
11
2-Player Stochastic StopWatch Games

Sparsa Roychowdhury #

Indian Institute of Technology Bombay, Mumbai, India

Abstract
Stochastic timed games (STGs), introduced by Bouyer and Forejt, generalize continuous-time Markov
chains and timed automata. Depending on the number of players – 2, 1, or 0 – subclasses of stochastic
timed games are classified as 2 1

2 -player, 1 1
2 -player, and 1

2 -player games where the 1
2 symbolizes

the presence of the stochastic player. The qualitative and quantitative reachability problem for
STGs was studied in [10] and [1]. In this paper, we introduce stochastic stopwatch games (SSG),
an extension of (STG) from clocks to stopwatches. We focus on 1 1

2 -player SSGs and prove that
with two variables which can be either a clock or a stopwatch, qualitative reachability is decidable,
whereas, if we increase the number of variables to three, with at least one stopwatch, the problem
becomes undecidable.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models

Keywords and phrases Timed Automata, Stopwatches, Stochastic Timed Games

Digital Object Identifier 10.4230/LIPIcs.TIME.2021.17

Acknowledgements The author thanks Prof. Krishna S. of IIT Bombay, India for insightful
discussions, suggestions and encouragement towards this work. The open access publication of this
article was supported by the Alpen-Adria-Universität Klagenfurt, Austria.

1 Introduction

Two-player zero-sum games are well studied for controller synthesis of discrete event systems.
But, they are not sufficient to model real-time probabilistic systems. To model real-time
systems, one needs to capture the semantics of time. Timed automata [4] are a well-known
and extensively studied formalism widely used to model real timed systems. Timed automata
models time with a finite set of real valued variables known as clocks. The reachability
problem of timed automata is showed to be PSPACE-Complete using a special abstraction
known as region automata [4]. But, only clocks are not sufficient to model stochastic behaviors
of a system. In [7] probabilistic semantics were added in timed automata where choices of
time and transitions are randomized. The probabilistic notion was mostly used to solve the
“almost sure model checking” [8] of timed automata i.e., to check if a property is satisfied
with some certainty or not. Different formalisms like probabilistic timed automata [18],
continuous probabilistic timed automata [17], continuous timed Markov chains [6], and
stochastic timed automata [9] have been proposed that capture both of the real-time and
stochastic nature of the system. Timed games [5] are a natural extension of timed automata
to model interactive systems in a more robust manner. Stochastic timed games (STG in
short) was proposed in [10], which extends timed games with probabilities. Just like timed
games, the locations are partitioned among players but in STG there is a special player
known as the “environment”. A player can only process their move if she is in a location
that belongs to her. The player “environment” is different from other players in the sense
that it can choose delays and transitions stochastically based on a distribution. Hybrid
automata [3] is a powerful formalism that uses more generalized real valued variables to model
hybrid systems. Unlike clocks, the value of the variables in a hybrid automaton changes
depending on a function defined on the locations. These functions can be linear as well as
non-linear. But, most of the interesting problems of hybrid automata like reachability are

© Sparsa Roychowdhury;
licensed under Creative Commons License CC-BY 4.0

28th International Symposium on Temporal Representation and Reasoning (TIME 2021).
Editors: Carlo Combi, Johann Eder, and Mark Reynolds; Article No. 17; pp. 17:1–17:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sparsa@cse.iitb.ac.in
https://orcid.org/0000-0003-3583-7612
https://doi.org/10.4230/LIPIcs.TIME.2021.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 11
2 -Player Stochastic StopWatch Games

undecidable [14]. Hybrid automata have been studied extensively under different constraints
like time-bounded hybrid automata [12], initialized hybrid automata [20], singular hybrid
automata [16], etc. A hybrid automaton is linear if its constraints can be expressed as linear
expressions over the set of variables [2]. A stopwatch [13] is a real-valued variable that can
either track time like clocks or can choose to stay in the current value depending on the
current location. It is shown in [13] that a minor upgrade from timed automata to stopwatch
automata immediately yields the full expressive power of linear hybrid automata.

In case of stochastic systems reachability, one can associate a probability parameter p

with reachability query to ask, “is a state reachable from another state with probability
p?”. The parameter p is called threshold probability. Depending on the value of threshold
probability, we can have two different types of reachability queries,
Quantitative Reachability: When the constraint on the threshold is 0 < p < 1,
Qualitative Reachability: When the constraint on the threshold is p ∈ {0, 1}.
It is known that [10], the qualitative reachability problem is decidable for 1 1

2 -player stochastic
timed games with one clock, and quantitative reachability is undecidable for 2 1

2 -player
stochastic timed games with ≥ 3 clocks. These results were further refined in [1], where it
was shown that the qualitative reachability problem is undecidable for 1 1

2 -STGs with four or
more clocks, and the same problem is undecidable for 2 1

2 -STGs for three or more clocks.
Just as stopwatches generalizes clocks, we generalize stochastic timed games to stochastic

stopwatch games (SSG in short) by replacing clocks with stopwatches. We solve the qualitative
reachability problem on this extended model. Our focus in this paper is only on qualitative
reachability and 1 1

2 player games on SSG. We keep the case of two and a half player qualitative
reachability for future work. Our main results are,
(1) The qualitative reachability problem is EXPTIME-Complete for 1 1

2 player stochastic
stopwatch games with two stopwatches.

(2) The qualitative reachability problem for 1 1
2 player stochastic stopwatch games is

undecidable (Π0
1 hard) with three stopwatches.

Our results give a tight demarcation between decidability and undecidability in the case of
1 1

2 player SSGs.

2 Preliminaries

We use standard notations for the set of reals (R), rationals (Q), and natural numbers (N),
and add subscripts to indicate additional constraints (for instance R≥0 is for the set of
non-negative reals). Let X be a finite set of real-valued variables called clocks. A valuation
on X is a function ν : X → R≥0. We assume an arbitrary but fixed ordering on the clocks
and write xi for the clock with order i. This allows us to treat a valuation ν as a point
(ν(x1), ν(x2), . . . , ν(xn)) ∈ R|X |

≥0 . For a subset of clocks R ⊆ X and valuation ν ∈ R|X |, we
write ν[R] for the valuation where ν[R](x) = 0 if x ∈ R, and ν[R](x) = ν(x) otherwise. For
t ∈ R≥0, write ν + t for the valuation defined by ν(x) + t for all x ∈ X . The valuation
0 ∈ R|X | is a special valuation such that 0(x) = 0 for all x ∈ X . A constraint (or guard)
over X is a subset of R|X |

≥0 defined by a (finite) conjunction of constraints of the form x ▷◁ k,

where k ∈ N, x ∈ X , and ▷◁ ∈ {<, ≤, =, >, ≥}. We write rect(X) for the set of constraints
on X . For a constraint φ ∈ rect(X), and a valuation ν, we write ν |= φ to represent the fact
that valuation ν satisfies constraint φ (defined in a natural way).

▶ Definition 1 (Timed Automata [4]). A timed automaton is a tuple A = (Q, Q0, X , ∆, F)
where Q is a finite set of locations, Q0 ⊆ Q is a set of initial locations, X is a finite set
of clocks, F ⊆ Q is a set of accepting locations and ∆ is a set of transitions of the form
(l1, φ, R, l2) where, l1, l2 ∈ Q, R ⊆ X is known as the set of reset clocks, and φ ∈ rect(X).

S. Roychowdhury 17:3

A state s of timed automata is a pair s = (l, ν) ∈ (Q × R|X |
≥0) consists of a location and

valuation. A transition (t, e) from a state s = (l, ν) to a state s′ = (l′, ν′) is written as
s

t,e−−→ s′ if e = (l, φ, R, l′) ∈ ∆, such that ν + t |= φ, and ν′ = (ν + t)[R](x).
A run is a finite or infinite sequence of transitions ρ = s0

t1,e1−−−→ s1
t2,e2−−−→ s2 . . . of states

and transitions. An edge e is enabled from s whenever there is a state s′ such that s
0,e−−→ s′.

Given a state s of A and an edge e, we define E(s, e) = {t ∈ R≥0 | s
t,e−−→ s′} for some s′ and

E(s) =
⋃

e∈∆ E(s, e). We say that A is non-blocking if and only if for all states s, E(s) ̸= ∅.

▶ Definition 2 (Singular Stopwatch Automata). A Singular Stopwatch automaton is a tuple
H = (Q, Q0, V, ∆,R, F) where,

Q is a finite set of locations including a distinguished initial set of locations Q0 ⊆ Q,
V is an (ordered) set of variables called stopwatches,
∆ ⊆ Q × rect(V) × 2V × Q is the set of transitions of the form (l, φ, R, l′) such that,
l, l′ ∈ Q, φ ∈ rect(V), and R ⊆ V subset of variables that are reset during the transition.
R : Q → {0, 1}|V | is the location dependent flow function characterizing the rate of each
variable in each location.
F ⊆ Q is the set of final locations.

A variable x ∈ V is a clock when for all locations l ∈ Q, R(l)[x] = 1, and a variable is a
stopwatch when, for all locations l ∈ Q, R(l)[x] ∈ {0, 1}. Just like timed automata the map
ν : V → R≥0 represents the current valuation of the variables, we define a state of H as a
pair of locations and valuations (l, ν) ∈ (Q × R|V |

≥0). For a state s = (l, ν) of H and t ∈ R≥0
we define s + t = (l, ν + t) where, (ν + t)(x) = ν(x) +R(l)[x] · t, ∀x ∈ V . A transition (t, e) of
H from a state s = (l, ν) to a state s′ = (l′, ν′) is written as s

t,e−−→ s′ if e = (l, φ, R, l′) ∈ ∆,
such that ν + t |= φ, and ν′ = (ν + t)[R](x). A run of H is ρ = (l0, ν0) t1,e1−−−→ (l1, ν1) t2,e2−−−→ . . .

of states and transitions. The notions of non blocking states, and E(s) =
⋃

e∈∆ E(s, e) for all
states carry over as in timed automata.

Singular Stopwatch automata are a special case of singular hybrid automata [16], when
the variables are stopwatches. We now formally define the stochastic stopwatch games in the
same line of stochastic timed games as defined in [10].

▶ Definition 3 (1 1
2 -Stochastic Stopwatch Games (1 1

2 -SSG)). A 1 1
2 -player stochastic stopwatch

game is a tuple SG = (H, Q♢, Q⃝, w, µ) where H = (Q, Q0, V, ∆,R, F) is a singular
stopwatch automaton, (Q♢, Q⃝) is a partition of Q such that they are controlled by players
♢ and ⃝ respectively, w is a map that assigns weight to each transition leaving Q⃝, and µ

is a function that assigns a measure over E(s) for every state s ∈ Q⃝ × R|X |
≥0. The function

µ(s) satisfies the following properties,
(1) µ(s)(E(s)) = 1 (Law of total probability)
(2) Let λ be the Lebesgue measure, if λ(E(s)) > 0 then for each measurable set B ⊆ E(s)

we have λ(B) = 0 if and only if µ(s)(B) = 0. The choice of measures is such that the
measures evolve smoothly while moving from one state to another.

The singular stopwatch automaton H is equipped with uniform distributions over delays
if for every state s, E(s) is bounded, and µ(s) is the uniform distribution over E(s). H is
equipped with exponential distributions over delays whenever, for every state s, either E(s)
has Lebesgue measure zero, or E(s) = R≥0 and for every location l, there is a positive rational
αl such that µ(s)(E) =

∫
t∈E αle

−αltdt. We assume αl = 1 for all locations l. The locations
in Q♢ are controlled by player ♢. The locations in Q⃝ are governed by probabilistic laws.
For s ∈ Q⃝ × R|V |

≥0, both delays and discrete moves will be chosen probabilistically: from s,
a delay d is chosen following the probability distribution over delays µ(s). Then, from state

TIME 2021

17:4 11
2 -Player Stochastic StopWatch Games

s + d, an enabled edge is selected following a discrete probability distribution that is given in
a usual way with the weight function w: in state s + t, the probability of edge e (if enabled),
denoted p(s + t)(e) is w(e)∑

e′ {w(e′)|e′ is enabled in s+t}
. This way of probabilizing behaviours

in timed automata has been presented in [10]. We refer to ℓ ∈ Q⃝ as stochastic nodes and
ℓ ∈ Q♢ as diamond (♢) nodes.

Strategies. Let ρ = (l0, ν0) t1,e1−−−→ (l1, ν1) . . .
tn,en−−−→ (ln, νn) be a finite run of SSG SG. A

strategy (for ♢) is a function that maps a finite run ρ = (l0, ν0) t1,e1−−−→ (l1, ν1) . . .
tn,en−−−→ (ln, νn)

to a pair (t, e) such that (ln, νn) t,e−−→ (l′, ν′) for some (l′, ν′), whenever ln ∈ Q♢. In order
to measure probabilities of certain sets of runs, the following measurability condition is
imposed on strategy λ♢ : for every finite sequence of edges e1, . . . , en and every state
s, the function χ : (t1, . . . , tn) → (t, e) is such that χ(t1, . . . , tn) = (d, e) if and only if
λ♢(s0

t1,e1→ s1
t2,e2→ s2 . . .

tn,en→ sn) = (t, e) is measurable.
Given SSG SG, a finite run ρ ending in state s0, and a strategy λ♢, we define

Runs(SG, ρ, λ♢) to be the set of all runs generated by λ♢ after prefix ρ; that is, the
set of all runs of the automaton satisfying the following condition: If si = (li, ν)
and l ∈ Q♢, then λ♢ returns (ti+1, ei+1) when applied to ρ

t1,e1→ s1
t2,e2→ . . .

ti,ei→ si.
Given a finite sequence e1, . . . , en of edges, a symbolic path πλ♢(ρ, e1 . . . en) is defined as
πλ♢(ρ, e1 . . . en) = {ρ′ ∈ Runs(SG, ρ, λ♢) | ρ′ = s0

t1,e1→ s1
t2,e2→ s2 . . .

tn,en→ sn, with ti ∈ R≥0}.
When λ♢ is clear, we simply write π(ρ, e1 . . . en).

Given a strategy λ♢, and a finite run ρ ending in state s = (l, ν), a probability measure
Pλ♢ can be defined on the set Runs(G, ρ, λ♢), following [10]. First, define Pλ♢ on symbolic
paths starting with ρ, Pλ♢(π(ρ)) = 1. Then:

If ℓ ∈ Q♢, and λ♢(ρ) = (t, e),

Pλ♢(π(ρ, e1 . . . en)) =

0 if e1 ̸= e

Pλ♢(π(ρ t,e−−→ s′, e2 . . . en)) otherwise

If ℓ ∈ Q⃝

Pλ♢(π(ρ, e1 . . . en)) =
∫

t∈E(s,e1)
p(s + t)(e1) · Pλ♢(π(ρ t,e1−−→ s′, e2 . . . en)) tµ(s)(t)

where s
t,e1−−→ s′ for every d ∈ E(s, e1).

The correctness of these integrals is done as in [10], assuming some measurability
conditions. When Q♢ = ∅ we call this game a 1

2 -player stochastic stopwatch games.

▶ Example 4. We give here an example to explain the method of computing probabilities in
the (1

2 -SSG) SG in the Figure 1. There is a single stopwatch x.

A B
C

D
x ≤ 1, e1

{x}

x ≤ 1, e3
3 ≤ x ≤ 4, e2

x ≤ 4, e4

x ≤ 1, e3

Figure 1 An example of 1
2 SSG.

S. Roychowdhury 17:5

We consider two cases. First, assume the rate of x R[l](x) = 0 when, l = B, and
R[l](x) = 1 when l ̸= B. The initial state is s0 = (A, 0). Then:

P(π((A, 0), e1e3)) =

∫ 1

0

P(π((B, 0), e3))
2

dµ(A,0)(t) =

∫ 1

0

1
2

∫ ∞

0

1
3

· dµ(B,0)(t1) · dµ(A,0)(t)

=

∫ 1

0

1
2

1
3

∫ ∞

0

e
−t1 dt1dt =

1
6

dµ(A,0) is the uniform distribution over [0,1]. Note that since the rate of x is 0 at B,
an unbounded time can be spent, enabling transition e3. Hence, dµ(B,0) is the exponential
distribution. Second, if we assume the rate of x is 1 in all locations (x is a clock), then we
have the uniform distribution of all delays.

P(π((A, 0), e1e2)) =

∫ 1

0

P(π((B, 0), e2))
2

dµ(A,0)(t) =

∫ 1

0

1
2

∫ 4

3

1
3

· dµ(B,0)(t1) · dµ(A,0)(t)

=

∫ 1

0

1
2

1
3

∫ 4

3

1
4 − 0

dt1dt =
1

24

Note that SSGs are defined on top of a stopwatch automata. In general, reachability is
undecidable for stopwatch automata [13]. On restricting the number of stopwatches, we find
the fine boundary between decidability and undecidability for 1 1

2 -SSG.

Qualitative Reachability. We study the qualitative reachability problem for SSGs, stated as
follows. Given a SSG SG with a set T of target locations, an initial state s0 and p ∈ {0, 1},
decide whether there is a strategy λ♢ for Player ♢ such that Pλ♢({ρ ∈ Runs(SG, s0, λ♢) |
ρ visits T}) ▷◁ p. Now we state our main theorem,

▶ Theorem 5. The qualitative reachability problem of 1 1
2 -SSG is

(1) decidable with two stopwatches moreover, it is EXPTIME complete.
(2) undecidable with three variables (with at least one stopwatch, and other two are clocks).

3 Qualitative Reachability of 11
2 SSG : the two stopwatches case

The qualitative reachability of 1 1
2 SSG SG consists of two major objectives, reaching a desired

set of locations F of SG, with probability greater than 0, and equal to 1, represented by
Prob_Reach>0(F) and Prob_Reach=1(F) respectively. All other objectives can be achieved
using these two. All the edges of SG have some positive probability greater than 0 because
we can remove the negligible edges effectively [10]. Since objectives under consideration are
Prob_Reach>0(F) and Prob_Reach=1(F), exact probability does not matter. Thus, we only
need to check if there is some clock valuation which allows us to make a move, or if all
valuations are good. Hence, it is sufficient to work with regions.

▶ Lemma 6. Given a 2 variable 1 1
2 SSG SG, and desired set of target locations F , we

can compute the set of states from which player ♢ has a strategy to attain the objective of
Prob_Reach>0(F).

Proof. The first thing to do is to work with the underlying singular stopwatch automaton A
of the SG. Since A has only 2 stopwatches, with some care, the region construction applies
to A (Appendix A.1), and we can construct the region automaton R(A) corresponding to
A, such that there is a run ρ in A reaching a target location T ∈ F if and only if there is a
run ρ′ in R(A) reaching a corresponding target location T ′. R(A) is an untimed automaton,

TIME 2021

17:6 11
2 -Player Stochastic StopWatch Games

and the locations of R(A) have the form (l, α) where l is a location of A and α ∈ Reg(V) is
a region over the variables V of A. Thus, T ′ = {(T, α) | α ∈ Reg(V), T ∈ F)} is the set of
target locations in R(A). Note that the region construction for singular stopwatch automata
does not extend when there are 3 variables (see Appendix A.2).

Given a location (l, α) ∈ R(A), we say that it belongs to Q♢ if l ∈ Q♢; likewise,
(l, α) ∈ Q⃝ if l ∈ Q⃝.

For brevity, in the following, we use ℓ to denote locations of R(A). Likewise we use
F to denote target locations in R(A). Our reachability algorithm operates on the region
automaton R(A). We do backward reachability, starting from the target F . We construct a
set Y as follows.
1. Initialize: Y0=F
2. Repeatedly add locations ℓ to Yi, to construct Yi+1 as follows, Yi+1 = Yi ∪ {ℓ},

a. If ℓ ∈ Q⃝, and has at least one enabled edge going into the set Yi.
b. If ℓ ∈ Q♢, and has at least one enabled edge going into the set Yi.

We will repeat Step-2 until a fixpoint is reached.
Now, we claim that: a location ℓ ∈ Y if and only if there exists a strategy of player ♢

from ℓ to attain the objective Prob_Reach>0(F).
(⇒) Let ℓ ∈ Y . The rank of a location ℓ is i if it is added to Yi. We prove that if ℓ ∈ Y ,

then player ♢ has a strategy such that F is reached with positive probability by inducting
on the rank of locations. The base case is trivial when i = 0 since target locations have rank
0. Assume the result holds for ranks ⩽ i. Now, we will prove for rank i + 1. There can be
two different cases depending on the type of location.
Case ℓ ∈ Q♢: If location ℓ belongs to player ♢, then the probability of reaching F from ℓ is

equal to the probability of reaching some location ℓ′ of rank i (because of which ℓ was
added to Y) which can be reached from ℓ according to the strategy of player ♢.

Case ℓ ∈ Q⃝: If location ℓ is probabilistic, then there exists an enabled out-going edge
from ℓ to ℓ′ ∈ Yi whose probability is greater than 0 (say p1). Since ℓ ∈ Yi, it reaches F
with some probability (say p2). Then the probability of reaching F from ℓ is p1.p2, which
is greater than 0.
(⇐) If ℓ /∈ Y , then the probability of reaching F from ℓ is equal to 0. To prove this we
will consider the following,

Case ℓ ∈ Q⃝ ∪ Q♢: If ℓ belongs to player ♢, then player ♢ has no strategy to reach set Y

(because of the way Y is constructed). The case of probabilistic location is also the same.
Hence, the probability of reaching Y from ℓ is equal to zero. ◀

▶ Lemma 7. Given a 2 variable 1 1
2 SSG SG, and a desired set of target locations F ,

we can compute the set of states from which player ♢ has a strategy to attain objective
Prob_Reach=1(F).

Proof. First, we construct the set Y from which player ♢ has a strategy to reach F with
probability greater than 0 (using algorithm given in Lemma 6). From set Y , we will construct
a set Z as follows,
1. Initialize: Z0=Y

2. Repeatedly remove locations ℓ from Z depending on their type, Zi+1 = Zi \ ℓ until a
fix-point is reached.
a. If ℓ ∈ Q⃝, and has any enabled edge going out of the set Zi.
b. If ℓ ∈ Q♢, and has no enabled edge going into the set Zi.

Now, we claim: a location ℓ ∈ Z if and only if player ♢ has a strategy to attain the objective
Prob_Reach=1(F) from ℓ.

S. Roychowdhury 17:7

Let us consider the case that ℓ /∈ Z. We show that player ♢ does not have a strategy to
reach a location in F with probability 1 from ℓ.
1. If ℓ /∈ Y . Then by Lemma 6, the probability of reaching F from ℓ is 0.
2. If ℓ ∈ Y \Z. Since ℓ /∈ Z, there exists some i ≥ 0 such that ℓ ∈ Zi ⊆ Y , but ℓ /∈ Zi+1 ⊂ Zi,

and as ℓ ∈ Y , atleast one outgoing edge of ℓ must be in Y .
a. If ℓ ∈ Q⃝, then there exists an outgoing edge from ℓ to a node ℓ′ /∈ Zi.
b. If ℓ ∈ Q♢, then all outgoing edges from ℓ are to nodes ℓ′ /∈ Zi.

Continuing backward from these nodes ℓ′, we eventually reach nodes ℓbad such that ℓbad /∈
Z0 = Y . ℓbad /∈ Y implies that the probability of reaching F is 0. Since ℓbad is reachable
from ℓ ∈ Y \ Z, we conclude that the probability of reaching F from ℓ is not 1. The converse
case, that is, if ℓ is a location such that player ♢ has no strategy to reach a location in F
with probability 1, then ℓ /∈ Z can be proved in a similar way. ◀

▶ Theorem 8. The qualitative reachability problem is decidable for 1 1
2 SSG with two variables.

Moreover, it is EXPTIME complete.

Proof. We give the EXPTIME membership and hardness.

Membership. First, construct the region game graph from the given SSG (Appendix A.1).
As seen in Lemma 6, a location (l, α) in the region graph is in Q⃝ if and only if l ∈ Q⃝;
likewise, it is in Q♢ if l ∈ Q♢. Given the region game graph, we solve the qualitative
reachability question using a backward fixpoint algorithm that iteratively refines the
probability computation starting from the target locations. We know that the fixed point
computation is polynomial time with respect to the size of the underlying graph (as this can
be solved using BFS on the underlying graph). The size of the region graph (Appendix A.1)
is exponential in the number of the variables V , when |V | > 1. Given the polytime algorithm
for the fixed point, this problem is in EXPTIME.

Hardness. For the hardness we use the qualitative reachability problem of probabilistic
timed automata (PTA) with two clocks [15]. A probabilistic timed automata (PTA) [17] is
defined as T = (Q, ℓ0, X , ∆, ∆prob) where, Q is a finite set of locations, ℓ0 ∈ Q is the initial
location, X is the finite set of real valued variables called clocks, ∆ is a set of transitions of
the form (ℓ, φ, R, ℓ′) with the usual semantics as timed automata transitions, and ∆prob is
the set of probabilistic transitions of the form

(
ℓ, φ, Dist(2X × Q)

)
where ℓ ∈ Q, φ is a clock

constraint in the outgoing transitions from ℓ and Dist(2X × Q) is a probability distribution
which assigns probabilities to (reset set, target location) pairs (R, ℓ′) on outgoing transitions
(ℓ, φ, R, ℓ′) from ℓ. W.l.o.g, in the PTA, we replace probabilities with weights (and calculate
probabilities from weights in the usual way). See Figure 2 for a PTA (on the left).

A 1 1
2 SSG with two variables can simulate a PTA T = (Q, ℓ0,{x, y}, ∆, ∆prob) with two

clocks x, y. We construct a 1 1
2 SSG SG with two variables x′, y′ corresponding to the two

clocks x, y of the T. For each location ℓ ∈ Q of the T we create location ℓ♢ ∈ Q♢. The
two clocks of the T are simulated using the two variables of the 1 1

2 SSG whose rate is 1
R(ℓ♢)[x′] = R(ℓ♢)[y′] = 1 in all locations from Q♢. The transitions ∆ of the T are added
in the 1 1

2 -SHG (by replacing ℓ with ℓ♢, and replacing x, y with x′, y′). It remains to add
the probabilistic transitions ∆prob to SG. Consider t =

(
ℓi, φ, Disti

)
∈ ∆prob. We add a new

stochastic location ℓt ∈ Q⃝ such that, the rate of x′, y′ are zero at ℓt and add the following
transitions in the SG.

(ℓi
♢, φ, ∅, ℓt) i.e., a transition from ℓi

♢ to the stochastic location ℓt with the same constraints
of the transition t.
For each pair (Rj , ℓj) ∈ Dist(2X × Q) in the probability distribution (ℓi, φ, Dist(2X × Q))
with weight wj , we add the transition (ℓt, ⊤, Rj , ℓj

♢) with the same weight wj .

TIME 2021

17:8 11
2 -Player Stochastic StopWatch Games

The probability incurred to go from ℓt to ℓj
♢ is given by wj∑

wj

∫ ∞
0 e−tdt, since an unbounded

delay is allowed at ℓt. Hence, the probability in the SSG SG to go from ℓi
♢ to ℓj

♢ is wj∑
wj

which is the same as the probability given by the PTA T. Since we preserve all probabilities,
it is easy to check that, by solving the qualitative reachability of the constructed 1 1

2 SSG we
solve the qualitative reachability of the T with two clocks. Hence the qualitative reachability
of 1 1

2 SSG is EXPTIME-Hard. ◀

A B
x ≤ 1, 0.2

{x}

x ≤ 1, 0.8

x < 1, 1

1 ≤ x ≤ 2, 0.3

1 ≤ x ≤ 2, 0.7

A B

C

D

⊤, 2
{x}

x ≤ 1

⊤, 8

x < 1

1 ≤ x ≤ 2

⊤,3

⊤, 7

Figure 2 PTA to 1 1
2 SSG reduction (PTA is on left and 1 1

2 -SSG on right). Probabilities (and
weights for SSG) are in red color. From A, on x ≤ 1, there is a reset free edge and a reset edge with
probabilities 0.8 and 0.2. Likewise, from B, on 1 ≤ x ≤ 2, there is a distribution (0.3, 0.7), while for
x ≤ 1, there is just one transition. The green diamond shaped nodes in the right are of Player ♢
and other nodes are stochastic.

We next show that the qualitative reachability problem becomes undecidable as soon as
we have three variables. The proof goes via a reduction from the non-halting problem for
Minsky two counter machines to the qualitative reachability problem for 1 1

2 SSG with three
variables, where we have one stopwatch and two clocks.

Two-counter machine. A counter machine can be defined as a tuple (L, C), where L is the
finite state of instructions including the special instruction “HALT”, and C = {C1, C2}. The
instruction can be any one of the following types,
1) (Increment the counter) ℓp : Ci := Ci + 1; goto ℓq; ∀i ∈ {1, 2},
2) (Decrement the counter) ℓp : Ci := Ci − 1; goto ℓq; ∀i ∈ {1, 2},
3) (Checking zero) ℓp : if (Ci = 0) then goto ℓq else goto ℓr; ∀i ∈ {1, 2},
4) (Halting instruction) ℓq : HALT;
Where, Ci ∈ C, ℓp, ℓq, ℓr ∈ L. A configuration of a two-counter machine is a tuple (ℓ, m, n)
where, ℓ ∈ L and m, n ∈ N∪{0} represents the current value of the counters c1, c2 respectively.
A two-counter machine starts from the initial configuration (ℓ0, 0, 0). A run of a two-counter
machine is a sequence of configurations (ℓ0, 0, 0) → (ℓ1, m1, n1) → (ℓ2, m2, n2) · · · . The
transition between two configurations depends on the instruction of the first configuration.
We say a run is halting if it is finite and ends with an HALT instruction, in fact the two-
counter machine never progresses beyond a HALT instruction. The halting problem of a
two-counter machine is checking if a given two-counter machine has a halting run or not.
It is well-known that two-counter machine is Turing complete and the halting problem for
two-counter machine is undecidable [19].

▶ Theorem 9. The qualitative reachability problem for 1 1
2 SSG is

∏0
1 hard with one stopwatch

variable and two clocks.

We prove the
∏0

1 hardness of qualitative reachability for 1 1
2 SSG with one stopwatch and

two clocks by reducing it to the non-halting problem for two counter machines.

S. Roychowdhury 17:9

Reduction to reachability in 11
2 SSG

Given a two counter machine M, we construct a one and half player SSG G(M), where ♢
has a strategy to reach some desired location (denoted as pink square nodes labeled T) with
probability =1 if and only if M does not halt.

The game graph G(M) uses 3 variables : a stopwatch x and two clocks y, z. The values
i, j of the counters C1, C2 are encoded in the variable x as 1

2i3j . y, z are used as auxiliary
clock variables. The stopwatch x has rate rx = 1 in all the stochastic nodes. The ♢ nodes
where x has rate rx = 0 are colored blue. The graph G(M) has one gadget per instruction
of the two counter machine. By adjoining the gadgets appropriately, depending on the
instructions of M, we obtain the complete game graph G(M).

Decrement C1

Let us begin with the gadget for the instruction ℓi: C1 := C1 − 1; goto ℓj . Figure 3 depicts
the gadget for decrementing counter C1.

ℓix = 1
2i3j , y = 0, z = 0 B C D E

ℓjT

x = 1?
{x, y}

z = 1?
{z}

y = 1?
{y}

z = 1?
{z, y}

z = 0?z = 0?

Figure 3 Gadget Dec C1.

▶ Lemma 10. On entering the gadget Dec C1 in Figure 3, in node ℓi with values x = 1
2i3j ,

y = z = 0, the node ℓj is reached with probability 1
2 with x = 1

2i−13j , y = z = 0 and the target
node T is reached with probability 1

2 .

Proof. The proof of correctness of Lemma 10 can be seen by examining the functioning of
the gadget: On entry to node ℓi, we have the values x = 1

2i3j , y = z = 0. A time 1 − 1
2i3j is

spent at location ℓi, obtaining x = y = 0,z = 1 − 1
2i3j on entry into node B.

Time equal to 1
2i3j is spent at node B, obtaining valuations x = y = 1

2i3j ,z = 0 on entry
to node C. Subsequently time equal to 1 − 1

2i3j is spent at node C, obtaining valuations
x = 1

2i3j ,y = 0, z = 1 − 1
2i3j on entry to node D. The value of x remains constant

during this transition to node D as the node is shaded blue. Then the constraint forces
to spend time equal to 1

2i3j at node D and reaches the stochastic node E with valuation
x = 2

2i3j = 1
2i−13j ,y = z = 0. Through the stochastic node E, ℓj and T can be reached with

probability = 1
2 each, with the clock valuation x = 1

2i−13j ,y = z = 0 as required. ◀

Increment C1

Next, let us look at the instruction for incrementing. Figure 4 depicts the gadget for
incrementing counter C1 simulating the instruction ℓi : C1 := C1 + 1, goto ℓj .

▶ Lemma 11. On entering the gadget Inc C1 in Figure 4, in node ℓi with values x = 1
2i3j ,

y = z = 0, the node ℓj is reached with probability 1
2 and x = 1

2i+13j , y = z = 0. The target
node is reached with probability 1

2 .

TIME 2021

17:10 11
2 -Player Stochastic StopWatch Games

ℓix = 1
2i3j , y = 0, z = 0 B

C

D E

F

G

ℓj

T
y = 0?

y ≤ 1? {y}

z = 1? {z}

y = 1?
{y}

z = 1, x = 2? {z, x}

y = 1? {y, z} z = 0?

z = 0?

Figure 4 Gadget Inc C1.

Proof. The proof of Lemma 11 can be seen by examining the functioning of the gadget in
Figure 4. The node ℓi is entered with x = 1

2i3j , y = z = 0. The node B is entered with
the same values but the stopwatch x is now stopped because the node is blue shaded. An
amount of time t ≤ 1 is spent at B obtaining x = 1

2i3j , y = 0, z = t on entering node C. We
spend 1 − t time at node C entering node D with valuations x = 1 − t + 1

2i3j , y = 1 − t, z = 0.
Now t time is spent at node D with x paused (the node D is blue shaded) and hence we
enter node E with valuations x = 1 − t + 1

2i3j , y = 0, z = t. Now to satisfy the first guard
i.e., z = 1 for leaving E we need to spend 1 − t time at E which would mean x would now
be x = 2 − 2t + 1

2i3j . To move to F we also need x = 2 which would imply that 2t = 1
2i3j .

Then we enter node F with x = z = 0, y = 1 − t where t = 1
2i+13j . We spend t time at F

and through the stochastic node G. We enter node ℓj and target node T with probability 1
2

each, with clock values x = 1
2i+13j , y = 0, z = 0 as required. ◀

Zero Check for C1

Next, we look at the zero check instruction, ℓi : if C1 = 0, then goto ℓj , else goto ℓk. Figure 5
depicts the gadget for zero check of counter C1.

▶ Lemma 12. On entering the gadget Zero Check C1 in Figure 5, in node ℓi with values
x = 1

2i3j , y = z = 0, player ♢ has a strategy to reach the nodes lj and the target T with
probability 1

2 each if and only if i = 0, that is, the value of x = 1
3j on entry at ℓi. Similarly,

player ♢ has a strategy to reach the nodes lk and the target node T with probability 1
2 each if

and only if i ̸= 0, that is, the value of x = 1
2i3j , i > 0 on entry at ℓi.

Proof. The proof of Lemma 12 follows by examining the functioning of the gadget in Figure 5.
The ♢ player has two possible strategies at node ℓi: to goto Z or NZ. The correct strategy is
to go to Z when x = 1

3j and to go to NZ when x = 1
2i3j , i > 0 at node ℓi. No time is elapsed

at node ℓi. Assume the strategy is to go to Z, no time is elapsed at Z, and the stochastic
node SZ is entered. Then from the stochastic node SZ, with probability 1

2 each, the node ℓj

(corresponding to the next instruction) and the gadget Make C2 0 is entered. This gadget is
in Figure 6. From the ♢ node SZ, we enter the starting location A of in Figure 6, and from
the same node A, we can move to the location T of Figure 5 if x = 1, z = 0. If the strategy of
choosing Z was indeed the correct one, then, decrementing C2 some number of times would
give x = 1. In this case, after some number of iterations of the gadget in Figure 6, we reach
T in Figure 5 with probability 1

2 . Note that the gadget in Figure 6 has no stochastic nodes,
so on successful completion we reach T with x = 1 incurring probability 1

2 .

S. Roychowdhury 17:11

ℓix = 1
2i3j , y = 0, z = 0

Z SZ ℓj

ℓk

Make C2 0

Make C1 0

SNZNZ

Make C2 0

z = 0?

z = 0?

z = 0?

z = 0?

z = 0?

z = 0?

z = 0?

z = 0?

T
x = 1 ∧ z = 0

z = 0
T

x = 1 ∧ z = 0

x = 1 ∧ z = 0

Figure 5 Gadget Zero Check C1.

Ax = 1
3j , y = 0, z = 0 B C D E

FG

x = 1?, z > 0?
{x, y}

z = 1?
{z}

y = 1?
{y}

z = 1?
{z}

y = 1? {y}

z = 1?
{y, z}

z = 0?

Figure 6 Make C2 0.

Note that if the decision of choosing node Z is incorrect, that is, if x = 1
2i3j , i > 0, then

the value of x will exceed 1 and we will be stuck in the gadget Make C2 0.
The decision of choosing NZ from ℓi is similar : in this case, the gadget Make C1 0 has

to be visited at least once, before the target T is reached. Make C1 0 can be obtained similar
to Make C2 0, and it also has no stochastic nodes. In particular, if we have x = 1

2i3j , i > 0,
then we must iterate Make C1 0 i times exactly, and in case x < 1 we iterate Make C2 0 j

times. If we iterate Make C1 0 < i (> i) times, we will get stuck in Make C1 0 (Make C2 0).
Otherwise, we will reach T in Figure 5 with probability 1

2 . ◀

Gadgets for incrementing, decrementing and zero check gadget for C2 are similar to the seen
gadgets. We now argue that ♢ has a strategy to reach a target location T with probability 1
if and only if the two counter machine does not halt.

▶ Theorem 13. Given a two counter machine M, Player ♢ has a strategy to reach a target
node T with probability 1 in the constructed game graph G(M) if and only if the two counter
machine M does not halt.

Proof. The proof of Theorem 13 is obtained by putting together the lemmas above. Since
HALT is also an instruction in the two counter machine, we have a gadget with location
labeled Halt corresponding to the HALT instruction. From this node, there is no outgoing
edge and hence this is a dead state. The rest of the SSG is made by appropriately stringing
together the gadgets as per the design of the two counter machine. We claim that player ♢
has a strategy to reach a target location T with probability 1 if and only if he simulates all
the instructions correctly and if and only if M does not halt.

TIME 2021

17:12 11
2 -Player Stochastic StopWatch Games

Consider the first instruction of the two counter machine that is executed. By using all
lemmas so far, whatever this instruction might be, on a correct simulation, the SSG enters
a target T in some gadget with probability 1

2 and continues execution from the state as
specified by the instruction with probability 1

2 .
Therefore the probability of reaching a target T is Ptotal = 1

2 (reaching T in the first
gadget) + 1

2 Prest where Prest is the probability of reaching the target T node when continuing
the simulation of M after the current instruction. Recall that each gadget corresponding to
instructions went with probability 1

2 to the next instruction ℓj to be simulated; the 1
2 in the

term 1
2 Prest comes from there.

We now apply the above process for finding Ptotal to find Prest recursively for the next
executed instruction from ℓj and we get Ptotal = 1

2 + 1
2 (1

2 + 1
2 Prest) where Prest is the

probability of reaching T when continuing execution from the subsequent instruction reached.
This above processes can be recursively repeated. If M reaches HALT, then we will reach

a gadget where with probability 1
2 we reach T and with probability 1

2 we reach HALT. In
this case, the above summation will add up to < 1 : Ptotal =

∑I
n=1 2−n < 1 where I is the

total number of instructions executed to reach HALT. However if M does not halt, then the
run is not finite, and we keep going one gadget after the other. Then we get the infinite sum
Ptotal =

∑∞
n=1 2−n = 1. Hence player ♢ will reach the target node T with probability 1 if

and only if the two counter machine does not halt. ◀

4 Conclusion

In this paper, we have proposed stochastic stopwatch games, an extension of stochastic
timed games and proved decidability and undecidability results for 1 1

2 -stochastic stopwatch
games. This work leads us to further open problems for e.g., how does the undecidability
result change if we consider time-bounded qualitative reachability or when we consider only
1
2 -stochastic stopwatch games.

References
1 S. Akshay, Patricia Bouyer, Shankara Narayanan Krishna, Lakshmi Manasa, and Ashutosh

Trivedi. Stochastic Timed Games Revisited. In Piotr Faliszewski, Anca Muscholl, and Rolf
Niedermeier, editors, 41st International Symposium on Mathematical Foundations of Computer
Science (MFCS 2016), volume 58 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 8:1–8:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.MFCS.2016.8.

2 R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138(1):3–34, February 1995. doi:10.1016/0304-3975(94)00202-t.

3 Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei Hsin Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid systems. In Hybrid
Systems, pages 209–229. Springer Berlin Heidelberg, 1993. doi:10.1007/3-540-57318-6_30.

4 Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science,
126(2):183–235, 1994.

5 Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for timed
automata. IFAC Proceedings Volumes, 31(18):447–452, 1998. doi:10.1016/S1474-6670(17)
42032-5.

6 C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for
continuous-time markov chains. IEEE Transactions on Software Engineering, 29(6):524–541,
June 2003. doi:10.1109/tse.2003.1205180.

https://doi.org/10.4230/LIPIcs.MFCS.2016.8
https://doi.org/10.1016/0304-3975(94)00202-t
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/10.1109/tse.2003.1205180

S. Roychowdhury 17:13

7 Christel Baier, Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Marcus Größer.
Probabilistic and topological semantics for timed automata. In FSTTCS 2007: Foundations
of Software Technology and Theoretical Computer Science, pages 179–191. Springer Berlin
Heidelberg, 2007. doi:10.1007/978-3-540-77050-3_15.

8 Christel Baier, Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Marcus Grosser.
Almost-sure model checking of infinite paths in one-clock timed automata. In 2008 23rd
Annual IEEE Symposium on Logic in Computer Science. IEEE, June 2008. doi:10.1109/
lics.2008.25.

9 Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, Quentin Menet, Christel Baier, Marcus
Groesser, and Marcin Jurdzinski. Stochastic timed automata. Logical Methods in Computer
Science, 10(4), December 2014. doi:10.2168/lmcs-10(4:6)2014.

10 Patricia Bouyer and Vojtech Forejt. Reachability in stochastic timed games. In ICALP, pages
103–114. Springer, 2009. doi:10.1007/978-3-642-02930-1_9.

11 Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On model-checking timed
automata with stopwatch observers. Information and Computation, 204(3):408–433, 2006.
doi:10.1016/j.ic.2005.12.001.

12 Thomas Brihaye, Laurent Doyen, Gilles Geeraerts, Joel Ouaknine, Jean-Francois Raskin, and
James Worrell. Time-bounded reachability for monotonic hybrid automata: Complexity and
fixed points. In Automated Technology for Verification and Analysis, pages 55–70. Springer
International Publishing, 2013. doi:10.1007/978-3-319-02444-8_6.

13 Franck Cassez and Kim Larsen. The impressive power of stopwatches. In CONCUR 2000
– Concurrency Theory, pages 138–152. Springer Berlin Heidelberg, 2000. doi:10.1007/
3-540-44618-4_12.

14 Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What's decidable
about hybrid automata? Journal of Computer and System Sciences, 57(1):94–124, August
1998. doi:10.1006/jcss.1998.1581.

15 Marcin Jurdzinski, Jeremy Sproston, and Francois Laroussinie. Model checking probabilistic
timed automata with one or two clocks. Logical Methods in Computer Science, 4(3), September
2008. doi:10.2168/lmcs-4(3:12)2008.

16 Shankara Narayanan Krishna, Umang Mathur, and Ashutosh Trivedi. Weak singular hybrid
automata. In Lecture Notes in Computer Science, pages 161–175. Springer International
Publishing, 2014. doi:10.1007/978-3-319-10512-3_12.

17 Marta Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. Verifying
quantitative properties of continuous probabilistic timed automata. In CONCUR 2000
– Concurrency Theory, pages 123–137. Springer Berlin Heidelberg, 2000. doi:10.1007/
3-540-44618-4_11.

18 Marta Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. Automatic
verification of real-time systems with discrete probability distributions. Theoretical Computer
Science, 282(1):101–150, June 2002. doi:10.1016/s0304-3975(01)00046-9.

19 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., USA,
1967.

20 Nima Roohi and Mahesh Viswanathan. Time-bounded reachability for initialized hybrid
automata with linear differential inclusions and rectangular constraints. In Lecture Notes
in Computer Science, pages 191–205. Springer International Publishing, 2014. doi:10.1007/
978-3-319-10512-3_14.

A Singular Stopwatch Automata with Two Stopwatches

Let 2-H be a singular stopwatch automata with two stopwatch variables V = {x, y}. When
the current location l ∈ Q is known, we represent the rate of c ∈ V as rc = R(l)[c] i.e.,
rx, ry ∈ {0, 1} for x, y ∈ V respectively. Let cmax be the maximum constant used in any of
the guards of 2-H. Note that, unlike clock regions defined in [4], we can not directly define

TIME 2021

https://doi.org/10.1007/978-3-540-77050-3_15
https://doi.org/10.1109/lics.2008.25
https://doi.org/10.1109/lics.2008.25
https://doi.org/10.2168/lmcs-10(4:6)2014
https://doi.org/10.1007/978-3-642-02930-1_9
https://doi.org/10.1016/j.ic.2005.12.001
https://doi.org/10.1007/978-3-319-02444-8_6
https://doi.org/10.1007/3-540-44618-4_12
https://doi.org/10.1007/3-540-44618-4_12
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.2168/lmcs-4(3:12)2008
https://doi.org/10.1007/978-3-319-10512-3_12
https://doi.org/10.1007/3-540-44618-4_11
https://doi.org/10.1007/3-540-44618-4_11
https://doi.org/10.1016/s0304-3975(01)00046-9
https://doi.org/10.1007/978-3-319-10512-3_14
https://doi.org/10.1007/978-3-319-10512-3_14

17:14 11
2 -Player Stochastic StopWatch Games

regions for stopwatches, as the successor region depends on the current rate of change rx, ry

of stopwatch x and y respectively. So, we need to define regions such that they agree with
the successor function with different rates.

A.1 Regions and Region Automaton of 2-H
In this section, we define a region abstraction, which is reachability preserving in the sense
of the region automaton from [4]. Intuitively, a region ℜ is a collection of infinitely many
valuations ν ∈ R2

≥0, having some good properties preserving reachability. The number of
regions must be finite.

▶ Definition 14. Let φ ∈ rect(V) be a constraint. A region ℜ is compatible with φ if and
only if for all valuations ν ∈ ℜ, either ν |= φ or ν |= ¬φ.

We define a map Res : ℜ → ℜ that maps a region ℜ to the region Res(ℜ) obtained from ℜ
by assigning value 0 to all variables which were reset to 0.

▶ Definition 15. A set of regions ℜ is compatible with resets (or with the map Res) if
whenever a valuation ν′ ∈ ℜ′ is reachable from a valuation ν ∈ ℜ after a reset, then ℜ′ is
reachable from any ν ∈ ℜ by the same reset.

Construction of Regions Reg(V)
We first construct a set of regions for 2-H that are compatible with resets and guards. For
z ∈ {x, y}, we define the set of intervals

Iz =
{

[c] | 0 ≤ c ≤ cmax
}

∪
{

(c, c + 1) | 0 ≤ c < cmax
}

∪
{

(cmax, ∞)
}

For a variable x and its current valuation ν[x], we use Ix ∈ Ix to represent its current interval,
and fract(ν[x]) to denote the fractional part of ν[x]. For example, if we have a variable x

with valuation ν[x] = 4.5 then it’s interval Ix = (4, 5) ∈ Ix and fract(ν[x]) = 0.5. Let us
define a relation ∼ℜ between two valuation ν1 and ν2 such that ν1 ∼ℜ ν2 if and only if,

∀z ∈ V , Iz ∈ Iz ν1[z] ∈ Iz ⇐⇒ ν2[z] ∈ Iz

x, y ∈ V , fract(ν1[x]) ≤ fract(ν1[y]) ⇐⇒ fract(ν2[x]) ≤ fract(ν2[y])
Clearly, the relation ∼ℜ is an equivalence relation and this forms a finite partitioning of R2

≥0.
Let us define such a partition by α = (Ix, Iy, ≺, Rel) where, Ix, Iy represents the interval
of clocks x and y respectively, and ≺ is a total pre-order on the set Rel =

{
x ∈ V | Ix ∈{

(c, c + 1) | 0 ≤ c < cmax
} }

. Assume ℜα represents the region defined by α.
We define Reg(V) to be the set of all such partitions ℜα. For each valuation ν ∈ R2

≥0 of
variables, the unique element ℜ of Reg(V) that contains ν is called a region, denoted [ν].

Successors of a Region
We define the successors of a region ℜ, Succ(rx,ry)(ℜ) ⊆ Reg(V), in the following natural
way: rx, ry ∈ {0, 1}, x, y ∈ V ,

ℜ′ ∈ Succ(rx,ry)(ℜ) if ∃ν ∈ ℜ, ∃t ∈ ℜ such that [ν + (rx, ry)t] = ℜ′ (1)

By ν + (rx, ry)t, we represent the valuation
(
ν[x] + rx · t, ν[y] + ry · t

)
.

A finite partition Reg(V) of R2
≥0 is a set of regions whenever the following condition

holds:

ℜ′ ∈ Succ(rx,ry)(ℜ) if and only if ∀ν ∈ ℜ, ∃t ∈ ℜ such that [ν + (rx, ry)t] = ℜ′ (2)

S. Roychowdhury 17:15

We now consider resets. Formally, we have

ℜ′ ∈ Res(ℜ) → ∀ν ∈ ℜ, ∃ν′ ∈ ℜ′ such that ν′ ∈ Res(ν) (3)

Now, we will show that Reg(V) follows the conditions (2) and (3) defined above.

▶ Lemma 16. For all partitions ℜ ∈ Reg(V), ℜ′ ∈ Succ(rx,ry)(ℜ) if and only if for all
valuation ν ∈ ℜ, there exists t ∈ R≥0 such that [ν + (rx, ry)t] = ℜ′

Proof. Consider a partition ℜα defined by α = (Ix, Iy, ≺, Rel).
If Ix = Iy = (cmax, ∞), then Succ(rx,ry)(ℜα) = {ℜα} because, for all ν ∈ ℜα, for all

t ∈ R≥0, for rx, ry ∈ {0, 1}, ν + (rx, ry)t ∈ ℜα.
If rx = ry = 0 then, Succ(rx,ry)(ℜα) = {ℜα}, for all ℜα.
If Succ(rx,ry)(ℜα) ̸= {ℜα}, then there exists atleast one another region in Succ(rx,ry)(ℜα)

that is different from ℜα. Let ℜβ denote the region that is closest to region to ℜα such that,
ℜβ ∈ Succ(rx,ry)(ℜα), and for all ν ∈ ℜα, for all t ∈ R≥0, if ν + (rx, ry)t /∈ ℜα, then ∃t′ ≤ t

such that ν +(rx, ry)t′ ∈ ℜβ . Assume that, such a region ℜβ is defined by β = (I ′
x, I ′

y, ≺′, Rel′)
and characterized as follows:

Let Z =
{

z ∈ V | Iz is of the form [c]
}

, i.e., Z is the set of clocks with integer value.
1. If Z ̸= ∅ and rx = ry = 1, (if x /∈ Z then y ∈ Z and vice versa)

I ′
z =

Iz if z /∈ Z,

(c, c + 1) if z ∈ Z, Iz = [c], and 0 ≤ c < cmax

(cmax, ∞) if z ∈ Z and Iz = [cmax]

and, x ≺′ y if Ix = [c], I ′
x = (c, c + 1) with 0 ≤ c < cmax and I ′

y is of the form (d, d + 1),
Rel′ = {x, y}.

2. If Z ̸= ∅ and atleast one of rx, ry is 0, (if x /∈ Z then y ∈ Z and vice versa, and if rx = 1
then ry = 0 and vice versa.)

I ′
z =

Iz if rz = 0,

[c + 1] if z /∈ Z, Iz = (c, c + 1), rz = 1, and 0 ≤ c < cmax

(c, c + 1) if z ∈ Z, Iz = [c], rz = 1 and 0 ≤ c < cmax

(cmax, ∞) if z ∈ Z, Iz = [cmax], and rz = 1

and, Rel′ = {x, y}, x ≺′ y if rx = 1 and x ∈ Z, y /∈ Z. If (rx = 0 and x ∈ Z) or (rx = 1
and x /∈ Z) or if x, y ∈ Z, then Rel′ = ∅.

3. If Z = ∅ and rx = ry = 1. Let M denote the set of variables with the maximum fractional
part, whose interval is of the form (c, c + 1) for 0 ≤ c < cmax. Then,

I ′
z =

Iz if z /∈ M,

[c + 1] if z ∈ M and Iz = (c, c + 1) with 0 ≤ c < cmax

One variable moves to an integer value, or both variables are in (cmax, ∞) thus, Rel′ = ∅.

TIME 2021

17:16 11
2 -Player Stochastic StopWatch Games

4. If Z = ∅ and atleast one of rx, ry is 0. Then,

I ′
z =

Iz if rz = 0,

[c + 1] if z ∈ M, rz = 1, and Iz = (c, c + 1) with 0 ≤ c < cmax

Iz if z /∈ M, rz = 1, and Iz = (c, c + 1) with 0 ≤ c < cmax

and, x ≺′ y is same as x ≺ y when rx = ry = 0. Otherwise, one of the variables gets an
integer value, and hence Rel′ = ∅.

We now claim that,

∀ν ∈ ℜα, ∃t ∈ R≥0 such that ν + t ∈ ℜβ

Let ν be a valuation in ℜα.
1. If Z ̸= ∅ and rx = ry = 1. Let τ = min{1 − fract(ν[z]) | Iz is of the form (c, c + 1)}. Then

ν + (1, 1) τ
2 is in the region Rβ .

2. If Z ̸= ∅ and atleast one of rx, ry is 0.
(i) If x ∈ Z, y /∈ Z and rx = 1, then pick τ = fract(ν[y]). Then ν + (1, 0) τ

2 is in the
region ℜβ .

(ii) If rx = 0 and x ∈ Z, then pick τ = 1 − fract(ν[y]). Then ν + (0, 1)τ is in the region
ℜβ .

(iii) If rx = 1 and x /∈ Z, then pick τ = 1 − fract(ν[x]). ν + (1, 0)τ is in the region ℜβ .
(iv) If x, y ∈ Z, and rx = 1, then pick τ = 0.5. Then ν + (1, 0)τ is in the region ℜβ .

3. If Z = ∅ and rx = ry = 1.
Pick the variable z ∈ M . Let τ = 1 − fract(ν[z]). Then ν + (1, 1)τ is in the region ℜβ .

4. If Z = ∅ and atleast one of rx, ry is 0.
If rx = 1 and ry = 0. Pick τ = 1 − fract(ν[x]). Then ν + (1, 0)τ is in the region ℜβ .

Thus we obtain that ℜβ ∈ Succ(rx,ry)(ℜα) is the closest successor of ℜα. Inducting on
ℜβ , we get the closest successor of ℜβ , which is also a successor of ℜα, 2 steps away, and so
on. We write ℜα

n−→ ℜn
α if ℜn

α is the nth closest successor of ℜα with respect to some choice
of rates (rx, ry). This clearly means that there is a sequence of regions ℜ0

α, ℜ1
α, ℜ2

α, . . . , ℜn
α

such that ℜ0
α = ℜα, and ℜi+1

α is the closest successor of ℜi
α for all 1 ≤ i < n.

In this way, we can find all successors ℜ′
α of ℜα such that ℜ′

α ∈ Succ(rx,ry)(ℜα) if and
only if for all ν ∈ ℜα there exists some t ∈ R≥0 such that ν + (rx, ry)t ∈ ℜ′

α. Hence, Reg(V)
is indeed a set of regions partitioning R2

≥0. ◀

Given two valuations ν1, ν2 ∈ ℜα for some region ℜα, we say that ν1 and ν2 are equivalent
if they lie in the same region, i.e., [ν1] = [ν2].

Reg(V) compatible with resets and guards
▶ Lemma 17. Reg(V) is compatible with the guards φ and with the resets Res.

Proof.
(1) Let ℜ′ ∈ Res(ℜ). Consider ν1, ν2 ∈ ℜ, i.e., [ν1] = [ν2]. Clearly, ν1[x] and ν2[x] lie

in the same interval; same with ν1[y] and ν2[y]. If the operation Res resets x, then
Res(ν1) =

(
0, ν1[y]

)
and Res(ν2) =

(
0, ν2[y]

)
. Since ν1[y] and ν2[y] are in the same

interval, we have [Res(ν1)] = [Res(ν2)]. Similar results are obtained when y is reset, or
when both x, y are reset.

S. Roychowdhury 17:17

(2) Let [ν1] = [ν2] be valuations in the same region ℜ. Let φ be a guard. The result can be
proved by structural induction on φ. If φ is atomic of the form x ∼ c, clearly, ν1 |= φ if
and only if ν2 |= φ, since ν1 and ν2 are equivalent. Assume for guards of size ≤ n − 1.
It can be seen that the inductive hypothesis can be easily extended to guards of size n.
Thus, Reg(V) is a finite set of regions compatible with guards and resets, partitioning
R2

≥0. ◀
Hence, we can use the region abstraction for the above set of regions to obtain a region
automaton Reg(2-H) capturing the untimed language of 2-H. The set of states of such a
region automaton is the set Q × Reg(V), where Q is the set of locations of 2-H. The initial
location of Reg(2-H) is

(
l0, (0, 0)

)
where l0 ∈ Q0 is the initial location of 2-H. The transitions

of Reg(2-H) are defined as (l, ℜ) a−→ (l′, ℜ′) if and only if there is a region ℜ̂ and a transition
from l to l′ on (φ, a, Res) in 2-H such that,
(1) ℜ̂ ∈ Succ(rx,ry)(ℜ). (rx, ry are the rates at the location l),
(2) For all ν ∈ ℜ̂, ν |= φ, and
(3) Res(ℜ̂) = ℜ′

The final states of the region automaton are the states (f, ℜ) such that f is a final location
of 2-H. It can be seen that the language accepted by this region automaton is indeed the
untimed counterpart of L(2-H). We thus have, the following result.

▶ Theorem 18. The region automaton construction for singular stopwatch automata 2-H
with two stopwatches is a correct abstraction. For each run ρ in 2-H from an initial state
(l0, ν0) to a state (ln, νn), if and only if we have a run ρ′ in Reg(2-H) from (l0, (0, 0)) to
(ln, ℜn) such that νn ∈ ℜn.

The proof is straightforward since in each step, we obtain a new region which is compatible
with the constraints and resets of the transition taken.

However, this does not extend to 3 variables, as shown below.

A.2 Problem in extending the region construction to 3 variables
It is an interesting exercise to note where the above region construction fails if we try to
extend it to 3 variables with at least one stopwatch. In a nutshell, the problem arises in
defining the successor regions of ℜ i.e., in defining ℜβ . The above construction only works
for 2 variables and fails if we try to extend the same to 3 variables. The following example
helps to illustrate this point. Consider the natural extension of case 4 in the construction
above to 3 variables
If Z = ∅ and one of rx, x ∈ V is 0. Here M is the set of variables with the maximum
fractional part as before.

I ′
z =

Iz if rz = 0,

[c + 1] if z ∈ M, rz = 1, and Iz = (c, c + 1) with 0 ≤ c < cmax

Iz if z /∈ M, rz = 1, and Iz = (c, c + 1) with 0 ≤ c < cmax

The problem here arises in constructing the total preorder Rel′. Consider the case when
z ≺ x ≺ y and rx = 0. Consider two distinct valuations ν and ν′ such that ν[y] = ν′[y]
and they belong to the same region ℜ in consideration. Now depending on the value of
t = 1 − fract(ν[y]), the successor valuations ν1 = ν + (0, 1, 1)t and ν′

1 = ν′ + (0, 1, 1)t
of ν, ν′ respectively, might belong to different regions as they might result in different
partial orders i.e., fract(ν1[z]) > fract(ν1[x]) in one case and fract(ν′

1[z]) < fract(ν′
1[x])

TIME 2021

17:18 11
2 -Player Stochastic StopWatch Games

Astart B C D E
x < 1
{y, z}

y < 1
{z}

y = 1?
{y}

x < 1 ∧ z = 1

Figure 7 A singular stopwatch automaton with three stopwatches.

in the other. Coming up with such valuations is not difficult and it can be verified by
the valuations ν[x, y, z] = (0.20, 0.75, 0) and ν′[x, y, z] = (0.30, 0.75, 0). The successor of
ν′[x, y, z] = (0.30, 0.75, 0) after time 1 − 0.75 is ν′

1[x, y, z] = (0.30, 1, 0.25), having z ≺ x as
0.25 < 0.3 and the successor of ν after time 1 − 0.75 is ν1[x, y, z] = (0.20, 1, 0.25) having
order x ≺ z as 0.2 < 0.25. One might think that further subdividing into smaller regions
might help out but as shown in [11] it can be seen that no matter how many such finite
number of subdivisions are made this problem will still persist.

This idea can be materialized using a stopwatch automaton with three variables as shown
in the Figure 7 and details are given in Example 19.

▶ Example 19. We show that any amount of partitioning (finite number) will fail to correctly
bi-simulate the given timed automaton.
Note that the shaded nodes B, C have rx = 0 and rx = 1 elsewhere.

Suppose we have partitioned [0, 1] using the n points p1, p2..., pn Lets consider the following
run of the automaton. We first spend time t < p1

2 in state A and then subsequently time t1
in state B therefore we will enter state C with clock value t, t1, 0. Due to the continuity of
the real line ∃δ ∈ R≥0, ∃i st. 1 − t − δ ∈ (pi, pi+1) ∧ 1 − t + δ ∈ (pi, pi+1) Now consider the
two clock valuations ν = (t, 1 − t − δ, 0) and ν′ = (t, 1 − t + δ, 0) using the above assertion
clearly ν and ν′ belong to the same region

(
(0, p1), (pi, pi+1), [0]

)
. Hence they have the same

successor and should behave in exactly the same way if the bi-simulation is correct. Now say
we enter state C with these clock values we then spend t ± δ time in C and enter D with
valuation (t, 0, t ± δ) now only the valuation (t, 0, t + δ) will allow us to take the edge to
enter E hence clearly these valuations differ in there behavior but the current partitioning is
not fine enough to distinguish between them.

	1 Introduction
	2 Preliminaries
	3 Qualitative Reachability of onehalf SSG : the two stopwatches case
	4 Conclusion
	A Singular Stopwatch Automata with Two Stopwatches
	A.1 Regions and Region Automaton of 2-H
	A.2 Problem in extending the region construction to 3 variables

