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Abstract
Symbolic learning is the logic-based approach to machine learning. The mission of symbolic learning
is to provide algorithms and methodologies to extract logical information from data and express it
in an interpretable way. In the context of temporal data, interval temporal logic has been recently
proposed as a suitable tool for symbolic learning, specifically via the design of an interval temporal
logic decision tree extraction algorithm. Building on it, we study here its natural generalization
to interval temporal random forests, mimicking the corresponding schema at the propositional
level. Interval temporal random forests turn out to be a very performing multivariate time series
classification method, which, despite the introduction of a functional component, are still logically
interpretable to some extent. We apply this method to the problem of diagnosing COVID-19 based
on the time series that emerge from cough and breath recording of positive versus negative subjects.
Our experiment show that our models achieve very high accuracies and sensitivities, often superior
to those achieved by classical methods on the same data. Although other recent approaches to the
same problem (based on different and more numerous data) show even better statistical results, our
solution is the first logic-based, interpretable, and explainable one.

2012 ACM Subject Classification Computing methodologies → Machine learning algorithms

Keywords and phrases Interval temporal logic, decision trees, random forests, sound-based diagnosis

Digital Object Identifier 10.4230/LIPIcs.TIME.2021.7

Acknowledgements We thank the INdAM GNCS 2020 project Strategic Reasoning and Automated
Synthesis of Multi-Agent Systems for partial support, the PRID project Efforts in the uNderstanding
of Complex interActing SystEms, the University of Udine (Italy), the University of Gothenburg
(Sweden), and the Chalmers University of Technology (Sweden) for providing the computational
resources, and the University of Cambridge (UK) for sharing their data. Moreover, the open access
publication of this article was supported by the Alpen-Adria-Universität Klagenfurt, Austria.

1 Introduction

Machine Learning (ML) is at the core of modern Artificial Intelligence. It can be defined
as the process of automatically extracting the theory that underlies a phenomenon, and
expressing it in machine-friendly terms, so that it can be later used in applications. The
potential of ML is limitless, and it ranges from learning rules that classify patients at some
risk, to formalizing the factors that influence pollution in a certain area, to recognizing
voices, signatures, images, and many others. The most iconic and fundamental separation
between the sub-fields of ML is the one between functional and symbolic learning. Functional
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learning is the process of learning a function that represents such underlying theory; functions
can be as simple as linear functions, or as complex as deep neural networks. Symbolic
learning, on the other hand, is the process of learning a logical description that represents
a phenomenon. Symbolic learning is sometimes statistically less accurate than functional
one, but its results can be interpreted and explained by humans, while, in general, functional
models are considered black-boxes. Until very recently, symbolic learning models were limited
by their underlying logical language, that is, propositional logic, and temporal, spatial, and,
in general, non-propositional data were usually dealt with propositional learning by flattening
the non-propositional dimension using global features (e.g., the average temperature instead
of all values within the monitored period). This resulted in the possibility of using off-the-shelf
methods after a phase of data abstraction, but severely hampered the interpretability of the
results, and in many cases the statistical performances of the extracted model as well.

Interval temporal logic decision trees are a first step in the direction of improving the
expressive power of symbolic methods by replacing propositional logic with a more expressive
formalism in a classical, well-known schema. They were introduced in [13, 38], and have
shown great potential as a method to classify multivariate time series. Temporal logic decision
trees are part of a bigger project that aims to establish a whole new area, generally known as
modal symbolic learning, whose driving principle is precisely the study of symbolic learning
schemata and methods based on propositional modal logic. Propositional decision trees
can be generalized into bags of trees and then into random forests [7] to obtain classifiers
based on several trees instead of a single one. Sets of trees tend to be more performing than
single trees, and while they are considered at the verge between symbolic and functional
learning, their symbolic nature is still evident: sets of trees, as single trees, can be analyzed
and discussed, and, although the process of extracting rules is not as immediate as in single
trees, is still possible [17, 31]. Building on this idea, in this paper we present an approach to
interval temporal logic random forests, based, as single temporal logic trees are, on interval
temporal logic. Interval temporal forests follow the same principles as the propositional ones:
as a general rule, a forest is a schema based on the idea that different trees are built from
different subsets of the training set and different subsets of the attributes; in the temporal
case, moreover, they may differ by the subset of interval relations that are allowed in the
learning (in [29], the problem of selecting subsets of relations in the learning phase, treated
as feature selection problem, has been studied). We use interval temporal random forests in
the same way as interval temporal decision trees, that is, to solve multivariate time series
classification problems. Classification of time series is an active area of research: air quality
control and prediction in climate science, prices and rates of inflation in economics, infectious
diseases trends and spreading patterns in medicine, pronunciation of word signs in linguistics,
sensor recordings of systems in aerospace engineering, among many others, are all problems
that can be expressed in terms of time series classification. But the intrinsic versatility of time
series allows us to act on less immediate applications, including, for example, interpreting
breath and cough recordings as a medium for diagnosis of respiratory diseases. COVID-19 is
a respiratory disease onset by the virus SARS-CoV2, classified in 2019, which has caused a
pandemic in the years 2020 and 2021; the current literature on this topic is huge, and spans
every field from the medical, economical, sociological, up to and including applications of
artificial intelligence. In early 2020, via an application and a website specifically built to this
purpose, several cough and breath sound samples were recorded from anonymous volunteers,
along with a small medical history and their declaration on positivity/negativitiy w.r.t. a
recent COVID-19 test. Such recordings were used in [11] to train a classical, functional,
adimensional classification system with the purpose of designing a prototype automatic
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diagnosis system. The data were also made publicly available. In this paper, we use the same
recordings by treating them as multivariate time series, and we test the interval temporal
logic random forest model on them, serving two purposes: contributing to the fight against
the pandemic with yet another system for automatic diagnosis and proving the effectiveness
of our model.

This paper is organized as follows. In Section 2 we give some necessary background
on time series and their classification, interval temporal logic, and sound-based diagnosis
of respiratory diseases. In Section 3 we briefly recall interval temporal decision trees and
introduce interval temporal random forests. Then, in Section 4 we discuss the data, the
applied transformations, the experimental setup, and the results, before concluding.

2 Background

Time series and their classification. A time series T is a set of n ≥ 1 variables that evolve
over time, where each variable is an ordered collection of NT numerical or categorical values
described as follows:

T =


A1 = a1,1, a1,2, . . . , a1,NT

A2 = a2,1, a2,2, . . . , a2,NT

...
An = an,1, an,2, . . . , an,NT

.

A time series is called multivariate, if n > 1; otherwise it is univariate. A univariate time
series with categorical values is also known as a time (or temporal) sequence; we use the
term time series to denote multivariate, mixed (numerical and categorical) set of temporal
variables. Categorical values are fairly uncommon in time series, and typical temporal data
sets are usually numerical. A temporal data set is a set T = {T1, . . . , Tm} of m temporal
instances defined over a set of n attributes A = {A1, . . . , An}, each of which is a univariate
time series T having NT points. A categorical labeled temporal data set is a temporal data
set where the instances are associated to a target variable C = {C1, . . . , Cl}, also known as
class variable. In this paper, we assume that temporal data sets have no missing values, or
that missing values are simply substituted by placeholders. Implicitly, we are also assuming
that temporal attributes are sampled at the same granularity.

Time series are very versatile and we can use them to represent very diverse situations.
For example, we may want to describe the clinical history of a patient; the set of numerical
attributes may include fever and level of pain, which change along time on a scale, say,
of minutes, and the problem may be to distinguish between relapsing and non-relapsing
patients. Similarly, we can use time series to describe the behaviour of complex machines
to which sensors are attached; they may measure temperature and pressure on a scale of
seconds, and the problem may be to distinguish between machines that need from those
which do not need preemptive maintenance. The multivariate time series classification is
the problem of finding a formula or a set of formulas (i.e., symbolic classification), or a
function (i.e., functional classification) that associates multivariate time series to classes.
Several approaches for time series classification have been proposed in the literature, that
span from purely functional ones [16, 24, 25, 30, 39], to distance-based ones [28], to symbolic
ones [2, 3, 15, 41], to shapeled-based ones [12].

TIME 2021
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Interval temporal logic. While several different interval temporal logics have been proposed
in the recent literature [18], Halpern and Shoham’s (HS) [19] is certainly the formalism that
has received the most attention, being the most natural modal logic for temporal intervals.
From a logical point of view, HS and its fragments have been studied on the most important
classes of linearly ordered sets, from the class of all linear orders, to the classes of linear orders
that can be built on classical sets such as N,Q and R [9, 10, 19]. Nevertheless, from the
learning point of view, temporal (and static) data sets are finite, fully represented structures;
therefore, we focus our attention on finite domains. Let [N ] be a finite, initial subset of N+
of cardinality N > 1, that is, [N ] = {1, 2, . . . , N}. A strict interval over [N ] is an ordered
pair [x, y], where x, y ∈ [N ] and x < y. If we exclude the identity relation, there are 12
different binary ordering relations between two strict intervals on a linear order, often called
Allen’s interval relations [1]: the six relations RA (adjacent to), RL (later than), RB (begins),
RE (ends), RD (during) and RO (overlaps), depicted in Tab. 1, and their inverses, that
is, RX = (RX)−1, for each X ∈ {A,L,B,E,D,O}. We interpret interval structures as
Kripke structures, with Allen’s relations playing the role of accessibility relations. Thus,
we associate an existential modality ⟨X⟩ with each Allen’s relation RX . Moreover, for each
X ∈ {A,L,B,E,D,O}, the transpose of modality ⟨X⟩ is modality ⟨X⟩ corresponding to the
inverse relation RX of RX . Now, let X = {A,A,L, L,B,B,E,E,D,D,O,O}; Halpern and
Shoham’s interval temporal logic (HS) [19] is a multi-modal logic with formulas built from
a finite, non-empty set AP of atomic propositions (also referred to as proposition letters),
the propositional connectives ∨ and ¬, and a modality for each Allen’s interval relation, and
well-formed formulas of HS are generated by the grammar:

φ ::= p | ¬φ | φ ∨ φ | ⟨X⟩φ,

where p ∈ AP and X ∈ X . The other propositional connectives and constants (e.g.,
ψ1 ∧ψ2 ≡ ¬ψ1 ∨¬ψ2, ψ1 → ψ2 ≡ ¬ψ1 ∨ψ2 and ⊤ = p∨¬p), as well as, for each X ∈ X , the
universal modality [X] (e.g., [A]φ ≡ ¬⟨A⟩¬φ), can be derived in the standard way.

The strict semantics of HS is given in terms of timelines (or, more commonly, interval
models) T = ⟨I([NT ]), V ⟩1, where [NT ] = {1, 2, . . . , NT } is a finite linear order, I([NT ]) is the
set of all (strict) intervals over [NT ] with cardinality NT (NT − 1)/2, and V is a valuation
function V : AP → 2I([NT ]) which assigns to every atomic proposition p ∈ AP the set of
intervals V (p) on which p holds. The truth of a formula φ on a given interval [x, y] in
an interval model T , denoted by T, [x, y] ⊩ φ, is defined by structural induction on the
complexity of formulas as follows:

T, [x, y] ⊩ p if and only if [x, y] ∈ V (p), for each p ∈ AP;
T, [x, y] ⊩ ¬ψ if and only if T, [x, y] ̸⊩ ψ (i.e., it is not the case that T, [x, y] ⊩ ψ);
T, [x, y] ⊩ ψ1 ∨ ψ2 if and only if T, [x, y] ⊩ ψ1 or T, [x, y] ⊩ ψ2;
T, [x, y] ⊩ ⟨X⟩ψ if and only if there exists [w, z] s.t. [x, y]RX [w, z] and T, [w, z] ⊩ ψ;

where X ∈ X . Given a model T = ⟨I([NT ]), V ⟩ and a formula φ, we say that T satisfies φ
if there exists an interval [x, y] ∈ I([NT ]) such that T, [x, y] ⊩ φ. A formula φ is satisfiable if
there exists an interval model that satisfies it. Moreover, a formula φ is valid if it is satisfiable
on every interval model or, equivalently, if its negation ¬φ is unsatisfiable.

1 We deliberately use the symbol T to indicate both a time series and a timeline.
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Table 1 Allen’s interval relations and HS modalities.

HS modality Definition w.r.t. the interval structure Example

x y

w z

w z

w z

w z

w z

w z

⟨A⟩ (after) [x, y]RA[w, z] ⇔ y = w

⟨L⟩ (later) [x, y]RL[w, z] ⇔ y < w

⟨B⟩ (begins) [x, y]RB [w, z] ⇔ x = w ∧ z < y

⟨E⟩ (ends) [x, y]RE [w, z] ⇔ y = z ∧ x < w

⟨D⟩ (during) [x, y]RD[w, z] ⇔ x < w ∧ z < y

⟨O⟩ (overlaps) [x, y]RO[w, z] ⇔ x < w < y < z

Sounds and respiratory diseases. Human sounds, both audible (such as cough and breath)
and non-audible (such as heartbeat) have been long considered useful tools for diagnosis.
The recent use of sounds, and, in particular, cough, for the automatic, ML-based, diagnosis
of respiratory diseases includes many examples (see [35] for a systematic review). Because
of the current sanitary emergency, the case of COVID-19 has received a lot of attention.
Very recent approaches include [20, 23, 26] and [11], from which the data used in this paper
are borrowed. A common denominator to these approaches is their classical treatment of
the dimensional data, such as breath and cough, that consists of extracting (even complex)
numerical attributes from them, and then using such attributes to train classical classifier(s).
Moreover, following the recent trends, the existing systems share the use of functional,
complex classification learning systems (mainly deep neural networks). As it often happens,
such black-box solutions tend to outperform symbolic approaches in terms of accuracy, but
they give up, at the same time, the possibility of interpreting, discussing, and explaining
the models. We, on the contrary, treat cough and breath as time series, and use native
temporal methods to classify them. This results in an interesting compromise: our numerical
performances are comparable to those of functional classifiers, and yet our models are explicit.
While extracting a theory of the sound of COVID-19 is outside the scope of this paper, the
fact remains that we are able to pinpoint interval temporal logic formulas that in some way
describe the differences between negative and positive cases; these formula may be even
translated into diagnostic principles, and, in this particular case, audible sounds.

3 A Theory of Temporal Decision Trees and Forests

Temporal decision trees. Let T be a temporal data set described by n attributes
{A1, . . . , An}. Given a time series T ∈ T and a time point t, we denote by A(t) the
value of A at the point t, and by dom(A) the domain of A. A temporal data set entails a
propositional alphabet AP defined as follows:

AP = {A ▷◁∼γ a | A ∈ A, ▷◁∈ {<,≤,=,≥, >},∼∈ {<,≤,≥, >} and a ∈ dom(A)}.

The set AP is the natural generalization of the set of propositional letters that implicitly
emerges in inductive processes from static data (e.g., fever greater than 38 degrees). The
main difference between the two cases, propositional and temporal, is that in the latter case
propositions in AP are given an interval semantics, that is, they are evaluated over intervals
of time; this is a natural choice that depends from the fact that time series describe continuous

TIME 2021
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processes, in which evaluations based on punctual values have little sense. Intuitively, consider
an interval of time [x, y] and an attribute A that varies on it. We can ask the question A ▷◁ a

over the entire interval, which is positively answered if every value of A in the interval [x, y]
respects the given constraint; but, to enhance an interval-based semantics we soften the
meaning of A ▷◁ a using the expression A ▷◁∼γ a, with γ ∈ (0, 1], that is interpreted as true
if, assuming for example ∼ to be ≥, at least the γ fraction of the values in [x, y] respect the
given constraint. More formally, we say that:

T, [x, y] ⊩ A ▷◁∼γ a if and only if |{z|x≤z≤y and A(z)▷◁a}|
y−x+1 ∼ γ.

In the particular case of propositional learning the set of propositional letter is complete, that
is, for every letter p there exists a letter q that behaves as ¬p. The set AP , as defined above,
is complete as well in this sense; however, completeness is not necessary in the learning phase,
and subsets of AP may be used to improve the experimental efficiency of the process. In
the context of temporal decision trees and forests we do not ask if A ▷◁∼γ a holds only in
the current interval but also if there exists an interval, related to the current one, in which
that holds. Thus, the language of temporal decision trees encompasses a set of temporal
existential decisions:

S♢ = {⟨X⟩(A ▷◁∼γ a) | X ∈ X , A ∈ A and a ∈ dom(A)},

a set of temporal universal decisions:

S□ = {[X](A ▷◁∼γ a) | X ∈ X , A ∈ A and a ∈ dom(A)},

and a set of atemporal decisions:

S= = {A ▷◁∼γ a | A ∈ A and a ∈ dom(A)}.

Together, they form a set of temporal and atemporal decisions S, defined as:

S = S♢ ∪ S□ ∪ S=.

So, binary temporal decision trees τ are formulas of the following grammar:

τ ::= (S= ∧ τ) ∨ (¬S= ∧ τ) | (S♢ ∧ τ) ∨ (¬S♢ ∧ τ) | C,

where S= ∈ S= is an atemporal decision, S♢ ∈ S♢ is a temporal existential decision, and
C ∈ C is a class. Thus, a temporal decision tree is a rooted tree whose leaves are labeled
with classes, and whose edges are labeled with temporal or atemporal decisions. We denote
by root(τ) the root of τ , and we use ℓ1, ℓ2, . . . (resp., ν1, ν2, . . .) to denote the leaves (resp.,
nodes, both leaf and non-leaf ones). Each non-leaf node ν of τ has a left (resp., right) child
L(ν) (resp., R(ν)) whose edge is decorated with S ∈ S= ∪ S♢ (resp., ¬S ∈ S= ∪ S□), each
non-root node ν has a parent P (ν), and each leaf ℓ is labeled with a class, denoted by C(ℓ).
A path of length h between two nodes of τ is a finite sequence of nodes νh, νh−1, . . . , ν0 such
that νi+1 = P (νi), for each i = 0, . . . , h− 1; if νh is the root root(τ) and ν0 is a leaf ℓ, then
the path root(τ) ⇝ ℓ is called branch. In general, a path of length h is decorated with h

temporal and atemporal decisions on its edges, denoted by νh
Sh⇝ νh−1

Sh−1
⇝ . . .

S1⇝ ν0, where
Si ∈ S, for each i = 1, . . . , h.

In order to define the semantics of temporal decision trees, we need the notions of
temporal path-formula, satisfiability of a temporal path-formula, and temporal data set
splitting. A temporal path-formula φνh⇝ν0 of a path νh

Sh⇝ νh−1
Sh−1
⇝ . . .

S1⇝ ν0, where Si ∈ S,
in a temporal decision tree τ , is inductively defined on h:
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if h = 0, then φν0⇝ν0 = ⊤;
if h > 0, then let φνh−1⇝ν0 = ξ′

h−1∧ . . .∧ξ′
1∧⊤, and let us call ξ′

i positive if it has the form
ξ′

i = ⟨X⟩(A ▷◁γ a∧ψi), ξ′
i = (⟨X⟩(A ▷◁γ a)∧ψi), ξ′

i = (A ▷◁γ a∧ψi) or ξ′ = (A ▷◁γ a∧ψi),
with X ∈ X , and negative otherwise. Then φνh⇝ν0 is defined by cases:

if νh−1 = left(νh), then φνh⇝ν0 = Sh ∧ ξh−1 ∧ . . . ∧ ξ1 ∧ ⊤, where, for 1 ≤ i ≤ h− 1:
∗ ξi = ⟨X⟩(A ▷◁γ a ∧ ξ′

i), if Sh = ⟨X⟩(A ▷◁γ a) and ξ′
i is positive;

∗ ξi = (A ▷◁γ a ∧ ξ′
i), if Sh = A ▷◁γ a and ξ′

i is positive;
∗ ξi = (⟨X⟩(A ▷◁γ a) ∧ [X](A ▷◁γ a→ ξ′

i)), if Sh = ⟨X⟩(A ▷◁γ a) and ξ′
i is negative;

∗ ξi = (A ▷◁γ a→ ξ′
i), if Sh = A ▷◁γ a and ξ′

i is negative;
if νh−1 = right(νh), then φνh⇝ν0 = (Sh)∧ ξh−1 ∧ . . .∧ ξ1 ∧⊤, where, for 1 ≤ i ≤ h− 1,
∗ ξi = ξ′

i, if ξ′
i is positive;

∗ ξi = (Sh ∧ ξ′
i), if ξ′

i is negative.
Temporal path-formulas generalize their propositional counterpart, where propositional
path-formulas are simply conjunctions of the decisions. Now, we need to define how they
are actually interpreted. In the static case, from a data set Dν associated to a node ν of a
(static) decision tree τ one computes immediately the two data sets DL(ν) and DR(ν) that are
entailed by a propositional decision S ∈ S. In the temporal case, however, this step requires
a bigger effort. We start by assuming that each temporal instance T is anchored to a set of
intervals in the set I([NT ]) ∪ [0, 1], denoted T.refs. At the beginning of the learning phase,
T.refs = {[0, 1]} for every T , where [0, 1] is an external interval that we add to the domain
of every time series, and that we interpret as a privileged observation point from which the
learning takes place. Temporal decision tree learning is a local learning process; the local
nature of decision trees does not transpire at the static level, but it becomes evident at the
modal one. Every decision entails, potentially, new reference intervals for every instance of a
data set. In particular, given a time series T with associated T.refs, and given a decision S,
we can compute a set of new reference intervals f(T.refs, S) as:

{[w, z] ∈ I([NT ]) | ∃[x, y] ∈ T.refs ∧ [x, y]RX [w, z] ∧ T, [w, z] ⊩ A ▷◁∼γ a}

if S = ⟨X⟩(A ▷◁∼γ a), and as:

{[w, z] ∈ T.refs | T, [w, z] ⊩ A ▷◁∼γ a}

if S = A ▷◁∼γ a. When S is clear from the context, we use T.refs′ to denote f(T.refs, S).
For a decision S ∈ S= ∪ S♢, we use the notation T ⊩ S or T, T.refs ⊩ S (respectively,
T ⊩ ¬S or T, T.refs ⊩ ¬S) to identify the members of T L(ν) (respectively, T R(ν)). The
notion of a time series satisfying a decision allows us to discuss the instance semantics of a
temporal decision tree. Given a temporal decision tree τ and a temporal instance T ∈ T
anchored to T.refs at root(τ), the class assigned by τ to T , denoted by τ(T, T.refs), is
inductively defined as:

C if τ = C,

τL(T, T.refs′) if τ = (S ∧ τL) ∨ (¬S ∧ τR) and T, T.refs ⊩ S;
τR(T, T.refs) if τ = (S ∧ τL) ∨ (¬S ∧ τR) and T, T.refs ⊩ ¬S;

where S ∈ S= ∪ S♢. Moreover, we denote by τ(T ) = τ(T, {[0, 1]}), where [0, 1] is the
privileged observation point; we call τ(T ) the instance semantics of τ . As a whole, a
temporal decision tree is interpreted over a labeled data set T via the dataset semantic
relation ⊩θ, which generalizes |= from single instances to data sets. The parameter θ can

TIME 2021
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represent any suitable measure of statistical performances of τ on T , and it can be obtained
by systematic application of the instance semantics to (sub)sets of T ; we simply say that T
θ-satisfies τ , and denote it by:

T ⊩θ τ.

Information-based learning. Propositional decision trees date back to Belson’s [4] seminal
work, based on which in [33] the authors proposed their innovative solution as an alternative
to functional regression. The algorithm proposed in [32] is the first implementation of a
decision tree for classification, but CART [8], ID3 [36], and C4.5 [37], are the most well-known.
Because all share the same principles, they call can be generalized following the above schema,
ending up in what we can generically call information-based learning of temporal decision
trees. Information based learning is a general, greedy, sub-optimal approach to decision
tree induction (optimal decision tree induction is knowingly NP-hard [22]). Entropy-based
learning of (temporal) decision trees is a particular case of information-based learning, and
the most common one. It works as follows. Let πi be the fraction of instances labelled with
class Ci in a dataset T with l distinct classes. Then, the information conveyed by T (or
entropy of T ) is computed as:

Info(T ) = −
l∑

i=1
πilogπi.

Intuitively, the entropy is inversely proportional to the purity degree of T with respect to
the class values. In binary trees, splitting, which is the main greedy operation, is performed
over a specific attribute A, a threshold value a ∈ dom(A), a value γ, and the operators ∼
and ▷◁. Let S(A, a, γ,∼, ▷◁) be the decision entailed by A, a, γ,∼, and ▷◁, and let (Te, Tu) be
the partition of T entailed by S(A, a, γ,∼, ▷◁) (as defined above). The splitting information
of S = S(A, a, γ,∼, ▷◁) is defined as:

InfoSplit(T , S) = |Te|
|T |

Info(Te) + |Tu|
|T |

Info(Tu).

In this way, we can define the entropy gain of a decision as:

InfoGain(T , S) = Info(T )− InfoSplit(T , S).

Existing open-source implementations of decision trees include, for example, the classes
DecisionTreeClassifier in Scikit-learn [34] and J48 in WEKA [40] learning frameworks, and
the DecisionTree package [5] written in the Julia [6] programming language. In [38], an
implementation of the algorithm for temporal decision tree learning based on the WEKA
implementation of C4.5, that is, J48, and called TemporalJ48 was presented. In recent years,
the Julia programming language is becoming increasingly popular for scientific computing
and, although the language is still young, there exists a stable Julia package for decision
tree learning. Due to the performance gains that Julia, as a compiled language, enables, we
developed an implementation of a temporal decision tree learning algorithm, called TCART,
starting from the existing Julia package. Besides the language, TCART and TemporalJ48
differ in implementation details only, and they can be considered the same algorithm to all
intents and purposes.



F. Manzella, G. Pagliarini, G. Sciavicco, and I. E. Stan 7:9

Algorithm 1 High-level description of TCART.

function TCART (T , natt, nlan):
τ ← initialize an empty decision tree
Preprocess(T )
root(τ)← Learn(T , natt, nlan)
return τ

end
function Learn(T , natt, nlan):

if a stopping condition applies then return CreateLeafNode(T )
S ← FindBestDecision(T , natt, nlan) ◁ using natt attr.,nlan modal op.
(Te, Tu)← Split(T , S)
ν ← CreateNode(T )
L(ν)← Learn(Te)
R(ν)← Learn(Tu)
return ν

end

Algorithm 2 High-level description of TRF.

function TRF (T , k, natt, nlan):
Preprocess(T )
F ← ∅
foreach i ∈ [1, . . . , k] do T ′ ← SubsetSample(T , ⌈ k

m⌉) ◁ choose dataset
τ ← TCART (T ′, natt, nlan)
F ← F ∪ {τ}
return F

end

Temporal random forests. In the propositional case, the generalization from single trees
to forests of trees is relatively easy. The idea that underlies the so-called random forests
model [7] is the following one: different trees can be learned from different subsets of the
training set, using different subsets of attributes. Each tree is precisely a propositional
decision tree; a random forest classifier, however, is a classifier whose instance semantics
depends on many trees, and it is computed via some voting function. So, introducing temporal
random forest models can be done in the same way. A temporal random forest is pair (F , v),
where F is a collection of k temporal decision trees, that is, F = {τ1, . . . , τk}, and v : Ck → C
is voting aggregation function of all the unit votes of each temporal decision tree τ ∈ F .

Given a temporal random forest (F = {τ1, . . . , τk}, v) and a temporal instance T ∈ T , the
class assigned by F to T , denoted by F(T ), and called instance semantics of F , is defined as:

v(τ1(T ), . . . , τk(T )).

For a random forest (F , v) and a temporal data set T , the notion T ⊩θ F is obtained, as
in the case of the single tree, by the systematic application of the instance semantics to a
certain (sub)set of the training dataset. Random forests differ from simple deterministic
decision trees in many subtleties, all related to the learning algorithm. Such differences,
along with the nature of the model, transform a purely symbolic method, such as decision
trees, into a hybrid symbolic-functional approach. A first attempt towards random forests
was made in [21], using the so-called random subspace method. Breiman’s proposal [7], which
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can be considered the standard approach to random forests, was later introduced in the R
learning package [27]. Julia [6] incorporates a class to generalize trees into forests [5]; we
used such a class to create a temporal random forest (TRF) learning algorithm. TRF is
based on a generalized version of TCART that allows one to use, at each step, only natt

attributes and nlan modal operators to find the best split, as shown in Algorithm 1; as a
matter of fact, this is a randomized version of the interval temporal logic decision tree learning
strategy, which degenerates into the deterministic version when natt = n and nlan = 12.
This solution generalizes the propositional case of random forests in which, at each step of
building a tree, only a subset of attributes is used as shown in the high-level description
of TRF in Algorithm 2. In terms of implementation, both TCART and TRF need special
attention to the supporting data structures. As a matter of fact, both the propositional
and the temporal versions of the information-based decision tree learning algorithm run in
polynomial time w.r.t. the size of the dataset, but the overhead introduced in the temporal
case can be quite relevant, because of the high number of decisions that can be taken at
each split. To solve this issue, the function Preprocess entails, among other steps, building
a hash table keyed on the tuple (T, [x, y], X,A, a,∼) for specific values of γ, that returns
the truth value of the decision ⟨X⟩(A ▷◁∼γ a). In this way, at learning time, checking the
information conveyed by a decision takes (virtual) constant time plus the time to compute
the information function. Interestingly enough, such a structure is particularly useful for
TRF: as a matter of fact, it can be computed beforehand and then shared by all instances
of TCART without recomputing, effectively improving the overall experimental complexity
with respect to k independent executions of TCART.

4 Data and Experiments

Data and preparation. Breath and cough open data gathered in [11] have the following
structure. The entire dataset is composed by 9986 samples, recorded by 6613 volunteers.
Out of all volunteers, 235 declared to be positive for COVID-19. The subjects were quasi-
normally distributed by age, with an average between 30 and 39 and a frequency curve
slightly left-skewed towards younger ones; the data is not gender-balanced, with more than
double as many male subjects than female ones. Besides recording sound samples, subjects
were asked to fill in a very small clinical history, plus information about their geographical
location. The static data (that is, history and location) is used both here and in [11] to
create specific datasets, called tasks, from the original one. In particular, the location of
the subject has been used to distinguish among those that, at the moment of the recording,
were living in almost-COVID-free countries; by combining this information with the subjects’
declaration concerning a COVID-test, the negative subjects could be considered reliable. Of
the three different tasks considered in [11], we focused on the first one, which is the problem
distinguishing between subjects who were declared positive to COVID-19, from non-positive
subjects with a clean medical history, who have never smoked, have no symptoms, and live
in countries in which the virus spread at that moment was very low (and thus who can
reliably be considered negative to the virus). As a result, this task counts 141 positive and
298 negative instances. In [11] the tasks were declined into nine versions, which differ by how
subjects are represented, that is, using only their cough sample, only their breath sample, or
both (giving rise to three different problems) and how data are preprocessed. Unfortunately,
by treating breath and cough as time series, we can describe each instance with only one
multivariate time series at the time; this is not a limit when using classical, static methods.
Therefore, here we can approach only two of the above versions (referred to as cough version
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and breath version, respectively) of the problem. The raw audio data is encoded in the
Waveform Audio File (WAV) format, and consists of a discrete sampling of the perceived
sound pressure caused by (continuous) sound waves.

Despite the fact that this representation being already in the form of a time series,
it is customary in audio signal processing to extract spectral representations of sounds,
which facilitates their interpretation in terms of audio frequencies. To this end, we adopt
a variation of a widespread representation technique, which goes under the name of Mel-
Frequency Cepstral Coefficients (MFCC). MFCC, first proposed in [14], is still the preferred
technique for extracting sensible spectral representations of audio data, and its use in
machine learning has been fruitful for tackling hard AI tasks, such as speech recognition,
music genre recognition, noise reduction, and audio similarity estimation. Computing the
MFCC representation involves the following steps:

(i) the raw audio is divided into (often overlapping) chunks of small size (e.g. 25ms), and
a Discrete Fourier Transform (DFT) is applied to each of the chunks, to produce a
spectrogram of the sound at each chunk, that is, a continuous distribution of sound
density across the frequency spectrum;

(ii) the frequency spectrum is then warped according to a logarithmic function, which
causes the frequency space to better reflect human ear perception of frequencies;

(iii) a set of triangular band-pass filters is convolved across the frequency spectrum, discret-
izing it into a finite number of frequencies; finally,

(iv) a Discrete Cosine Transform (DCT) is applied to the logarithm of the discretized
spectrogram along the frequency axis, which compresses the spectral information at
each point in time into a fixed number of coefficients.

This transformation does not modify the temporal ordering of the events; nevertheless, the
classical approach at this point is to feed data to off-the-shelf classification methods which do
not make use of such ordering (except, for example, recurrent neural networks). Moreover,
the transformation does not preserve the spectral component, and the description of each
time point is not directly related to sound frequencies. We applied MFCC up to step (iii),
ultimately obtaining that each audio sample is represented as a time series with attributes
describing the volume of different sound frequencies (called, here, features), and fed the
resulting data to our temporal decision tree and random forest learning methods which are
designed to learn natively from time series.

Test setting. We compare a temporal decision tree model (TDT), and two temporal random
forest models with 50 and 100 trees, respectively. As for the random forest models, different
choices for sampling the random subspace of decisions were explored:

(i) considering the decisional space in its entirety;
(ii) subsampling a low number of randomly-chosen features;
(iii) subsampling a low number of randomly-chosen relations;
(iv) subsampling a low number of randomly-chosen of features and relations.

After an initial pre-screening, we concluded that for this particular problem the best results
are obtained by using either all relations and all features, or all relations and half of the
features. While single decision trees experiments have been run with the standard pre-pruning
setting (minimum entropy gain of 0.01 for a split to be meaningful, and a maximum entropy
at each leaf of 0.6), random forest grow full trees.
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As for the data, the chunk size and overlap for the DFT were fixed to the standard
values of 15ms and 25ms, respectively, and, since the processed series in this form present
many points (100 for each second of recording), a moving average filter was applied, and
the resulting series were capped at a maximum of 30 time points. Ultimately, different
parametrizations were investigated by varying the number (f) of filters (frequencies), the
size (w) and step (s) of the moving average, and by performing/not performing a peak
normalization step prior to the MFCC phase. After the pre-screening phase, the moving
average size and step have been fixed to 75 and 50 for the cough version, and to 45 and 30
for the breath version; moreover, f ∈ {40, 60} for cough and f ∈ {20, 40} for breath. In all
cases we let ▷◁ be in {≤,≥}, ∼ be ≥, and γ = 0.8. Both versions count 439 audio samples,
of which, as recalled above, 141 are positives and 298 are negatives; to minimize the bias,
the dataset is, first, balanced by downsampling the majority class (thus deriving a subset of
282 samples), and, second, split into two (balanced) sets for training (80%) and test (20%).
Since these two steps are randomized, this process is repeated 5 times (with seeds from 1
to 5), and we show the results of each repetition plus their average and standard deviation.
Moreover, for a fixed training and test set, TRF is run 5 times with different seeds (again,
with seeds from 1 to 5), and only their average is shown; so, for example, the first line in
Tab. 2, is itself the result of averaging five runs on the same training/test splitting.

Results. The following questions are interesting: Is temporal random forest a suitable
method to solve this problem? Which combination of parameters gives the best results? Are
our best results comparable with the results obtained by standard techniques, especially
in [11]? How our results can be interpreted?

As much as the suitability of our method is concerned, let us focus on Tab. 2, first, in
which we show the detailed results for the case of temporal random forests; performances
are all expressed in percentage. Each group of results is characterized by some parameters,
and in particular different groups correspond to different numbers of features (20,40, or 60),
the fact that cough or breath samples were used, and the fact that peak normalization was
used (N), or not. The first general observation is that the average accuracy obtained by
describing the subjects with their cough sample is 72.58 with a standard deviation of 0.72,
while it is 69.40 with a standard deviation of 2.16 when subjects are described by their breath
sample; this means that cough samples have a clear distinguishing power which is captured by
temporal random forests. The standard t-test run on the populations of accuracies (averaged
over the five runs) results in the two cases gives a p-value < 0.001, indicating that cough is
clearly more informative than breath, for this particular task. In terms of sensitivity versus
specificity, the best performance is obtained by a forest, learned on cough samples, with 100
trees and 60 features, using half of them in each tree: 71.57 and 74.86, respectively. This
means that this model is able to correctly identify a real COVID-19-positive subject from
his/her cough sample almost than 3 out of 4 times, with less than 28% of false negative
cases. This particular configuration showed also a peak in performance during the first run
(sensitivity: 81.43), possibly indicating that some samples are more informative than others.
Comparing our results with [11] is not immediate: we could not use instances described by
both cough and breath samples (and this combination resulted, in [11], more performing
than using cough or breath only), we used a moving window technique for data preparation,
and, more importantly, we limited our samples to the first 30 points of each sample, which
corresponds to a length between 5 and 15 seconds (while the original samples have a length
of around 30 seconds in most cases). Taking all this into account, however, we perform better
than [11]: our best model improves the best model from [11] for the same data (task 1) by
2% in both precision and sensitivity.
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Table 2 Detailed results: random forests.

TRF 50 trees, all features 50 trees, half features 100 trees, all features 100 trees, half features
sens spec prec acc sens spec prec acc sens spec prec acc sens spec prec acc

co
ug

h,
40

,N

1 80.0 85.0 84.53 82.5 78.57 83.57 82.93 81.07 79.29 88.57 87.77 83.93 80.0 85.0 84.3 82.5
2 75.71 61.43 66.4 68.57 75.0 57.86 64.04 66.43 73.57 63.57 66.89 68.57 74.29 59.29 64.65 66.79
3 58.57 78.57 73.44 68.57 55.0 81.43 74.65 68.21 57.86 79.29 73.83 68.57 57.86 80.71 75.15 69.29
4 66.43 75.0 72.69 70.71 70.0 75.0 73.72 72.5 71.43 74.29 73.58 72.86 70.71 75.71 74.51 73.21
5 65.0 68.57 67.42 66.79 70.71 77.14 75.69 73.93 68.57 69.29 69.08 68.93 69.29 76.43 74.65 72.86

avg 69.14 73.71 72.9 71.43 69.86 75.0 74.21 72.43 70.14 75.0 74.23 72.57 70.43 75.43 74.65 72.93
std 8.62 9.08 7.21 6.34 9.0 10.16 6.75 5.72 7.91 9.57 8.13 6.6 8.15 9.76 6.95 5.97

co
ug

h,
60

,N

1 79.29 83.57 82.94 81.43 80.71 83.57 83.19 82.14 80.71 84.29 83.69 82.5 78.57 83.57 82.9 81.07
2 79.29 57.86 65.39 68.57 74.29 62.14 66.21 68.21 77.14 60.71 66.33 68.93 78.57 63.57 68.35 71.07
3 57.86 78.57 73.18 68.21 55.0 77.86 71.42 66.43 57.14 80.71 74.76 68.93 58.57 80.71 75.36 69.64
4 66.43 75.0 72.87 70.71 68.57 74.29 72.74 71.43 70.0 75.0 73.96 72.5 67.86 75.71 73.63 71.79
5 67.86 70.0 69.36 68.93 69.29 73.57 72.49 71.43 66.43 68.57 67.89 67.5 69.29 74.29 73.02 71.79

avg 70.15 73.0 72.75 71.57 69.57 74.29 73.21 71.93 70.28 73.86 73.33 72.07 70.57 75.57 74.65 73.07
std 9.18 9.81 6.51 5.6 9.48 7.86 6.18 6.1 9.27 9.46 6.86 6.12 8.38 7.68 5.29 4.56

co
ug

h,
40

1 76.43 80.0 79.89 78.21 73.57 74.29 74.15 73.93 75.0 80.71 79.67 77.86 77.14 80.0 79.49 78.57
2 70.0 66.43 67.73 68.21 70.0 63.57 65.81 66.79 69.29 65.0 66.59 67.14 70.71 62.86 65.56 66.79
3 59.29 84.29 79.15 71.79 57.14 82.86 77.36 70.0 57.14 84.29 78.55 70.71 58.57 87.14 82.14 72.86
4 74.29 72.86 73.29 73.57 73.57 71.43 71.98 72.5 74.29 75.71 75.38 75.0 74.29 75.0 74.83 74.64
5 70.71 81.43 79.27 76.07 72.14 78.57 77.25 75.36 71.43 77.14 75.87 74.29 72.14 80.0 78.33 76.07

avg 70.14 77.0 75.87 73.57 69.28 74.14 73.31 71.72 69.43 76.57 75.21 73.0 70.57 77.0 76.07 73.79
std 6.61 7.26 5.28 3.86 6.94 7.33 4.76 3.39 7.24 7.27 5.14 4.15 7.13 9.01 6.44 4.43

co
ug

h,
60

1 75.71 78.57 77.94 77.14 75.0 76.43 76.16 75.71 76.43 77.86 77.65 77.14 81.43 76.43 77.63 78.93
2 70.0 63.57 65.96 66.79 74.29 63.57 67.15 68.93 75.0 60.0 65.21 67.5 72.14 60.71 64.73 66.43
3 54.29 81.43 74.56 67.86 57.86 83.57 78.08 70.71 56.43 80.71 74.52 68.57 59.29 80.0 74.95 69.64
4 72.14 72.86 72.74 72.5 73.57 77.14 76.48 75.36 74.29 73.57 73.78 73.93 72.14 75.71 74.88 73.93
5 72.14 79.29 77.85 75.71 70.71 80.0 77.88 75.36 72.86 80.71 79.16 76.79 72.86 81.43 79.7 77.14

avg 68.86 75.14 73.81 72.0 70.29 76.14 75.15 73.21 71.0 74.57 74.06 72.79 71.57 74.86 74.38 73.21
std 8.4 7.2 4.92 4.6 7.13 7.57 4.55 3.16 8.25 8.65 5.42 4.53 7.91 8.26 5.76 5.18

br
ea

th
,2

0,
N 1 77.14 68.57 71.65 72.86 77.86 69.29 71.92 73.57 75.71 71.43 72.66 73.57 77.14 68.57 71.22 72.86

2 60.71 58.57 59.33 59.64 62.86 54.29 57.88 58.57 60.71 52.86 56.34 56.79 59.29 54.29 56.49 56.79
3 60.0 75.0 70.95 67.5 63.57 76.43 73.68 70.0 65.0 70.0 68.5 67.5 62.86 76.43 73.07 69.64
4 64.29 65.71 65.25 65.0 62.86 68.57 66.7 65.71 64.29 67.14 66.17 65.71 64.29 69.29 67.68 66.79
5 70.71 80.71 78.99 75.71 67.14 75.71 73.57 71.43 72.14 77.86 76.98 75.0 72.14 76.43 75.52 74.29

avg 66.57 69.71 69.23 68.14 66.86 68.86 68.75 67.86 67.57 67.86 68.13 67.71 67.14 69.0 68.8 68.07
std 7.27 8.52 7.38 6.37 6.4 8.9 6.71 5.93 6.16 9.26 7.78 7.26 7.3 9.04 7.45 6.95

br
ea

th
,4

0,
N 1 75.71 58.57 64.75 67.14 72.86 64.29 67.19 68.57 77.86 60.71 66.54 69.29 74.29 62.14 66.28 68.21

2 66.43 55.71 60.02 61.07 62.86 52.14 56.83 57.5 64.29 55.71 59.33 60.0 60.0 53.57 56.39 56.79
3 62.86 73.57 70.46 68.21 60.0 73.57 70.07 66.79 63.57 70.71 68.5 67.14 62.14 70.71 67.99 66.43
4 62.14 68.57 66.54 65.36 62.14 65.0 64.02 63.57 60.71 69.29 66.46 65.0 64.29 66.43 65.81 65.36
5 68.57 81.43 78.65 75.0 69.29 80.0 77.73 74.64 70.0 80.71 78.75 75.36 70.0 81.43 79.2 75.71

avg 67.14 67.57 68.08 67.36 65.43 67.0 67.17 66.21 67.29 67.43 67.92 67.36 66.14 66.86 67.13 66.5
std 5.46 10.62 7.0 5.07 5.41 10.54 7.69 6.32 6.8 9.66 6.99 5.65 5.88 10.32 8.13 6.77

br
ea

th
,2

0 1 72.14 77.86 76.59 75.0 70.71 75.71 74.54 73.21 72.86 77.86 76.72 75.36 72.14 76.43 75.45 74.29
2 65.0 72.14 70.0 68.57 70.71 66.43 67.61 68.57 65.71 70.71 69.21 68.21 73.57 66.43 68.61 70.0
3 65.0 70.0 68.48 67.5 62.86 70.71 68.35 66.79 68.57 70.71 70.18 69.64 68.57 68.57 68.56 68.57
4 62.14 78.57 74.65 70.36 64.29 77.86 74.92 71.07 65.0 80.0 76.5 72.5 65.71 77.14 74.38 71.43
5 62.86 83.57 79.52 73.21 67.86 82.86 80.26 75.36 62.86 85.71 81.63 74.29 66.43 86.43 83.32 76.43

avg 65.43 76.43 73.85 70.93 67.29 74.71 73.14 71.0 67.0 77.0 74.85 72.0 69.28 75.0 74.06 72.14
std 3.96 5.42 4.58 3.14 3.62 6.36 5.23 3.45 3.86 6.42 5.14 3.03 3.46 7.94 6.08 3.2

br
ea

th
,4

0 1 69.29 80.0 77.73 74.64 71.43 79.29 77.79 75.36 71.43 77.86 76.47 74.64 72.14 77.86 76.54 75.0
2 61.43 72.86 69.34 67.14 66.43 70.71 69.39 68.57 62.86 70.71 68.14 66.79 67.14 68.57 68.05 67.86
3 65.0 71.43 69.35 68.21 65.0 69.29 67.86 67.14 67.86 68.57 68.32 68.21 67.86 67.86 67.85 67.86
4 62.86 80.0 76.05 71.43 62.14 78.57 74.54 70.36 62.14 80.0 75.65 71.07 62.86 80.0 75.89 71.43
5 62.14 87.86 84.06 75.0 64.29 85.0 81.23 74.64 64.29 88.57 85.43 76.43 66.43 87.86 84.83 77.14

avg 64.14 78.43 75.31 71.28 65.86 76.57 74.16 71.21 65.72 77.14 74.8 71.43 67.29 76.43 74.63 71.86
std 3.17 6.59 6.21 3.6 3.48 6.52 5.61 3.65 3.88 7.97 7.12 4.1 3.33 8.38 7.05 4.18

Single decision trees, whose results are shown in Tab. 3, are not as performing as forests
of trees: the maximum averaged (only on different training/test splits: single tree learning
is a deterministic process) accuracy reached with a single tree is 66%, which is less than
the minimum accuracy reached with forests of trees. But single trees can be interpreted. In
Tab. 3, right-hand side, each displayed tree has been learned in the conditions indicated by
the arrow (so, for example, the topmost one has been learned by cough samples, with 60
features, no normalization, and with the subsampling obtained by seed 1), but in full training
mode; in full training mode, the difference between the five runs of each configuration is
limited to the downsampling phase. On each of the trees, we selected specific leaves with high
confidence and support (in Tab. 3, right-hand side, these correspond to highlighted branches).
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Table 3 Detailed results: single temporal
decision trees.

TDT sens spec prec acc

co
ug

h,
40

,N 1 64.29 71.43 69.23 67.86
2 64.29 35.71 50.0 50.0
3 57.14 67.86 64.0 62.5
4 67.86 50.0 57.58 58.93
5 64.29 64.29 64.29 64.29

avg 63.57 57.86 61.02 60.72
std 3.91 14.81 7.42 6.8

co
ug

h,
60

,N 1 85.71 75.0 77.42 80.36
2 71.43 39.29 54.05 55.36
3 57.14 82.14 76.19 69.64
4 57.14 67.86 64.0 62.5
5 64.29 60.71 62.07 62.5

avg 67.14 65.0 66.75 66.07
std 11.95 16.44 9.92 9.45

co
ug

h,
40

1 64.29 75.0 72.0 69.64
2 71.43 50.0 58.82 60.71
3 35.71 89.29 76.92 62.5
4 60.71 50.0 54.84 55.36
5 71.43 64.29 66.67 67.86

avg 60.71 65.72 65.85 63.21
std 14.73 16.87 9.11 5.73

co
ug

h,
60

1 67.86 75.0 73.08 71.43
2 71.43 46.43 57.14 58.93
3 50.0 78.57 70.0 64.29
4 60.71 53.57 56.67 57.14
5 67.86 60.71 63.33 64.29

avg 63.57 62.86 64.04 63.22
std 8.53 13.74 7.41 5.59

br
ea

th
,2

0,
N 1 60.71 71.43 68.0 66.07

2 60.71 50.0 54.84 55.36
3 46.43 75.0 65.0 60.71
4 53.57 53.57 53.57 53.57
5 57.14 75.0 69.57 66.07

avg 55.71 65.0 62.2 60.36
std 5.97 12.22 7.49 5.84

br
ea

th
,4

0,
N 1 64.29 67.86 66.67 66.07

2 64.29 39.29 51.43 51.79
3 53.57 71.43 65.22 62.5
4 64.29 57.14 60.0 60.71
5 57.14 78.57 72.73 67.86

avg 60.72 62.86 63.21 61.79
std 5.05 15.28 8.0 6.26

br
ea

th
,2

0 1 71.43 39.29 54.05 55.36
2 78.57 39.29 56.41 58.93
3 71.43 60.71 64.52 66.07
4 64.29 75.0 72.0 69.64
5 60.71 78.57 73.91 69.64

avg 69.29 58.57 64.18 63.93
std 6.96 18.83 8.93 6.49

br
ea

th
,4

0 1 75.0 53.57 61.76 64.29
2 78.57 35.71 55.0 57.14
3 57.14 50.0 53.33 53.57
4 71.43 71.43 71.43 71.43
5 67.86 75.0 73.08 71.43

avg 70.0 57.14 62.92 63.57
std 8.22 16.17 9.11 8.15



τ1

neg

pos

pos

neg

neg pos

⟨L
⟩A

48
≥

55.43 [L]A
48 <

55.43

⟨O
⟩A19

≥
580.08 [O]A

19 <
580.08

⟨B
⟩A39

≥
4281.48 [B]A

39 <
4281.48

A27
≤

476.12 A
27 >

476.12

⟨L
⟩A41

≥
857.25 [L]A

41 <
857.25



τ2

neg

pos

pos neg

⟨L
⟩A

37
≥

23.0 [L]A
37 <

23.0

⟨B
⟩A12

≥
560.8 [B]A

12 <
560.8

⟨L
⟩A27

≥
3931.8 [L]A

27 <
3931.8



τ3

neg

pos neg

⟨L
⟩A

32
≥

0.078 [L]A
32 <

0.078

A38
≥

0.16 A
38 <

0.16
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Table 4 Examples of extracted rules; all constants are scaled by a factor 103, and the symbols ≥
and ≤ (resp., their duals < and >) denote ≥≥0.8 and ≤≥0.8 (resp., <≥0.2 and >≥0.2).

tree rule conf. sup.

tr
ee
τ 1 [L]A48 < 55.43⇒ neg 0.74 0.37

⟨L⟩A48 ≥ 55.43 ∧ [L](A48 ≥ 55.43→ [O]A19 < 580.08)⇒ pos 0.86 0.31
⟨L⟩(A48 ≥ 55.43 ∧ ⟨O⟩A19 > 580.08 ∧ [O](A19 > 580.08→ [B](A39 < 4281.48 ∧A27 > 476.12)))⇒ neg 0.89 0.16

tr
ee
τ 2 [L]A37 < 23.0⇒ neg 0.73 0.40

⟨L⟩A37 ≥ 23.0 ∧ [L](A37 ≥ 23.0→ [B]A12 < 560.8)⇒ pos 0.83 0.39
⟨L⟩(A37 ≥ 23.0 ∧ ⟨B⟩(A12 ≥ 560.8 ∧ [B](A12 ≥ 560.8→ [L]A27 < 3931.8)))⇒ neg 0.83 0.17

tr
ee
τ 3 [L]A32 < 0.078⇒ neg 0.77 0.36

⟨L⟩A32 ≥ 0.078 ∧ [L](A32 ≥ 0.078→ A38 < 0.16)⇒ neg 0.78 0.14
⟨L⟩(A32 ≥ 0.078 ∧A38 ≥ 0.016)⇒ pos 0.77 0.5

Each of these leaves can be interpreted as a classification rule of the type φ ⇒ pos/neg,
where φ if the path-formula that can be extracted from the branch as explained in Section 3.
The result of such an interpretation is in Tab. 4, in which every rule has been made explicit
and its confidence and support displayed. Rules of this type can be visualized by synthesizing
their model (in logical terms), and even converted into audible sound, which corresponds
to what should be heard (in a cough sample) to suspect a COVID-19 infection. Obviously,
implementing a tool for real-time screening based on rules as simple as these ones is much
easier and direct than performing complex higher-dimensional matrix computations.

5 Conclusions

The ability of explaining the underlying theory that is extracted with machine learning
methods is of uttermost importance, especially in medicine applications. Interpretability
and explainability in learning are often synonym of a symbolic approach, which, in turn,
should be based on logics that are able to capture the complexity of the phenomena. Modal
symbolic learning offers classical learning tools enhanced with modal propositional logics
that allow one to extract complex information from data; temporal symbolic learning is
the specialization of modal symbolic learning to the case of temporal data and temporal
logics. In the recent literature temporal decision trees, based on Halpen and Shoham’s
interval temporal logic HS have been proposed for learning from multivariate time series.
In this paper we proposed a generalization of temporal decision trees to temporal random
forest, following the path traced in the propositional case. In order to test our method, we
applied it to the case of recognizing COVID-19-positive subjects from negative ones using a
recording of cough/breath sample, interpreted as a multivariate time series. Not only this
approach is completely innovative, but our performances are superior to those of classical
methodologies applied to the same data, while allowing the interpretation of the results, and
enabling the visualization, and even the transformation in audible sounds of the models that
represent the distinguishing characteristics of a cough/breath sample of a positive subject.
In abstract terms, such an ability could be useful to train medical personnel to recognize
positive subjects, but also to develop automatic procedures that perform a (rough) screening,
for example as a smartphone application.

This work is part of a larger project that aims to generalize symbolic learning methods
with modal logics in a systematic way. As we have seen, not only this presents new challenges
at the mathematical level, but also at the implementation one. Open problems at this
moment include studying better interpretation techniques for temporal, and, in general,
modal random forests, that do not require resorting to single trees, studying more efficient
data structures that require less computational power, both in terms of space and time,
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for symbolic learning, and completing the generalization of the whole range of symbolic
methods, from decision trees to rule based classifiers, with deterministic and randomized
learning methods, and with underlying logics both crisp and fuzzy. Exploring how to learn
from multi-frame dimensional data is also on the agenda; this would allow us to improve our
performances in the classification between COVID/non-COVID subjects, as we would be
able to describe them using both their cough and breath samples. In the end, we want to
test our methodologies on all three tasks from [11], to establish if there is an improvement in
all cases, and if the rules that we are able to extract are indeed clinically useful in the fight
against the virus.
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