Model Checking of Stream Processing Pipelines
Alexis Bédard =

Laboratoire d’informatique formelle, Université du Québec & Chicoutimi, Saguenay, Canada

Sylvain Hallé &=

Laboratoire d’informatique formelle, Université du Québec & Chicoutimi, Saguenay, Canada

—— Abstract

Event stream processing (ESP) is the application of a computation to a set of input sequences of
arbitrary data objects, called “events”, in order to produce other sequences of data objects. In
recent years, a large number of ESP systems have been developed; however, none of them is easily
amenable to a formal verification of properties on their execution. In this paper, we show how stream
processing pipelines built with an existing ESP library called BeepBeep 3 can be exported as a
Kripke structure for the NuXmv model checker. This makes it possible to formally verify properties
on these pipelines, and opens the way to the use of such pipelines directly within a model checker as
an extension of its specification language.

2012 ACM Subject Classification Theory of computation — Streaming models

Keywords and phrases stream processing, model checking

Digital Object Identifier 10.4230/LIPIcs. TIME.2021.5

Supplementary Material Software (Source Code): https://doi.org/10.5281/zenodo.5386462
Funding Canada Research Chair on Software Specification, Testing and Verification

Acknowledgements The open access publication of this article was supported by the Alpen-Adria-
Universitat Klagenfurt, Austria.

1 Introduction

Information systems generate logs from a variety of sources: business process management
engines, web servers and instrumented programs alike produce sequences of data elements
called event streams. The analysis of these logs, either offline or in real-time, can be put to
numerous uses: computation of various metrics, evaluation of compliance with respect to a
policy [34], detection of anomalous patterns or presence of bugs [36]. The field of Complex
Event Processing (CEP) concentrates on the real-time evaluation of expressive queries over
streams of events [28]. Typically, CEP scenarios involve not only the expression of temporal
patterns, but also arithmetical (counts, sums) or even statistical computations over event
data. The development of tools and libraries for the processing of event streams has seen
a rapid growth in the past decade, with popular products such as Siddhi [33], Esper [2] or
Apache Flink [1].

As we shall see, none of these stream processing frameworks is directly amenable to the
formal verification of properties on their execution. This is an important gap, as multiple
tasks related to the management of event pipelines, which would require the establishment
of invariants, are currently impossible. The first obvious example is correctness, which
is the guarantee that a processing pipeline produces the expected result for all possible
input streams. The static verification of a processing pipeline can also be put to other uses:
identifying “dead paths” (parts of a pipeline that never contribute to the output and are
therefore useless), verifying the equivalence of two implementations of the same computation,
or making sure that I/O buffers allocated to each part of the chain are of sufficient size.

? Alexis Bédard and.Sylvain Hallé;)

37 icensed under Creative Commons License CC-BY 4.0
28th International Symposium on Temporal Representation and Reasoning (TIME 2021).
Editors: Carlo Combi, Johann Eder, and Mark Reynolds; Article No. 5; pp. 5:1-5:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:alexis.bedard1@uqac.ca
mailto:shalle@acm.org
https://orcid.org/0000-0002-4406-6154
https://doi.org/10.4230/LIPIcs.TIME.2021.5
https://doi.org/10.5281/zenodo.5386462
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2

Model Checking of Stream Processing Pipelines

This paper addresses this issue, by describing a formalization of event stream processing
pipelines as Kripke structures that can be handled by a model checker. Section 2 briefly
describes an existing stream processing library called BeepBeep [24]. Section 3 introduces
an extension to this library that makes it possible to export a BeepBeep pipeline into an
input file for the NuXmv model checker [15]. Section 4 illustrates the use of this extension
by presenting a few scenarios that require the model checking of stream processing programs;
an overview of the performance, in terms of execution time, is provided by experiments
discussed in Section 5. Section 6 gives a broad portrait of the state of the art in event
stream processing related to this question, while Section 7 touches upon future research
opportunities.

2 Stream Processing with BeepBeep

Taken in its broadest sense, event stream processing can be defined as the application
of a computation over a sequence of data elements called events. This computation is
typically executed in a “streaming” fashion: its output (generally another event sequence) is
progressively produced as input events of the sequence are consumed. Classical applications
of this model include the realtime calculation of descriptive statistics (such as the average
of values over a sliding window) and the detection of sequential patterns of events in the
sequence.

We now describe BeepBeep, an open source event stream processing engine implemented in
Java [20]. Over the years, BeepBeep has been involved in multiple case studies [10,11,21,25,36].
We briefly provide here a formal description of the operation of the system’s core elements.
For further details, the reader is referred to a complete textbook describing the system [24].

Let X be a set of arbitrary data elements {o1,09...} called events; an event stream,
noted 7, is an element of the set ¥*. The notation [é] is used to denote the i-th event of
o. We denote by & < @ the fact that & is a prefix of @'. If X1,...,%,, are event alphabets,
a stream vector ¥ = (71,...,7,) is an element of (X; X -+ x 3,,)*; note that this imposes
that each stream within the vector is of the same length. A stream vector (Gy,...,0,)
is a prefix of another vector (7,...,7,) if each 7; is a prefix of 7. Given a n-stream
vector ¥ = (G1,...,0,) and an n-uple v = (01, ...,0,), the concatenation ¥ - v is the n-uple
(G1-01,...,0n,0y); this notion can then easily be extended to the concatenation of n-stream
vectors.

What in BeepBeep are called “processors” are functions m: (X1 X -+ X X,,)* — (2] %
<oox 2P Y* with the condition that ¢ < ¢ implies 7(¢) < 7w(¢"). The values of m and n are
the input and output arity of the processor, which is often represented with the notation
m:n. The core of the BeepBeep engine is made of a handful of basic processors performing
elementary operations on streams. Each of these processors is represented graphically as
a box with input and output “pipes”, and its operation is symbolized by a standardized
pictogram. The most common of these processors are shown in Figure 1.

First, the ApplyFunction processor lifts any function f: 3y x -+ x X, = %) x -+« x X/
into a processor m : (X1 X -+ x 8,.,)* — (X] x --- x ¥2)* defined as 7(7 - (01,...,0,)) =
w(V) - f(o1,...,0m). CountDecimate is a 1:1 processor that keeps one event every k, and
is defined as 7(¥) £ (¢]0], U[k], #[2k],...). Trim removes the first k events of the stream
and is defined as 7(¥) £ (¥[k], U[k + 1], [k + 2],...); Fork is a 1:n processor that simply
replicates its input on n independent outputs: 7(¥) £ (@,...,7). Filter is a processor
m: (2 x{T,L})* — ¥* that discards events based on a stream of Boolean values. The event
at position n in the first stream is sent to the output, if and only if the event at the same
position in the second stream is the Boolean value true; formally: (v (0,b)) £ 71(%) - o if
b= T, and 7(¥) otherwise.

A. Bédard and S. Hallé

o) H . : %

) m

Fork a stream into Apply a function Keep one event Trim the first n Cumulate values Filter events based Apply P to a sliding
multiple copies to each event every n events of a function on a control signal window of n events

Figure 1 Pictorial representation of BeepBeep’s core processors.

(a) Sum of 7[i] and 7[34]. (b) A more complex pipeline.

Figure 2 Two examples of processor pipelines discussed in the text.

As its name implies, the Cumulate processor is designed to “accumulate” the successive
values of a binary function. Given a function f : ¥? — ¥ and an implicit initial value
o9 € X, the processor is defined recursively as: w({0)) = (f(00,0)), and 7({7 - 0)) =
w({@)) - (f(7((7))[—1],0)), where 7((7))[—1] stands for the last event produced by = on
the input stream @. This generic construction can represent various types of computations
depending on the function used. For example, if f is addition and og = 0 is used as the start
value, m produces an output stream where the i-th event is the sum of all input events up to
the i-th. If f is Boolean conjunction and og = T, 7 produces an output stream where the
i-the event is the conjunction of all input events up to the i-th.

Finally, the Window processor is probably the most complex included in BeepBeep’s
core. It is parameterized by another processor 7’ : ¥* — X'*, which is used to evaluate a
sub-stream of k successive events in the global input stream:

7({og-0,)) 2 (7' ({00 ...op1))[-1], 7" ({o1...a)[=1], .., T (Ot ... on))[-1])

Intuitively, the first output event of 7 is the last event produced by 7’ on the window of
width £ running from input events 0 to k — 1; The second output event of 7 is the last

event produced by 7’ on the window of width & running from input events 1 to k, and so on.
Note that this processor produces no output event until it receives its first k input events.

This construction is very generic, and distinguishes BeepBeep from other stream processing
engines, as typically, sliding windows only apply to aggregations over numerical values; in
BeepBeep any computation can be put in a sliding window, as 7’ is an arbitrary processor.

Not represented here is the Group processor, which makes it possible to encapsulate a
complete pipeline and give it as an argument to another processor, as if it were a single
“black box™.

5:3

TIME 2021

5:4

Model Checking of Stream Processing Pipelines

In order to perform more complex computations, processors can be composed (or “piped”)
together, by letting the output of one processor be the input of another. This piping is
possible as long as the type of the first processor’s output matches the second processor’s
input type. Figure 2a shows a graphical rendition a possible pipeline, where events flow from
left to right. It represents a calculation made of three processors (A-C) connected by five
pipes (1-5), and where the i-th output event is the sum of input events at positions 3¢ and 4.

It is important to note that BeepBeep processors are not defined on tuples of streams,
but are rather in terms of streams of tuples. For processors with an input arity of 2 or more,
this entails that the processing of their input is done synchronously: a computation step is
performed if and only if an event can be consumed from each input stream. This is a strong
assumption; many other CEP engines allow events to be processed asynchronously, meaning
that the output of a query may depend on what input stream produced an event first. As a
consequence, processors must implicitly manage buffers to store input events until a result
can be computed. This buffering is implicit: it is absent from both the formal definition of
processors and any graphical representation of their piping. Consider for example the input
stream 0,1,2,... fed to the previous pipeline. The fork A sends the event to the input of
B and the lower pipe of C, and processor B lets the event through to the upper pipe of C;
therefore, the sum 0+ 0 is computed. However, feeding the next event (1) to the chain results
in no output. Fork A sends the event through pipes 2 and 3, but processor B discards this
event. As a result, processor C cannot consume an event from both its inputs, and event 1 is
stored in the input queue associated to its second input pipe.

3 A Formal Modeling of BeepBeep Processors

This section presents a framework that enables the model checking of stream processing
models, based on the synchronous formal semantics of BeepBeep processors described in
Section 2. More precisely, it shows how a processor chain can be turned into a Kripke
structure specified in the form of an input model for the NuXmv model checker [15].

3.1 Design Hypotheses

The translation of a processor pipeline into a finite-state model rests on a number of
hypotheses, which are necessary in order to address some of the limitations incurred by the
use of a model checker.

The first obvious constraint is related to the use of event queues by processors. These
queues are theoretically unbounded, as is exemplified in the pipeline of Figure 2a; in this
scenario, the size of the input queue for the bottom pipe of processor C grows indefinitely.
The translation to a NuXmv model must therefore impose a fixed maximum size @ to the
input queues of each processor. Event types are restricted to the scalars supported by the
target model checker, namely Booleans, integers and symbolic constants. Integers themselves
are bounded to the range [0, N — 1], so all arithmetic operations are implicitly assumed to
be performed modulo N.

BeepBeep allows events to be generated in two modes. In pull mode, the handling
of events in the processor pipe is triggered by requesting for a new output event, which
propagates upstream. In order to produce this output event, the processor may require
itself to fetch new events from its input(s), which in turn may ultimately lead to fetching
events from the original event stream. On the contrary, in push mode, output events are
produced by signaling the arrival of new events at the input side of the processor pipe. This

A. Bédard and S. Hallé

may trigger the computation of an output event by the processor, propagating push signals
downstream. Our proposed modeling currently simulates a processor chain that operates in
push mode only.

Computations in the target model are performed in a lockstep fashion. For example,
in the pipeline of Figure 2a, we have seen that pushing an event in pipe 1 results in this
event being pushed through pipes 2 and 3; this, in turn, triggers the evaluation of this
event through the CountDecimate processor, which may result in the event being pushed
in pipe 4, and so on. In the generated model, all computations in a chain resulting from
a single upstream push operation occur in a single transition. This design choice reduces
the potential state space of the resulting system. Were it defined in such a way that each
processor along the chain required its own transition, an event pushed through a straight
chain of n processors would result in n + 1 successive states of the model; our definition
rather conflates them into a single transition between two states.

However, this also brings challenges of its own. First, the definition of some processors
becomes more intricate, as some operations that are easily described through loops must
somehow be “flattened” into a single operation (we shall see that the Window processor
presents a particular challenge in this respect). Second, this design only handles processors
that produce 0 or 1 output event for a given input event. Fortunately, most processors satisfy
this condition, including all those presented in this paper.

3.2 Pipeline Modeling

Based on these hypotheses, it is now possible to define the translation of a BeepBeep pipeline
into a corresponding NuXmv model. The first element to simulate is that of a pipe connecting
two processors. Each pipe is represented by a triplet of variables in the model, called p.,
pp and py. First, p. is the variable that carries the events themselves: its value at a given
computation step indicates the event that this pipe carries from upstream to downstream at
that moment. Variable p;, is a Boolean flag set to value T when the pipe does contain an
event, and to L otherwise. Finally, variable p, is also a Boolean flag that indicates whether
the event being pushed in the pipe is the last of the chain. Some processors use this signal
to perform a different action when receiving what is announced as the last event of a stream.

The modeling of processors takes advantage of NuXmv’s concept of modules, which makes
it possible to encapsulate a set of internal variables and transitions into a self-contained
computation unit. Each module instance can accept a number of parameters, which it can
read from or write to, in addition to its own internal variables. Each module corresponding
to a m:n processor has the same signature, made of 3m + 3n 4+ 1 parameters. Its first 3m
parameters are the triplets that define its m input pipes; its next 3n parameters define its n
output pipes; a final parameter is a Boolean reset flag used to signal the processor that it
should revert its internal state to a predefined initial state.

The composition of processors in a pipeline is achieved by creating as many triplets of
variables as there are pipes in the chain, and passing to each module instance the appropriate
pipe variables either as inputs or outputs. An example is shown in Figure 3, where a fragment
of the NuXmv code for the pipeline of Figure 2a is presented. Variables p.;, ps; and p;,
for i € [1,5], and a global reset flag prst are first declared. Then, the three processors
are represented by variables 7;, whose type is a module corresponding to the appropriate
processor. Finally, one can observe by the input and output parameters of each processor
that their connections are made in accordance with the illustration.

5:5

TIME 2021

5:6 Model Checking of Stream Processing Pipelines

MODULE main
VAR
pc_1: 0..N;
pb_1: boolean;
pl_1: boolean;
prst: boolean;

pi_1: Fork_2(pc_1, pb_1, pl_1, pc_2, pb_2, pl_2, pc_3, pb_3, pl_3, prst);
pi_2: Decimate_3(pc2, pb_2, pl_2, pc_4, pb_4, pl_4, prst);
pi_3: ApplyFuction(pc_4, pb_4, pl_4, pc_3, pb_3, pl_3, pc_5, pb_5, pl_5, prst);

Figure 3 Creating the pipeline of Figure 2a in NuXmv.

Concretely, this process has been implemented by additions to a fork of the original
BeepBeep library.! BeepBeep already provides a class that allows one to navigate through a
processor pipeline using the Visitor design pattern [19]. Our implementation adds a new
object, called SmvCrawler, which traverses a pipeline and makes an inventory of all the
processors encountered, along with their respective connections. Each connection results in a
unique triplet of model variables, and the processor variables are instantiated according to
their type and their input/output relationships. The resulting NuXmv code is then printed
to a file.

3.3 Processor Modeling

Any processor that can be exported as a NuXmv module must implement a Java interface
called SmvPrintable, which consists of a single method called printSmv(). This method
receives as arguments the user-specified values of @@ and N described in Section 3.1. It
prints to the output the NuXmv code snippet defining its corresponding module. For some
processors, such as Trim and CountDecimate, the translation is straightforward and does not
depend on @ and N. We describe in the following the details of the translation for processors
presenting particular challenges.

The first such processor is ApplyFunction, for functions of input arity m > 1. As explained
earlier, this processor must handle input queues, whose behavior needs to be simulated
through arrays. Concretely, the queue associated to an input pipe is represented by two
array variables, q. and gp. The role of these two variables is similar to p. and p,: the first
contains the actual events inside the queue, while the second is used to record whether an
event is contained in the queue at a given position. Depending on the combination of input
pipes where an event is pushed at a given computation step, the transition relation of the
processor must take care of shifting queue contents forwards or backwards into the arrays.
The behavior of this processor when an event must be added to a full queue is left undefined
(this shall be discussed later).

The ApplyFunction processor is also special in that it is parameterized by another object
(the function f to apply). Therefore, BeepBeep functions themselves are also represented as
stateless NuXmv modules: a m:n function becomes a module with m 4+ n arguments, and
whose transition relation in each state sets to the n outputs the result of applying f on the
m inputs. Consequently, each instance of ApplyFunction module needs only to be passed the
module created for its function f; however, this is done in a modular fashion, as its module
merely sets inputs and reads outputs from another abstract module corresponding to the
function to apply. A similar process is done for Cumulate which, in addition to the module
corresponding to the function f to accumulate values from, also has an internal variable last
to store the value produced by f on the last push of an event.

! https://doi.org/10.5281/zenodo . 5386462

https://doi.org/10.5281/zenodo.5386462

A. Bédard and S. Hallé

Finally, the Window processor deserves some discussion. We recall from Section 2 that
sliding windows in BeepBeep can be applied on any processor 7w —including stateful processors.
However, the design hypotheses elicited in Section 3.1 stipulate that each push action on a
pipeline must be accounted for in a single transition of the model. This rules out the “naive’
way of handling windows, which would be to wait for k£ events to be received, push them
into a fresh instance of 7, collect the last event it produces, and push it downstream.

)

The solution we propose works differently, and makes use of the reset flag that each
processor receives. For a window of width k, the Window module maintains as internal
variables k instances Py, ..., Pj of the processor 7 to be applied on a window. Each successive
processor receives the same input stream, with an increasing number of events trimmed from
the beginning. Hence, P; receives the whole stream, P receives all events starting from the
second, and so on. An internal variable ¢ determines which of these instances is due to be
considered for the next output event. Once an instance P, has received k events, its output
is collected and set as the output of the Window processor, and that instance is then reset to
its initial state by setting its reset flag to T. The value of ¢ then shifts to the next processor
instance. In such a way, any processor can be applied to a sliding window, yet still use a
fixed number of variables and be processed in a single transition of the model. To the best of
our knowledge, this implementation is the first to consider stream processing pipelines with
cumulative functions and arbitrary sliding windows, which makes it possible to represent
complex operations on streams, such as “windows on windows”, and the like.

Finally, the Group processor can be handled easily. Each group is exported as an
independent NuXmv module, where a fresh instance of SmvCrawler is instructed to generate
the contents of the group (including any other module it may contain). Its piping is then
taken care of in a similar way as the main module, with the exception that the group is
exported as a module with a unique name, and with parameters corresponding to its open
input and output pipes.

4 Applications

Equipped with the capability of performing model checking on stream processing pipelines,
a number of applications become possible. A first obvious case is the verification of an
arbitrary invariant on the execution of a processor chain, expressed as a temporal logic
formula involving the state variables that represent the inputs and the outputs of the chain.
For example, liveness is a property stating that a pipeline may always output one more event
in the future; if p, is the Boolean variable associated to the chain’s output pipe, this can be
expressed in CTL as AG EF p,. Bounded liveness is a variant of liveness stipulating that
the processor pipeline never remains silent for more than k successive computation steps.
This stronger condition is written as an LTL property (G (pp, VX (pp V .. .))).

4.1 Implementation Comparison

We shall now mention a few other, less trivial applications that rest on model checking. A first
possibility is to check that two pipelines perform the same computation. The basic setup for
doing so is illustrated in Figure 4a. If p. and p, represent the pair of variables corresponding
to the output pipe of 7, and p.. and pj represent the pair of variables corresponding to the
output pipe of 7/, the equivalence between the two implementations can be expressed as
the LTL formula G (py = pj A (pp — (pc = pl.))). This is what we call stepwise equivalence:
7w (¥) = 7'(¥) for every stream vector U; that is, 7 and 7’ produce events at the same time, and
the same event is produced in such a case. In case the equivalence is not verified, the model

5:7

TIME 2021

5:8 Model Checking of Stream Processing Pipelines

(a) Step-wise equivalence. (b) Sequence equivalence.

Figure 4 Basic setup for comparing two implementations m and 7" of the same pipeline.

(b) Simplification of (a). (c) Variant for odd.

Figure 5 A processing pipeline and two simplified versions.

checker produces a counter-example which shows a possible input violating the condition. This
can be used by the developer to help pinpoint the cause of the discrepancy and fix the issue.
However, this setup is not restricted to strict equality. For example, if 7 and 7’ represent
pipelines evaluating a Boolean condition on an input stream, one could verify that 7’ is a
(stepwise) conservative approximation of m by checking that G (py, = pj A (pp — (pl. — pc)))-

There are a few situations where comparing two pipelines can be useful. First, one can
check that a simplification applied to an original pipeline does not disturb its operation. For
instance, Figure 5a shows a relatively convoluted pipeline, formed of 8 processors and 12
pipes; examining its operation, one can discover that this computation actually amounts to
producing sequence of square numbers (1, 4, 9, 16, ...).2 In contrast, Figure 5b shows a
much simpler chain of processors performing this computation formed of 4 processors and 7
pipes. In order to make sure that the two are actually equivalent, they could be plugged in
place of m and 7’ in Figure 4a.

Step-wise equivalence imposes that 7 and 7’ produce output events at the same time:
at each computation step, they either both remain silent, or they both produce the same
output. A looser condition, called sequence equivalence, asserts that m and 7’ produce
the same sequence of events, discarding in each any computation step where no event is
produced. This condition can be stated formally as the fact that for any stream vector v,
either 7(0) < #'(¥) or n/(¥) < w(¥). Such a property is hard to express directly in temporal
logic: one must take into account the fact that either m or 7/ may not produce an output
at a given computation step, and then keep track of the relative offset between the output
values of m and 7’. However, it can be easily verified (within the bounds for @) by modifying

2 The rightmost processor is given the sequence of odd numbers, whose sum for n terms is n2.

A. Bédard and S. Hallé

the original setup to the one shown in Figure 4b. This time, the outputs of m and 7’ are
piped into a binary processor that evaluates equality between its inputs. By virtue of the
operation of processors, the events produced by 7 and n’ will be buffered until two values
can be compared on each input. This has for effect that events at matching positions in both
output streams will be compared for equality, regardless of the number of computation steps
required to produce them.

Using this setup, it is possible to discover that the pipelines of Figures 5a and 5b are
sequence equivalent, but are not step-wise equivalent. Indeed, although both produce the
same stream of output values, in the case of the first pipeline, one must push two input events
in order to receive the first output event (1). In contrast, the pipeline of Figure 5b produces
the first output event immediately after the first push. In other words, the first output
stream is €,1,4,9,..., while the second one is 1,4,9,... The problem of finding simpler
equivalents to existing pipelines is far from trivial. Case in point, if one simply replaces the
even condition by odd in the pipeline of Figure 5a, the simplified pipeline becomes that of
Figure 5c. Indeed, the pipeline now computes the sum of successive even numbers, which can
be accomplished with only 3 processors and 4 pipes. One can see that both simplifications
are largely unrelated, in terms of structure, to the original pipeline, and that even a slight
change in the original layout can result in drastically different simplifications. The discovery
of “dead paths” mentioned in the introduction is simply the special case where a pipeline is
compared with a truncated version of itself —the truncation representing the elements of the
pipeline that can be deleted.

4.2 Reasoning on Buffers

Input buffers in BeepBeep are unbounded: they are simply instances of the Queue interface
that can be dynamically resized on demand. However, embedded systems and many resource-
critical systems disallow the use of dynamically allocated memory, which entails that all data
structures must be of a fixed size. Therefore, it may be desirable to verify that the memory
required to evaluate a pipeline never exceeds some given threshold, which can then be used
to bound the underlying data structures.

We recall that queues within a BeepBeep processor are represented by module variables
g, which are arrays of size). A full queue therefore corresponds to a state where ¢,[Q] = T.
If {gb1,---,qbn} is the set of all module variables representing queue state inside a pipeline,
the full queue condition becomes straightforward to express as: G (A\;_; —¢v,:[Q]). This
property is false exactly when there exists a sequence of input events given to the pipeline
that is such that a processor has one of its buffers reaching its maximum size,). On the
contrary, if the condition is true, the buffers can safely be bounded to a size of @ — 1. One
can even adopt an iterative approach, where the value of @ is progressively increased or
decreased in order to discover the existence of a minimal value for buffer size.

There exist pipelines whose queue size cannot be bounded; one example is Figure 2a. As
we have seen, its i-th output is the sum of the input events at positions 3i and i; therefore,
when the i-th output event is produced, 3i — 1 events are buffered in the processor’s second
input queue. Memory consumption grows linearly in the length of the input stream, and
therefore no upper bound on buffer size will ever satisfy the previous condition. However,
performing this verification with the pipeline of Figure 5a will reveal that a value of @ > 1
satisfies the condition, while @) > 0 is sufficient for the pipeline of 5b.

5:9

TIME 2021

5:10

Model Checking of Stream Processing Pipelines

Figure 6 Model checking a system observed by a monitor.

]
-8l
[

4.3 Stream-Based Formal Verification

So far, the applications we introduced are focused on the model checking of stream pipelines
themselves. However, these pipelines can also be fed as input the sequence of states of
another system that executes within the model checker environment. This is illustrated in
Figure 6. The leftmost box represents a standard Kripke structure K, defined with three
state variables x, y and z. The values of these variables at each execution step are taken as
streams of values that are fed to a BeepBeep processor pipeline ¢, which in turn produces a
stream of Boolean values from these input streams.

Intuitively, ¢ represents a monitor that observes a run of K and evaluates a condition on
this run; the monitor emits | at the moment where the observed run is considered to violate
the property, if ever. This corresponds to a classical setup of runtime verification [8], but
where both the system and the monitor observing it are simulated within a model checker.
Therefore, while a monitor can only provide a verdict for a single execution at a time, its
presence within the model checker makes it possible to obtain guarantees for all executions
of K. If py and p. are the variables modeling the output of the pipeline, asserting that
the property monitored by ¢ is true for all runs of K simply amounts to model checking
G (pp — o).

It turns out that such a setup can be useful to perform model checking of properties that
would be very inconvenient to express directly as temporal logic formulas on the state variables
of K. Consider the following property: at any moment, b contains the number of times a has
been true in the k previous states. Expressing this as an LTL formula is possible, but results in
a clumsy expression of the form: G (a <> X (a > X(a <> Xb=kV-a+ Xb=k—-1)---)).
In comparison, the corresponding pipeline that monitors this property is shown in Figure
2b. In addition to being arguably simpler to express, it is also easier to modify: changing
the value of k only requires a change on window width, instead of a complete rewrite of the
corresponding LTL specification.

5 Experimental Results

We shall now briefly discuss an experimental evaluation of the proposed implementation,
by measuring the execution time of NuXmv on a number of BeepBeep pipelines and for a
sample of generic properties, with a special focus on the impact of parameters @ and N.
Experiments are bundled into a LabPal [23] experimental package that is publicly available
online.? Overall, the combinations of queue sizes, domain sizes and values of parameter k
represent 122 NuSMV input models, which, combined with the set of properties to model
check, correspond to 162 distinct model checking problems. Processor pipelines contain
between 1 and 22 processors, resulting in Kripke structures with up to 21 distinct modules
and 91 variables; for the sake of completeness, they are listed in the appendix. Experiments
were run on a Intel Xeon 12-core 3.6 GHz running Ubuntu 18.04, using NuXmv version 2.0.0.

3 https://github.com/alexisBedard/nusmv-beepbeep-lab

M2.5
M1.3
M2.0
M2.1
M2.3
M2.2
M1.0
https://github.com/alexisBedard/nusmv-beepbeep-lab

A. Bédard and S. Hallé

Query No full queues | Liveness | Bounded liveness
Output if smaller than k 53 56 88
Passthrough 24 25 26
Product of 1 and k-th 387 342 1139
1317 1330 5231
Sum of doubles 1269 1116 11220
Sum of odds 612 526 2075

4842 4948 15641

Prod- | Sum of | Output
uct of 1 | window if

and of

k-th width 3

Sum of
1s on
window

Sum of
doubles

Pass-
through

Sum of
odds

Queue
size

smaller
than k

719 4761 23 175 78

2992 4525 23 1694 206
2249 4513 24 17012 823
8207 4458 23 95619 4158

23216 49
23385 58
22901 67
23018 95

Sum of 1s on window

alw|wo|—

Sum of window of width 3

(a) Verification time for various properties. (b) Impact of queue size on verification.

Query pWi quival equivalence
Passthrough 26 34
Passthrough vs delay comparison 31 44
Product of 1 and k-th 176 450
Sum of 1s on window 2085 10868
Sum of odds 1259 1423
Sum of window of width 3 468 10966
Window sum of 2 comparison 488 963
Window sum of 3 comparison 16107 116959

(c) Implementation comparison.

Figure 7 A summary of experimental results. All table entries are in milliseconds.

A first experiment measures the relative time taken to evaluate the properties discussed
in Section 4 on the same processor pipeline and the same values of) and N. These results
are plotted in Table 7a. These results show that formal guarantees on pipelines can indeed
be checked in reasonable time; one can see that for all processor chains, bounded liveness
checking dominates verification time.

Table 7b shows the impact of queue size) for all pipelines, on the property No full
queues. It shows, unsurprisingly, that verification time grows exponentially for pipelines
having queues, while it remains constant for processor pipelines where no queuing of events
ever happens. In the case where the property is false, we observed that NuXmv indeed
provides a counter-example input stream that results in one of the processors filling one of
its queues; moreover, for all counter-examples we examined, this stream is of the shortest
possible length for this to happen. Although not shown, a similar behavior has been observed
for the impact of parameter N. Over all models, maximum verification time is 275057 ms,
for the pipeline Sum of window of width 3 on the property Liveness.

Finally, Table 7c shows the time taken to verify implementation comparison. This is done
here by putting two copies of the same pipeline side by side; in each case, the model checker
is asked to verify that they are either step-wise or sequence equivalent. Two other pipelines
have also been added, which compare two different implementations of the same pipeline (a
sum over a sliding window). These experimental results reveal that step-wise equivalence,
although a stronger condition than sequence equivalence, is actually easier to verify.

6 Related Work

Stream processing has been the subject of various formal frameworks and implementations in
the recent past. We end this paper by providing a broad overview of existing works related
to the verification of properties on streams.

6.1 Stream Processing Engines

A variety of stream processing software and theoretical frameworks have been developed over
the years, which all differ in a number of dimensions. For example, TelegraphCQ [13] was built
to fix the problem of continuous stream of data coming from networked environments; it shares
similarities with the earlier STREAM system [7]. SASE [37] was brought as a solution to meet
the needs of a range of RFID-enabled monitoring applications. On its side, Siddhi [33] focuses

5:11

TIME 2021

T76.5.0
T76.5.1
T76.5.2
T76.5.3
T76.0.0
T76.0.1
T76.0.2
T76.0.3
T76.3.0
T76.3.1
T76.3.2
T76.3.3
T76.4.0
T76.4.1
T76.4.2
T76.4.3
T76.2.0
T76.2.1
T76.2.2
T76.2.3
T76.6.0
T76.6.1
T76.6.2
T76.6.3
T76.1.0
T76.1.1
T76.1.2
T76.1.3
T58.0.0
T58.0.1
T58.0.2
T58.0.3
T58.0.4
T58.0.5
T58.0.6
T58.0.7
T58.1.0
T58.1.1
T58.1.2
T58.1.3
T58.1.4
T58.1.5
T58.1.6
T58.1.7
T58.2.0
T58.2.1
T58.2.2
T58.2.3
T58.2.4
T58.2.5
T58.2.6
T58.2.7
T58.3.0
T58.3.1
T58.3.2
T58.3.3
T58.3.4
T58.3.5
T58.3.6
T58.3.7
T78.0.0
T78.0.1
T78.0.2
T78.7.0
T78.7.1
T78.7.2
T78.2.0
T78.2.1
T78.2.2
T78.3.0
T78.3.1
T78.3.2
T78.4.0
T78.4.1
T78.4.2
T78.1.0
T78.1.1
T78.1.2
T78.5.0
T78.5.1
T78.5.2
T78.6.0
T78.6.1
T78.6.2
M3.0
M3.1
M3.2

5:12

Model Checking of Stream Processing Pipelines

on the multi-threading aspect of evaluating CEP queries. Among other popular software,
we shall also mention Borealis [5], Cayuga [12], StreamBase SQL [3], StreamInsight [26],
and VoltDB [4]. Recently, stream processing engines have started adopting an SQL-like
declarative language called the Event Processing Language (EPL) [9]; such systems include
Esper [2] and Apache Flink [1]. Despite this large number of concrete implementations, few
of them have a formally-defined semantics, or have been studied under the angle of static
verification. This absence of formal grounds has for consequence that establishing properties
of computations made using these systems is difficult. The use of a model checker has been
suggested to solve the scheduling problem in a Synchronous Data Flow (SDF) pipeline [31].
However, to the best of our knowledge, we are not aware of the use of model checking to
establish formal properties of the pipeline itself, down at the individual event and buffer
level.

We finally mention LOLA [16], a formal stream processing language where new event
streams are created by combining existing streams through stream operators, and where
complex processing is achieved by systems of equations on stream variables. In this context,
a system of equations is said to be efficiently monitorable when the worst-case memory
requirement for the online evaluation algorithm is constant in the length of the input stream:;
a sufficient condition is demonstrated, by calculating a dependency graph between streams
and showing that it contains no cycle of positive weights. It has been shown that features of
this language can be reproduced by composing appropriate BeepBeep processor pipelines [22];
therefore, our proposed approach can be seen as a means to indirectly verify properties
on LOLA models. Section 4.2 has also shown that a constant-memory requirement can be
established through model checking on BeepBeep pipelines.

6.2 Formal Models

Since some of these tools are designed as independent computation units passing events
downstream in a pipeline, it is somewhat sensible to compare them to formal models of
finite-state systems that communicate with each other. Input-output automata [29] are
a model of computation in asynchronous distributed networks, composed of a disjoint set
of inputs, outputs, and internal actions. The theory of communicating automata (CA)
considers networks of such units exchanging messages between each other. In this context,
the reachability problem consists of determining if there exists a sequence of interactions in
a given network such that each automaton can reaches an internal final state from an initial
state [32].

Compared to the BeepBeep event stream processing engine that is the focus of our
work, CAs present some important differences. First, CAs are asynchronous models, while
BeepBeep is strictly synchronous. Second, CAs define concurrent systems. Finally, CAs use
unbounded channels, while BeepBeep’s computation units may only send and receive one and
only one message at each computation step. A further line of research concentrates on the
impact of lossy channels, where a message sent by a CA may or may not reach its destination
point [6]. Although this problem is relevant in situations involving actual point-to-point
(e.g. network) communications, the message exchanges in ESP systems is typically internal
through shared memory, where such an issue is much less important.

Modular Petri nets is another model in which individual modules interact via shared
places and transitions [14]. Previous work combined Linear Time Logic with modular Petri
nets to show how LTL-X model checking can be done on the synchronization graph [27]: the
goal is to find an illegal execution of the modular net by synchronizing the Biichi automaton
with the visible transitions. Similarly, some works described how model checking can be

A. Bédard and S. Hallé

using the net unfoldings approach [17,18,30], which use partial order techniques to verify
concurrent and distributed system. Communicating Transaction Processes (CTP), based on
Message Sequence Charts (MSCs), is another model of computation describing a network of
communicating processes interacting via common action labels [35]. Essentially, a CTP is a
Petri net where the places are the states inside each process. This transition system models
non-atomic inter-process communications (event structure) and describes intra-process control
flow (transaction scheme); in other words, a process interacts with another before performing
some internal computation. The problem of whether a CTP satisfies a specification expressed
as a Live Sequence Chart is then discussed.

In comparison to these approaches, BeepBeep processor pipelines are simpler, as commu-
nications are unidirectional, and are always performed in global transitions for the whole
pipeline at once. However, they allow for more complex forms of computation, such as
sliding windows and aggregation, which cannot easily be modeled as PNs. In addition, while
the previous works focus on the verification of reachability properties or compliance with a
predefined pattern of message exchanges between computational units, our approach is more
interested in the verification of input/output relationships of the global pipeline, and not on
the intermediate events that are passed within it.

7 Conclusion and Discussion

This paper has shown how a stream processing pipeline can be turned into a finite-state model
that simulates its execution, which makes it amenable to the model checking of properties
on the original chain. Although the proposed work focuses on the BeepBeep event stream
engine, the set of basic operators it handles are common to a large variety of other stream
processors. Worthy of mention is that this set includes aggregation and sliding windows; to
the best of our knowledge, the formal verification of such expressive types of computations
is being studied here for the first time. The specifics of this translation, however, remains
system-dependent.

This modeling presents a number of limitations that should be addressed in future work.
First are constraints inherent to the underling model checker: only scalar data types are
currently handled, whereas a few BeepBeep processors operate on richer types (character
strings and variable-sized associative maps) and had to be left out. Our model also supports
processors that produce at most one output event for each input event tuple received, which
excludes yet a few more processors. Input queues must be given the same (finite) size across
all processors of a chain, which makes it impossible to reason about queue size for individual
processors.

In counterpart, the paper has shown through a few examples the potential applications
that are opened by the model checking of stream pipelines. In addition to straightforward
invariants, we shall mention the simplification of processor chains, the calculation of minimum
buffer size, and the verification of equivalence between two implementations. The “monitor
within a model checker” concept introduced in Section 4.3 especially warrants further scrutiny,
as it presents the potential to easily verify properties of a system that would be cumbersome
to write directly using temporal logic.

Since the NuXmv model is based on the formal semantics of each processor, it also
becomes possible to use a combination of testing and model checking to assess whether the
actual Java code implementing each processor is faithful to that semantics. Finally, although
the lossy channel problem has not been addressed, it would be easy to include it in our
model by having pipes between processors non-deterministically “leak” events, and track the
consequences of such an action.

5:13

TIME 2021

5:14

Model Checking of Stream Processing Pipelines

—— References

B W N =

10

11

12

13

14

15

16

17

Apache Flink. URL: https://flink.apache.org, Accessed April 26th, 2021.

Esper. URL: http://espertech.com.

StreamBase SQL. URL: http://streambase.com.

VoltDB. URL: http://voltdb.com.

Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cherniack,
Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina, Nesime
Tatbul, Ying Xing, and Stanley B. Zdonik. The design of the Borealis stream processing engine.
In CIDR, pages 277-289, 2005. URL: http://www.cidrdb.org/cidr2005/papers/P23.pdf.
Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable channels. Inf.
Comput., 127(2):91-101, 1996. doi:10.1006/inco.1996.0053.

A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R Motwani, U. Srivastava,
and J. Widom. Stream: The stanford data stream management system. Technical Report
2004-20, Stanford InfoLab, 2004. URL: http://ilpubs.stanford.edu:8090/641/.

Ezio Bartocci, Ylies Falcone, Adrian Francalanza, and Giles Reger. Introduction to runtime
verification. In Ezio Bartocci and Ylies Falcone, editors, Lectures on Runtime Verification -
Introductory and Advanced Topics, volume 10457 of Lecture Notes in Computer Science, pages
1-33. Springer, 2018. doi:10.1007/978-3-319-75632-5_1.

Edmon Begoli, Tyler Akidau, Fabian Hueske, Julian Hyde, Kathryn Knight, and Kenneth
Knowles. One SQL to rule them all - an efficient and syntactically idiomatic approach to
management of streams and tables. In Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,
Amol Deshpande, and Tim Kraska, editors, Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 -
July 5, 2019, pages 1757-1772. ACM, 2019. doi:10.1145/3299869.3314040.

Quentin Betti, Raphaél Khoury, Sylvain Hallé, and Benoit Montreuil. Improving hyper-
connected logistics with blockchains and smart contracts. [T Prof., 21(4):25-32, 2019.
doi:10.1109/MITP.2019.2912135.

Mohamed Recem Boussaha, Raphaél Khoury, and Sylvain Hallé. Monitoring of security
properties using BeepBeep. In Abdessamad Imine, José M. Fernandez, Jean-Yves Marion,
Luigi Logrippo, and Joaquin Garcia-Alfaro, editors, FPS, volume 10723 of Lecture Notes in
Computer Science, pages 160-169. Springer, 2017. doi:10.1007/978-3-319-75650-9_11.
Lars Brenna, Johannes Gehrke, Mingsheng Hong, and Dag Johansen. Distributed event stream
processing with non-deterministic finite automata. In Aniruddha S. Gokhale and Douglas C.
Schmidt, editors, DEBS. ACM, 2009. doi:10.1145/1619258.1619263.

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M. Heller-
stein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden, Vijayshankar Raman, Frederick
Reiss, and Mehul A. Shah. TelegraphCQ: Continuous dataflow processing for an uncertain world.
In CIDR, 2003. URL: http://www-db.cs.wisc.edu/cidr/cidr2003/program/p24.pdf.
Seren Christensen and Laure Petrucci. Modular analysis of petri nets. Comput. J., 43(3):224—
242, 2000. doi:10.1093/comjnl/43.3.224.

Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri. NuSMV:
A new symbolic model checker. Int. J. Softw. Tools Technol. Transf., 2(4):410-425, 2000.
doi:10.1007/s100090050046.

Ben D’Angelo, Sriram Sankaranarayanan, César Sanchez, Will Robinson, Bernd Finkbeiner,
Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: runtime monitoring of
synchronous systems. In 12th International Symposium on Temporal Representation and
Reasoning (TIME 2005), 23-25 June 2005, Burlington, Vermont, USA, pages 166-174. IEEE
Computer Society, 2005. doi:10.1109/TIME.2005.26.

Javier Esparza and Keijo Heljanko. A new unfolding approach to LTL model checking. In
Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors, ICALP, volume 1853 of Lecture
Notes in Computer Science, pages 475-486. Springer, 2000. doi:10.1007/3-540-45022-X_40.

https://flink.apache.org
http://espertech.com
http://streambase.com
http://voltdb.com
http://www.cidrdb.org/cidr2005/papers/P23.pdf
https://doi.org/10.1006/inco.1996.0053
http://ilpubs.stanford.edu:8090/641/
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1145/3299869.3314040
https://doi.org/10.1109/MITP.2019.2912135
https://doi.org/10.1007/978-3-319-75650-9_11
https://doi.org/10.1145/1619258.1619263
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p24.pdf
https://doi.org/10.1093/comjnl/43.3.224
https://doi.org/10.1007/s100090050046
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/3-540-45022-X_40

A. Bédard and S. Hallé

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Javier Esparza and Keijo Heljanko. Implementing LTL model checking with net unfoldings. In
Matthew B. Dwyer, editor, SPIN, volume 2057 of Lecture Notes in Computer Science, pages
37-56. Springer, 2001. doi:10.1007/3-540-45139-0_4.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

Sylvain Hallé. When RV meets CEP. In Ylies Falcone and César Sanchez, editors, RV,
volume 10012 of Lecture Notes in Computer Science, pages 68-91. Springer, 2016. doi:
10.1007/978-3-319-46982-9_6.

Sylvain Hallé, Sébastien Gaboury, and Bruno Bouchard. Activity recognition through complex
event processing: First findings. In Bruno Bouchard, Sylvain Giroux, Abdenour Bouzouane,
and Sébastien Gaboury, editors, Artificial Intelligence Applied to Assistive Technologies and
Smart Environments, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February
12, 2016, volume WS-16-01 of AAAI Workshops. AAAT Press, 2016. URL: http://wuw.aaai.
org/ocs/index.php/WS/AAAIW16/paper/view/12561.

Sylvain Hallé and Raphaél Khoury. Writing domain-specific languages for BeepBeep. In
Christian Colombo and Martin Leucker, editors, RV, volume 11237 of Lecture Notes in
Computer Science, pages 447-457. Springer, 2018. doi:10.1007/978-3-030-03769-7_27.
Sylvain Hallé, Raphaél Khoury, and Mewena Awesso. Streamlining the inclusion of computer
experiments in a research paper. Computer, 51(11):78-89, 2018. doi:10.1109/MC.2018.
2876075.

Sylvain Hallé. Event Stream Processing With BeepBeep 3: Log Crunching and Analysis Made
Easy. Presses de I'Université du Québec, 2018.

Raphaél Khoury, Sylvain Hallé, and Omar Waldmann. Execution trace analysis using LTL-
FO+. In Tiziana Margaria and Bernhard Steffen, editors, ISoLA, volume 9953 of Lecture
Notes in Computer Science, pages 356—-362, 2016. doi:10.1007/978-3-319-47169-3_26.
Ramkumar Krishnan, Jonathan Goldstein, and Alex Raizman. A hitchhiker’s guide to
StreamInsight queries, version 2.1, 2012. URL: http://support.sas.com/documentation/
onlinedoc/dfdmstudio/2.4/dfU_ELRG.pdf.

Timo Latvala and Marko Mékeld. LTL model checking for modular petri nets. In Jordi
Cortadella and Wolfgang Reisig, editors, ICATPN, volume 3099 of Lecture Notes in Computer
Science, pages 298-311. Springer, 2004. doi:10.1007/978-3-540-27793-4_17.

David C. Luckham. The power of events — An introduction to complex event processing in
distributed enterprise systems. ACM, 2005.

Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Fred B. Schneider, editor, PODC, pages 137-151. ACM, 1987. doi:10.1145/41840.41852.
Agnes Madalinski and Victor Khomenko. Predictability verification with parallel 1tl-x model
checking based on petri net unfoldings. IFAC Proceedings Volumes, 45(20):1232-1237, 2012.
Avinash Malik and David Gregg. Orchestrating stream graphs using model checking. ACM
Trans. Archit. Code Optim., 10(3):19:1-19:25, 2013. doi:10.1145/2512435.

Anca Muscholl. Analysis of communicating automata. In Adrian-Horia Dediu, Henning Fernau,
and Carlos Martin-Vide, editors, LATA, volume 6031 of Lecture Notes in Computer Science,
pages 50-57. Springer, 2010. doi:10.1007/978-3-642-13089-2_4.

Srinath Perera, Sriskandarajah Suhothayan, Mohanadarshan Vivekanandalingam, Paul Fre-
mantle, and Sanjiva Weerawarana. Solving the grand challenge using an opensource CEP
engine. In Umesh Bellur and Ravi Kothari, editors, DEBS, pages 288-293. ACM, 2014.
doi:10.1145/2611286.2611331.

Stefanie Rinderle-Ma and Sonja Kabicher-Fuchs. An indexing technique for compliance
checking and maintenance in large process and rule repositories. Enterp. Model. Inf. Syst.
Archit. Int. J. Concept. Model., 11:2:1-2:24, 2016. doi:10.18417/emisa.11.2.

Abhik Roychoudhury and P. S. Thiagarajan. Communicating transaction processes: An
MSC-based model of computation for reactive embedded systems. In Jorg Desel, Wolfgang
Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency and Petri Nets, Advances
in Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 789-818. Springer,
2003. doi:10.1007/978-3-540-27755-2_22.

5:15

TIME 2021

https://doi.org/10.1007/3-540-45139-0_4
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1007/978-3-319-46982-9_6
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12561
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12561
https://doi.org/10.1007/978-3-030-03769-7_27
https://doi.org/10.1109/MC.2018.2876075
https://doi.org/10.1109/MC.2018.2876075
https://doi.org/10.1007/978-3-319-47169-3_26
http://support.sas.com/documentation/onlinedoc/dfdmstudio/2.4/dfU_ELRG.pdf
http://support.sas.com/documentation/onlinedoc/dfdmstudio/2.4/dfU_ELRG.pdf
https://doi.org/10.1007/978-3-540-27793-4_17
https://doi.org/10.1145/41840.41852
https://doi.org/10.1145/2512435
https://doi.org/10.1007/978-3-642-13089-2_4
https://doi.org/10.1145/2611286.2611331
https://doi.org/10.18417/emisa.11.2
https://doi.org/10.1007/978-3-540-27755-2_22

5:16 Model Checking of Stream Processing Pipelines

36 Simon Varvaressos, Kim Lavoie, Sébastien Gaboury, and Sylvain Hallé. Automated bug
finding in video games: A case study for runtime monitoring. Computers in Entertainment,
15(1):1:1-1:28, 2017. doi:10.1145/2700529.

37 Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event processing over
streams. In Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis, editors, SIGMOD
Conference, pages 407-418. ACM, 2006. doi:10.1145/1142473.1142520.

A Appendix: Pipelines

Here are illustrated the pipelines included in the experiments.

Passthrough

The passthrough is a processor that simply outputs whatever it receives as its input.

= =

Sum on window of width 3

The pipeline sums three successive input events.

Sum of 1s on window

This pipeline turns every event into a 1, and then sums these values over a window of width
k. Therefore, it always returns k as its output events.

Output if smaller than k

This pipeline turns every event into a 1, and then outputs these values only if they are smaller
than some constant k. As a result, it only outputs k events, and remains silent after that.

https://doi.org/10.1145/2700529
https://doi.org/10.1145/1142473.1142520

A. Bédard and S. Hallé

Product of 1 and k-th

This pipeline corresponds to a variant of Figure 2a, with multiplication replacing addition.

Sum of doubles

This chain multiplies an input event by two, and sums the resulting stream.

Sum of odds

This example was discussed as Figure 5a.

Compare window sum of 2

This model compares two implementations of the sum over a sliding window of width 2.

VS.

Compare window sum of 3

This model compares two implementations of the sum over a sliding window of width 3.

VS.

5:17

TIME 2021

	1 Introduction
	2 Stream Processing with BeepBeep
	3 A Formal Modeling of BeepBeep Processors
	3.1 Design Hypotheses
	3.2 Pipeline Modeling
	3.3 Processor Modeling

	4 Applications
	4.1 Implementation Comparison
	4.2 Reasoning on Buffers
	4.3 Stream-Based Formal Verification

	5 Experimental Results
	6 Related Work
	6.1 Stream Processing Engines
	6.2 Formal Models

	7 Conclusion and Discussion
	A Appendix: Pipelines

