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Abstract
In this paper, we present a new degree-based estimator for the size of maximum matching in bounded
arboricity graphs. When the arboricity of the graph is bounded by α, the estimator gives a α + 2
factor approximation of the matching size. For planar graphs, we show the estimator does better
and returns a 3.5 approximation of the matching size. Using this estimator, we get new results
for approximating the matching size of planar graphs in the streaming and distributed models of
computation. In particular, in the vertex-arrival streams, we get a randomized O(

√
n

ε2 log n) space
algorithm for approximating the matching size of a planar graph on n vertices within (3.5 + ε)
factor. Similarly, we get a simultaneous protocol in the vertex-partition model for approximating
the matching size within (3.5 + ε) factor using O( n2/3

ε2 log n) communication from each player. In
comparison with the previous estimators, the estimator in this paper does not need to know the
arboricity of the input graph and improves the approximation factor in the case of planar graphs.
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1 Introduction

A matching in a graph G = (V, E) is a subset of edges M ⊆ E where no two edges in M

share an endpoint. A maximum matching of G has the maximum number of edges among
all possible matchings. Let m(G) denote the matching size of G, in other words the size of
a maximum matching in G. In this paper, we present algorithms for approximating m(G)
in the sublinear models of computation. In particular, our results are for the vertex-arrival
stream model (also known as the adjacency list streams). In the vertex-arrival model, the
input stream is an arbitrary ordering of vertex set V . Additionally, followed by each u ∈ V

in the stream, the algorithm also gets the list of the neighbors of u. This is in contrast with
the edge-arrival version where the input stream is an arbitrary ordering of the edge set E.

The problem of estimating m(G) or computing an approximate maximum matching of
G in the data stream model has been studied in several works [14, 13, 10, 6, 17]. Here we
focus on algorithms for graphs with bounded arboricity. A graph G = (V, E) has arboricity
bounded by α if the edge set E can be partitioned into at most α forests. A well-known fact
(known as the Nash-William theorem [19]) states that a graph has arboricity α, if and only if
every induced subgraph on t vertices has at most α(t − 1) number of edges. Graphs with low
arboricity cover a wide range of graphs such as graphs with constant degree, planar graphs,
and graphs with small tree-widths. In particular planar graphs have arboricity bounded by 3.
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A simple reduction from counting distinct elements implies that the exact computation
of m(G) in the data stream model has Ω(n) space complexity even for trees and randomized
algorithms (see [1] for the lower bound on distinct elements problem.) This negative result
has inspired a growing interest in finding estimators for m(G) that take sublinear space
to compute. Specially when the input graph G has low arboricity, it has been shown by
Esfandiari et al. [9], and the subsequent works [16, 7, 18, 4], that it is possible to compute
m(G) approximately in o(n) space by only checking the degree information and the immediate
local neighborhood of the vertices (and the edges). This line of research has led to the invent
of several degree-based estimators for the matching size. In this paper, we design another
degree-based estimator for m(G) in low arboricity graphs that has certain advantages in
comparison with the previous works and leads to new algorithmic results. Before describing
our estimator we briefly review the previous ideas.

1.1 Previous Works
In the following we assume G has arboricity bounded by α. Also, unless explicitly stated, all
the algorithms mentioned below are randomized.

Shallow edges, high degree vertices

Esfandiari et al. [9] were first to observe that one can approximately characterize the
matching size of low arboricity graphs based on the degree information of the vertices and
the local neighborhood of the edges. Let H denote the set of vertices with degree more than
h = 2α + 3 and let F denote the set of edges with both endpoints having degree at most
h. Esfandiari et al. have shown that m(G) ≤ |H| + |F | ≤ (5α + 9)m(G). Based on this
estimator, the authors in [9] have designed a Õ(ε−2αn2/3) space algorithm for approximating
m(G) within 5α + 9 + ε factor in the edge-arrival model.

Fractional matchings

By establishing an interesting connection with fractional matchings and the Edmonds
Polytope theorem, Mcgregor and Vorotnikova [16] have shown that the following quantity
approximates m(G) within (α + 2) factor.

(α + 1)
∑

(u,v)∈E

min{ 1
deg(u) ,

1
deg(v) ,

1
α + 1}.

Based on this estimator, the authors in [16] have given a Õ(ε−2n2/3) space streaming
algorithm (in the edge-arrival model) that approximate m(G) within α + 2 + ε factor. Also
in the same work, another degree-based estimator is given that returns a (α+2)2

2 factor
approximation of m(G). A notable property of this estimator is that it can be implemented
deterministically in the vertex-arrival model using only O(log n) bits of space.

α-Last edges

Cormode et al. [7] (later revised by Mcgregor and Vorotnikova [18]) have designed an
improved estimator for m(G) that also depends on a given ordering of the edges. Given a
stream of edges S = e1, . . . , em, let Eα(S) denote a subset of edges where (u, v) ∈ Eα(S)
iff the vertices u and v both appear at most α times in S after the edge (u, v). It is shown
that m(G) ≤ |Eα(S)| ≤ (α + 2)m(G). Moreover a O( 1

ε2 log2 n) space streaming algorithm is
shown that approximates |Eα(S)| within 1 + ε factor in the edge-arrival model.
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1.2 The estimator in this paper
The new estimator is purely based on the degree of the vertices in the graph without any
need to have a pre-knowledge of α. To estimate the matching size, we count the number of
what we call locally superior vertices in the graph. Consider the following definition.

▶ Definition 1. In graph G = (V, E), we call u ∈ V a locally superior vertex if u has a
neighbor v such that deg(u) ≥ deg(v). We let ℓ(G) denote the number of locally superior
vertices in G.

We show when the arboricity of G is bounded by α, ℓ(G) approximates m(G) within
(α + 2) factor (Lemma 2.) This repeats the same bound obtained by the estimators in [16]
and [7], however for planar graphs, we prove the approximation factor is at most 3.5 which
beats the previous bounds (Lemma 5). This result is the main technical contribution of the
paper. As an evidence on the improved approximation quality, consider the 4-regular planar
graph on 9 vertices. Both of the estimators in [16] and [7], report 18 as the estimation for
m(G) while the exact answer is 4. It follows their approximation factor is at least 4.5.

As a first application of Lemma 5, we obtain a randomized O(
√

n
ε2 log n) space streaming

algorithm for approximating m(G) within (3.5 + ε) factor in the vertex-arrival model. In
terms of approximation factor, this improves over existing sub-linear algorithms [16, 18].

As another application of our estimator, we get a sublinear simultaneous protocol in the
vertex-partition model for approximating m(G) when G is planar. In this model, the vertex set
V is partitioned into t subsets V1, . . . , Vt where each subset is given to a player. Additionally
the i-th player knows the edges on Vi. The players do not communicate with each other.
They only send one message to a referee whom at the end computes an approximation of the
matching size. (The referee does not get any part of the input.) We assume the referee and
the players have a shared source of randomness. Within this setting, we design a protocol
that approximates m(G) within 3.5 + ε factor using O( n2/3

ε2 log n) communication from each
player. Note that for t > 3 and t = o(n1/3), this result is non-trivial. The best previous
result, implicit in the works of [5, 16] computes a 5 + ε factor approximation using Õ(n4/5)
communication from each player. Also we should mention that, using the the estimator in
[16], one can get a deterministic simultaneous protocol where each player sends only O(log n)
bits to the referee. However this protocol computes a 12.5 factor approximation of m(G).

1.3 Related Works
Kapralov et al. [13] have given an estimator for m(G) when G is a general graph. Their
estimator gives an approximation of m(G) by looking at the degree information of the vertices
in a series of nested subgraphs of G. The main challenge is implementing the estimator
in sublinear space. Based on this estimator, Kapralov et al. has shown one can obtain a
poly(log n) approximation of m(G) in poly(log n) space assuming the input edge stream is
randomly ordered. There are subsequent works with improved results and analysis [14]. As
far as we know, there is no similar result for arbitrarily ordered streams.

There is a large body of works that addresses the problem of finding a matching of near
optimal size using O(n.poly(log n)) space. This falls within the category of semi-streaming
model. See the recent works [12, 3] for the latest results on this.

Maximum matching has also been studied within the context of distributed local algorithms
[15] and massively parallel computations [2]. The main objective of these works is to find
a large matching of near optimal size in a distributed manner using small number of
communication rounds. See the works [8, 11] for related results on graphs with bounded
arboricity.

APPROX/RANDOM 2021
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2 Graph properties

In the following proofs, we let M ⊆ E denote a maximum matching in graph G. When the
underlying graph is clear from the context, for the vertex set S, we use N(S) to denote the
neighbors of the vertices in S excluding S itself. For vertex u, we simply use N(x) to denote
the neighbors of u. The vertex v is a neighbor of the edge (x, y) if v is adjacent with x or y.
When x is paired with y in the matching M , abusing the notation, we define M(x) = y.

▶ Lemma 2. Let G = (V, E) be a graph with arboricity α. We have

m(G) ≤ ℓ(G) ≤ (α + 2)m(G).

Proof. The left hand side of the inequality is easy to show. For every edge in E, at least
one of the endpoints is locally superior. Since edges in M are disjoint, at least |M | number
of endpoints must be locally superior. This proves m(G) ≤ ℓ(G).

To show the right hand side, we use a charging argument. Let L denote the locally
superior vertices in G. Our goal is to show an upper bound on |L| in terms of |M | and α.
Let X ⊆ L be the set of locally superior vertices that are NOT endpoints of a matching edge.
The challenge is to prove an upper on |X|.

The vertices in X do not contribute to the maximum matching. However all the vertices
in N(X) must be endpoints of matching edges (otherwise M would not be maximal.) For
the same reason, there cannot be an edge between the vertices in X. To prove an upper
bound on |X|, in the first step, we assign a subset of vertices in X to edges in M in a way
any target edge gets at most α − 1 locally superior vertices. We do the assignments in the
following way.

The Assignment Procedure

If we find a y ∈ N(X) with at most α − 1 neighbors in X, we assign all the neighbors of y in
X to the matching edge (y, M(y)). We repeat this process, every time picking a vertex in
N(X) with less than α neighbors in X and do the assignment that we just described, until
we cannot find such a vertex in N(X). Note that when we assign a locally superior vertex x,
we remove the edges on x before continuing the procedure.

Here we emphasize the fact that if y has a neighbor x ∈ X, then M(y) cannot have
neighbors in X \ {x} (otherwise it would create an augmenting path and contradict with the
optimality of M .)

Let X1 ⊆ X be the assigned locally superior vertices and M1 ⊆ M be the used matching
edges in the assignment procedure. We have

|X1| ≤ (α − 1)|M1|. (1)

Let X2 = X \ X1 be the unassigned vertices in X. Now we try to prove an upper bound on
|X2|. For this, we need to make a few observations.

▶ Observation 3. Let Y2 = N(X2). The pair y and M(y) cannot be both in Y2.

Proof. Suppose y and M(y) are both in N(X2). Let B and C be the neighbors of y and
M(y) in X2 respectively. If |B ∪ C| > 1, then one can find an augmenting path of length 3
(with respect to M .) A contradiction.

On the other hand, if |B ∪ C| = 1, then y and M(y) have only a shared neighbor x ∈ X2
which means the edge e = (y, M(y)) should have been used by the assignment procedure
and as result x ∈ X1. Another contradiction. ◀
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▶ Observation 4. Every vertex x ∈ X2 has degree at least α + 1.

Proof. Consider x ∈ X2. Suppose, for the sake of contradiction, deg(x) is k where k ≤ α.
Since x is a locally superior vertex, there must be a y ∈ N(x) with degree at most k in G.
We know that y is an endpoint of a matching edge. In the assignments procedure, whenever
we used an edge e ∈ M all the neighbors of its endpoints (in X) were assigned. Since x is
not assigned yet, it means the edge (y, M(y)) has not been used. Consequently y must have
at least α neighbors in X2. Counting the edge (y, M(y)), we should have deg(y) ≥ α + 1. A
contradiction. ◀

Let G′ = (X2 ∪ Y2, E′) be a bipartite graph where E′ is the set of edges between X2 and
Y2. From Observation 4, we have

(α + 1)|X2| ≤ |E′|. (2)

Since G′ is a subgraph of G, its arboricity is bounded by α. As result,

|E′| ≤ α(|X2| + |Y2|). (3)

Recall that Y2 are endpoints of matching edges. Let M2 be those matching edges.
Observation 3 implies that |Y2| = |M2|. As result, combining (2) and (3), we get the
following.

|X2| ≤ α|Y2| = α|M2|. (4)

To prove an upper bound on |L|, we also need to count the locally superior vertices that are
endpoints of matching edges. Let Z = L \ X. We have |Z| ≤ 2|M |. Summing up, we get

|L| = |X1| + |X2| + |Z|
≤ (α − 1)|M1| + α|M2| + 2|M |
= α(|M1| + |M2|) + 2|M | − |M1|
≤ (α + 2)|M | − |M1|
≤ (α + 2)|M |

This proves the lemma. ◀

▶ Lemma 5. Let G = (V, E) be a planar graph. We have ℓ(G) ≤ 3.5m(G).

Proof. For planar graphs, similar to what we did in the proof of Lemma 2, we first try to
assign some of the vertices in X to the matching edges using a simple assignment procedure.
(Recall that X is the set of vertices in L that are not endpoints of edges in M .)

The Assignment Procedure

Let Y1 = ∅. If we find a y ∈ N(X) with only 1 neighbor x ∈ X, we assign x to the matching
edge (y, M(y)). Also we add y to Y1. We continue the procedure until we cannot find such a
vertex in N(X). Note that when we assign a locally superior vertex x, we remove the edges
on x.

Let X1 ⊆ X be the assigned locally superior vertices and M1 ⊆ M be the used matching
edges in the assignment procedure. Note that |Y1| = |M1|. We have

|X1| ≤ |M1|. (5)

APPROX/RANDOM 2021
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Let X2 = X \ X1. Using a similar argument that we used for proving Observation 4, we
can show every vertex in X2 has degree at least 3. Also letting Y2 = N(X2), we observe that
y ∈ Y2 and M(y) cannot be both in Y2 as we noticed in the Observation 3. Let M2 ⊆ M be
the matching edges with one endpoint in Y2. We have |Y2| = |M2|.

Now consider the bipartite graph G′ = (X2 ∪ Y2, E′) where E′ is the set of edges between
X2 and Y2. Every planar bipartite graph with n vertices has at most 2n − 4 edges 1. Since
G′ is a bipartite planar graph, it follows,

3|X2| ≤ |E′| < 2(|X2| + |Y2|) = 2(|X2| + |M2|). (6)

This shows |X2| < 2|M2|. Letting Z = L \ X and M3 = M \ (M1 ∪ M2), we get

|L| = |X1| + |X2| + |Z| ≤ |M1| + 2|M2| + 2|M | ≤ 3|M | + |M2| − |M3|. (7)

This already proves |L| is bounded by 4|M |. To prove the bound claimed in the lemma,
we also show that |L| ≤ 3|M | + |M1| + |M3|. Combined with the inequality (7), this proves
the lemma.

Let Y = Y1 ∪ Y2. Note that Y are one side of the matching edges in M1 ∪ M2. Let
Y ′ = {M(y) | y ∈ Y }. We use a special subset of Y ′, named Y ′′ which is defined as follows.
We let Y ′′ denote the locally superior vertices in Y ′ that have degree 2 or they are adjacent
with both endpoints of an edge in M3. We make the following observation regarding the
vertices in Y ′′.

▶ Observation 6. We can assign each vertex y′ ∈ Y ′′ to a distinct e ∈ Y1 ∪ M3 where e has
no neighbor in Y ′ \ {y′}.

Proof. Consider y′ ∈ Y ′′. If y′ is adjacent with both endpoints of an edge e = (z, z′) ∈ M3,
we assign y′ to e (when there are multiple edges with this condition we pick one of them
arbitrarily.) Note that z and z′ cannot have neighbors in Y ′ other than y′ because otherwise
it would create an augmenting path.

Now suppose y′ has degree 2. Since y′ is a locally superior vertex, it must have a neighbor
z of degree at most 2. The neighbor z cannot be in Y2 ∪ X2 because the vertices in Y2 ∪ X2
have degree at least 3. We distinguish between two cases.

M(y′) ∈ Y2. In this case, z cannot be in Y1 either because the vertices in Y1 are already
of degree 2 without y′. Also z /∈ X1 because otherwise it would create an augmenting
path. The only possibility is that z is an endpoint of a matching edge in M3. We assign
y′ to the matching edge (z, z′) ∈ M3. Note that z′ cannot have a neighbor in Y ′ \ {y′}
because it would create an augmenting path.
M(y′) ∈ Y1. Here z could be in X1. If this is the case, then M(y′) cannot have a neighbor
in Y ′ \ {y′} because it would create an augmenting path. In this case, we assign y′ to
M(y′). If z = M(y′), then again we assign y′ to M(y′). The only remaining possibility is
that z an endpoint of a matching edge in M3 which we handle it similar to the previous
case. ◀

Now, assume we assign the vertices in Y ′′ to the elements in Y1 ∪ M3 according to
the above observation. Let Y ′

1 ⊆ Y1 and M ′
3 ⊆ M3 be the vertices and edges that were

used in the assignment. Let Y ′′′ be the remaining locally superior vertices in Y ′. Namely,
Y ′′′ = (L ∩ Y ′) \ Y ′′. Before making the final point, we observe that only one endpoint of the

1 For a short proof of this, combine the Euler’s formula |V | − |E| + |F | = 2 with the inequality 2|E| ≥ 4|F |
caused by each face having at least 4 sides (since there are no odd cycles) and we get |E| ≤ 2|V | − 4.
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Y2 Y1

Y ′

X2 X1

M3

Figure 1 A demonstration of the construction in the proof of lemmas 2 and 5. Thick edges
represent matching edges. The unfilled vertices belong to the set Y ′′.

edges in M3 are adjacent with vertices in Y ′′′. Let Y3 be the endpoint of edges in M3 \ M ′
3

that have neighbors in Y ′′′. Consider the bipartite graph G′′(V ′′, E′′) where

V ′′ = (X2 ∪ Y ′′′) ∪
(
Y2 ∪ (Y1 \ Y ′

1) ∪ Y3
)

and E′′ is the set of edges between X2 and Y2, and the edges between Y ′′′ and Y2∪(Y1\Y ′
1)∪Y3.

Relying on the facts that G′′ is a planar bipartite graph, Y ′′′ is composed of vertices with
degree at least 3, and the edges on Y ′′′ are all in E′′, we have

3|X2| + 3|Y ′′′| ≤ |E′′| ≤ 2(|X2| + |Y2| + |Y1 \ Y ′
1 | + |Y ′′′| + |Y3|).

It follows,

|X2| + |Y ′′′| ≤ 2(|Y2| + |Y1 \ Y ′
1 | + |Y3|)

≤ 2(|M2| + |M1| − |Y ′
1 | + |M3| − |M ′

3|)
= 2(|M | − |Y ′

1 | − |M ′
3|)

Since |Y ′′| = |Y ′
1 | + |M ′

3|, we get

|X2| + |Y ′′′| ≤ 2|M | − 2|Y ′′| (8)

Let Z1, Z2 and Z3 denote the locally superior vertices that are endpoints of matching
edges in M1, M2 and M3 respectively. From the definition of Y ′′ and Y ′′′, we have

|Z1| + |Z2| ≤ |M1| + |M2| + |Y ′′| + |Y ′′′| (9)

From (8) and (9), we get

|L| = |X1| + |X2| + |Z1| + |Z2| + |Z3|
≤ |M1| + |X2| + (|M1| + |M2| + |Y ′′| + |Y ′′′|) + 2|M3|
= 2|M1| + (|X2| + |Y ′′′|) + |M2| + |Y ′′| + 2|M3|
≤ 2|M1| + |M2| + 2|M | − |Y ′′| + 2|M3|
= 3|M | + |M1| + |M3| − |Y ′′|
≤ 3|M | + |M1| + |M3|

This finishes the proof of the lemma. ◀

APPROX/RANDOM 2021
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3 Algorithms

We first present a high-level sampling-based estimator for ℓ(G). Then we show how this
estimator can be implemented in the streaming and distributed settings using small space
and communication. For our streaming result, we use a combination of the estimator for
ℓ(G) and the greedy maximal matching algorithm. For the simultaneous protocol, we use the
estimator for ℓ(G) in combination with the edge-sampling primitive in [5] and an estimator
in [16].

The high-level estimator (described in Algorithm 1) samples a subset of vertices S ⊆ V

and computes the locally superior vertices in S. The quantity ℓ(G) is estimated from the
scaled ratio of the locally superior vertices in the sample set.

Algorithm 1 The high-level description of the estimator for ℓ(G).

Run the following estimator r = ⌈ 8
ϵ2 ⌉ number of times in parallel. In the end, report

the average of the outcomes.

1. Sample s vertices (uniformly at random) from V without replacement.
2. Let S be the set of sampled vertices.
3. Compute S′ where S′ is the set of locally superior vertices in S.
4. Return n

s |S′| as an estimation for ℓ(G).

▶ Lemma 7. Assuming s ≥ n
ℓ(G) , the high-level estimator in Algoirthm 1 returns a 1 + ε

factor approximation of ℓ(G) with probability at least 7/8.

Proof. Fix a parallel repetition of the algorithm and let X denote the outcome of the
associated estimator. Assuming an arbitrary ordering on the locally superior vertices, let
Xi denote the random variable associated with i-th locally superior vertex. We define
Xi = 1 if the i-th locally superior vertex has been sampled, otherwise Xi = 0. We have
X = n

s

∑ℓ(G)
i=1 Xi. Since Pr(Xi = 1) = s

n , we get E[X] = ℓ(G). Further we have

E[X2] = n2

s2 E
[ ℓ(G)∑

i,j

XiXj

]
= n2

s2

[ ℓ(G)∑
i

E[X2
i ] +

ℓ(G)∑
i ̸=j

E[XiXj ]
]

= n2

s2

[ s

n
ℓ(G) +

(
ℓ(G)

2

)
s(s − 1)
n(n − 1)

]
= n

s
ℓ(G) +

(
ℓ(G)

2

)
n(s − 1)
s(n − 1)

<
n

s
ℓ(G) + ℓ2(G)

Consequently, V ar[X] = E[X2] − E2[X] < n
s ℓ(G).

Let Y be the average of the outcomes of r parallel and independent repetitions of the basic
estimator. We have E[Y ] = ℓ(G) and V ar[Y ] < n

sr ℓ(G). Using the Chebyshev’s inequality,

Pr(|Y − E[Y ]| ≥ εE[Y ]) ≤ V ar[Y ]
ε2E2[X] <

n/s

rε2ℓ(G) .

Setting r = 8
ε2 and s ≥ n

ℓ(G) , the above probability will be less than 1/8. ◀
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3.1 The streaming algorithm
We first note that we can implement the high-level estimator of Algorithm 1 in the vertex-
arrival stream model using O( s

ε2 log n) space. Consider a single repetition of the estimator.
The sampled set S is selected in the beginning of the algorithm (before the stream.) This can
be done using a reservoir sampling strategy [20] in O(|S| log n) space. To decide if u ∈ S is
locally superior or not, we just need to store deg(u) and the minimum degree of the neighbors
that are visited so far. Note that when processing a vertex v ∈ V and its neighbors, we know
if v is a neighbor of u or not. Consequently, checking if u is a locally superior or not takes
O(log n) bits of space. Therefore the whole space needed to implement a single repetition is
O(s log n) bits.

The streaming algorithm runs two threads in parallel. In one thread it runs the streaming
implementation of Algorithm 1 after setting s = ⌈

√
n ⌉. In the other thread, it runs a greedy

algorithm to find a maximal matching in the input graph. We stop the greedy algorithm
whenever the size of the discovered matching F exceeds

√
n. In the end, if |F | <

√
n, we

output |F | as an approximation for m(G), otherwise we report the outcome of the first
thread.

Note that if |F | <
√

n, F is a maximal matching in G. Hence |F | ≥ 1
2 m(G). Assume

|F | ≥
√

n. In this case the algorithm outputs the result of first thread. In this case, by
Lemma 2, we know ℓ(G) ≥

√
n. Consequently, by Lemma 7, the first thread returns a

1 + O(ε) approximation of ℓ(G) and hence it returns a 3.5 + O(ε) approximation of m(G).
Since the greedy algorithm takes at most O(

√
n) space, the space complexity of the algorithm

is dominated by the space usage of the first thread. We get the following result.

▶ Theorem 8. Let G be a planar graph. There is a randomized streaming algorithm in the
vertex-arrival model that returns a 3.5 + ϵ factor approximation of m(G) using O(

√
n

ϵ2 ) space.

3.2 A simultaneous communication protocol
In this section we describe a communication protocol for approximating m(G) in the vertex-
partition model. Recall that in this model the vertex set V is partitioned into t subsets
V1, . . . , Vt where the subset Vi is given to the i-th player. Additionally the i-th player knows
the edges on the vertices in Vi. The players do not communicate with each other. They only
send one message to a referee whom at the end computes an approximation of the matching
size. Also we emphasize the assumption that the referee and the players have a shared source
of randomness.

To describe the simultaneous protocol, we consider two cases separately: (a) when the
matching size is low; to be precise, when it is smaller than some fixed value k = n1/3, and
(b) when the matching size is high, i.e. at least Ω(k). For each case, we describe a separate
solution. The overall protocol will be the parallel run of these two solutions along with a
sub-protocol to distinguish between the cases.

Graphs with large matching size

In the case when matching size is large, similar to what was done in the streaming model,
we run an implementation of Algorithm 1 in the given simultaneous model. To see how this
is implemented, in the simultaneous model all the players (including the referee) know the
sampled set S. This results from access to the shared randomness. For each u ∈ S, the
players send the minimum degree of the neighbors of u in his input to the referee. The player
that owns u, also sends deg(u) to the referee. Having received this information, the referee
can decide if u is a locally superior vertex or not. As result, we can implement Algorithm 1
in the simultaneous model using a protocol with O( s

ε2 log n) message size.
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Graphs with small matching size

In the case where the matching size is small, we use the edge-sampling method of [5]. Here
we review their basic sampling primitive in its general form. Given a graph G(V, E), let
c : V → [b] be a totally random function that assigns each vertex in V a random number
(color) in [b] = {1, . . . , b}. The set Sampleb,d,1 is a random subset of E picked in the following
way. Given a subset K ⊆ [b] of size d ∈ {1, 2}, let EK be the edges of G where the color of
their endpoints matches K. For example when K = {3, 4}, the set E{3,4} contains all edges
(u, v) such that {c(u), c(v)} = {3, 4}. For all K ⊆ [b] of size d, the set Sampleb,d,1 picks a
random edge from EK . Finally, the random set Sampleb,d,r is the union of r independent
instances of Sampleb,d,1. We have the following lemma from [5] (see Theorems 4 in the
reference.)

▶ Lemma 9. Let G = (V, E) be a graph. Assuming m(G) ≤ k, with probability 1 − 1/poly(k),
the random set Sample100k,2,O(log k) contains a matching of size m(G).

Note that, in the simultaneous vertex-partition model, the referee can obtain an instance
of Sampleb,d,1 via a protocol with O(bd log n) message size. To see this, using the shared
randomness, the players pick the random function c : V → [b]. Let E(i) be the subset of edges
owned by the i-th player. We have E =

⋃t
i=1 E(i). To pick a random edge from EK for a

given K ⊆ [b], the i-th player randomly picks an edge e ∈ EK ∩ E(i) and sends it along with
|EK ∩ E(i)| to the referee. After receiving this information from all the players, the referee
can generate a random element of EK . Since there are O(bd) different d-subsets of [b], the
size of the message from a player to the referee is bounded by O(bd log n) bits. Consequently,
the referee can produce a rightful instance of Sampleb,d,r using O(rbd log n) communication
from each player.

How to distinguish between the cases?

For this task, we use a degree-based estimator by Mcgregor and Vorotnikova [16] described
in the following lemma.

▶ Lemma 10. Let G = (V, E) be a planar graph. Let A′(G) =
∑

u∈V min{deg(u)/2, 4 −
deg(u)/2}. We have

m(G) ≤ A′(G) ≤ 12.5 m(G).

It is easy to see that, in the simultaneous vertex-partition model, we can implement this
estimator with O(log n) bits communication from each player.

The final protocol

Let k = ⌈n1/3⌉. We run the following threads in parallel.
1. A protocol that implements the high-level estimator (Algorithm 1) with s = ⌈12.5n/k⌉

as its input parameter according to the discussions above. Let z1 be the output of this
protocol.

2. A protocol to compute an instance of Sampleb,d,r for b = 100k and d = 2 and r = O(log k).
Let z2 be the size of maximum matching in the sampled set.

3. A protocol to compute A′(G). Let z3 be the output of this thread.

In the end, if z3 ≥ k
12.5 , the referee outputs z1 as an approximation for m(G), otherwise

the referee reports z2 as the final answer.
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▶ Theorem 11. Let G be a planar graph on n vertices. The above simultaneous protocol,
with probability 3/4, returns a 3.5 + O(ε) approximation of m(G) where each player sends
O( n2/3

ε2 ) bits to the referee.

Proof. First we note that by choosing the constants large enough, we can assume the thread
(2) errs with probability at most 1/8. If z3 ≥ k

12.5 , then we know m(G) ≥ k
12.5 . This follows

from Lemma 10. Consequently by Lemma 2, we have ℓ(G) ≥ k
12.5 . Therefore from Lemma

7, we have |z1 − ℓ(G)| ≤ εℓ(G) with probability at least 7/8. It follows from Lemma 5 that
(1 − ε)m(G) ≤ z1 ≤ (3.5 + 3.5ε)m(G).

On the other hand, if z3 < k
12.5 , by Lemma 10 we know that m(G) must be less than k.

Having this, from Lemma 9, with probability at least 7/8, we get z2 = m(G). In this case
the protocol computes the exact matching size of the graph.

The message size of each player is dominated by the cost of the first thread which is
O(n2/3ε−2 log n). The total error probability is bounded by 1/4. This finishes the proof. ◀

4 Conclusion

In this paper we presented a degree-based estimator for the size of maximum matching in
planar graphs. We showed our estimator gives a 3.5 factor approximation of the matching
size. This improves the approximation factor of the previous degree-based estimators. We
do not have tight examples for our analysis. In fact, we conjecture that ℓ(G) approximates
m(G) within 3 factor when G is planar.

Using our estimator, we obtained an improved sublinear space algorithm for estimating
the matching size in the vertex-arrival streams. We also showed a more efficient simultaneous
protocol for estimating the matching size in planar graphs. Unfortunately, the new estimator,
in spite of its simplicity, does not immediately lead to one-pass sublinear algorithm in the
edge-arrival model. To decide if a vertex is locally superior, we need to know its neighbors
and learn their degrees which becomes burdensome in one pass. However, given an extra
pass over the stream the same space bound and approximation factor is achievable for the
edge-arrival streams as well. It would be interesting to do this without the extra pass.
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