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Abstract
In a period-timestamped, relational temporal database, each tuple is timestamped with a period.
The timestamp records when the tuple is “alive” in some temporal dimension. Sequenced semantics
is a special semantics for evaluating a query in a temporal database. The semantics stipulates that
the query must, in effect, be evaluated simultaneously in each time instant using the tuples alive
at that instant. Previous research has proposed changes to the query evaluation engine to support
sequenced semantics. In this paper we show how to achieve sequenced semantics without modifying
a query evaluation engine. Our technique has two pillars. First we use log-segmented timestamps to
record a tuple’s lifetime. A log-segmented timestamp divides the time-line into segments of known
length. Any temporal period can be represented by a small number of such segments. Second, by
taking advantage of the properties of log-segmented timestamps, we translate a sequenced relational
algebra query to a non-temporal relational algebra query, using the operations already present in
an unmodified, non-temporal query evaluation engine. The primary contribution of this paper is
how to implement sequenced semantics using log-segmented timestamped tuples in a generic DBMS,
which, to the best of our knowledge, has not been previously shown.
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1 Introduction

A tuple-timestamped, temporal relational database is a relational database in which each
tuple is annotated with a period timestamp, that is, a period of time from some start time
to some end time. The timestamp is metadata about the tuple; it records when the data was
“live” in some temporal dimension.

Temporal relational database management systems (TDMBSs) provide special handling
for time metadata in queries. For instance, the timeslice operation retrieves the data that
is alive at a specified time. TDBMSs typically support a wide range of temporal query
operations but the most important is arguably sequenced semantics [2]. Informally, sequenced
semantics states that the meaning of a sequenced query is that it is equivalent to the (non-
temporal) query applied to every snapshot of the data, effectively sequenced semantics is akin
to running the query simultaneously in every snapshot in the data’s history. We previously
showed that sequenced semantics sequenced semantics can be leveraged to support other
kinds of semantics [11], e.g., nonsequenced semantics [3].
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14:2 Sequenced Queries with Log-Segmented Timestamps

SELECT dept
FROM storesGoldCoast
WHERE dept NOT IN (SELECT dept FROM storesRobina)

Figure 1 Query to compute the difference between two tables.

Data Metadata Data Metadata
Dept Time Dept Time
Shoe [1,11] Shoe [2,3]

Shoe [5,6]

(a) Relation storesGoldCoast (b) Relation storesRobina

Data Metadata
Dept Time
Shoe [1,1]
Shoe [4,4]
Shoe [7,11]

(c) Result of sequenced evaluation of query in Figure 1.

Figure 2 Example relations.

The history of data can span many instants so it is infeasible to actually run a query
on each and every snapshot. To support sequenced semantics a TDBMS must evaluate
a sequenced query in some other way. Generally sequenced semantics is implemented by
modifying the query evaluation engine c.f., [7]. Previously it was thought not possible to
perform sequenced queries on an unaltered relational database management system (RDBMS),
e.g., using an unaltered installation of MySQL or Postgres.

To illustrate what makes sequenced query evaluation challenging, consider the SQL query
given in Figure 1 which computes the difference between the dept attribute in two relations,
storesGoldCoast and storesRobina shown in Figure 2. The query evaluates when there
were departments in a storesGoldCoast relation and no departments with the same name
in the storesRobina relation (Robina is a small area within the Gold Coast in Australia).
The result of the sequenced evaluation of the query is shown in Figure 2(c). What makes the
computation complicated is that no single pairing of tuples from the relations computes each
tuple in the result, i.e., it cannot be produced by a Cartesian product of the two relations.
For instance, we can only figure out the timestamp of the second tuple in the result [4,4] by
determining that [2,3] and [5,6] leaves a gap of [4,4] within [1,11] and that there is no
other tuple in storesRobina that overlaps [4,4]. When moving to the extended relational
algebra or SQL, (sequenced) temporal grouping and aggregation, and some subqueries, e.g.,
NOT IN subqueries, are similarly problematic.

In this paper we show how it is possible to translate a sequenced query into a non-temporal
query. The translation uses a kind of timestamp that we describe in Section 3. We focus on
relational algebra as an example of a complete query language that is widely-known, easy
to describe, has a procedural semantics, and provides the basic operations to implement
an SQL query evaluation engine. We give a translation of sequenced relational algebra to
non-temporal relational algebra in Section 4.
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2 Related Work

This paper extends previous research in the area of temporal query languages, There are many
temporal extensions of query languages, c.f., [4, 8, 13,16,17]. These extensions are designed
to add to, rather than change or modify, the prior syntax and semantics of a language. The
extensions have been broadly characterized in various ways. Sequenced vs. nonsequenced
distinguishes extensions, in part, by whether the time metadata is manipulated implicitly or
explicitly. Temporal languages have also been characterized as abstract vs. concrete based
on whether their syntax and semantics depends on a specific representation of the time
metadata [5].

Two implementation approaches are common for SQL-like temporal query languages. A
stratum-approach adds a source-to-source translation layer to translate a query in a temporal
extension into an equivalent query in the original, non-extended language [19, 20]. Some
constructs prove not possible to translate using period timestamps, e.g., sequenced outer join,
so the only feasible approach is to extend the DBMS itself [7]. In general, sequenced semantics
cannot be directly supported in standard SQL because some of the needed operations are not
part of SQL, hence the second strategy extends the DBMS to support additional operations for
sequenced semantics. A related approach is to translate to a non-standard variant of SQL [10].
To the best of our knowledge this is the first paper to implement sequenced semantics by
translating to standard relational algebra. The translation supports implementation in
garden-variety, unaltered relational DBMSs, e.g., MariaDB, Postgres, etc.

Finally, hierarchical partitioning of intervals into smaller segments, similar to log segments,
for the purposes of indexing has been explored recently [6]. Our research [9] predates this
effort and supports indexing by B-tree indexes.

3 Log-segmented Timestamps

Most temporal database research and implementation uses period timestamps to annotate
data with temporal metadata [15]. Period timestamping appends a timestamp to each data
item to represent its lifetime. Research has also explored coalesced period timestamping
in which value-equivalent tuples must have maximally disjoint periods [1]. Another way
to represent a coalesced timestamp is with a temporal element, which is a set of disjoint
periods [14]. Since a temporal element is a set, it can only be directly stored in a non-1NF
data model. A variation of tuple-timestamped models is attribute timestamping where
timestamps are appended to each attribute in a tuple rather than to the entire tuple [18].

Period timestamps are a poor fit for architectures which need to partition large data sets
into smaller shards to process, e.g., mapreduce architectures. Consider, for instance a join
operation. Hash-join is usually a good strategy for mapreduce. The mapreduce hash-join
maps data items that have the same join values to a common shard, and then joins the items
in the shard. The strategy is efficient since it ensures that only data items that actually will
join are put into a shard. A sequenced (temporal) join adds a further condition that two
data items join only on the times at which they are both alive. For period timestamps this
is computed as the temporal intersection of the timestamps. If the intersection is empty, the
items do not join since they do not coexist at any point in time. The problem is that periods
cannot be directly mapped to shards in a way that ensures that the items within a shard
temporally intersect. Consider the periods [1,2], [8,9], and [0,10]. [1,2] and [8,9]
should be placed in different shards since they do not intersect, and hence, never represent
data that coexists. But [0,10] intersects both, it has to be placed into both. Since a period
of size n has n2 sub-periods that could intersect, every period potentially needs to belong to
many shards.

TIME 2021
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0 1

0 1

0 1

0 1

0 1 0 1 0 1

0 10 1 0 1 0 10 1 0 1 0 1 0 1

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3 Log segments on a time-line.

Table 1 Some example labels for the time-line 0. . .15.

Label Period tx ty

1 0 – 15 0 15 = 0 + (24 − 1)
10 0 – 7 0 = 0 ∗ 24 8 = 0 + (23 − 1)

110 8 – 11 8 = 1 ∗ 23 11 = 8 + (22 − 1)
1101 10 – 11 10 = 1 ∗ 23 + 1 ∗ 21 11 = 10 + (21 − 1)

10011 3 – 3 3 = 1 ∗ 21 + 1 ∗ 20 3 = 3 + (20 − 1)

To address this challenge we developed a log-segmented timestamp [9]. The timestamp
uses a labelling scheme for pre-determined periods on a time-line. A label is a binary number
that has the following meaning.

▶ Definition 1 (Log-segment Label). Let a (discrete) time-line consist of the times t0, . . . , tn,
where n = 2k − 1. Note that n can be represented using a binary number of length k with
each digit set to 1. A label is a binary number, b0. . .bj , and b0 is always 1. The label 1b1. . .bj ,
j ≤ k, represents the time period tx to ty where tx = b12k−1 + b22k−2 + . . . bj2k−j and
ty = tx + (2k−j − 1).

The log segments for a time-line from 0 to 15 are depicted in Figure 3. The chronons in
the time-line are numbered at the bottom of the figure. Each gray rectangle in the figure is
a segment. A label for a segment is the concatenation of 1’s and 0’s along the path from the
root to a segment. Some example labels are shown in Table 1. Note that only 2n − 1 of the
n2 possible periods in the timeline are labelled.

A log-segmented timestamp is the minimal set of segments that spans a given period.
For example, the log-segmented timestamp representing the period [3,11] is {10011, 101,
110} (naming the periods {[3,3], [4,7], [8,11]}, respectively). The log-segmented
timestamps for the times in the relations in Figure 2 a) and b) is graphically depicted in
Figure 5. Figure 4 shows the log-segmented tuples for the relations in Figure 2.

Log-segmented timestamps have the following properties.
Comprehensive – A time-line of size n has at most 2n − 1 labels. Each label will have
a maximum length of 1 + ⌈log2(n)⌉ bits. So a label of 64 bits (the size of a long long
scalar in C++) can represent a time-line of 263 − 1 time values, which encompasses a
time-line longer than current estimates of the lifetime of the universe to the granularity
of microseconds [12].
Compact – The maximum number of segments in a log-segmented timestamp for a period,
[tx,ty], is ⌈log2((1 + ty) − tx)⌉. So assuming 64 bit labels, a log-segmented timestamp
has at most 64 labels.
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Data Metadata Data Metadata
Dept Time Dept Time
Shoe 10001 Shoe 1001
Shoe 1001 Shoe 10101
Shoe 101 Shoe 10110
Shoe 110

(a) Relation storesGoldCoast (b) Relation storesRobina

Figure 4 Example log-segmented relations.

0 1

0 1

0 1

0 1

0 1 0 1 0 1

0 10 1 0 1 0 10 1 0 1 0 1 0 1

1-11

2-3

1

Times

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5-6

Figure 5 Log segments for the times in the relations in Figure 2 a) and b).

Efficient for temporal predicates – Predicates in Allen’s algebra can be quickly computed.
For example for overlaps, given two labels, L1 and L2,

overlaps(L1, L2) =


L1 if L2 is a prefix of L1
L2 if L1 is a prefix of L2
nothing otherwise

Groups – In temporal aggregation a membership-constant period is a period of time when
some data items, and only, those data items, belong to a group. In a log-segmented
timestamp, a label and all prefixes/suffixes of it describe a membership-constant period.
So, assuming a timestamp of length 4 the membership-constant period 1001 includes
data timestamped with any prefix. Said differently, if we want to compute an aggregate
for the period 1001, we use the data timestamped with 1001, 100, 10, and 1. So for a
time-line of size n there are ⌈log2(n)⌉ segments for a membership-constant period.

4 Relational Algebra

In this section we describe a complete set of relational algebra operators for sequenced
semantics with log-segmented timestamps. The algebra is defined in terms of non-temporal
relational algebraic operators.

4.1 Sequenced Projection
Log-segmented, sequenced projection, πT , for some set of attributes A on relation r is defined
as follows.

πT
Ā

(r) = Φ(πĀ,r.T (r))

Φ is the sequenced duplicate elimination operator, which is needed because projection in
relational algebra produces a set of tuples, unlike SQL where the underlying model is a bag of
tuples. Sequenced duplicate elimination is simple to define for log-segments since for any pair

TIME 2021
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Data Metadata
Name Dept Time

Joe Shoe 10
Fred Shoe 1001

Jennifer Shoe 101

Figure 6 Example Employee relation.

Data Metadata
Dept Floor Time

Shoe 2 10
Shoe 2 111
Photo 1 101

Figure 7 Example Departments relation.

of value-equivalent tuples, t and v, if t’s timestamp is temporally during v’s timestamp, then
t can be removed because it is a duplicate. The sequenced duplicate elimination operator
is defined below, where ρ is the relation renaming operator (to give a copy of a relation
a unique name), D(t1, t2) is the timestamp during predicate, r.T (s.T ) is the timestamp
for a tuple in relation r (s), r.V (s.V ) is the list of non-temporal attributes in r (s), and
▷◁r.V =s.V is a value-equivalent equi-join, i.e., the timestamps are ignored in the join, only
the non-temporal values are used.

Φ(r) = r − πr.V,r.T (σD(r.T,s.T )(r ▷◁r.V =s.V ρs(r)))

As an example, consider the relation shown in Figure 6 and the query

πT
Dept(Employees).

First we project the Dept attribute, as well as the timestamp metadata yielding a relation
with three tuples as shown in Figure 9. Next we eliminate sequenced duplicates, yielding
the result in Figure 8. The sequenced duplicate elimination removes the second and third
tuples because they are during the first tuple’s timestamp and are value-equivalent to the
first tuple.

4.2 Sequenced Selection (Restriction)
The next operation is log-segmented, sequenced selection, where P is a predicate for deciding
if a tuple is in the result relation.

σT
P (r) = σP (r)

Sequenced selection is straightforward it is the same as non-temporal selection; duplicate
elimination is not needed since the relation being selected does not contain duplicates, hence
the result of a selection cannot have duplicates.

4.3 Sequenced Cartesian Product
Sequenced Cartesian product similarly cannot produce duplicates, but result tuples only
exist at the time given by the intersection of two tuples. In the definition, O(r.T, s.T ) is the
overlaps temporal predicate, I(r.T, s.T ) is the temporal intersection constructor, and r.V

(s.V ) is the list of non-temporal attributes in tuple r (s). Note that the projection operator
in the definition is a generalized projection since it constructs a timestamp value not present
in the operand relations.

r ×T s = πr.V,s.V,I(r.T,s.T )(σO(r.T,s.T )(r × s))

As an example if we take the Cartesian product of the relation in Figure 6 with itself, we
end up with the relation in Figure 10.
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Data Metadata
Dept Time
Shoe 10

Figure 8 After sequenced duplicate
are eliminated.

Data Metadata
Dept Time
Shoe 10
Shoe 1001
Shoe 101

Figure 9 The (non-temporal) projection of the
Dept attribute, need to eliminate sequenced du-
plicates.

Data Metadata
Name Dept Name Dept Time

Joe Shoe Joe Shoe 10
Fred Shoe Joe Shoe 1001

Jennifer Shoe Joe Shoe 101
Joe Shoe Fred Shoe 1001
Fred Shoe Fred Shoe 1001
Joe Shoe Jennifer Shoe 101

Jennifer Shoe Jennifer Shoe 101

Figure 10 Example sequenced Cartesian Produce of the Employee relation with itself.

4.4 Sequenced Union
Log-segmented, sequenced union adds duplicate elimination to the result of a non-temporal
union.

r ∪T s = Φ(r ∪ s)

As an example, consider the union of the Departments relation shown in Figure 7 with the
Employees relation in Figure 6 (or rather the projection of each on the Dept attribute) as
follows.

πT
Dept(Departments) ∪T πT

Dept(Employees)

The projection of the Employees relation is in Figure 8 and the projection of the Departments
relation is shown in Figure 11. The result of the union is shown in Figure 12.

4.5 Sequenced Intersection
Sequenced intersection can be expressed using sequenced Cartesian product, selection, and
sequenced projection.

Data Metadata
Dept Time

Shoe 10
Shoe 111
Photo 101

Figure 11 Sequenced projection of the
Departments relation.

Data Metadata
Dept Time

Shoe 10
Shoe 111
Photo 101

Figure 12 Example of a union operation.

TIME 2021
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r ∩T s = πT
r.V (σr.V =s.V )(r ×T s))

Intersection can be computed by first taking the sequenced Cartesian product. From this, for
all tuples that have value-equivalent pairs in the underlying relation, it takes the sequenced
projection of r’s attributes. As an example, consider the intersection of the Employee relation
with itself. First we take the Cartesian product as shown in Figure 10. Next the selection
restricts the result to the first, fifth, and seventh tuples since these tuples have the same
departments and employee names. Finally the sequenced projection produces the result
shown in Figure 6.

4.6 Sequenced Difference
The problem of sequenced, relational difference was described in Section 1. Log-segmented,
sequenced relational difference is somewhat complicated. The operation is defined below
assuming C(t1, t2) is the temporal contains predicate, O(t1, t2) is the temporal overlaps
predicate, and E(t1, t2) is the temporal equals predicate.

r −T s = Φ(rc ∪ (rd − (rd ⋉r.V =s.V ∧ (C(rd.T,s.T ) ∨ E(rd.T,s.T )) s)))
where

rc = r − (r ⋉r.V =s.V ∧ O(r.T,s.T ) s),
rd = πr.V,P.T3((r ▷◁r.V =s.V ∧ C(s.T,r.T ) s) ⋊⋉r.T =P.T1∧s.T =P.T2 P)), and
P(T1, T2, T3) is the pre-computed log-segmented difference relation.

First, rc, is the set of tuples that have no value-equivalent match in s or if they have a
value-equivalent match do not overlap in time with any tuple in s. Second, rd is the tuples in
r that have a value-equivalent match in s and a lifetime that is during (excluding equals) the
lifetime of the tuple in s, which we will call the during tuples. The challenge in computing
the during tuples is determining potentially when they exist since the time is usually not the
time of either the tuple in r or in s, which is why relation P is needed. P is the log-segmented
difference relation. It computes the log-segments, attribute T3, in the difference between a
pair of times T1 and T2 and is defined as follows, assuming S is the domain of log segments,
C(t1, t2) is the temporal contains predicate, and O(t1, t2) is the temporal overlaps predicate.

P(T1, T2, T3) = Φ({(t1, t2, t3) | t1, t2, t3 ∈ S ∧ C(t1, t3) ∧ C(t1, t2) ∧ ¬O(t2, t3)})

Figure 13 shows some of the tuples in P. For instance, the difference between 10 and 10001
yields the log-segments in the set (in different tuples) {101, 1001, 10000}. Observe that in
Figure 3 these log segments are a set of log segments that together with 10001 span 10, and
are coalesced, i.e., no log segment in the set is contained within some log segment, x, such
that x is not in the set and x is contained by 10.

As an example suppose that we take the difference between the Employees relation in
Figure 6 and the relation in Figure 14. The result is shown in Figure 16. First Fred is in
the result unchanged from the Employee relation since the time in his tuple, 1001, does not
overlap time 11. That is, Fred’s tuple is in rc. Second, Jennifer is not in the result since
her tuple’s time, 101, is contained within the time of her tuple in the difference relation, 10.
Jennifer’s tuple is not in rd (or rc). Finally, consider Joe. His tuple has a value-equivalent
match that has a lifetime, 10, which contains his lifetimes in s, 10001 and 101. 10 - 10001
is {101,1001,10000} while 10 - 101 yields {100}. So rd is the relation shown in Figure 15.
From this relation we remove any tuple that is value-equivalent and contains or is equal to
a time in the difference relation (Figure 14. The first (101 is equal to 101), third (1001 is
equal to 1001), and fourth tuples (100 is equal to 100) are removed yielding only the third
tuple to be added to the final result.
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T1 T2 T3

. . .

10 101 100
10 1001 101
10 1001 1000
10 10001 101
10 10001 1001
10 10001 10000

. . .

Figure 13 Some tuples in P.

Data Metadata
Name Dept Time

Joe Shoe 10000
Fred Shoe 11

Jennifer Shoe 10

Figure 14 Employee difference relation.

Data Metadata
Name Dept Time

Joe Shoe 101
Joe Shoe 1001
Joe Shoe 10000
Joe Shoe 100

Figure 15 The during tuples in computing
the difference.

Data Metadata
Name Dept Time

Joe Shoe 10001
Fred Shoe 1001

Figure 16 Result of the sequenced difference
of Figure 6 and Figure 14.

4.7 Sequenced Grouping and Aggregation
Sequenced grouping and aggregation is also possible with log segments, though the process
is somewhat complicated. We first give an informal example of sequenced aggregation and
group by, and then a formal definition.

Assume that we want to count the number of Employees per Department over time, i.e.,
a sequenced aggregation and grouping. Furthermore, assume that our relation has four
tuples for the Clothing department timestamped with log-segments 1010, 1010, 101, and 1
as shown in Figure 17.

Step 1: Determine log segment fragments Long-lived tuples potentially span many tem-
poral groups. For instance, in the relation in Figure 17, Freya’s tuple contains the lifetime
of all the other tuples in the relation so should belong to each group, but also to groups
not in the lifetimes of those tuples, e.g., Freya is present at time 11 while none of the other
tuples are (they are all within 10). So the goal of this step is to split the timestamps to
determine coverage with respect to the other timestamps in the relation. We use temporal
difference to split the lifetimes, that is for any lifetime that is contained in another, we
take the difference. For instance, in our running example, (Susan, Clothing, 1010)

Data Metadata
Name Dept Time

Susan Clothing 1010
Pedro Clothing 1010
Malik Clothing 101
Freya Clothing 1

Figure 17 Example relation for grouping.

Data Metadata
Name Dept Time

Malik Clothing 1011
Freya Clothing 1011
Freya Clothing 11
Freya Clothing 100

Figure 18 Fragments of lifetimes.

TIME 2021
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Data Metadata
Name Dept Time

Freya Clothing 1010
Malik Clothing 1010
Freya Clothing 101

Figure 19 Long-lived tuple are potential
group members.

Data Metadata
Count Name Dept Time

4 Susan Clothing 1010
4 Pedro Clothing 1010
4 Freya Clothing 1010
4 Malik Clothing 1010
2 Malik Clothing 1011
2 Freya Clothing 1011
1 Freya Clothing 100
2 Malik Clothing 101
2 Freya Clothing 101
1 Freya Clothing 11
1 Freya Clothing 1

Figure 20 Union of the original relation, Fig-
ure 18 and Figure 19 with the aggregate computed.

lifetime is contained in that of (Malik, Clothing, 101) so we take the difference of
101 and 1010 to get 1011 and so generate the tuple (Malik, Clothing, 1011). We also
do the other pairs, 1 - 101 yielding (Freya, Clothing, 11) and (Freya, Clothing,
100), and the pair 1 - 1010 yielding (Freya, Clothing, 1011) and (Freya, Clothing,
11). The result relation is shown in Figure 18.

Step 2: Add long-lived tuples to contained lifetime groups This step add long-lived
tuples to the groups that have lifetimes that are contained within the lifetimes of the
long-lived tuple. For instance, in the relation in Figure 17, Freya’s tuple contains the
lifetime of all the other tuples in the relation so should belong to each group, e.g., Freya
is present at time 101 and 1010. The resulting relation is shown in Figure 19.

Step 3: Gather potential group members Form the union of the results of the original
relation, Step 1, and Step 2. The result relation is shown in Figure 20 (the relation
depicted has the computed aggregates as well, but those will be added in the next step).

Step 4: Group and aggregate Group and aggregate the result of Step 3, pre-pending the
aggregate value (computed for the group) to each tuple. The result relation is shown in
Figure 20.

Step 5: Remove containing lifetimes Since lifetimes were fragmented in Step 1 to represent
smaller periods, this step removes duplicate counts. A duplicate count is for any tuple that
has a lifetime that contains that of another tuple in the relation produced in Step 4. For
instance, (2, Mailik, Clothing, 101) is a duplicate tuple since its lifetime contains
the lifetime of another tuple (4, Freya, Clothing, 1010). Hence it has already been
counted and should be removed. The result of this step is shown in Figure 21, which is
the sequenced count of Employees grouped by Dept.

The aggregation operator ḠF
T
Ā

, where Ḡ is a list of grouping attributes and Ā is a list of
aggregate functions, is defined below.

ḠF
T
Ā

(r) = r5
where (note: relation ri is produced by Step i)

r1 = πr.V,P.T3((r ▷◁C(r.T,s.T ) ∧ r.Ḡ=s.Ḡ ρs(r)) ⋊⋉r.T =P.T1∧s.T =P.T2 P),
r2 = πr.V,s.T (r ▷◁C(r.T,s.T ) ∧ r.Ḡ=s.Ḡ ρs(r)),
r3 = r ∪ r1 ∪ r2, and
r4 =r̄.G FĀ(r3).
r5 = r4 − (r4 ⋉r.Ḡ=s.Ḡ ∧ C(r4.T,s.T ) ρs(r4))
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Data Metadata
Count Name Dept Time

4 Susan Clothing 1010
4 Pedro Clothing 1010
4 Freya Clothing 1010
4 Malik Clothing 1010
2 Malik Clothing 1011
2 Freya Clothing 1011
1 Freya Clothing 100
1 Freya Clothing 11

Figure 21 Sequenced count of Employees grouped by Dept.

4.8 Cost Analysis
The primary disadvantage of log-segmented relational algebra is cost since the log-segmented
increases the size of the relations. Note however, that the size cost could be reduced by
normalizing a log-segmented relation, that is, by splitting the data and metadata columns
into separate tables, with a foreign key from the metadata table into the data table. In this
analysis we do not assume such normalization.

Let relation r (s) be a period timestamped relation with N (M) tuples. Representing
the relations using log segments increase the size of the relation by a factor of f = log2(k)
where k is the maximum time (assuming a time domain from 0 to k). Then the relational
algebra operators have the following cost.

Sequenced projection of r: The cost is O(fN) to project r and O((fN)3) to perform
duplicate elimination, so the cost is dominated by duplicate elimination.
Sequenced selection of r: The cost is O(fN) to scan through the relation.
Sequenced Cartesian product of r with s: The cost is O(f2NM).
Sequenced Union of r with s: The cost is O(fN) + O(fM) + ≀((f(N + M))3), so the cost
is dominated by duplicate elimination.
Sequenced Intersection of r with s: The cost is O((fN) ∗ (fM)) since the projection and
selection can performed as the Cartesian product is computed.
Sequenced Difference of r minus s: To compute the during tuples costs O(f3NM)
assuming that P can by dynamically computed, e.g., such as using a table function in
Postgres. To compute rc costs O(f3N2M). The union of rc with the during tuples and
performing the duplicate elimination costs O(f9N3M2), so the duplicate elimination
again dominates the cost.
Sequenced Grouping and Aggregation: There are five steps. To compute r1 costs
O(f3NM). Computing r2 squares the cost of r1 and, assuming linear-time union can be
performed, the cost of r3 is O((fN)2), which is the maximum possible size of r2 or r3.
We will assume computing the aggregate can be done in linear time, so the cost of r5 is
O((fN)4)

Note that the most frequent query operations are projection, selection, and Cartesian
product. The cost of selection and Cartesian product are the same as their non-temporal
counterparts (except for the increased size of the relation). But unlike temporal periods,
log segments can be indexed using a non-temporal index, e.g., a B+-tree, so there are likely
significant query optimization opportunities for sequenced queries using standard SQL query
optimization techniques involving indexes. Only projection is significantly more expensive,
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but the cost is largely due to duplicate elimination, which can be thought of as optional
in an SQL-based DBMS, which allows duplicates in the data model. The cost of the other
operations (except intersection which is the same as the non-temporal cost) is much higher
than their non-temporal counterpart (which do not support sequenced semantics, with
the additional functionality comes increased cost). But, overall sequenced queries can be
supported in a vanilla SQL-based DBMS and we suspect that query optimization combined
with standard indexes can achieve reasonable run-time efficiency.

5 Conclusion and Future Work

The primary contribution of this paper is to show how sequenced semantics can be imple-
mented for a relational query language using the non-temporal form of the language. This
demonstration means that it is possible to implement sequenced semantics when evaluating
queries in a relational DBMS such as MariaDB without having to make any changes to the
DBMS.

In this paper we presented sequenced relational algebra by defining its operations entirely
in terms of standard relational algebra, lacking any temporal semantics or constructs. The
key to the translation is to interpret timestamps in a different way. Rather than taking the
standard approach of using period timestamps we chose to timestamp using log segments.
The log segments are an a priori dividing of the time-line into segments such that the
segments cover the time-line and form a hierarchy in which smaller segments group into
larger segments. The labels on the segments can be used to efficiently and easily determine
temporal relationships such as overlaps or contains. We showed how the segments are used
in various operations such as sequenced aggregation and grouping.

Future work is focused on implementation. We are currently implementing a sequenced
SQL to SQL translator using Postgres. An open question is the impact of the translation
on query optimization. That is, can the query optimizer take advantage of indexes for the
log segments in the translated queries? We are also investigating the benefits and costs
of normalized representation (factoring the metadata into separate tables). We have not
yet begin to look at other issues such as implementation of sequenced constraints using
log segments, recursive queries, or application to other query languages such as sequenced
GraphQL.
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