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Abstract
The robust execution of a temporal plan in a perturbed environment is a problem that remains to
be solved. Perturbed environments, such as the real world, are non-deterministic and filled with
uncertainty. Hence, the execution of a temporal plan presents several challenges and the employed
solution often consists of replanning when the execution fails. In this paper, we propose a novel
algorithm, named Olisipo, which aims to maximise the probability of a successful execution of
a temporal plan in perturbed environments. To achieve this, a probabilistic model is used in the
execution of the plan, instead of in the building of the plan. This approach enables Olisipo to
dynamically adapt the plan to changes in the environment. In addition to this, the execution of the
plan is also adapted to the probability of successfully executing each action. Olisipo was compared
to a simple dispatcher and it was shown that it consistently had a higher probability of successfully
reaching a goal state in uncertain environments, performed fewer replans and also executed fewer
actions. Hence, Olisipo offers a substantial improvement in performance for disturbed environments.
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1 Introduction

Automated temporal planning is the technology of choice when it comes to automatically
controlling systems subject to temporal constraints such as deadlines. However, one of the
key underlying assumptions of (classical) temporal planning is the perfect knowledge of a
deterministic environment. Formalisms such as PDDL 2.1 [14] allow the modeling of planning
problems where actions to be executed have known and deterministic effects on the system
and on its environment. Moreover, the world is assumed to be static, meaning that when no
action is executed by the agent, then no change is possible.
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All these assumptions greatly simplify the reasoning needed to efficiently find a plan, but
rarely apply to application scenarios. In robotics, for example, the environment where the
machine operates is almost never static and there is uncertainty on the actual effect of the
actions, due to interference of other actors (e.g. humans) or simply because some actions
may fail due to lack of dexterity or because of mishaps.

In this paper, we want to tackle the problem of executing a temporal plan generated
under the assumptions above in a system where these assumptions may not hold, exploiting
probabilistic information to maximize the likelihood of achieving the original plan goal. To
this end, we follow the execution schema proposed by [21] but we revise the on-line execution
part. In particular, we propose an execution algorithm, called Olisipo, that exploits a
probabilistically-sound reasoning on Dynamic Bayesian Networks (DBNs) to select the next
action to be executed. The algorithm is able to cope with the need of skipping planned
actions, of repeating actions, and of re-ordering the actions to achieve the original goal
taking into account the observed state of the world. The former case can be useful to avoid
operations that become useless (and may fail) due to the non-static nature of the environment:
for example, consider a plan prescribing to open a door that was supposedly closed, while
it is in fact open because a human forgot to close it. The second feature allows to repeat
actions that might have failed to achieve their effects or whose effects have been canceled by
the dynamic nature of the environment. Finally, re-ordering actions allows the handling of
mutated temporal and precedence constraints.

We implemented the proposed approach in the ROSPlan [5] framework and we experi-
mentally compare its merits against the original ROSPlan dispatcher, showing that the use
of our approach is able to reduce the number of re-planning invocations and to increase the
probability of successfully reach a goal state at the end of the execution.

1.1 Related Work
How to robustly execute and adapt plans at runtime is a central problem for the development
of autonomous systems [18]. In fact, when a plan is being generated it is often impossible to
foresee all the situations the controlled agent could encounter during execution; therefore,
different approaches have been explored to tackle these issues. A common technique consists
in relying on runtime monitoring to check that the conditions under which the plan was
generated hold at runtime and if they do not a new plan is generated online; this approach
is usually called replanning [13, 4]. Another direction is to model some of the uncertainties
at planning time (most notably the action durations) as uncontrollable entities in the model
and use planning algorithms that synthesize strategies to deal with such uncertainties [23, 7].
Finally, the approach we also pursue in this paper consists in generalizing a plan that was
optimistically generated and allow the executor to adapt to unforeseen circumstances.

Probabilistic planning is a standard approach for planning with discrete uncertainty. An
overview of approaches to probabilistic planning is provided in [17]. A common approach is
to model the task as a Markov Decision Problem, which can handle the kind of exogenous
and unforeseen events that we consider in this paper. Solutions to the MDPs typically
formulate policies with finite horizon [2]. In contrast we rely on the efficiency and speed of
deterministic search to find a solution that can then be generalized for an execution.

Some authors [1, 16, 12, 3] have focused on the problem of generalizing a temporal plan to
make it more likely to succeed when executed. On the same line, some planners try to produce
“flexible” plans, meaning that they reduce the commitments in the plan to a minimum to
allow the exploitation of more degrees of freedom at execution time [15, 6]. Generally, a
flexible temporal plan is represented as Simple Temporal Network (STN) [11], a Disjunctive



T. Ribeiro, O. Lima, M. Cashmore, A. Micheli, and R. Ventura 15:3

Temporal Network (DTN) [28] or as a Temporal Plan Network [20]; possibly with an explicit
representation of the uncertainty [23]. The executor is then responsible for dispatching the
prescribed events at the right time given the available observations [24, 9, 22]. However, one
key assumption of these approaches is that the plan is never invalidated according to the
original model, only valid re-scheduling is admitted.

In this paper, we take a radically different view: we want to exploit any PDDL 2.1
temporal planner and change the way in which the plan is dispatched by creating an action-
selector that reasons over the uncertainties with the freedom to re-arrange, skip, and repeat
the planned actions.

2 Algorithm

The Olisipo algorithm is an extension of the algorithm presented in [21]. The flow from
planning to execution of Olisipo can be visualised in Figure 1. The approach is essentially
composed of an offline and an online phase. The offline phase of Olisipo remains unchanged
from [21], while the online phase is completely reformulated.

In summary, the offline phase, performed before starting plan execution, is responsible
for converting a totally-ordered plan

∏tt, generated by an external planner, to an adaptable
partially-ordered plan

∏′. The adaptable partially-ordered plan is passed on to the online
phase. The offline generation of the partially-ordered plan allows for a more flexible execution,
namely by skipping and reordering actions during plan execution.

PDDL 2.1 planners output is commonly represented as time-triggered plans (e.g. [8, 26]).
A time-triggered plan is a set of tuples ⟨t, a, d⟩, where a is an action, t is the time at which the
action should start execution and d is the prescribed duration. An adaptable partially-ordered
plan is defined below, and a complete description can be found in [21].

▶ Definition 1. An Adaptable Partially-Ordered Plan
∏′ is the graph ⟨N, C⟩, where

each node n ∈ N represents either the plan start, an instantaneous action, or the start
or end of a durative action; and each edge c ∈ C represents a temporal relation: x <

time(n1) − time(n2) < y for n1, n2 ∈ N and x, y ∈ R. Each edge is labelled as either causal,
interference, or action duration. Action duration edges express the temporal constraints
between the start and end of durative actions. Causal edges express temporal relationships
inferred from the causal support between actions. Similarly, interference edges express the
temporal relationships inferred from the interference between actions.

The online phase has two sub-phases: the Plan Generation Sub-Phase (PGen) and the
Dynamic Plan Execution Sub-Phase (PExec). PGen is used to generate the totally-ordered
plan Γ with the highest probability of a successful execution, taking into consideration the
current state of the world, say S0, and the partially-ordered plan

∏′. In our approach, each
fact in S0 is represented by a probability value referring to the degree of belief of that fact
being present in the world. In addition to this, the first action of Γ is dispatched for execution.
PExec concerns the dynamic and robust execution of the plan Γ. These 2 sub-phases are
further explained in the next sections.

The online phase of Olisipo controls the action deliberation depending on the observations
made by the agent. As shown in Figure 1, the agent reads the state of the world S0 and
checks whether a totally-ordered plan Γ has already been determined or not. At the start,
no Γ has been determined so the algorithm enters PGen. In PGen, the algorithm uses
the Total-Order Extractor to build a set of totally-ordered plans. Then, the Plan Selector
chooses the totally-ordered plan with the highest success probability and sets it as Γ, the

TIME 2021
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Figure 1 High-level overview of Olisipo’s flow from planning to execution. The offline phase
consists of converting a totally-ordered plan

∏tt into the partially-ordered plan
∏′. The online

phase consists of two sub-phases, PGen and PExec. The PGen consists of finding the totally-ordered
plan with the highest success probability, Γ, and dispatching its first action for execution. The
PExec occurs when Γ has already been found and is compatible with the state of the world S0. If Γ
is compatible with S0, then the compatible lattermost action of Γ is dispatched for execution.

totally-ordered plan to be used. Lastly, the first action of Γ is dispatched for execution. After
executing this action, the system updates its world state representation and checks whether a
totally-ordered plan has already been found. Since Γ has already been found, the algorithm
advances to PExec. In this sub-phase, it first checks whether S0 is compatible with Γ. If it
is not compatible, then PGen is repeated and a new Γ is computed. If it is compatible, then
the compatible lattermost action is dispatched for execution. The lattermost, as opposed to
first, compatible action is chosen so that it becomes possible to skip actions that no longer
contribute to achieving the goals. The agent will keep on reading the state of the world, and
executing PGen and PExec, until the state of the world matches the goal.

2.1 Offline Phase: Generating an Adaptable Partially-Ordered Plan
The totally-ordered plan

∏tt, generated by an external planner, is converted into a partially-
ordered plan

∏
by creating a node for each instantaneous action and each durative action

start and end. Then, temporal, durative and interference relations are generated between
the nodes. Before starting plan execution, the causal support edges of

∏
are removed to

give more flexibility in action selection, therefore resulting in the partially-ordered plan
∏′.

A more detailed description of this process can be found on [21].
By first relaxing the problem to become deterministic, we are changing the problem’s

state-space and enabling the use of deterministic planners, which are able to scale for larger
problem instances than undeterministic planners. This relaxation also means that we are
moving the probability reasoning to the execution phase. Inspiration for this was taken
from FF-Replan [30], which was the winner of the 2004 International Probabilistic Planning
Competion (IPPC-04) and a top performer on IPPC-06. FF-Replan consisted of using a
deterministic planner to solve a carefully constructed deterministic variant of the planning
problem and replanning when an unexpected effect is observed. Similarly, we first solve
a deterministic variant of the planning problem and obtain the plan

∏tt, which is then
converted to

∏′.
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2.2 Online Phase
2.2.1 PGen: Building the Set of Totally-Ordered Plans and Calculating

a Plan’s Success Probability
The set of totally-ordered plans is built using a Branch and Bound search [19] through the
nodes of

∏′, excluding the action start nodes which have already been dispatched but their
respective action end nodes have not. This enables the repetition of an already executed
action but prevents the algorithm from dispatching the action start of an action that has
already started but has not finished yet.

Essentially, the search takes every node in
∏′ and orders them sequentially, hence building

a totally-ordered plan. During search a Dynamic Bayesian Network (DBN) [10] is used to
compute the joint probability of all actions being successful. When a solution is found, its
probability is calculated as the joint probability of all actions being successful and of the
facts of the goal being present in the solution. This solution probability is then used as
reference value to prune the remaining search.

The search is pruned at a certain state Si when one of the following conditions is verified:
If the state Si matches the goal;
If the sequence of actions leading to Si violates the temporal constraints;
If the joint probability of the actions leading to Si is lower than the probability of the best
previously found solution (as Propositions 2 and 3 later explain, the joint probability of
the actions is monotonically decreasing and is an upper bound to the solution probability);
If there are no more applicable actions to Si.

Our intention is to compute the success probability of a totally-ordered plan. We assume
that it is possible to determine whether the execution of an action was successful. In addition
to this, we say that a plan is successful if all the prescribed actions are applicable (i.e. the
plan can be simulated) and if the goal condition is achieved in the final state of the plan.

A DBN, such as the one presented in Figure 2, is built to calculate a plan’s success
probability. This DBN contains two types of nodes: propositional nodes, which represent
propositions at a certain time instant; and action nodes, which represent actions executed
at a certain time instant. As it can be seen by the structure of the example DBN from
Figure 2, the propositional nodes are divided into layers with one action node between
each layer. Propositional nodes are propagated from layer to layer, representing their
probability of spontaneously changing value with time. Action nodes have as parents and
children their corresponding conditions and effects, respectively. We use the time and causal
model of PDDL 2.1 [14], where durative actions are split into two instantaneous actions,
corresponding to the start and end of a durative action. In the DBN of Figure 2, the
action node goto_waypoint_start(r0, w0, m2) corresponds to the start of the durative action
goto_waypoint(r0, w0, m2), with its parents being the nodes corresponding to the at start
conditions of the durative action, in the previous layer, and its children being the nodes
corresponding to the at start effects, in the following layer. The node corresponding to the
start of an action is a parent of the node corresponding to the end of an action. The nodes,
in the layers between the action start and action end nodes, corresponding to the over all
conditions of an action are parents of the action end node.

The uncertainty in the environment is represented in the Conditional Probability Dis-
tribution (CPD) of each node. Propositional nodes, from the first layer, do not have any
parents so their CPD is represented by a single value, being 1 or 0 if they are True or False
in the initial state, respectively. Propositional nodes with another propositional node as
the only parent have a probability of spontaneously becoming True or False. Propositional
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Figure 2 Example of the DBN’s structure. Rectangular nodes symbolise proposition nodes and
ellipsoidal nodes represent action nodes.

nodes with an action node and another propositional node as parents, have a probability of
spontaneously becoming True or False, if the action node is False, and have a probability
of being True corresponding to the effects of the action, if the action node is True. Action
start nodes have a probability of being True, corresponding to the success probability of the
action if all its preconditions are met, and have a probability of 0 of being True otherwise.
Action end nodes have a probability of 1 of being True if all its preconditons are met and
the action start node is True, and have a probability of 0 of being True otherwise.

The success probability of each action, of the effects of each action and of facts spontan-
eously changing in the world are an input from the user.

With the DBN fully built, we can compute the success probability of a plan. This success
probability is defined as the conjunction of all actions in the plan being successful and of
the goal facts being in the final state, P (A ∩ G). In other words, it is defined as the joint
probability of all action nodes, in the DBN, being True and of the facts from the goal being
True in the last layer, marginalised over all other nodes. This calculation is represented in
Eq. (1), with A being the set of action nodes and G being the set of nodes corresponding to
the goal propositions in the last layer of the DBN. In addition to this, we also calculate the
joint probability of all action nodes being True, P (A), as displayed in Eq. (2), to prune the
search.

P (A ∩ G) =
∑

S0,...,SN−1

∑
SN \G

[ ∏
S∈S0

ρ(π(S))
∏

T ∈A
P (T |Pa(T ))

∏
S∈S1∪...∪SN

P (S|Pa(S))
]

(1)

P (A) =
∑

S0,...,SN−1

∑
SN

[ ∏
S∈S0

ρ(π(S))
∏

T ∈A
P (T |Pa(T ))

∏
S∈S1∪...∪SN

P (S|Pa(S))
]

(2)

In Eqs. (1) and (2), we calculate P (A ∩ G) and P (A), respectively, by marginalising
over all other nodes in the network. The term

∏
S∈S1∪...∪SN

P (S|Pa(S)) represents the
marginalisation of proposition nodes over its parents, The term

∏
T ∈A P (T |Pa(T )) represents

marginalising an action node T over its parents Pa(T ) and, lastly, the term
∏

S∈S0
ρ(π(S))

represents marginalising over the nodes of S0 (initial state).
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From Equations (2) and (1), it is possible to infer the following two propositions.

▶ Proposition 2. P (A) is monotonically decreasing as more actions are added to the DBN.

Proof. As more actions are considered in A, more factors are considered in
∏

T ∈A P (T |Pa(T ))
and, since P (T |Pa(T )) ≤ 1, the computed value will reduce or stay the same. ◀

▶ Proposition 3. P (A) is an upper bound for P (A ∩ G), meaning P (A) ≥ P (A ∩ G).

Proof. This proposition comes from the fact that Equation (2) marginalises over a greater
number of nodes than Equation (1). This can can be seen on the second sum of each Equation,
since the sum

∑
SN

, from Equation (2), yields a greater or equal value than the sum
∑

SN \G ,
from Equation (1). ◀

These two propositions enable the use of P (A) to prune the Branch and Bound search,
since it is an upper bound for P (A ∩ G) and is monotonically decreasing as more actions are
added to A.

The DBN is then simplified by the iterative application of the 3 pruning rules defined
below; these rules remove nodes and marginalisations which do not affect the probabilities
calculation.
1. A node that is not the goal, is not an action and is not a parent of any other node can be

discarded by marginalisation.
Proof: We marginalise over all nodes which are neither the goal nor the actions. If a
marginalised node has no children, then no other node depends on its value and it does
not affect the probability calculation. The example below shows the effect of marginalising
over node a, which has no children.∑

a,b,c,...

P (a|Pa(a)) · λ(b, c, ..) =
∑
b,c

λ(b, c, ..) (3)

2. The marginalisation sum corresponding to a node that is precondition of an action can
be removed.
Proof : The marginalisation of an action’s parent includes two terms, when it is True and
when it is False. Only one of these terms satisfies the precondition of the action. The
term which does not satisfy the action’s precondition corresponds to the action having a
null success probability, according to its CPD. Hence, we can discard the term which does
not satisfy the action’s preconditions and not marginalise over the parents of an action.

3. For all proposition nodes with an action node T as parent, the edges from any other
parent can be removed.
Proof : In our model, we have defined that the probability of a propositional node, with
both another propositional node and an action node as parents, does not depend on the
value of the propositional parent if the action parent is True, according to its CPD. Since
we are only interested in calculating the case where all action nodes are True, then the
edges from any other parents can be removed and the action node can be considered as
the single parent of the propositional node.

Figure 3 illustrates which nodes can be removed, according to the 3 pruning rules, from
the DBN of Figure 2.

Since we are building a DBN and calculating a probability at every step of the B&B search,
the DBN is expected to be a bottleneck in terms of computing time and resources. Hence,
it is vital to make this process efficient and iterative. Given this, instead of first building

TIME 2021
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Figure 3 DBN representing which nodes can be removed from the DBN of Figure 2, by applying
the 3 pruning rules. Rectangular nodes symbolise proposition nodes and ellipsoidal nodes represent
action nodes. The colours of the nodes illustrate under which pruning rule they can be removed.
Nodes and edges in red can be removed by Rule 1. Nodes in yellow have their marginalisation
discarded, according to rule 2. Nodes and edges in orange can be removed after applying rule 3,
followed by rule 1.

the entire DBN and then simplifying it, we build the already simplified DBN iteratively.
In addition to this, we also use dynamic programming to calculate the values of P (A) and
P (A ∩ G) iteratively.

The computation of the probabilities can be verified by resorting to any exact inference
method, e.g., the well-known exact variable elimination.

2.2.2 PExec: Checking if a Plan is Compatible with the State of the
World and Dispatching the Compatible Lattermost Action

In the PExec sub-phase, we wish to check if the state of the world is compatible with the
plan Γ and to dispatch the lattermost action from Γ compatible with the state of the world.
To achieve this, Algorithm 1 is used.

The pruning rules remove all irrelevant proposition nodes from the DBN, so the nodes
remaining in the DBN, at a certain layer, must be verified in the state of the world to enable
the execution of the action node that follows that layer.

Let us now consider the function findCompatibleLattermostLayer from Algorithm 1. This
function traverses the DBN of plan Γ from the last layer to the first one, from SN to S0,
searching for a layer which only contains propositions that match the state of the world,
S. After finding a layer i that matches this condition, it dispatches the action node after
it for execution, ai. If the action node ai corresponds to the end of an action, then its
corresponding action start must have already been dispatched. If all layers are verified and
no layer satisfies these conditions, then the function returns −1, meaning that no layer is
compatible with the state of the world.

As it can be seen in Figure 1, this verification will occur after the execution of each action.
By considering the lattermost compatible action we are allowing for the skipping of actions.
One important detail is that, due to the formalism of PDDL, every action that has been
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Algorithm 1 Find the Lattermost Layer in the DBN Compatible with the State of the Sorld.

1: global S ▷ Current state of the world.
2: global index_last_layer ▷ Index of the last DBN layer.
3: global actions_executing ▷ Set of executing actions.

4: function findCompatibleLattermostLayer
5: if G ⊂ S and actions_executing ̸= [] then
6: return index_last_layer
7: for i = index_last_layer-1 to 0 do
8: if ai is an action start node then
9: if Si ⊂ S then

10: return i
11: else
12: ast = getCorrespondingActionStart(ai)
13: if Si ⊂ S and ast ⊂ actions_executing then
14: return i
15: return −1 ▷ No layer matches S

started needs to be finished. So, even if the goal is already verified in the state of the world,
the algorithm will first finish the actions that are still executing and only then declare that
the goal has been reached. Another advantage that comes from using the pruned DBN is
that we are only considering the propositions which are relevant for the execution of certain
actions and for reaching the goal. If irrelevant propositions in the world change, then the
same plan will remain valid. Plus, if the execution of a certain action fails, then the same
plan might remain valid and the algorithm might retry the same action. Therefore, this
algorithm can resist unexpected changes in the world and action failures without the need of
replanning.

We allow for the repetition of actions because, in the interaction between a robot and the
real world, it is very rare to have the exact same conditions. In fact, the failing of an action
might be enough to slightly alter the environment. For example, a robot might fail to grasp
a certain object, but in doing so change the object’s pose such that it would succeed if it
tried to grasp the object again. As another example, a robot might fail to navigate from
room A to room B because someone stood on its way. However, if the robot tried to navigate
again the person might no longer be there and the robot would navigate successfully. It is to
account for situations like these that we allow for the repetition of actions.

3 Experimental Evaluation

Since the main feature of Olisipo consists in coping with unexpected changes in the world and
action failures, it was necessary to develop a simulation environment capable of replicating
these events. Hence, the environment developed for the original paper [21] was extended to
account for simulated state perturbations.

The extended environment uses ROSPlan [5] to parse the domain and problems files.
ROSPlan was chosen because it is compatible with ROS [25] and it is able to parse the
PDDL language. The planner POPF [8] was used to build the totally-ordered plan

∏tt. ROS
Services were used to handle the communication between different scripts. The ROS version
utilised was ROS Kinetic Kame1.

1 http://wiki.ros.org/kinetic

TIME 2021
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Scripts were developed to simulate perturbations in the environment. These perturbations
occur after the execution of the start or end of an action and consist in randomly adding
and removing propositions, as well as accounting for the failure of actions and of the effects
of actions. The user defines the perturbations’ probabilities in a configuration file which is
then used to build and make calculations in the DBN.

Olisipo was compared to a simple dispatcher, which tries to execute a temporal plan and
replans when the execution fails. Hence, the Esterel Dispatcher, from ROSPlan, was used
and POPF was used to build the plan, since it was the same planner used in the offline phase
of Olisipo. Ten replans was defined as the maximum amount of allowed replans both for the
Esterel dispatcher and for the Olisipo algorithm.

3.1 Results
The Olisipo and Esterel Dispatchers were compared by performing 2000 trials on 10 different
problems of Simple Factory Robot Domain with 3 machines (SF3) and 2000 trials on 8
different problems of Advanced Factory Robot Domain with 3 machines (AF3). The SF3
domain only has one action, where the AF3 domain has two actions. Each problem was
manually generated and represents a different perturbed environment2.

The chosen metrics to compare both dispatchers are:
M1: Estimated probability of a successful execution;
M2: Average number of replans;
M3: Average number of actions executed.

Considering that each algorithm is either able or not able to solve a problem, its success
distribution is a discrete binary distribution, namely a Bernoulli distribution. Hence, the
Wilson Score Interval [29], presented in Equation (4), can be used to estimate the probability
of each algorithm solving a problem, corresponding to M1.

In Equation (4), n is the total number of trials, ns is the number of successful trials,
nf is the number of failed trials and z is the quantile function, with z = 1.9599 for a 95%
confidence interval.

p̂ =
ns + 1

2 z2

n + z2 ± z

n + z2

√
nsnf

n
+ z2

4 (4)

Table 1 Tables showing the estimated probabilities of the Esterel dispatcher and of the Olisipo
algorithm solving each problem from the SF3 and AF3 domains. These probabilities were calculated
by making use of Equation (4). The last column displays the range of values where the estimated
improvement, due to the use of Olisipo, lays.

SF3
Problem Esterel Olisipo Improvement

p1 0.13 ± 0.01 0.23 ± 0.02 [0.07, 0.13]
p2 0.10 ± 0.01 0.22 ± 0.02 [0.09, 0.15]
p3 0.07 ± 0.01 0.18 ± 0.02 [0.08, 0.14]
p4 0.043 ± 0.009 0.17 ± 0.02 [0.10, 0.16]
p5 0.024 ± 0.007 0.12 ± 0.01 [0.08, 0.11]
p6 0.06 ± 0.01 0.08 ± 0.01 [0.00, 0.04]
p7 0.020 ± 0.006 0.043 ± 0.009 [0.008, 0, 038]
p8 0.12 ± 0.01 0.16 ± 0.02 [0.01, 0.07]
p9 0.20 ± 0.02 0.23 ± 0.02 [−0.01, 0.07]
p10 0.025 ± 0.007 0.038 ± 0.008 [−0.002, 0.028]

AF3
Problem Esterel Olisipo Improvement

p1 0.17 ± 0.02 0.22 ± 0.02 [0.01, 0.09]
p2 0.15 ± 0.02 0.20 ± 0.02 [0.01, 0.09]
p3 0.16 ± 0.02 0.23 ± 0.02 [0.03, 0.11]
p4 0.17 ± 0.02 0.21 ± 0.02 [0.00, 0.08]
p5 0.09 ± 0.01 0.09 ± 0.01 [−0.02, 0.02]
p6 0.038 ± 0.008 0.047 ± 0.009 [−0.008, 0.026]
p7 0.029 ± 0.007 0.038 ± 0.008 [−0.006, 0.024]
p8 0.024 ± 0.007 0.031 ± 0.008 [−0.008, 0.022]

2 Domains, problems, and configurations are available online [27].
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The results referring to M1 can be seen in Table 1. From these tables, it is possible
to verify that, overall, the Olisipo algorithm achieved a higher probability of success than
the Esterel dispatcher. On the SF3 domain, the Olisipo algorithm presented an estimated
improvement between −0.02 and 0.16. On the AF3 domain, the improvement was between
−0.02 and 0.11. Despite the presence of some negative values, indicating a possible worst
performance for the Olisipo algorithm, it is worth noting that on 12 of the 18 problems used,
the improvement interval contained only positive values, indicating that Olisipo does present
an improvement. Regarding the other problems, with the exception of problem 5 of AF3, at
least 73% of the estimated interval is positive.

Figure 4 Distribution chart of the number of replans performed in the successful executions of
the 2000 trials, for each problem of the SF3 and AF3 domains and for each dispatcher. The number
on top of each distribution corresponds to its median.

Figure 4 presents the results referring to M2, namely the distribution of the number of
replans, on successful executions, for each algorithm and for each problem. A successful
execution occurs when a problem is successfully solved, with 10 or fewer replans performed.
In these Figures, it is possible to verify that, for successful executions, the mean of the number
of replans on the Olisipo algorithm is consistently lower than on the Esterel dispatcher.
The mean of the number of replans in successful executions on the Olisipo algorithm was
consistently zero, whereas the Esterel dispatcher often needed to replan, even achieving more
than 5 replans on some problems.

Figure 5 Distribution chart of the number of actions executed in the successful executions of the
2000 trials, for each problem of the SF3 and AF3 domains and for each dispatcher. The number on
top of each distribution corresponds to its median.

Figure 5 presents the results corresponding to M3, more specifically to the distribution
for the number of actions executed on successful executions. From these results, is possible
to verify that the mean for the number of actions in successful executions on the Olisipo
algorithm was consistently lower than on the Esterel dispatcher. For all problems of SF3,
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except problem 6, the Olisipo algorithm offered a relative improvement of, at least, 10% in the
mean of the number of actions for successful executions. The biggest relative improvements
were achieved on problems 7 and 8, where the improvements were 21% and 18%, respectively.
For all problems of AF3, the Olisipo algorithm offered an improvement of, at least, 28%. The
biggest relative improvements were achieved on problems 6, 7 and 8, where the improvements
were 48%, 47% and 52%, respectively.

Figure 6 Distribution chart of the number of actions executed in the failed executions of the
2000 trials, for each problem of the SF3 and AF3 domains and for each dispatcher. The number on
top of each distribution corresponds to its median.

Lastly, we will analyse the distribution of the number of actions on unsuccessful executions,
from Figure 6, which also corresponds to M3. The mean and mode of executed actions before
failing was lower on the Olisipo algorithm than on the Esterel dispatcher, for all problems of
SF3 and AF3. The mean of executed actions before failure on SF3 was improved by, at least,
39% with the Olisipo algorithm. The biggest relative improvements occurred on problems
3, 4 and 5, where they were 56%, 57% and 58%, respectively. On the problems of AF3,
the Olisipo algorithm also offered an improvement of at least 39% on the mean of executed
actions before failure. The biggest improvements were achieved on problems 3, 4 and 5, with
an improvement of 56%, 57% and 58% respectively.

Olisipo executes less actions than the Esterel dispatcher on failed executions because
it requires the conditions of future actions to hold in the current state. This is achieved
through the propagation of the parents of an action node to the previous layers in the DBN.
Hence, Olisipo avoids the partial execution of plans which will not achieve the goal.

Regarding the execution time of the algorithm, it was found that the execution of the
PGen sub-phase, which is the most resource consuming sub-phase, consistently had a duration
under 2 seconds for all of the problems used.

From these results, it is possible to conclude that, in comparison to a simple dispatcher,
the Olisipo algorithm has a higher probability of solving a given problem, needs to replan
less times to successfully solve a problem and executes less actions on successful and failed
executions. The consistency in the obtained results is especially useful to support this claim,
since the results were obtained from 18 different problems from 2 different domains.

There were only two instances where the performance of Olisipo was similar to the Esterel
dispatcher, which was the success probability of problem 5 of AF3 and the number of actions
on successful executions of problem 6 of SF3. However, the performance of Olisipo in the
other metrics, for each problem, surpassed the performance of the Esterel dispatcher. Hence,
even in problems where the performance of Olisipo, in one metric, is similar to that of the
Esterel dispatcher, the performance in the other metrics favour Olisipo.

Regarding the mean of executed actions in successful executions, the difference between
Olisipo and Esterel was greater in AF3 than in SF3. Considering that SF3 only has one
action on its domain, whereas AF3 has two actions, it is possible that this difference increases
for domains with a greater number of actions.
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Regarding the number of replans on successful executions, the mean for Olisipo was
consistently zero for all problems. This means that Olisipo almost never needed to replan
to achieve a successful execution. At the same time, it also means that Olisipo’s replans
rarely resulted in a successful execution. This implies that the replanning effort requested
by the Esterel dispatcher was largely to recompute the same (sub)set of actions as was
originally generated. In scenarios with limited computational time to spend planning, or
larger problems for which full replanning is not feasible, the flexible approach of Olisipo
is an obvious solution. More tests to evaluate this metric would be interesting, since this
could mean that repeating the PGen sub-phase does not achieve any additional successful
executions.

4 Conclusion

The robust execution of a temporal plan in a perturbed environment is a problem that remains
to be solved. Perturbed environments, such as the real world, are non-deterministic and filled
with uncertainty. Hence, the execution of a temporal plan presents several challenges and
the employed solution often consists of replanning when the execution fails. In this paper,
we propose a novel algorithm, named Olisipo, which aims to maximise the probability of
a successful execution of a temporal plan in perturbed environments. To achieve this, a
probabilistic model is used in the execution of the plan, instead of in the building of the plan.
This approach enables Olisipo to dynamically adapt the plan to changes in the environment.
In addition to this, the execution of the plan is also adapted to the probability of successfully
executing each action. Olisipo was compared to a simple dispatcher and it was shown that
it consistently had a higher probability of successfully solving a problem, performed fewer
replans and executed fewer actions. Hence, Olisipo offers a substantial improvement in
performance for disturbed environments.

Regarding the future work, there are several directions it could take. One possibility
would be to save intermediate results, either from the DBN or the search tree, to cope with
perturbations more efficiently. In addition to this, it would be interesting to study further
the relevance of repeating the PGen sub-phase. Lastly, another possibility would be to test
the Olisipo algorithm in a real world robot.

All source code and experimental setup is open source and available online [27]. Olisipo
works as an add-on to any external planner and can easily be implemented by third-parties
to improve execution performance.
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