DRE, terminating when a maximal DRE is found within the given
precision limit β.

5 Experiments

We now present our empirical analysis that comprises three sets of experiments. The first
aims at showing the superior performance of IRR as compared with the logical approach
of [2]. The second shows a practical use-case of the execution flow proposed in this paper
when the duration of actions is uncertain. In the third experimentation we use our DRE
technique to execute plans when the consumption rates of resources is uncertain.

IRR. We start by considering the experimental dataset and the tool (hereafter called
CCMMZ) provided in [2]. The benchmarks use a varying number of parameters; in
particular, AUV ranges from 1 to 8 parameters, Generator Linear from 1 to 4 and Solar
Rover between 1 and 4. We compare our IRR implementation with CCMMZ on all the
available instances and domains, measuring the total run-time and using the “decoupled
envelope generation” functionality of the tool. Moreover, in order to take into account the
anytime nature of IRR, we also measure the time at which the rectangle R in IRR widens
and becomes different than a single point (i.e. we measure the first time the Algorithm 1
reaches line 17) and we call this timing “IRR First Widening”. In all our experiments we



M. Cashmore, A. Cimatti, D. Magazzeni, A. Micheli, and P. Zehtabi 13:9

2 4 6 8 10 12 14 16
Instances Solved

100

101

102

103

So
lv

in
g 

Ti
m

e

IRR
CCMMZ
IRR First Widening

Figure 4 Scalability experiments on the delivery domain: the number of solved instances (sorted
by difficulty for each solver) is considered on the X axis and is compared with the logarithmic time
needed to solve each instance (lower, longer lines are better).

set β = 1 and all ωi = 1 to find the decoupled region approximated to a single unit with no
preferences among the parameters (obviously, we set the same parameter preference also in
CCMMZ). We executed all of the instances on a Xeon E5-2620 2.10GHz machine setting a
time limit of 3600s and a RAM memory limit of 20GB.

Figure 3 shows the result of this analysis. IRR is able to solve many more instances than
CCMMZ and is consistently quicker. Moreover, we note how the first widening is often
encountered quite early in the execution, marking the margin for anytime exploitation of
IRR. In fact, after the first widening, IRR already computed a meaningful and non-trivial
under-approximation of the RE that can be used for execution. This is particularly evident
in the Generator Linear domain where the algorithm is unable to fully terminate in some
cases, but the first widening point is reached.

In addition to these domains, we also experiment with several instances of a service-robot
domain that we also use for the following execution experimental analysis. The domain,
called “Robot Delivery” is a simplified version2 of the domain used in the Planning and
Execution Competition for Logistics Robots in Simulation [16]. The domain comprises a fleet
of small robots that can navigate in an euclidean graph. These robots are tasked to pick and
deliver orders within a deadline. Collecting orders requires two robots present at a machine.
We scaled the number of parameters in the instances between 1 and 33. Figure 4 shows
the scalability of IRR and CCMMZ on this domain. These instances are much harder for
both the solvers compared to the previous domains; in fact, CCMMZ is only able to solve 3
instances, while IRR is able to solve 15 of them. Also in this case, the anytime nature of IRR
is evident by observing the difference from the first widening and the algorithm completion.

Finally, we investigate how quickly the IRR algorithm converges in our experiments. We
define convergence at step i in a run of IRR that terminates with hyper-rectangle Rend as
follows (Ri indicates the hyper-rectangle at step i).

Convergence(i) =
∑

[l,u]∈Ri
u − l∑

[l,u]∈Rend
u − l

× 100

2 A simplified RCLL domain was used because the PDDL provided in the RCLL image is not complete
and the RCLL simulation requires external processes, e.g. a referee box. We are interested in the flexible
execution success rate, so we created PDDL instances encoding logistics problems without any external
processes.

TIME 2021



13:10 Efficient Anytime Computation and Execution of DRE for Temporal Plans

0 50 100 150 200 250
Steps

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f C
on

ve
rg

en
ce

Maximum
Minimum
Hyper-Rectangle Instance

Figure 5 Convergence of IRR in terms of steps: each red dot is a DRR computed by IRR and
the plot shows the progression in terms of convergence at each step of the algorithm. The purple
line indicates the poorest convergence percentage for each step in any experiment; similarly the
black, dashed line shows the best convergence.

Table 1 Coverage and average number of re-plans in the duration-uncertain delivery domain.

Executor
1 Parameter 2 Parameters 3 Parameters 4 Parameters 5 Parameters

Coverage Avg Coverage Avg Coverage Avg Coverage Avg Coverage Avg
Replans Replans Replans Replans Replans

DREEx 92.2% 0.1 85.8% 0.2 83.2% 0.2 72.8% 0.1 63.0% 0.1
BlEx(0) 0.0% NA 0.0% NA 0.0% NA 0.0% NA 0.0% NA
BlEx(10) 24.5% 1.0 4.8% 1.0 0.8% 1.2 0.2% 0.8 0.0% NA
BlEx(20) 44.4% 0.8 19.9% 1.0 6.3% 1.0 2.4% 1.6 0.8% 1.9
BlEx(30) 58.9% 0.7 34.0% 0.9 18.8% 1.2 9.2% 1.2 4.5% 1.4
BlEx(40) 68.8% 0.6 52.2% 0.8 34.7% 1.0 23.8% 1.1 11.8% 1.5
BlEx(50) 75.0% 0.5 62.2% 0.7 49.0% 0.9 37.8% 1.1 27.9% 1.2
BlEx(60) 78.8% 0.4 69.0% 0.5 59.4% 0.7 53.4% 0.9 44.5% 1.1

Intuitively, this gives the percentage of the region covered by Ri with respect to Rend. (Note
that Rend contains Ri because the IRR algorithm only expands previous hyper-rectangles.)
Figure 5 shows, for all problems solved by IRR in our benchmark set, the percentage of
convergence achieved after any number of steps of the IRR algorithm. Clearly from the plot,
in a limited number of steps we often approximate very well the final intervals; in particular,
within 50 steps we already cover more than 70% of the final sum of the interval sizes in all
the cases.

Duration-Uncertain Flexible Execution. We use the Robot Delivery domain to investigate
the merits of an on-line plan executor equipped with our IRR algorithm. In particular, we
begin by focusing the analysis on the number of re-plans and on the plan execution success
rate when only the duration of actions is uncertain during execution. In this domain, a robot
has to collect a spindle from a shelf, construct a base by performing six steps (possibly in
parallel), then mount a number of rings, and finally deliver the order. Orders have deadlines
that must be met for delivery. The domain allows the agent to drop an order and restart from
scratch with a new one at any time, but this disposal action takes some time (10 seconds in
our case) and the robot needs to navigate on a symbolic euclidean graph to pick the parts,
assemble and deliver the order. Each instance is simulated in an environment where actions
have a non-deterministic duration described by a normal distribution with a minimum value.
Due to the difficulty in manipulation tasks, the actions executed for preparing the base
(in which the robots interact with machines) have the highest degree of variance. These



M. Cashmore, A. Cimatti, D. Magazzeni, A. Micheli, and P. Zehtabi 13:11

Algorithm 2 STN Dispatch.
1: function STNDispatch(πstn, ρ)
2: finished = false

3: while ¬finished do
4: for each node n ∈ πstn do
5: min, max← MinMaxDispatchTime(n, πstn, ρ)
6: if n is action start then
7: if (min ≤ n ≤ max) ∧ ¬started(n) then
8: StartExecuting(n)
9: else if (n ≥ max) ∧ ¬started(n) then

10: finished = true

11: else if n is action end then
12: if (n ≥ max) ∧ ¬Completed(n) then
13: finished = true

14: else if (n ≤ min)∧Completed(n) then
15: finished = true

16: return GoalsAchieved( )

actions have mean durations of 120, 130, 140, 150, 160 and 170 seconds, and a standard
deviation of 70. Due to this uncertainty and the presence of deadlines for the order delivery,
the execution of a plan can fail even when a re-planning schema is employed. We generated
a total of 100 problems by varying the deadlines for the orders.

Our DRE-based approach was implemented in ROSPlan, as described in Section 3. The
STN dispatcher starts the execution of actions following the temporal constraints of the
STN: the process is illustrated in Algorithm 2. For each node, the minimum and maximum
dispatch times are calculated during execution (line 5). The dispatch ends when an action
completes outside of the temporal constraints allowed by the STN, or has not been started
after the maximum allowed dispatch time. When the dispatch ends, it returns true if the
goals have been achieved; otherwise, re-planning is triggered as shown in Figure 1. The
system will continuously attempt to re-plan until the deadlines make the PDDL planning
problem unsolvable.

We compare the executor described in Section 3 (indicated as DREEx) against several
baselines in which we dispatch the STN plan πstn without parameterization. In such baselines,
the executor dispatches the STN plan allowing for a fixed deviation in the duration of actions
and ends dispatch only when the action duration falls outside of this interval. This is the
optimistic technique for execution implemented in ROSPlan that, differently from DREEx,
offers no formal guarantees. We consider baseline executors named BlEx(0) to BlEx(60)
allowing for 0% to 60% variability in action duration before triggering a re-plan. For example,
given an action with a predicted duration 100 seconds, BlEx(0) will re-plan if the duration is
not exactly 100; BlEx(20) will re-plan if the duration is outside of the interval [80, 120]. The
baseline BlEx(0) corresponds to formally executing the time-triggered plan πtt: re-planning
happens if any action duration differs from what was expected in πtt. We highlight that,
when DREEx is employed and the observation is within the envelope computed by IRR,
we have the formal guarantee of plan success; as soon as one observation is outside of the
envelope, we choose to re-plan.

The overarching idea in these experiments is that the planner usually optimistically
selects the easier, quicker goal and the agent starts to execute the plan. If the execution of
the preparation actions goes overlong, it might become impossible to deliver the order, so
the only way to successfully recover is to immediately dispose the current order and switch

TIME 2021



13:12 Efficient Anytime Computation and Execution of DRE for Temporal Plans

Table 2 Coverage and average number of re-plans in the resource-uncertain delivery domain.

Executor Coverage Avg Replans

DREEx 99.2% 0.1
BlEx(0) 1.0% 2.0
BlEx(10) 25.6% 0.1
BlEx(20) 50.7% 0.1
BlEx(30) 66.4% 0.1
BlEx(40) 77.9% 0.1
BlEx(50) 82.1% 0.1
BlEx(60) 86.8% 0.1

to another one with a less imminent deadline. If the executor fails in realizing this situation,
it continues to execute the plan until it tries to deliver the order, at which point it realizes
that the deadline is not met. Since a lot of time has been wasted in the preparation, it might
be impossible to recover from this situation. Ideally, we expect that the predictive power of
DREs allows the identification of situations where the deadline cannot be met and a swift
re-planning to change the objective order is needed.

Table 1 reports the results of the experiment. We report the coverage percentage (i.e.
the percentage of problems successfully executed over the benchmark set) as well as the
average number of re-plannings for successful runs. The baseline BlEx(0), not accounting
for any variance in action duration, was unable to solve any problem successfully. Allowing
for more flexibility in the duration of actions increases the coverage as should be expected.
However, the DREEx approach achieves greater coverage than all baselines in all the cases.
This is because in this problem, the ability to realize early that the agent is late for the first
order and change course of actions to achieve the second order is pivotal for achieving a good
success rate.

Resource-Uncertain Flexible Execution. Finally, we show that our flow can be used when
parameters are not just action durations. We expanded the delivery domain to consider the
battery consumption of the robots. In particular, each action in the revised domain checks
that enough battery is present upon start and consumes a fixed amount of battery. We
parametrized the consumption rate of actions, so that the DRE will compute the possible
consumption values for which a given plan is valid. The executor is then demanded to observe
the contingent consumption and possibly invoke a re-planning if the observation does not
fall in the DRE prescription. Also in this case, the baselines BlEx(X) invoke the replanning
when the battery consumption is observed to be X% higher or lower than the nominal value.

Table 2 reports the results of the experiment, and shows how the use of DREEx
is beneficial for the success-rate achieving an almost perfect success-rate with very few
replannings on average.

6 Conclusion

In this paper, we make the case for the use of Robustness Envelopes (RE) in a plan execution
framework. We present a novel, anytime algorithm to compute Decoupled Robustness
Envelopes (DRE) that is empirically superior to the previously known logic-based construction.
Moreover, we demonstrate the usefulness of the produced artifacts by integrating them in the
ROSPlan framework and showing on a concrete example the positive impact on the number
of re-plannings and the plan success-rate.



M. Cashmore, A. Cimatti, D. Magazzeni, A. Micheli, and P. Zehtabi 13:13

In the future, we will consider other kinds of approximations for the robustness envelope
(e.g. hyper-octagons instead of hyper-rectangles). We will also explore the link to temporal
uncontrollability and non-deterministic planning. Finally, using Incremental Rectangular-
Robustification (IRR) in parallel with the dispatcher could allow variation in parameters
being considered during execution.

References
1 C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories. In Handbook

of Satisfiability, pages 825–885. IOS Press, 2009.
2 M. Cashmore, A. Cimatti, D. Magazzeni, A. Micheli, and P.a Zehtabi. Robustness envelopes

for temporal plans. In AAAI, 2019.
3 M. Cashmore, M. Fox, D.Long, D. Magazzeni, B. Ridder, A. Carrera, N. Palomeras, N. Hurtós,

and M. Carreras. Rosplan: Planning in the robot operating system. In Proceedings of the
Twenty-Fifth International Conference on Automated Planning and Scheduling, ICAPS 2015,
Jerusalem, Israel, June 7-11, 2015., pages 333–341, 2015.

4 A. Cesta, G. Cortellessa, S. Fratini, A. Oddi, and R. Rasconi. The APSI Framework: a Planning
and Scheduling Software Development Environment. In ICAPS (Application Showcase), 2009.

5 A. Cimatti, M. Do, A. Micheli, M. Roveri, and D. Smith. Strong temporal planning with
uncontrollable durations. Artif. Intell., 256:1–34, 2018. doi:10.1016/j.artint.2017.11.006.

6 R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence,
49(1-3):61–95, 1991. doi:10.1016/0004-3702(91)90006-6.

7 M. Do and S. Kambhampati. Improving temporal flexibility of position constrained metric
temporal plans. In ICAPS, pages 42–51, 2003.

8 M. Fox and D. Long. PDDL2.1: An Extension to PDDL for Expressing Temporal Planning
Domains. Journal of Artificial Intelligence Research, 20:61–124, 2003. doi:10.1613/jair.
1129.

9 J. Frank and A. Jónsson. Constraint-based Attribute and Interval Planning. Constraints,
8(4):339–364, 2003.

10 J. Frank and P. Morris. Bounding the resource availability of activities with linear resource
impact. In ICAPS, pages 136–143, 2007.

11 M. Ghallab and H. Laruelle. Representation and control in IxTeT, a temporal planner. In
AIPS, pages 61–67, 1994.

12 M. Ghallab, D. Nau, and P. Traverso. Automated planning - theory and practice. Elsevier,
2004.

13 Félix Ingrand and Malik Ghallab. Deliberation for autonomous robots: A survey. Artificial
Intelligence, 247:10–44, 2017.

14 Mausam and A. Kolobov. Planning with markov decision processes: An ai perspective.
Synthesis Lectures on Artificial Intelligence and Machine Learning, 6(1):1–210, 2012. doi:
10.2200/S00426ED1V01Y201206AIM017.

15 N. Muscettola. Computing the envelope for stepwise-constant resource allocations. In CP,
pages 139–154, 2002.

16 T. Niemueller, G. Lakemeyer, and A. Ferrein. The robocup logistics league as a benchmark
for planning in robotics. Planning and Robotics (PlanRob-15), page 63, 2015.

17 N. Policella, S. Smith, A. Cesta, and A. Oddi. Generating robust schedules through temporal
flexibility. In ICAPS, pages 209–218, 2004.

18 A. Schrijver. Theory of Linear and Integer Programming. J. Wiley & Sons, 1998.
19 A. Umbrico, A. Cesta, M. Cialdea Mayer, and A. Orlandini. Integrating resource management

and timeline-based planning. In ICAPS, pages 264–272, 2018.
20 B. Williams and V. Gupta. Unifying model-based and reactive programming within a model-

based executive. In Workshop on Principles of Diagnosis, 1999.

TIME 2021

https://doi.org/10.1016/j.artint.2017.11.006
https://doi.org/10.1016/0004-3702(91)90006-6
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
https://doi.org/10.2200/S00426ED1V01Y201206AIM017
https://doi.org/10.2200/S00426ED1V01Y201206AIM017


13:14 Efficient Anytime Computation and Execution of DRE for Temporal Plans

A Planning Semantics

In this section we reproduce the additional syntax and semantics of planning problems
presented in [2], which provide additional background on definitions 1 and 2. For a more
complete description linking these concepts we refer the reader to the source. We start by
defining our planning language: we adopt the full PDDL 2.1 [8] with continuous change.
▶ Definition 6. A planning problem P is a tuple ⟨P, V, A, I, G⟩, where P is a set of
propositions; V is a set of real variables, called fluents; A is a set of durative and instantaneous
actions; I : P ∪V → {⊤, ⊥}∪R is the total function describing the initial state of the predicates
and the fluents. G : P ∪ V → {⊤, ⊥} ∪ R is a (possibly partial) function indicating the goal
condition. A durative action a is a tuple ⟨prea, eff a, dura⟩, where prea is a set of conditions
for the actions partitioned in three subsets pre⊢a, pre↔a and pre⊣a of at-start, over-all and
at-end conditions; eff a is the set of action effects, partitioned in seven sets: eff +

⊢a (positive
starting effects), eff −

⊢a (negative starting effects), eff num
⊢a (numeric starting effects), eff +

⊣a

(positive ending effects), eff −
⊣a (negative ending effects), eff num

⊣a (numeric ending effects)
and eff num

↔a (continuous numeric effects); and dura is a set of duration constraints. An
instantaneous action a is a tuple ⟨prea, eff a⟩, where prea is a set of pre-conditions and eff a

is the set of action effects, partitioned in eff +
a (positive effects), eff −

a (negative effects) and
eff num

a (numeric effects).

In the usual PDDL 2.1 setting, a plan is defined as a set of actions associated with a starting
time and a duration. We define this kind of plans as time-triggered plans.
▶ Definition 7. A time-triggered plan π for a planning problem P .= ⟨P, V, A, I, G⟩ is a
set of tuples ⟨t, a, d⟩, with t ∈ R≥0, a ∈ A and d ∈ R>0 iff a is a durative action.

For the sake of brevity, we omit the formal definition of validity for such a plan, which can
be found in [8]. Here, it suffices to remind oneself that a plan is valid if by simulating the
system controlled by the plan, all the prescribed actions are applicable (all their conditions
are satisfied at the time the action is executed) and the goal is reached after the last action
terminates.

We define an STN plan as a constraint network of time points indicating the starting or
the ending of actions. Note that the STN plan contains all the information of, and is strictly
more general than a time-triggered plan. Moreover, that it is not necessary to first find a
time-triggered plan in order to generate an STN plan.
▶ Definition 8. An STN plan π for P .= ⟨P, V, A, I, G⟩ is a tuple ⟨T, C⟩, where T is the set
of time points {z} ∪ {ts

da, te
da | da is a durative action instance} ∪ {ta | a is an instantaneous

action instance} and C is a set of constraints in the form ti − tj ≤ b with ti, tj ∈ T , and
b ∈ R.

Finally, we can define the validity of an STN plan by considering the set of all possible
time-triggered plans that are compatible with the STN specification. If all such plans are
valid, we say that the STN plan is valid.
▶ Definition 9. Given an STN plan π

.= ⟨T, C⟩ and an assignment µ : T → R s.t.
µ(z) = 0, the induced time-triggered plan by µ is the time-triggered plan tt(µ) .=
{⟨µ(ts

da), da, µ(te
da)−µ(ts

da)⟩ | da is a durative action}∪{⟨µ(ta), a, 0⟩ | a is an instantaneous
action}.

▶ Definition 10. An STN plan π
.= ⟨T, C⟩ for P is valid if for each assignment µ : T → R

s.t. µ(z) = 0 and for all ti − tj ≤ b ∈ C µ(ti) − µ(tj) ≤ b, the time-triggered plan tt(µ) is
valid for P.


	1 Introduction
	2 Background
	3 Execution Flow
	4 Incremental Rectangular-Robustification
	5 Experiments
	6 Conclusion
	A Planning Semantics

