
A One-Pass Tree-Shaped Tableau for
Defeasible LT L

Anasse Chafik #

CRIL, University of Artois & CNRS, Arras, France

Fahima Cheikh-Alili #

CRIL, University of Artois & CNRS, Arras, France

Jean-François Condotta #

CRIL, University of Artois & CNRS, Arras, France

Ivan Varzinczak #

CRIL, University of Artois & CNRS, Arras, France

Abstract
Defeasible Linear Temporal Logic is a defeasible temporal formalism for representing and verifying
exception-tolerant systems. It is based on Linear Temporal Logic (LTL) and builds on the preferential
approach of Kraus et al. for non-monotonic reasoning, which allows us to formalize and reason with
exceptions. In this paper, we tackle the satisfiability checking problem for defeasible LTL. One of the
methods for satisfiability checking in LTL is the one-pass tree shaped analytic tableau proposed by
Reynolds. We adapt his tableau to defeasible LTL by integrating the preferential semantics to the
method. The novelty of this work is in showing how the preferential semantics works in a tableau
method for defeasible linear temporal logic. We introduce a sound and complete tableau method for
a fragment that can serve as the basis for further exploring tableau methods for this logic.
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1 Introduction

Linear temporal logic (LTL) was introduced by Pnueli [13] as a formal tool for reasoning
about programs execution. Many properties that an execution should have can be expressed
elegantly using this formalism. The logic LTL is used for systems verification [16]. With
advances in technologies, systems became more and more complex, displaying new features
and behaviours. One of these behaviours is tolerating exceptions. In more general terms,
if an error occurs, within an execution of a program, at certain points of time where it is
tolerated, the program can still function properly.

Let us say, for the sake of argument, that there is an execution of a program in which a
parameter cannot have a certain value. We notice that, at some given points of time, the
execution produces the invalid value in the aforementioned parameter. Nevertheless, we do
not mind that the program produces the error at these time points deemed to be harmless.
The crucial point is that this behaviour is not present in other, more important, points
of time. We want to be sure that the execution still continues and the program functions
properly even in the presence of such benign time points.

We want a formalism for verifying properties of executions that can, on one hand, be
strictly required at some points of time, and on the other hand, be missing in other points
of time. That is why we introduced an extended formalism of LTL, called defeasible
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linear temporal logic (LTL˜) [6]. It uses the preferential approach of Kraus et al. to
non-monotonic reasoning [11] (a.k.a. the KLM approach). The defeasible aspect of LTL˜
adds a new dimension to the verification of a program’s execution. We can order time points
from the important ones, which we call normal, to the lesser and lesser ones. Normality in
LTL indicates the importance of a time point within an execution compared to others.

We also introduced defeasible versions of the modalities always and eventually. With
these defeasible modalities, we can express properties similar to their classical counterparts,
targeting the most normal time points within the execution.

The main goal of this paper is to establish a satisfiability checking method for our logic, in
particular, for a fragment thereof. In the case of LTL, many tableau methods were proposed
in the literature. There are two types of tableau methods: multi-pass and one-pass tableaux.
Multi-pass tableau methods [22, 12, 10] go through an initial phase of building a tree-shaped
structure by putting the sentence in the root node and expanding the tableau via a systematic
application of a set of rules. The second phase is a culling phase, which uses an auxiliary
structure built from the tableau, and checks for the satisfiability of the input sentence in
this structure. Whereas in one-pass tableau methods [17, 14], the construction and the
verification are done simultaneously. Reynolds’ tableau for LTL [15, 14] is a tree-shaped
one-pass tableau where each branch is independent from the others. Moreover, each successful
branch by itself is a representation of an interpretation that satisfies the sentence.

As for the KLM approach, tableau methods were developed for the preferential approach
of Kraus et al. logic [11] and formalisms extending the preferential approach [9, 4, 5]. In the
case of preferential modal logic, Britz and Varzinczak [4] proposed a tree-shaped tableau
that builds the ordering relation on worlds at the same time as the tableau is expanded. The
tableau method in this paper is based on both the one-pass tableau of Reynolds [14] and the
tableau for preferential modal logic by Britz and Varzinczak [4]. The novelty of this paper is
in showing how preferential semantics works in a tableau for a fragment of LTL˜.

The plan of this paper goes the following way: We talk briefly about LTL and LTL˜ in
Section 2. We then describe a tableau method for a fragment of LTL˜ in Section 3. We show
soundness, and completeness of our method in Section 4. Section 5 concludes the paper.

2 Preliminaries

Linear Temporal Logic [1] is a modal logic in which modalities are considered to be temporal
operators that describe events happening in different time points over a linearly ordered time-
line. Let P be a finite set of propositional atoms. The set of operators in LTL can be split into
two parts: the set of Boolean connectives (¬, ∧, ∨), and that of temporal operators (□,♢, ⃝),
where □ reads as always, ♢ as eventually, and ⃝ as next. Let p ∈ P, sentences in LTL are
built up according to the following grammar: α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α | ⃝α.

Standard abbreviations are included in LTL, such as: ⊤def=p∨¬p, ⊥def=p∧¬p, α → β def=¬α∨β

and α ↔ β def= (α → β) ∧ (β → α). There are other temporal operators such as U (until
operator) and R (release operator) in LTL, but we chose to omit them in this paper.

The temporal semantics structure is a chronological linear succession of time points.
We use the set of natural numbers in order to label each of these time points i.e., (N, <).
Hence, a temporal interpretation associates each time point t with a truth assignment of all
propositional atoms. A temporal interpretation is defined as follows:

▶ Definition 1 (Temporal interpretation). A temporal interpretation I is a mapping function
V : N −→ 2P which associates each time point t ∈ N with a set of propositional atoms V (t)
corresponding to the set of propositions that are true in t. (Propositions not belonging to V (t)
are assumed to be false at the given time point.)



A. Chafik, F. Cheikh-Alili, J.-F. Condotta, and I. Varzinczak 16:3

The truth value of a sentence in an interpretation I at a time point t ∈ N, denoted by
I, t |= α, is recursively defined as follows:

I, t |= p if p ∈ V (t); I, t |= ¬α if I, t ̸|= α;
I, t |= α ∧ α′ if I, t |= α and I, t |= α′; I, t |= α ∨ α′ if I, t |= α or I, t |= α′;
I, t |= □α if I, t′ |= α for all t′ ∈ N s.t. t′ ≥ t; I, t |= ♢α if I, t′ |= α for some t′ ∈ N s.t.
t′ ≥ t;
I, t |= ⃝α if I, t + 1 |= α.

In previous work [6], we introduced a new formalism called preferential linear temporal
logic. The motivation is to provide a formalism for the specification and verification of
systems where exceptions can be tolerated.

Let p ∈ P, sentences of the logic LTL˜ are built up according to the following grammar:

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α | ⃝α | □∼α | ♢∼α

The intuition behind the new temporal operators is the following: □∼ reads as non-
monotonic always and ♢∼ reads as non-monotonic eventually. The set of all well-formed
LTL˜ sentences is denoted by L .̃ It is worth to mention that any well-formed sentence α in
LTL is a sentence of L .̃

A sentence such as □∼α reads as: in all normal future time points, α is true. A sentence
of the form ♢∼α reads as: in some normal future time point, α is true. We can even express
properties using a mix of classical and non-monotonic operators. A sentence □♢∼α reads as:
always, there is a normal future time point where α is true.

The preferential component of the interpretation of our language is directly inspired by
the preferential semantics proposed by Shoham [19] and used in the KLM approach [11].
The ordering relation, denoted by ⋎ , is a strict partial order on points of time. Following
Kraus et al. [11], t ⋎ t′ means that t is more preferred than t′. We use the pair notation
(t, t′) ∈ ⋎ to indicate that t is more normal than t′ w.r.t. ⋎ .

▶ Definition 2 (Minimality w.r.t. ⋎ ). Let ⋎ be a strict partial order on a set N and
N ⊆ N. The set of the minimal elements of N w.r.t. ⋎ , denoted by min ⋎ (N), is defined by
min ⋎ (N) def= {t ∈ N | there is no t′ ∈ N such that (t′, t) ∈ ⋎ }.

▶ Definition 3 (Well-founded set). Let ⋎ be a strict partial order on a set N. We say N is
well-founded w.r.t. ⋎ iff min ⋎ (N) ̸= ∅ for every ∅ ≠ N ⊆ N.

In what follows, given a relation ⋎ and a time point t ∈ N, the set of preferred time points
relative to t is the set min ⋎ ([t, ∞[) which is denoted in short by min ⋎ (t).

▶ Definition 4 (Preferential temporal interpretation). An LTL˜ interpretation on a set of
propositional atoms P, also called preferential temporal interpretation on P, is a pair
I def= (V, ⋎ ) where V is a mapping function V : N −→ 2P , and ⋎ ⊆ N × N is a strict partial
order on N such that N is well-founded w.r.t. ⋎ . We denote the set of preferential temporal
interpretations by I.

Preferential temporal interpretations provide us with an intuitive way of interpreting
sentences of L .̃ Let α ∈ L ,̃ let I = (V, ⋎ ) be a preferential temporal interpretation, and let t

be a time point in I in N. Satisfaction of α at t in I, denoted I, t |= α, is defined as follows:
The truth values of Boolean connectives and classical modalities are defined as in LTL.
I, t |= □∼α if I, t′ |= α for all t′ ∈ min ⋎ (t);
I, t |= ♢∼α if I, t′ |= α for some t′ ∈ min ⋎ (t).

TIME 2021
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We say α ∈ L˜ is satisfiable if there is a preferential temporal interpretation I and a
time point t in N such that I, t |= α. We can show that α ∈ L˜ is satisfiable iff there is a
preferential temporal interpretation I s.t. I, 0 |= α.

3 A one-pass tableau for LT L˜

In this paper, we address the computational task of satisfiability checking in LTL˜. That
is, given a sentence α in LTL˜, decide whether or not there is an interpretation I that
satisfies the sentence α. As mentioned in the Introduction, we propose a one-pass tree-shaped
tableau for a fragment of LTL˜ based on Reynolds’ tableau [15] and inspired by the semantic
rules for defeasible modalities in modal logic proposed by Britz and Varzinczak [4]. This
fragment, denoted by L1, serves as a starting point for showing how the ordering ⋎ is built
for preferential interpretations in LTL˜.

3.1 The fragment L1

The fragment L1 considers that sentences are in NNF (negation is only allowed on the level
of atomic propositions). On the other hand, the non-monotonic operator □∼ is omitted from
L1. Furthermore, only Boolean sentences are permitted within the scope of □ sentences.
In what follows, we define formally well formed sentences of L1. In order to do that, we
introduce first the set of Boolean sentences Lbool. Let p ∈ P, sentences αbool ∈ Lbool are
defined recursively as such:

αbool ::= p | ¬p | αbool ∧ αbool | αbool ∨ αbool

Next, let αbool ∈ Lbool, sentences in L1 are recursively defined as such:

α ::= αbool | α ∧ α | α ∨ α | ♢α | □αbool | ⃝α | ♢∼α

Sentences of the form ♢α are called eventualities, because its truth depends on α being
true in the future. Similarly, sentences of the form ♢∼α are called non-monotonic eventualities.
Their truth depends not only on α being true in some future, but it depends also on this
future being preferred to the other future time points. Sentences of the form ⃝♢α are called
⃝-eventuality.

3.2 Tableau method for L1

A tableau for α ∈ L1 is a tree of nodes. Each node has a positive integer n as a label. It
has also two sets of sentences: one we denote as Γ and the other as une (which stands for
unfulfilled non-monotonic eventualities, a notion to be detailed below). The set Γ is a subset
of L1 which contains the sentences in the node. The set une is a set of pairs (nk,♢∼αk), where
nk is a label and ♢∼αk is a non-monotonic eventuality.

▶ Definition 5 (Labelled node). A labelled node is a triple of the form n : (Γ, une) where
n ∈ N, Γ ⊆ L1 and une ⊆ [0, n] × L1.

It is worth to mention that different nodes can have the same label. Intuitively, the nodes
labelled by a same integer n represent the set of sentences that are satisfied at the time point
associated with n. Hence, these nodes correspond with a given temporal state.

A branch B is a sequence of nodes, we introduce also a strict partial ordering relation
⋎ B on the labels of the nodes within the branch. The branch B has also a set of pairs of
labels denoted by minB . The relation ⋎ B represents a preference relation on the temporal
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states of the branch B. On the other hand, the set minB represents some constraints that
the final preference relation issued from B must satisfy. More precisely, each pair (n, n′) in
minB indicates that n′ represents a preferred temporal state compared to all n′′ ≥ n.

▶ Definition 6 (Branch). A branch is a tuple B def= (⟨x0, x1, x2, . . . ⟩, ⋎ B , minB) where the
first element is a sequence of labelled nodes xi := ni : (Γi, unei), ⋎ B is a strict partial order
( ⋎ B⊆ N×N) on labels within the branch, and minB is a set of pairs of labels (minB ⊆ N×N).

Let B := (⟨x0, x1, x2, . . . ⟩, ⋎ B , minB) be a branch, xn, xm be two labelled nodes in B. If
xm comes after xn in the sequence, then xm is a successor of xn, and xn is a predecessor of
xm. We denote it by xn ≤ xm. Moreover, if xm is not the same labelled node as xn, we say
that xm is a proper successor of xn (same goes for a proper predecessor). We denote it by
xn < xm. The last node of a branch is called a leaf node. When a leaf node is ticked with
✓, we say that the branch is a successful branch. On the other hand, when a leaf node is
crossed with ✗, we say that the branch is a failed branch.

A tree is a set of branches T def= {B0, B1, B2, B3, . . . , Bk} where k ≥ 0. A tableau T for
α is the limit of a sequence of trees ⟨T 0, T 1, T 2, . . . ⟩ where the initial tree is T 0 := {(⟨0 :
(α, ∅)⟩, ∅, ∅)} and every T i+1 is obtained from T i by applying a rule on one of its branches.
We say that a tableau T for α is saturated if no more rules can be applied after a tree T .

We have two types of rules, static and dynamic rules. We introduce static rules first. Let
T be a tree, and let B be a branch of T that has a leaf n : (Γ, une). We say that a static
rule (ρ) is applicable at the leaf n : (Γ, une) if a sentence in Γ or a pair in une instantiates
the pattern ρ. A static rule is a rule of the form:

(ρ) n : (Γ, une), ⋎ B , minB

n : (Γ1, une1), ⋎ B1 , minB1 | . . . | n : (Γk, unek), ⋎ Bk
, minBk

In a tree T i, after applying the static rule (ρ), we obtain the tree T i+1 by re-
placing the branch B := (⟨x0, x1, x2, . . . , n : (Γ, une)⟩, ⋎ B , minB) by the branches
B1 := (⟨x0, x1, x2, . . . , n : (Γ, une), n : (Γ1, une1)⟩, ⋎ B1 , minB1), B2 := (⟨x0, x1, x2, . . . , n :
(Γ, une), n : (Γ2, une2)⟩, ⋎ B2 , minB2), and so on. The symbol “|” indicates the occurrence of
a split in the branch, i.e., a non-deterministic choice of possible outcomes, each of which
needs to be explored. It is worth to mention that after applying a static rule on n : (Γ, une),
the leaf nodes of all the new branches keep the same label n.

In what follows, we show the rules for Boolean and the operators (□,♢). We also show
two stopping conditions, namely, Empty and Contradiction. We chose to omit ⋎ B and
minB to lighten these rules. The crucial detail to remember is that they do not change after
applying the rules below, i.e., ⋎ Bi

= ⋎ B and minBi = minB for all resulting branches. The
symbol ∪ is the union of two sets. The symbol ⊎ represents the union between disjoint sets.

(Contradiction)
n : ({α, ¬α} ⊎ Σ}, une)

(✗)
(Empty)

n : (∅, ∅)
(✓)

(∧)
n : ({α1 ∧ α2} ⊎ Σ, une)
n : ({α1, α2} ∪ Σ, une)

(∨)
n : ({α1 ∨ α2} ⊎ Σ, une)

n : ({α1} ∪ Σ, une) | n : ({α2} ∪ Σ, une)

(□)
n : ({□α1} ⊎ Σ, une)

n : ({α1, ⃝□α1} ∪ Σ, une)
(♢)

n : ({♢α1} ⊎ Σ, une)
n : ({α1} ∪ Σ}, une) | n : ({⃝♢α1} ∪ Σ}, une)

TIME 2021
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Before introducing the rule for the non-monotonic operator ♢∼, we discuss firsthand the
notion of fulfillment for classical and non-monotonic eventualities. Following Reynolds’
tableau, let an eventuality ♢α be in a node with a label n. If the sentence α appears in a
proper successor node x with the label m ≥ n, we say that ♢β at the position n is fulfilled in
m. In a similar fashion, we define the fulfillment for non-monotonic eventualities as follows:

▶ Definition 7 (Fulfillment of non-monotonic eventualities). Let a non-monotonic eventuality
♢∼α be in a node with a label n in a branch B. If α appears in a proper successor node x with
a label m ≥ n, and (n, m) ∈ minB, we say ♢∼α at the position n is fulfilled in m.

The truth value ♢∼α in a temporal state n depends on α being true on a future temporal
state m and m being minimal to all temporal states that come after n w.r.t. ⋎ B . We say m

is minimal to n as shorter way to say that m is minimal to all temporal states that come
after n. Unfulfilled non-monotonic eventualities in a node x with the label n are represented
by the set une def= {(n1,♢∼α1), (n2,♢∼α2), . . . }, each pair (nk,♢∼αk) represents a non-monotonic
eventuality ♢∼αk at a position nk that needs to be fulfilled. Therefore each node x has three
components: n is a label indicating the temporal state, Γ is the set of sentences within the
node and une is the set of non-monotonic eventualities at x that need to be fulfilled. With
all of our notions introduced, here is the rule for the ♢∼ operator:

(♢∼)
n : ({♢∼α1} ⊎ Σ, une), ⋎ B , minB

n : ({α1} ∪ Σ, une), ⋎ B , minB ∪ {(n, n)} | n : (Σ, une ∪ {(n,♢∼α1)}), ⋎ B , minB

For the rule (♢∼), we explore two outcomes. The first outcome is when the non-monotonic
eventuality ♢∼α1 at n is fulfilled in n. We then add α1 to the set of sentences Γ of the leaf
node and add (n, n) ∈ min of the branch. The second outcome is when ♢∼α1 is not fulfilled in
n, then we add the pair to (n,♢∼α1) to une of the leaf node as a non-monotonic eventuality
that needs to be fulfilled. Example 8 shows the application of [♢∼] rule.

▶ Example 8. Let a branch B have ⋎ B, minB and a leaf node 5 : ({p, q,□(p ∧ q),♢∼r}, ∅).
After applying (♢∼) rule on ♢∼r, we have two new branches B1 and B2. The branch B1 has a
leaf node where the sentence r is in Γ of the leaf node and (5, 5) ∈ minB1 . The branch B2
has (5,♢∼r) in une of the leaf node.

5 : ({p, q,□(p ∧ q),♢∼r}, ∅), ⋎ B , minB

5 : ({p, q,□(p ∧ q), r}, ∅), ⋎ B , minB ∪ {(5, 5)} 5 : ({p, q,□(p ∧ q)}, {(5,♢∼r)}), ⋎ B , minB

The next static rule we discuss is the rule (une). Let n, n′ be two labels such that n′ < n,
for each label n and a pair (n′,♢∼α1), the rule (une) is applied one and only one time. The
rule goes as follows:

(une)
n : (Γ, {(n′,♢∼α1)} ⊎ U), ⋎ B , minB

n : ({α1} ∪ Γ, U), ⋎ B , minB ∪ {(n′, n)} |

n : (Γ, {(n′,♢∼α1)} ∪ U), ⋎ B , minB ∪ {(n′, n)} |

n : (Γ, {(n′,♢∼α1)} ∪ U), ⋎ B ∪{(n′, n)}, minB

For the rule (une), we explore three outcomes. The first outcome is when ♢∼α1 at the
position n′ is fulfilled at n. We remove (n′,♢∼α1) from une, then we add α in Γ of the leaf
node and (n′, n) in min of the branch. In the second and third branches, we explore the
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outcome of ♢∼α1 not being fulfilled yet in n, we keep the pair (n′,♢∼α1) on the leaves of two
branches. The second branch explore the outcome of n being minimal to n′ w.r.t. to ⋎ of
the branch. We then add (n′, n) to the min of the branch. In the third branch, we explore
the outcome of n not being minimal to n′ w.r.t. ⋎ of the branch. It means that there exists
a temporal state m′ that come after n′ where m′ is preferred to n w.r.t. to ⋎ of the branch,
we add the pair (n′, n) in ⋎ of the branch to represent this case. It is worth to mention that
the rule (une) does not apply when the label of the node n is the same as (n,♢∼α1). The
reason behind this is that we have already explored the case when the eventuality is fulfilled
in n thanks to (♢∼) rule. Example 9 shows the application of (une) rule.

▶ Example 9. Let a branch B have ⋎ B, minB and a leaf node 5 : ({□(p ∧ q)}, {(2,♢∼s)}).
After the application of une on (2,♢∼s), we have three branches B1, B2 and B3. B1 has the
sentence s in Γ of its leaf node, it has also (2, 5) in minB1 . B2 keeps (2,♢∼s) in the une of its
leaf node, with (2, 5) ∈ minB2 . B3 keeps also (2,♢∼s) in une of its leaf node, with (2, 5) ∈ ⋎ B3 .

5 : ({□(p ∧ q)}, {(2,♢∼s)}), ⋎ B , minB

5 : ({□(p ∧ q), s}, ∅), ⋎ B , minB ∪ {(2, 5)} 5 : ({□(p ∧ q)}, {(2,♢∼s)}), ⋎ B , minB ∪ {(2, 5)} 5 : ({□(p ∧ q)}, {(2,♢∼s)}), ⋎ B ∪{(2, 5)}, minB

With the (une) and (♢∼) introduced, we need to check the consistency of ⋎ of all the
new branches. We apply this check each time we apply (une) or (♢∼) rule. Let B :=
(⟨x0, x1, x2, . . . ⟩, ⋎ B , minB) be a branch, the rule goes as follows:

[ ⋎ -inconsistency] If (n, n′) ∈ minB and there exists n′′ ≥ n s.t. (n′′, n′) ∈ ⋎ B , then the
branch is crossed (✗).

In a branch B, if (n, n′) ∈ minB, then we are currently exploring a branch where n′ is
minimal to n w.r.t. ⋎ B . Therefore there should be no n′′ ≥ n where (n′′, n) ∈ ⋎ B . Each time
we explore a branch where this inconsistency arises, we close the branch.

▶ Example 10. Let B be a branch where ⋎ B is empty, minB has (1, 5) in it, and a leaf node
5 : (Γ, {(2,♢∼s)}). After applying une rule on (2,♢∼s), we have three branches B1, B2 and B3.
The relation ⋎ B1 is empty, and minB1 has the pairs (1, 5) and (2, 5). In this case, there is no
inconsistency w.r.t. ⋎ B1 so far. The same goes for B2. However, we add (2, 5) to ⋎ B3 . Since
we already have (1, 5) ∈ minB3 , we then cannot have (2, 5) ∈ ⋎ B3 . We close B3.

5 : (Γ, {(2,♢∼s)}), ∅, {(1, 5)}

. . . . . . 5 : (Γ, {(2,♢∼s)}), {(2, 5)}, {(1, 5)}

(✗)

In a branch B of a tree T with a leaf node xi, after applying every static rule aforemen-
tioned (the order of application these rules is non-deterministic) that can be applied, all leaf
nodes of the generated branches contain only sentences of the form p, ¬p or ⃝α in their Γ.
When no more static rules can be applied in a node, this node is called a state-labelled node.
State-labelled nodes mark the full expansion of all sentences that hold in a state n.

Once we are in a state-labelled node, in order to go from a temporal state to the next, we
need a transition rule (a rule to go from a temporal state n to the next n + 1). In a branch
B with a leaf state-labelled node, the rule transition goes the following way:

TIME 2021
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(Transition)
n : ({⃝α1, ⃝α2, ⃝α3, . . . , ⃝αk} ⊎ Σ, une), ⋎ B , minB

n + 1 : ({α1, α2, α3, . . . , αk}, une), ⋎ B , minB

After the transition rule is applied to a state-labelled node n : (Γ, une), we add a node
with the label n + 1. It marks the start of a new temporal state n + 1. We carry over to n + 1
only sentences within the scope of ⃝αi sentences. The set une gets transferred as well to the
next temporal state. Any pair (n′,♢∼α1) ∈ une remaining in the state node with the label n

indicates that the rule (une) was applied on the temporal state n and the current branch
explores an outcome where ♢∼α1 is not yet fulfilled in n. Therefore, these non-monotonic
eventualities need to be fulfilled in n′′ ≥ n + 1.

Before applying the transition rule, we need to add a set of checks to prevent branches
from expanding indefinitely. These checks are called loop and prune rules. These rules,
together with the transition rule, are called dynamic rules.

Let B := (⟨x0, x1, x2, . . . , v⟩, ⋎ B , minB) be a branch where v is a state-labelled node
n : (Γv, unev). Let u be the last state-labelled node n − 1 : (Γu, uneu) that comes before v in
the branch B. Before applying the transition rule on v, we check for these rules:

[Loop] Let v be a state-labelled node such that it has at least one sentence of the form
⃝□αbool in Γv but has no ⃝αbool, ⃝♢β, ⃝♢∼β in Γv and unev = ∅. If for all ⃝□αbool in Γv,
there exists u < s ≤ v such that □αbool ∈ Γs, then the branch B is ticked (✓).

Notice that once an eventuality is fulfilled, it does not appear any longer in the successors
of the node. In this case, we say that the sentence is consumed. On the other hand, sentences
of the form □αbool never get consumed and get replicated indefinitely. Once a branch has
no eventuality left, □αbool sentences give rise to an infinite tableau with repetitive nodes.
Nevertheless, we can represent this by looping nodes of the last temporal state. We can, in
this case, stop the branch from ever going infinite. The loop rule states that when the leaf
state node v has no eventualities (classical or non-monotonic), has only ⃝□αbool as sentences
with the pattern ⃝, and each ⃝□αbool is a result from applying the □ rule to a node in B

with label n, the branch is ticked and marked as a successful branch.

[Prune] Let u < v be two consecutive state-labelled nodes s.t. Γv = Γu and unev = uneu

and that there is at least one eventuality in xu (either ⃝♢β ∈ Γu or (n′,♢∼β) ∈ uneu),
then the branch is crossed (✗).

The prune rule states that when the last two state nodes u and v have the same set of
classical and non-monotonic eventualities that need to be fulfilled, and there is at least one
eventuality in u, the branch is then crossed and marked as an unsuccessful branch. Any
branch that does not fulfill at least one eventuality between the current and the last temporal
state is closed, to prioritize the exploration of branches that fulfill one or more eventuality of
the last temporal state. If neither prune or loop apply on v, we apply the transition rule
on the node v. Note that the loop and prune rules are fundamentally different from the
ones proposed in Reynolds’ tableau [14]. These rules are tailored to the restrictions of the
fragment L1, in particular, the restriction of not allowing temporal sentences inside the □
operator. We argue in this paper that when eventualities (either classical or non-monotonic)
are not infinitely replicated inside globally operators, we only need to check the current state
node with the last one that comes beforehand. It is the reason why we also omit also the
operator U , since the right part of a U-sentence can also replicate eventualities.

Once we are in a state-labelled node, we check for the loop and prune within the branch
before applying the transition rule. If the transition rule is applied on a state node with a
label n, we obtain a new node with the label n + 1. We can then expand the tree from this
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node by applying static rules until we find ticked branches (thanks to the empty rule), closed
branches (thanks to the contradiction or ⋎ -inconsistency rules), or branches with a state
node that has the label n + 1. We then repeat the cycle between static and dynamic rules.
We can see that the tableau method does not go indefinitely. Thanks to prune rule, we close
any branch (✗) that does not fulfill any eventuality in the current temporal state. Anytime
we apply a transition rule (from n to n + 1), we need to fulfill at least one eventuality in n.
Therefore, as long as a branch is not closed with prune rule, eventuality sentences (either
classical or non-monotonic) get consumed one by one over the execution of the method. Thus
any branch that is not closed with prune has no eventualities left to fulfill. Note that if a
branch contains at least one sentence of the form □αbool, it is then ticked thanks to the loop
rule (□αbool sentences do not get consumed). Otherwise, it is ticked thanks to the empty
rule. Therefore any tableau T for a sentence in L1 is a saturated tableau.

4 Soundness and completeness

4.1 Soundness
Here we prove that the tableau method is sound, that is, when a tableau T of a sentence α ∈
L1 has a successful branch, then α is satisfiable. As a first step, we show that we can extract
an interpretation I ∈ I from the successful branch. Let B := (⟨x0, x1, x2, . . . , xn, (✓)⟩, ⋎ B

, minB) be a successful branch of a tableau T for α, the sequence of nodes contains normal
and state-labelled nodes. Each state-labelled node, denoted by xji , within this sequence has
a distinct label i. Figure 1 shows an example of the branch B.

xj0

0

. . . xj1

1

. . . xj2

2

. . .x0 x1 . . .
B :

xjk−1

k − 1

. . . xjk

k

Figure 1 Illustration of the branch B.

From the aforementioned branch B, we can build an interpretation IB = (V, ⋎ ). In this
section, k denotes the label of the last state node. The function V is defined as follows:

V (i) :=
{

{p ∈ P | p ∈ Γxji
}, if 0 ≤ i ≤ k;

V (k), otherwise.

The ordering relation ⋎ is defined as follows ⋎ := {(n, n′) | (n, n′) ∈ ⋎ B}. We can see that
⋎ is irreflexive, since there is no (n, n) ∈ ⋎ B. The relation ⋎ is also transitive, since for all
(n1, n2) and (n2, n3) in ⋎ B, there is no (n3, n1) ∈ ⋎ B. Finally, since ⋎ B has no infinitely
descending chains, then we can conclude that ⋎ preserves the well-foundness condition over
N. Therefore the interpretation IB ∈ I.

With the model construction introduced, we can move on to the second part of the proof
of soundness. We need to show that the model I satisfies the sentence α. In order to do so,
we introduce a mapping function, denoted by ∆B , that links each time point i ∈ N to a set
of sentences that are true in said i. These sentences come from the branch B. Depending on
how the branch is ticked, the function ∆B is defined in the following way.

If the branch was ticked with the empty rule:

∆B(i) :=


⋃

x0≤x≤xj0
Γx, if i = 0;⋃

xji−1 <x≤xji
Γx, if 1 ≤ i ≤ k − 1;

{}, otherwise.

TIME 2021
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If the branch was ticked with the loop rule:

∆B(i) :=


⋃

x0≤x≤xj0
Γx, if i = 0;⋃

xji−1 <x≤xji
Γx, if 1 ≤ i ≤ k;

∆B(k), otherwise.

For a time point 0 ≤ i ≤ k, ∆B(i) contains the set of all sentences in Γ of the node
between the two consecutive state nodes xji−1 and xji , xji−1 not included. If B is ticked
thanks to the empty rule, then ∆B(i) is empty for all i ≥ k. If B is ticked thanks to the
loop rule, then ∆B(i) has the same set of sentences as ∆B(k) for all i ≥ k. We can show
next that if a sentence α1 is in ∆B(i), then IB , i |= α1. In what follows, let B be a successful
branch of a tableau T , let k be the label of the last state node in B, and let IB , ∆B be the
interpretation and the mapping function of sentences extracted from B.

▶ Lemma 11. Let B be a successful branch, and i ∈ N. If ⃝α1 ∈ ∆B(i), then α1 ∈ ∆B(i+1).

▶ Lemma 12. Let B be a successful branch, and i ∈ N. If □α1 ∈ ∆B(i), then for all f ≥ i,
we have {α1,□α1, ⃝□α1} ⊆ ∆B(f).

▶ Lemma 13. Let B be a successful branch, and i ∈ N. If ♢α1 ∈ ∆B(i), then there exists
d ≥ i s.t. α1 ∈ ∆B(d) and for all i ≤ f < d, we have {♢α1, ⃝♢α1} ⊆ ∆B(f).

Lemma 11 to 13 are analogous to Reynolds’ method [14]. Their proof are in Appendix A.

▶ Proposition 14. Let B be a successful branch. If (i, i′) ∈ minB, then there is no i ≤ i′′

where (i′′, i′) ∈ ⋎ B.

Proof. Let B be a successful branch s.t. (i, i′) ∈ minB . Since the branch is successful, then
it is not closed with ⋎ -inconsistency and therefore there is no i ≤ i′′ where (i′′, i′) ∈ ⋎ B . ◀

▶ Lemma 15. Let B be a successful branch and 0 ≤ i ≤ k. If ♢∼α1 ∈ ∆B(i), then there exists
d ≥ i s.t. (i, d) ∈ minB and α1 ∈ ∆B(d).

Proof. Let B be a ticked branch of the tableau, k be the label of the last state node and
i ∈ N. We discuss two possibilities:

When the branch B is ticked with empty rule, whenever ♢∼α1 ∈ ∆B(i), then we have
0 ≤ i ≤ k − 1. Since ♢∼α1 ∈ ∆B(i), then ♢∼α1 ∈ Γx where xji−1 < x ≤ xji

. Let x be
the node where we apply the rule (♢∼) on ♢∼α1, then we either have α1 in Γ of the next
node with (i, i) ∈ minB or we have (i,♢∼α1) ∈ une of the next node. If α1 is in Γ of
the next node, then the lemma holds. If (i,♢∼α1) ∈ une of the next node, then we find
(i,♢∼α1) ∈ unexji

. Thanks to the transition rule, we have (i,♢∼α1) ∈ unexji+1 . By applying
the rule une on a node with the label i + 1,then we either have α1 in Γ of the next node
with (i, i + 1) ∈ minB or we have (i,♢∼α1) ∈ une (the two remaining branches) of the
next node. In a similar way as in i, we can conclude that either α1 ∈ ∆B(i + 1) with
(i, i + 1) ∈ minB (the lemma holds) or (i,♢∼α1) ∈ unexji+1

. Without loss of generality,
(i,♢∼α1) is in unexjf

for i ≤ f ≤ k − 1 unless we find i ≤ d ≤ f with α1 ∈ ∆B(d)
and (i, d) ∈ minB. Since the branch is closed thanks to the empty rule, it means that
(i,♢∼α1) ̸∈ unexjk−1

. Therefore, there is a state i ≤ d ≤ k − 1 where α1 ∈ ∆B(d) with
(i, d) ∈ minB .
When the branch B is ticked with loop rule, the proof is analogous to the case of the
empty rule (notice that we also have (i,♢∼α1) ̸∈ unexjk

). ◀
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▶ Theorem 16. Let B be a ticked branch from a saturated tableau, and IB = (V, ⋎ ) be the
model built from the branch B. For all α ∈ L1, for all i ≥ 0, if α ∈ ∆B(i) then IB , i |= α.

Proof. We prove this lemma using structural induction on the size of the sentence α. Let B

be a successful branch for a tableau T , and IB = (V, ⋎ ) be the model built from B.
α = p. Let p ∈ ∆B(i). By construction of the model IB, we have p ∈ V (i). Therefore,
we have IB , i |= p.
α = ¬p. Let ¬p ∈ ∆B(i). Since B is a ticked branch, then it was not closed with the
contradiction rule, therefore we have p ̸∈ V (i). Therefore, we have IB , i |= ¬p.
α = α1 ∧ α2. Let α1 ∧ α2 ∈ ∆B(i). By ∧-rule, we have α1, α2 ∈ ∆B(i). By induction
hypothesis on α1, α2, we have IB , i |= α1 and IB , i |= α2. Thus, we have IB , i |= α1 ∧ α2.
α = α1 ∨ α2. Let α1 ∨ α2 ∈ ∆B(i). By ∨-rule, we either have α1 or α2 in ∆B(i). Suppose
that α1 ∈ ∆B(i), by induction hypothesis on α1, we have IB , i |= α1. Therefore, we have
IB , i |= α1 ∨ α2. Same reasoning applies when α2 ∈ ∆B(i).
α = ⃝α1. Let ⃝α1 ∈ ∆B(i). Thanks to Lemma 11, we have α1 ∈ ∆B(i+1). By induction
hypothesis on α1, we have IB , i + 1 |= α1. Therefore, we have IB , i |= ⃝α1.
α = □α1. Let □α1 ∈ ∆B(i). Thanks to Lemma 12, we have α1 ∈ ∆B(f) for all f ≥ i.
By induction hypothesis on α1, we have IB , f |= α1 for all f ≥ i. Therefore, we have
IB , i |= □α1.
α = ♢α1. Let ♢α1 ∈ ∆B(i). Thanks to Lemma 13, we have α1 ∈ ∆B(d) for some d ≥ i.
By induction hypothesis on α1, we have IB , d |= α1. Therefore, we have IB , i |= ♢α1.
α = ♢∼α1. Let ♢∼α1 ∈ ∆B(i). Depending on where i is, we have two cases:

In the case of i > k, since ♢∼α1 ∈ ∆B(i), then we have ♢∼α1 ∈ ∆B(k). Furthermore,
since the branch is ticked with loop rule, we know that (i,♢∼α1) ̸∈ unexjk

. Therefore
α1 ∈ ∆B(k), thus α1 ∈ ∆B(i). Furthermore, since ⋎ := ⋎ B , and there is no f ≥ i such
(f, i) ∈ ⋎ B , then i ∈ min ⋎ (i), and therefore, IB , i |= ♢∼α1.
0 ≤ i ≤ k. Thanks to Lemma 15, there exists d ≥ i s.t. α1 ∈ ∆B(d) and (i, d) ∈ minB .
By induction hypothesis on α1, we have IB , d |= α1. Thanks to Proposition 14, there
is no i ≤ f ≤ k where (f, d) ∈ ⋎ B and therefore there is no i ≤ f ≤ k where (f, d) ∈ ⋎ .
Furthermore, by the construction of the model IB , there is no f ≥ k where (f, d) ∈ ⋎ .
Therefore, we have d ∈ min ⋎ (i). Thus, we have IB , i |= ♢∼α1. ◀

Let α ∈ L1, B be a ticked branch from a saturated tableau for α, IB = (V, ⋎ ) be a model
built from B. Since we have α ∈ ∆B(0), then we have IB , 0 |= α.

4.2 Completeness
We conclude this paper by proving the completeness of the tableau method for sentences
in L1 i.e., if a sentence α is satisfiable, then any tableau for α has a successful branch, no
matter the order of applying the rules. We use a model I for α to find a ticked node.

▶ Theorem 17. Let α ∈ L1 be a satisfiable sentence of LTL˜ . Then any tableau for α has
a successful branch.

The idea behind this proof is to have an intermediate sequence s that serves as a link
between an interpretation I that satisfies the sentence α and a tableau T for α. The sequence
s is a tuple s := (⟨x0, x1, x2, . . . ⟩, ⋎ s, mins) where each xi is a pair (Γ, une), ⋎ s, mins are
the set of constraints that the sequence s must follow in order to be coherent with ⋎ of
the interpretation. The set ⋎ s is not an ordering relation, it records instances of points of
time not being minimal to other points of time w.r.t. the ordering relation ⋎ . Remember
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that each when we apply the une rule, we add a pair (n′, n) to ⋎ in order to symbolize the
outcome of n not being minimal to n′. The set of mins records the instances of points of
points of time being minimal to other points of time w.r.t. the ordering relation ⋎ .

We link each node of the sequence xi to a time point J(xi) of the interpretation I and a
labelled node f(xi) of the tableau T . Depending on I, we can build the sequence s using the
tableau, we then show the sequence s ends up with a tick (✓). We make sure that for each
node xi with the index time point J(xi) of the sequence, we have the following invariant:

Inv(xi, J(xi))



For each α ∈ Γxi
, we have I, J(xi) |= α;

For each (J1,♢∼α1) ∈ unexi
, there exists J2 ≥ J(xi) where

J2 ∈ min ⋎ (J1) and I, J2 |= α1;

For each (J1, J2) ∈ mins, we have J2 ∈ min ⋎ (J1);

For each (J1, J2) ∈ ⋎ s, there exists J3 ≥ J1 s.t. (J3, J2) ∈ ⋎
(in other words J2 ̸∈ min ⋎ (J1)).

We start by putting the root node 0 : ({α}, ∅) with the index time point J(x0) := 0 at the
start of the sequence. For the first node x0 with the index time point 0 (since there is no rule
applied before the root node, the sets mins and ⋎ s are empty at the start), we have I, 0 |= α.
Therefore the invariant Inv(x0, 0) holds. Suppose that the invariant holds up to xi, and a
rule was applied to xi, we then add a new node xi+1 to the sequence depending on which
outcome of the rule represents the interpretation I. We then move to the outcome node in
the tableau, and see which rule is applied to it, and so on and so forth. Each time we add a
new node xi+1 to the sequence s, we need to make sure that the invariant Inv(xi+1, J(xi+1))
holds. In general, the sequence will head from the parent node to a child node but it might
occasionally jump backwards (only in the case of the parent being a prune node, more on
that later). It is worth to point out that since we might be jumping back and forth between
nodes of T , each time we are add a new node xi+1 to the sequence s, we are going to rename
labels within the sets unex, ⋎ B and minB by their respective indexed time points J . The
function f links each node xi of the sequence s to a labelled node f(xi) of the tableau T .
It is worth to mention that, since we are only renaming labels of other sets, then we have
Γxi

= Γf(xi). In Appendix B, we discuss the case of each rule that is applied to xi.

5 Conclusion

We introduced the basis for a tableau method for LTL˜. We showed how preferential
semantics work in a one-pass tree-shaped tableau. We also established semantic rules for the
♢∼ operator. We showed how to handle non-monotonic eventualities using une, ⋎ B and minB .
In the end, we proved that our method is sound and complete. The loop/prune checkers
proposed in this paper are specific to L1, and work well under these restrictions.

With the foundation laid in this work, the next step is to establish semantic rules for
the □∼ operator. The next fragment of LTL˜ that we are investigating is the sub-language
that allows only Boolean sentences within □ and □∼. We conjecture that the satisfiability of
this fragment is decidable and has an upper bound model property similar to one that we
published in [6].
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A Soundness proof

▶ Lemma 11. Let B be a successful branch, and i ∈ N. If ⃝α1 ∈ ∆B(i), then α1 ∈ ∆B(i+1).

Proof. Let B be a ticked branch of the tableau, k be the label of the last node and i ∈ N.
We discuss two possibilities:

When the branch B is ticked with empty rule. We can see that when i ≥ k, ∆B(i) = {}
and therefore ⃝α1 ̸∈ ∆B(i). We also know that since ∆B(k) = {}, then there is no
⃝α1 ∈ Γxjk−1

. Furthermore, there is no static rule that removes ⃝α1, we can conclude
that there is no ⃝α1 ∈ ∆B(k − 1).
Otherwise, in the case of 0 ≤ i < k − 1, if ⃝α1 ∈ ∆B(i), then ⃝α1 ∈ Γx where
xji−1 < x ≤ xji

. Since there is no static rule that removes ⃝α1, we have ⃝α1 ∈ Γxji
.

Furthermore, after applying the transition rule on the node xji , we have α1 ∈ Γxji+1 .
Thus, we have α1 ∈ ∆B(i + 1).
When the branch B is ticked with loop rule. In the case of 0 ≤ i < k, the proof is analogous
to the case of empty rule. When i = k, if ⃝α1 ∈ ∆B(k), then ⃝α1 is subsequently in Γxjk

.
Since B is ticked with loop, then α1 is a sentence of the form □αbool and □αbool ∈ Γx

(xjk−1 < x ≤ xjk
) and therefore □αbool ∈ ∆B(k). Moreover, we have ∆B(k) = ∆B(k + 1).

Therefore, we have □αbool ∈ ∆B(k + 1) and thus α1 ∈ ∆B(k + 1).
In the case where i ≥ k. If ⃝α1 ∈ ∆B(i), then ⃝α1 ∈ ∆B(k − 1). As mentioned before,
since ⃝α1 ∈ ∆B(k − 1), then α1 is □α2 and □α2 ∈ ∆B(k − 1). Since □α2 ∈ ∆B(k − 1),
then □α2 ∈ ∆B(i + 1) and therefore α1 ∈ ∆B(i + 1). ◀

▶ Lemma 12. Let B be a successful branch, and i ∈ N. If □α1 ∈ ∆B(i), then for all f ≥ i,
we have {α1,□α1, ⃝□α1} ⊆ ∆B(f).

Proof. Let B be a ticked branch of the tableau, k be the label of the last node and i ∈ N.
For all 0 ≤ i ≤ k, whenever □α1 ∈ ∆B(i), then both α1 and ⃝□α1 is in ∆B(i). By

Lemma 11, since ⃝□α1 ∈ ∆B(i), then we have □α1 ∈ ∆B(i + 1). By successive applications
of Lemma 11, we have {α1,□α1, ⃝□α1} ⊆ ∆B(f) for all i ≤ f ≤ k. Note that in the case
of a branch ticked with empty rule, since ∆B(k) = {}, □α1 cannot be in any ∆B(i) where
0 ≤ i ≤ k. In other words, if a branch contains □α1, it can only be ticked with loop rule.

Since {α1,□α1, ⃝□α1} ⊆ ∆B(k), and for all f ≥ k, we have ∆B(f) = ∆B(k), then
{α1,□α1, ⃝□α1} ⊆ ∆B(f). Thus, the lemma holds when 0 ≤ i ≤ k.

In the case of i > k, since □α1 ∈ ∆B(i) and ∆B(i) = ∆B(k − 1). Thanks to □-rule,
{α1,□α1, ⃝□α1} ⊆ ∆B(k − 1). Thus, we have {α1,□α1, ⃝□α1} ⊆ ∆B(f) for all f ≥ k and
subsequently {α1,□α1, ⃝□α1} ⊆ ∆B(f) for all f ≥ i. ◀

▶ Lemma 13. Let B be a successful branch, and i ∈ N. If ♢α1 ∈ ∆B(i), then there exists
d ≥ i s.t. α1 ∈ ∆B(d) and for all i ≤ f < d, we have {♢α1, ⃝♢α1} ⊆ ∆B(f).

Proof. Let B be a ticked branch of the tableau, k be the label of the last node and i ∈ N.
We discuss two possibilities:

When the branch B is ticked with empty rule. In the case of 0 ≤ i ≤ k − 1, whenever
♢α1 ∈ ∆B(i), then either α1 is in ∆B(i) or ⃝♢α1 is in ∆B(i). If α1 ∈ ∆B(i), the lemma
holds. Otherwise, by Lemma 11, if ⃝♢α1 ∈ ∆B(i) then ♢α1 ∈ ∆B(i + 1). By successive
applications of Lemma 11, {♢α1, ⃝♢α1} is in ∆B(f) for i ≤ f ≤ k − 1, unless we find
i ≤ d ≤ f with α1 ∈ ∆B(d).
It remains to show that there is a time point d where α1 ∈ ∆B(d). Since the branch is
closed thanks to the empty rule, it means that ⃝♢α1 ̸∈ ∆B(k − 1). Therefore, there is a
state i ≤ d ≤ k − 1 where α1 ∈ ∆B(d).
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When the branch B is ticked with loop rule and in the case of 0 ≤ i ≤ k, the proof
is analogous to the case of empty rule (notice that ⃝♢α1 ̸∈ ∆B(k) also in the case of
branches ticked with loop).
In the case of i > k, since ♢α1 ∈ ∆B(i), then we have ♢α1 ∈ ∆B(k − 1). Furthermore,
since the branch is ticked with loop rule, we know that ⃝♢α1 ̸∈ ∆B(k). Therefore
α1 ∈ ∆B(k), thus α1 ∈ ∆B(i). ◀

B Completeness proof

Proof. In this section, suppose that we build the sequence s up to xi and the invariant holds
for all the nodes in the sequence.

[Empty, Loop]: If we end up with a ticked node in the sequence s, the theorem holds.
[Contradiction]: If the sequence s is closed, then we have p and ¬p in Γxi

. Since we
have Inv(xi, J(xi)), then we I, J(xi) |= p and I, J(xi) |= ¬p. This cannot happen in a
interpretation I ∈ I.

[∧]: Suppose that the rule ∧ is applied to the sentence α1 ∧ α2 on the node f(xi)
of the tableau T . Let y be the child node of the node f(xi) in the branch. We have
Γy = (Γf(xi) \ {α1 ∧ α2}) ∪ {α1, α2}. We define the next node in the sequence xi+1 with
Γxi+1 = Γy, unexi+1 = unexi , and the sets mins, ⋎ s remain unchanged. Since we have
Inv(xi, J(xi)) and α1 ∧ α2 ∈ Γxi

, then I, J(xi) |= α1 and I, J(xi) |= α2. For the node xi+1,
we have Γxi+1 = (Γxi \ {α1 ∧ α2}) ∪ {α1, α2} and unexi+1 = unexi . Therefore the first and
second conditions of Inv(xi+1, J(xi)) are met. Moreover, since mins, ⋎ s remain unchanged
and we have Inv(xi, J(xi)), then the third and forth conditions of Inv(xi+1, J(xi)) are met.
Consider that J(xi+1) = J(xi), the invariant Inv(xi+1, J(xi)) holds.

We can see that by applying a static rule of the from (∧, ∨,□,♢) on the node f(xi), we do
not add in either une, ⋎ B or minB while applying these rules nor add a new non-monotonic
eventuality to be fulfilled in the outcome nodes. In order to lighten the proof, we skip the
check for the second, third and fourth conditions of Inv up until ♢∼ and une rules.

[∨]: Suppose that the rule ∨ is applied to the sentence α1 ∨ α2 on the node f(xi) of
the tableau T . We obtain two children nodes y and z of f(xi). We have Γy = (Γf(xi) \
{α1 ∨ α2}) ∪ {α1} and Γz = (Γf(xi) \ {α1 ∨ α2}) ∪ {α2}. Since we have Inv(xi, J(xi)),
and α1 ∨ α2 ∈ Γxi , then we either have I, J(xi) |= α1 or I, J(xi) |= α2. Consider that
J(xi+1) = J(xi), we discuss two cases:

Case 1: If I, J(xi) |= α1, then we define the next node xi+1 with Γxi+1 = Γy and
unexi+1 = unexi

. We know that Γxi+1 = (Γxi
\ {α1 ∨ α2}) ∪ {α1}. Therefore for all

γ ∈ Γxi+1 , we have I, J(xi) |= γ. Thus, the invariant Inv(xi+1, J(xi)) holds.
Case 2: Otherwise, when I, J(xi) |= α2, then we define the node xi+1 with Γxi+1 = Γz

and unexi+1 = unexi . We know that Γxi+1 = (Γxi \ {α1 ∨ α2}) ∪ {α2}. Therefore for all
γ ∈ Γxi+1 , we have I, J(xi) |= γ. Thus, the invariant Inv(xi+1, J(xi)) holds.

[♢]: Suppose that the rule ♢ is applied to the sentence ♢α1 on the node f(xi) of the tableau
T . We obtain two children nodes y and z of f(xi). We have Γy = (Γf(xi) \ {♢α1}) ∪ {α1}
and Γz = (Γf(xi) \ {♢α1}) ∪ {⃝♢α1}. Since we have Inv(xi, J(xi)), and I, J(xi) |= ♢α1, then
we have I, J(xi) |= α1 ∨ ⃝♢α1. Therefore, we either have I, J(xi) |= α1 or I, J(xi) |= ⃝♢α1.
Consider that J(xi+1) = J(xi), we discuss two cases:

Case 1: If I, J(xi) |= α1, then we define the next node xi+1 with Γxi+1 = Γy and
unexi+1 = unexi . We know that Γxi+1 = (Γxi \{♢α1})∪{α1}. Therefore for all γ ∈ Γxi+1 ,
we have I, J(xi) |= γ. Thus, the invariant Inv(xi+1, J(xi)) holds.
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Case 2: When I, J(xi) |= ⃝♢α1, then we define the next node xi+1 with Γxi+1 = Γz

and unexi+1 = unexi
. We know that Γxi+1 = (Γxi

\ {♢α1}) ∪ {⃝♢α1}. Therefore for all
γ ∈ Γxi+1 , we have I, J(xi) |= γ. Thus, the invariant Inv(xi+1, J(xi)) holds.

[□]: Suppose that the rule □ is applied to the sentence □α1 on the node f(xi) of the
tableau T . Let y be the child node of the node f(xi) in the branch. We have Γy = (Γf(xi) \
{□α1}) ∪ {α1, ⃝□α1}. We define the next node xi+1 with Γxi+1 = Γy and unexi+1 = unexi

and I, J(xi) |= □α1, then we have I, J(xi) |= α1 ∧ ⃝□α1. Therefore, we have I, J(xi) |= α1
and I, J(xi) |= ⃝□α1. We know that Γxi+1 = (Γxi

\ {□α1}) ∪ {α1, ⃝□α1}. Therefore
for all γ ∈ Γxi+1 , we have I, J(xi) |= γ. Consider that J(xi+1) = J(xi), the invariant
Inv(xi+1, J(xi)) holds.

[♢∼]: When the rule [♢∼] is applied to ♢∼α1 on the node f(xi) of T , we explore two outcomes.
Let n be the label of the node f(xi) in the branch. In the first outcome, we have a child y

with Γy = (Γf(xi) \ {♢∼α1}) ∪ {α1} and (n, n) in min of the branch. In the second outcome,
we have a child node z with Γz = (Γf(xi) \ {♢∼α1}) and unez = unef(xi) ∪ (n,♢∼α1). Since
we have Inv(xi, J(xi)), and ♢∼α1 ∈ Γxi

, then we have I, J(xi) |= ♢∼α1. It means that there
exists J1 ≥ J(xi) s.t. J1 ∈ min ⋎ (J(xi)) and I, J1 |= α1. Consider that J(xi+1) = J(xi), we
discuss two cases:

Case 1: If J1 = J(xi), then we have I, J(xi) |= α1 and J(xi) ∈ min ⋎ (J(xi)). We then
define the next node xi+1 of the sequence with Γxi+1 = Γy, unexi+1 = unexi and add the
pair (J(xi), J(xi)) to mins. Notice that we swap the labels of nodes with the position of
their indexed time point J(xi), we will be using indexed time point J instead of labels
throughout this proof. We know that Γxi+1 = (Γxi

\ {♢∼α1}) ∪ {α1} with I, J(xi) |= α1.
Additionally, we have mins := mins ∪ {(J(xi), J(xi))} with J(xi) ∈ min ⋎ (J(xi)). The
sets unexi+1 , ⋎ s remains unchanged. Therefore, the invariant Inv(xi+1, J(xi)) holds.
Case 2: when J1 > J(xi), then we define the next node xi+1 of the sequence with
Γxi+1 = Γz, unexi+1 = unexi ∪ {(J(xi),♢∼α1)}. We also know that J1 > J(xi) and
J1 ∈ min ⋎ (J(xi)) and I, J1 |= α1. Therefore, the second condition of Inv(xi+1, J(xi))
holds on the pair (J(xi),♢∼α1). The sets mins and ⋎ s remain unchanged. The invariant
Inv(xi+1, J(xi)) holds.

[une]: When the rule [une] is applied on a pair (n1,♢∼α1) in une of f(xi). Let n be the
label of the node f(xi). Let x be the predecessor of xi in s where the rule [♢∼] was applied on
♢∼α1, let J(x) be the indexed time point of x. Note that the label of f(x) is n1. In the first
outcome, we have a child y where Γy = Γf(xi) ∪ {α1}, uney = unef(xi) \ {(n1,♢∼α1)} and
(n1, n) in min of the branch. In the second outcome, we have a child z where Γz = Γf(xi),
unez = unef(xi) and (n1, n) in min of the branch. In the third outcome, we have a child v

where Γv = Γf(xi), unev = unef(xi) and (n1, n) in ⋎ of the branch.
On the other hand, since x is a predecessor of xi in s, then we have Inv(x, J(x)).

Furthermore, since we have (n1,♢∼α1) ∈ unef(xi), it means that when the rule [♢∼] is applied
on the node f(x), the branch where (n1,♢∼α1) ∈ unef(x+1) is the path that corresponds with
the interpretation I. By [♢∼] rule, since we have Inv(x + 1, J(x + 1)), (n1,♢∼α1) ∈ unef(x+1)
and we know that J(x + 1) = J(x), then we have (J(x),♢∼α1) ∈ unex+1. Furthermore, since
no rule application consumed (n1,♢∼α1) up to f(xi), then the pair (J(x),♢∼α1) remains also
in unexi

. Also, we have Inv(xi, J(xi)), then there is J ′ ≥ J(xi) where J ′ ∈ min ⋎ (J(x)) and
I, J ′ |= α1. Consider that J(xi+1) = J(xi), we discuss all possibilities below:

Case 1: If J ′ = J(xi), then we have J(xi) ∈ min ⋎ (J(x)) and I, J(xi) |= α1. We
define the next node xi+1 with Γxi+1 = Γy, unexi+1 = unexi \ {(J(x),♢∼α1)} and add
(J(x), J(xi)) to mins. We have Γxi+1 = Γxi

∪ {α1} with I, J(xi) |= α1. Additionally, we
have (J(x), J(xi)) ∈ mins with J(xi) ∈ min ⋎ (J(x)). The set ⋎ s remains unchanged.
Thus, the invariant Inv(xi+1, J(xi)) holds.
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Case 2: when J ′ > J(xi), we have two possibilities:
Case 2.1: If J(xi) ∈ min ⋎ (J(x)), then we define the next node xi+1 with Γxi+1 = Γz,
unexi+1 = unexi

and add (J(x), J(xi)) to mins. We have (J(x), J(xi)) ∈ mins with
J(xi) ∈ min ⋎ (J(x)). The sets Γxi+1 , unexi+1 and ⋎ s remain unchanged. Thus, the
invariant Inv(xi+1, J(xi)) holds.
Case 2.2: If J(xi) ̸∈ min ⋎ (n1), then there exists J ′′ ≥ J(x) s.t. (J ′′, J(xi)) ∈ ⋎ . We
define the next node xi+1 with Γxi+1 = Γv, unexi+1 = unexi and add (J(x), J(xi)) to
⋎ s. We have (J(x), J(xi)) ∈ ⋎ s with J(xi) ̸∈ min ⋎ (n1). The sets Γxi+1 , unexi+1 and
mins remain unchanged. Thus, the invariant Inv(xi+1, J(xi)) holds.

[Transition]: Suppose that the transition rule is applied on the state node f(xi). Let
y be the child node of the node xi in the branch. We have Γy = {α1 | ⃝α1 ∈ Γf(xi)} and
uney = unef(xi). We define the next node xi+1 in s with Γxi+1 = Γy and unexi+1 = unexi

.
We consider that J(xi+1) = J(xi) + 1.

Since we have Inv(xi, J(xi)), then for all ⃝α1 ∈ Γxi
, we have I, J(xi) |= ⃝α1 and

therefore I, J(xi) + 1 |= α1. The first condition of the invariant Inv(xi+1, J(xi) + 1) is met.
Secondly, since xi is a state node, then for each remaining (n1,♢∼α1) ∈ unef(xi), either the

rule [♢∼] or [une] was applied to a node f(x′
i) with the index J(x′

i) = J(xi) and (n1,♢∼α1) was
carried over to f(xi). In both rules, for each (n1,♢∼α1) ∈ unef(xi), we have (J(x1),♢∼α1) ∈
unexi

s.t. f(x1) is the node where the rule [♢∼] was applied to ♢∼α1 (see Case 2 for [♢∼] and
[une] rules). Furthermore, since we have Inv(xi, J(xi)) and f(xi) is a state node, then for
each (J(x1),♢∼α1) ∈ unexi , there exists J2 > J(xi) where J2 ∈ min ⋎ (J(x1)) and I, J2 |= α1.
Without loss of generality, there exists J2 ≥ J(xi)+1 where J2 ∈ min ⋎ (J(x1)) and I, J2 |= α1.
The second condition of the invariant Inv(xi+1, J(xi) + 1) is met. Since mins and ⋎ s remain
unchanged, the invariant Inv(xi+1, J(xi) + 1) holds.

[ ⋎ -inconsistency]: Suppose that the ⋎ -inconsistency rise on the node f(xi), and let n

be the label of the f(xi) on the branch B. If this inconsistency rises, we have (n1, n) in minB

and (n2, n) in ⋎ B where n1 ≤ n2 ≤ n. These two pairs come from applying [♢∼] or [une] rule
on two predecessors f(x), f(x′) of f(xi) with the same label n and the same indexed time
point J(x) = J(x′) = J(xi).

Let J1 be the time point corresponding to the node f(x1) with the label n1, and let
J2 be the time point corresponding to the node f(x2) with the label n2. It is worth to
mention that J1 ≤ J2 ≤ J(xi). Since x, x′ are predecessors of x, we have Inv(x, J(x)),
Inv(x′, J(x′)) and Inv(xi, J(xi)). Therefore, we the rules are applied on x and x′, we end
up with (J1, J(xi)) ∈ mins and (J2, J(xi)) ∈ ⋎ s. Since (J1, J(xi)) ∈ mins, then we have
J(xi) ∈ min ⋎ (J1). On the other hand, since (J2, J(xi)) ∈ ⋎ s, then there exists J3 ≥ J2
s.t. (J3, J(xi)) ∈ ⋎ . Moreover, we have J1 ≤ J2, this entails that there exists J3 ≥ J1 s.t.
(J3, J(xi)) ∈ ⋎ . This contradicts Definition 4 of minimality w.r.t. to the relation ⋎ . Therefore
this cannot happen in a interpretation I ∈ I.

[Prune]: Let f(xi) be a state node where the prune condition is met. There is a sequence
within s that goes the following way, xh = u, xh+1, xh+2, . . . , v = xi. The node u or xh is
the state node that comes before xi and the node v is the current state node. Since v is a
prune node, we have Γv = Γu and uneu = unev. We can see that if we apply the transition
rule to the node xi, we will have Γxi+1 = Γxh+1 and unexi+1 = unexh+1 . Therefore, we can
proceed with the construction of s as if xi was linked to f(u) instead of f(v). Thanks to the
transition, since we have Inv(xu, J(xu)), then we have Inv(xi+1, J(xi) + 1).

Each time we find a pair (u, v) in the sequence s, we call it a jump. These jumps may
occur once or many times (and it may go infinite) in s. In a sequence s, if a pair (u, v) jumps
repeatedly in succession, we call the pair a recurring jump. It is worth to point out that,

TIME 2021



16:18 A One-Pass Tree-Shaped Tableau for Defeasible LT L

each time we jump backwards because of a node closed with prune, we return to the state
labelled node that comes before. In general, the sequence s explores one branch B of T , and
it deviates sometime to a prune node and goes back to B. Furthermore, since no eventuality
is fulfilled within a prune loop, eventualities and their fulfillment are in the same branch B.

What we showed so far is that for an interpretation I and its corresponding sequence s,
we have Inv(xi, J(xi)) for each i ≥ 0. Going back to the start of the proof, we need to prove
that the sequence finishes with a ticked node (such is the case when we end up in [loop] or
[empty] node). We can see that if the sequence s is on a [prune] node, we jump back to the
state node that comes before it. Theoretically, this jump can recur infinitely many times.
This means that sequence goes infinite on this case (and never find a ticked node). We need
to prove that this case cannot happen in the sequence s of I. Suppose that is the case, that
means the last jump (uk, vk) in the sequence s is a recurring jump that goes infinitely many
times. The jumps (uj , vj) that come before may recur many times but not infinitely many
times (otherwise, (uk, vk) would not be the last jump). In the recurring jump (uk, vk), no
eventuality is fulfilled (whether it is classical or non-monotonic). This entails that when we
are in a parent node uk < xl < vk that applies either [♢] or [une] rule, we move to the child
node that delays the propagation of the eventuality (we are in Case 2 for both rules).

It is worth to point out that we have at least one eventuality in uk. Let us take ⃝♢α1 ∈ Γuk

for example, since we have Inv(uk, J(uk)), that means that I, J(uk) |= ⃝♢α1. Thus, we take
the first time point Jα1 > J(uk) s.t. I, Jα1 |= α1. We also have I, Jα1 |= ♢α1. On the other
hand, for all J(uk) < J < Jα1 , we have I, J |= ♢α1 I, J |= ⃝♢α1. In other words, each time
we encounter ♢α1 ∈ Γxl−1 within our jumps (keep in mind we have Inv(xl−1, J)), we pick
the node in Case 2 of the [♢] rule i.e., ⃝♢α1 ∈ Γxl

. However, in the node indexed with Jα1 ,
when we encounter ♢α1 ∈ Γxl′−1 (keep in mind we have Inv(xl′−1, Jα1)), we pick the node
in Case 1 of the [♢] rule i.e., α1 ∈ Γx′

l
. This raises a contradiction, because the node xl′ is

not present within the jump (uk, vk). Thus breaking the infinite recurring jump (uk, vk).
If the eventuality is a non-monotonic one, namely (J1,♢∼α1) ∈ uneuk

. Since we have
Inv(uk, J(uk)) with uk being a state node, there exists J ′ > J(uk) s.t. J ′ ∈ min ⋎ (J1)
and I, J ′ |= α1. Let Jα1 be the first time point that met these criteria. For all J(uk) <

J < Jα1 , each time we encounter (J1,♢∼α1) ∈ unexl−1 with the index J , we have Jα1 > J ,
Jα1 ∈ min ⋎ (J1) and I, Jα1 |= α1. Therefore, we pick Case 2 of [une] rule i.e., (J1,♢∼α1) ∈
unexl

. However, when we encounter (J1,♢∼α1) ∈ unexl′−1 with the index Jα1 , we have
Jα1 ∈ min ⋎ (J1) and I, Jα1 |= α1, then we pick the node in Case 1 of [une] rule i.e., α1 ∈ xl′ .
This raises a contradiction, because the node xl′ is not present within the jump (uk, vk).

We proved that since I, 0 |= α, then the corresponding sequence s cannot finish on a
contradiction, ⋎ -inconsistency or a prune jump. Therefore it must finish with a ticked node.
Hence, the tableau T of α has a ticked node and therefore a successful branch. ◀
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