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Abstract
We consider the problem of maximizing a submodular function under the b-matching constraint, in
the semi-streaming model. Our main results can be summarized as follows.

When the function is linear, i.e. for the maximum weight b-matching problem, we obtain a 2 + ε

approximation. This improves the previous best bound of 3 + ε [12].
When the function is a non-negative monotone submodular function, we obtain a 3+2

√
2 ≈ 5.828

approximation. This matches the currently best ratio [12].
When the function is a non-negative non-monotone submodular function, we obtain a 4 + 2

√
3 ≈

7.464 approximation. This ratio is also achieved in [12], but only under the simple matching
constraint, while we can deal with the more general b-matching constraint.

We also consider a generalized problem, where a k-uniform hypergraph is given with an extra
matroid constraint imposed on the edges, with the same goal of finding a b-matching that maximizes
a submodular function. We extend our technique to this case to obtain an algorithm with an
approximation of 8

3 k + O(1).
Our algorithms build on the ideas of the recent works of Levin and Wajc [12] and of Garg, Jordan,

and Svensson [9]. Our main technical innovation is to introduce a data structure and associate it
with each vertex and the matroid, to record the extra information of the stored edges. After the
streaming phase, these data structures guide the greedy algorithm to make better choices.
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1 Introduction

Let G = (V, E) be a multi-graph (with no self-loop) where each vertex v ∈ V is associated
with a capacity bv ∈ Z+. A b-matching is a subset of edges M ⊆ E where each vertex v has
at most bv incident edges contained in M .

In the maximum weight b-matching problem, edges are given weights w : E → R+ and we
need to compute a b-matching M so that w(M) =

∑
e∈M w(e) is maximized. A generalization

of the problem is that of maximizing a non-negative submodular function f : 2E → R+ under
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the b-matching constraint, namely, we look for a b-matching M so that f(M) is maximized.
Here we recall the definition of a submodular function:

∀X ⊆ Y ⊊ E,∀e ∈ E\Y, f(X ∪ {e})− f(X) ≥ f(Y ∪ {e})− f(Y ).

Additionally f is monotone if ∀X ⊆ Y ⊆ E, f(X) ≤ f(Y ), otherwise it is non-monotone.
Observe that the maximum weight matching is the special case where f is a linear sum of
the weights associated with the edges.

In the traditional offline setting, both problems are extensively studied. The maximum
weight b-matching can be solved in polynomial time [16]; maximizing a non-negative monotone
submodular function under b-matching constraint is NP-hard and the best approximation
ratios so far are 2 + ε and 4 + ε, for the monotone and non-monotone case, respectively [8].

In this work, we consider the problem in the semi-streaming model [14]. Here the edges
in E arrive over time but we have only limited space (ideally proportional to the output size)
and cannot afford to store all edges in E – this rules out the possibility of applying known
offline algorithms.

1.1 Our Contribution
We start with the maximum weight (b-)matching. For this problem, a long series of papers [4,
5, 6, 10, 12, 13, 15, 17] have proposed semi-streaming algorithms, with progressively improved
approximation ratios, culminating in the work of Paz and Schwartzman [15], where 2 + ε

approximation is attained, for the simple matching. For the general b-matching, very recently,
Levin and Wajc [12] gave a 3 + ε approximation algorithm. We close the gap between the
simple matching and the general b-matching.

▶ Theorem 1. For the maximum weight b-matching problem, we obtain a 2 + ε approx-
imation algorithm using O

(
log1+ε(W/ε) · |Mmax|

)
variables in memory, and another using

O
(
log1+ε(1/ε) · |Mmax|+

∑
v∈V bv

)
variables, where Mmax denotes the maximum cardinality

b-matching and W denotes the maximum ratio between two non-zero weights.

Next we consider the general case of submodular functions, for whom approximation
algorithms have been proposed in [2, 3, 12, 7]. The current best ratios obtained by Levin and
Wajc [12] are 3 + 2

√
2 ≈ 5.828 and 4 + 2

√
3 ≈ 7.464, for the monotone and non-monotone

functions respectively. We propose an alternative algorithm to achieve the same bounds.

▶ Theorem 2. To maximize a non-negative submodular function under b-matching constraint,
we obtain algorithms providing a 3 + 2

√
2 ≈ 5.828 approximation for monotone functions

and a 4 + 2
√

3 ≈ 7.464 approximation for non-monotone functions, using O(log W · |Mmax|)
variables, where Mmax denotes the maximum cardinality b-matching and W denotes the
maximum quotient f(e | Y )

f(e′ | X) , for X ⊆ Y ⊆ E, e, e′ ∈ E, f(e′ |X) > 0.

It should be pointed out that in [12], for the case of non-monotone functions, their
algorithm only works for the simple matching, and it is unclear how to generalize it to the
general b-matching [11], while our algorithm lifts this restriction1. Another interesting thing
to observe is that even though the achieved ratios are the same and our analysis borrows
ideas from [12], our algorithm is not really just the same algorithm disguised under a different
form. See Appendix B for a concrete example where the two algorithms behave differently.

1 However, when the graph is bipartite, this ratio of 4 + 2
√

3 ≈ 7.464 is already obtained by Garg et
al. [9], even for the general b-matching constraint.
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We also consider an extension, where a matroid2 is imposed on the edges. Specifically,
here G = (V, E) is a k-uniform hypergraph, where each edge e ∈ E contains k vertices in V .
In addition to the capacities bv, a matroid M = (E, I) is given. A b-matching M is feasible
only if M is an independent set in I. The objective here is to find a feasible b-matching M

that maximizes f(M) for f a non-negative submodular function3.
To see our problem in a larger context, observe that it is a particular case of the (k + 1)-

matchoid4. Using the current best algorithm of Chekuri et al. [3] and Feldman et al. [7], one
can obtain 4(k + 1) and 2(k + 1) + 2

√
(k + 1)(k + 2) + 1 for monotone and non-monotone

functions, respectively. We obtain the following.

▶ Theorem 3. To maximize a non-negative submodular function under the b-matching
constraint along with an additional matroid constraint, we design an algorithm providing an
approximation ratio bounded by 8

3 k + O(1) for both monotone and non-monotone functions,
using O(log W ·k·min{(rM, |Mmax|}) variables in memory, where Mmax denotes the maximum
cardinality b-matching, rM is the rank of the matroid and W denotes the maximum quotient
f(e | Y )
f(e′ | X) , for X ⊆ Y ⊆ E, e, e′ ∈ E, f(e′ |X) > 0.

The exact expressions for the approximation ratios are formally stated in Theorems 27
and 29. Given k = 2, 3, and 4, we obtain the approximation ratios of 13.055, 15.283, and
17.325 for the monotone function. Our ratio is in general better when k ≥ 3 compared to the
known technique of [3, 7]. When the function is non-monotone, given k = 2, 3, and 4, we
obtain the ratios of 14.857, 17.012, and 18.999, respectively. Our ratio is better when k ≥ 4
compared to the known technique of [7].

1.2 Our Technique
We use a local-ratio technique to choose to retain or discard a newly arrived edge during the
streaming phase. After this phase, a greedy algorithm, according to the reverse edge arrival
order, is then applied to add edges one by one into the solution while guaranteeing feasibility.

This is in fact the same framework used in [12, 15]. Our main technical innovation is to
introduce a data structure, which takes the form of a set of queues. Such a set of queues is
associated with each vertex (and with the imposed matroid). Every edge, if retained, will
appear as an element5 in one of these queues for each of its endpoints (and for the imposed
matroid). These queues will guide the greedy algorithm to make better choices and are
critical in our improvement over previous results. Here we give some intuition behind these
queues. Consider the maximum weight b-matching problem. Similar to [9], we compute, for
every edge, a gain. The sum of the gains of the retained edges can be shown to be at least
half of the real weight of the unknown optimal matching. The question then boils down

2 Recall that M = (E, I) is a matroid if the following three conditions hold: (1) ∅ ∈ I, (2) if X ⊆ Y ∈ I,
then X ∈ I, and (3) if X, Y ∈ I, |Y | > |X|, there exists an element e ∈ Y \X so that X ∪ {e} ∈ I. The
sets in I are the independent sets and the rank rM of the matroid M is defined as maxX∈I |X|.

3 It is natural to ask what if the submodular function is just a linear function. We observe that in this
case, our problem reduces to maximizing a weighted rank function (recall that a weighted rank function
over a matroid M is a function f : 2E → R+ that such that for X ⊆ E, f(X) = maxY ⊆X,Y ∈I w(Y )),
a special case of a monotone submodular function, under the b-matching constraint. Our algorithm
mentioned in Theorem 2 can be trivially generalized to give an approximation ratio of k + 1 + 2

√
k for

this.
4 Recall that a p-matchoid M is a collection (Mi = (Ei, Ii))s

i=1 of matroids, each defined on some
(possibly distinct) subset Ei ⊆ E, in which each element e ∈ E appears in at most p of the sets Ei. To
see our problem is a (k + 1)-matchoid, observe that we can define a uniform matroid on each vertex to
replace the capacity constraint; as each edge appears in k vertices, in total it appears in k + 1 matroids.

5 In this article, we will often use “edge” and “element” interchangeably.

APPROX/RANDOM 2021
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to how to “extract” a matching whose real weight is large compared to these gains of the
retained edges. In our queues, the elements are stacked in such a way that the weight of an
element e is the sum of the gains of all the elements preceding e in any queue containing e.
This suggests that if e is taken by the greedy algorithm, we can as well ignore all elements
that are underneath e in the queues, as their gains are already “paid for” by e.

2 Maximum Weight b-Matching

2.1 Description of the Algorithm
For ease of description, we explain how to achieve 2 approximation, ignoring the issue of
space complexity for the moment. We will explain how a slight modification can ensure the
desired space complexity, at the expense of an extra ε term in the approximation ratio (see
Appendix A).

The formal algorithm for the streaming phase is shown in Algorithm 1. We give an
informal description here. Let S, initially empty, be the set of edges that have been stored
so far. For each vertex v ∈ V , a set Qv = {Qv,1, · · · , Qv,bv} of queues are maintained. These
queues contain the edges incident to v that are stored in S and respect the arrival order
of edges (newer edges are higher up in the queues). Each time a new edge e arrives, we
compute its gain g(e) (see Lines 5 and 8). Edge e is added into S only if its gain is strictly
positive. If this is the case, for each endpoint u of e, we put e in one of u’s queues (see Lines
6 and 13) and define a reduced weight wu(e) (Line 11). It should be noted that wu(e) will
be exactly the sum of the gains of the edges preceding (and including) e in the queue. We
refer to the last element inserted in a queue Q as the top element of that queue, denoted
Q.top(). To insert an element e on top of a queue Q, we use the instruction Q.push(e). By
convention, for an empty queue Q we have Q.top() = ⊥. We also set wu(⊥) = 0. Notice that
each element e also has, for each endpoint v ∈ e, a pointer rv(e) to indicate its immediate
predecessor in the queue of v, where it appears.

Algorithm 1 Streaming phase for weighted matching.

1: S ← ∅
2: ∀v ∈ V : Qv ← (Qv,1 = ∅, · · · , Qv,bv = ∅) ▷ bv queues for a vertex v

3: for e = et, 1 ≤ t ≤ |E| an edge from the stream do
4: for u ∈ e do
5: w∗

u(e)← min{wu(Qu,q.top()) : 1 ≤ q ≤ bu}
6: qu(e)← q such that wu(Qu,q.top()) = w∗

u(e)
7: if w(e) >

∑
u∈e w∗

u(e) then
8: g(e)← w(e)−

∑
u∈e w∗

u(e)
9: S ← S ∪ {e}

10: for u ∈ e do
11: wu(e)← w∗

u(e) + g(e)
12: ru(e)← Qu,qu(e).top() ▷ ru(e) is the element below e in the queue
13: Qu,qu(e).push(e) ▷ add e on the top of the smallest queue

After the streaming phase, our greedy algorithm, formally described in Algorithm 2,
constructs a b-matching based on the stored set S.

The greedy proceeds based on the reverse edge arrival order – but with an important
modification. Once an edge e is taken as part of the b-matching, all edges preceding e that
are stored in the same queue as e will be subsequently ignored by the greedy algorithm. The
variables ze are used to mark this fact.
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Algorithm 2 Greedy construction phase.

1: M ← ∅
2: ∀e ∈ S : ze ← 1
3: for e ∈ S in reverse order do
4: if ze = 0 then continue ▷ skip edge e if it is marked
5: M ←M ∪ {e}
6: for u ∈ e do
7: c← e

8: while c ̸= ⊥ do
9: zc ← 0 ▷ mark elements below e in each queue

10: c← ru(c)
11: return M

2.2 Analysis for Maximum Weight b-Matching
For analysis, for each discarded element e ∈ E\S, we set g(e) = 0 and wu(e) = w∗

u(e) for
each u ∈ e. The weight of a queue, wu(Qu,i), is defined as the reduced weight of its top
element, namely, wu(Qu,i.top()). Let wu(Qu) =

∑bu

i=1 wu(Qu,i). We write S(t) as the value
of S at the end of the iteration t of the streaming phase, and by convention S(0) = ∅. This
notation (t) will also be used for other sets such as Qu and Qu,i. Through this paper, Mopt

will always refer to the best solution for the considered problem.
The following proposition follows easily by induction.

▶ Proposition 4.
(i) For all v ∈ V we have g(δ(v)) = g(δ(v) ∩ S) = wv(Qv).
(ii) The set {Qv,q.top() : 1 ≤ q ≤ bv} contains the bv heaviest elements of S ∩ δ(v) in terms

of reduced weights.

▶ Lemma 5. At the end of Algorithm 1, for all b-matching M ′ and for all v ∈ V , we have
wv(Qv) ≥ wv(M ′ ∩ δ(v)).

Proof. By Proposition 4(ii), wv(Qv) is exactly the sum of the reduced weights of the bv

heaviest elements in S ∩ δ(v) (which are on top of the queues of Qv). If we can show that
for each element e = et ∈ M ′\S, wu(et) ≤ min{wv(Q|E|

v,q ) : 1 ≤ q ≤ bv}, the proof will
follow. Indeed, as et is discarded, we know that wv(et) = min{wv(Q(t−1)

v,q ) : 1 ≤ q ≤ bv} ≤
min{wv(Q|E|

v,q ) : 1 ≤ q ≤ bv}, where the inequality holds because the weight of a queue is
monotonically increasing. ◀

▶ Lemma 6. 2g(S) ≥ w(Mopt).

Proof. It is clear that for e = {u, v} we have wu(e) + wv(e) ≥ w(e). Therefore

w(Mopt) ≤
∑

e={u,v}∈Mopt

wu(e) + wv(e) =
∑
u∈V

wu(Mopt ∩ δ(u))

≤
∑
u∈V

wu(Qu) =
∑
u∈V

g(S ∩ δ(u)) = 2g(S),

where the second inequality follows from Lemma 5 and the subsequent equality from Propos-
ition 4(i). The last equality comes from the fact that an edge is incident to 2 vertices. ◀

Recall that qv(e) refers to the index of the particular queue in Qv where a new edge e

will be inserted (Line 6 of Algorithm 1).

APPROX/RANDOM 2021
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▶ Lemma 7. Algorithm 2 outputs a feasible b-matching M with weight w(M) ≥ g(S).

Proof. By an easy induction, we know that for a given e = et ∈ S and v ∈ e, we have:

wv(e) = w∗
v(e) + g(e) =

∑
e′∈Q

(t)
v,qv(e)

g(e′) and w(e) = g(e) +
∑
u∈e

∑
e′∈Q

(t−1)
u,qu(e)

g(e′). (1)

Moreover, observe that S ∩ δ(v) can be written as a disjoint union of the Qv,q for
1 ≤ q ≤ bv: S ∩ δ(v) =

⋃
1≤q≤bv

Qv,q. One can also observe that Algorithm 2 takes at most
one element in each queue Qv,i. In fact, an element can be added only if no element above
it in any of the queues where it appears has already been added into M ; and no element
below it in the queues can be already part of M because S is read in the reverse arrival order.
Consequently M respects the capacity constraint and is thus a feasible b-matching. We now
make a critical claim from which the correctness of the lemma follows easily.

▷ Claim 8. Given an edge e ∈ S, either e ∈M , or there exists another edge e′ arriving later
than e, such that e′ ∈M and there exists a queue belonging to a common endpoint of e and
e′, which contains both of them.

Observe that if the claim holds, by (1), the gain g(e) of any edge e ∈ S will be “paid” for
by some edge e′ ∈M and the proof will follow.

To prove the claim, let e = {u, v} and assume that e ̸∈ M . Consider the two queues
Qu,qu(e) and Qv,qv(e). The edges stored above e in these two queues must have arrived later
than e in S and have thus already been considered by Algorithm 2. The only reason that
e ̸∈M must be that ze = 0 when e is processed, implying that one of these edges was already
part of M . Hence the claim follows. ◀

Lemmas 6 and 7 give the following theorem:

▶ Theorem 9. Algorithms 1 and 2 provide a 2 approximation for the maximum weight
b-matching problem.

We refer the readers to Appendix A for the details on how to handle the memory
consumption of the algorithm.
▶ Remark 10. It is straightforward to extend our algorithm to a k-uniform hypergraph, where
we can get an approximation ratio of k. Notice that if the k-uniform hypergraph is also
k-partite, then the problem becomes that of finding a maximum weight intersection of k

partition matroids. It can be shown that our stored edge set is exactly identical to the one
stored by the algorithm of Garg et al. [9]. They have conjectured that for k arbitrary general
matroids, their stored edge set always contains a k approximation. Our result thus proves
their conjecture to be true when all matroids are partition matroids.

3 Submodular Function Maximization

3.1 Description of the Algorithm
For submodular function maximization, the streaming algorithm, formally described in
Algorithm 3, is quite similar to the one for the weighted b-matching in the preceding section.
Here notice that the element weight w(e) is replaced by the marginal value f(e |S) (see
Lines 7 and 10). We use a similar randomization method to that of Levin and Wajc [12] for
non-monotone functions (adding an element to S only with probability p, see Lines 8-9), and
our analysis will bear much similarity to theirs. The greedy algorithm to build a solution M

from S is still Algorithm 2.
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Algorithm 3 Streaming phase for submodular function maximization.

1: S ← ∅
2: ∀v ∈ V : Qv ← (Qv,1 = ∅, · · · , Qv,bv

= ∅)
3: for e = et, 1 ≤ t ≤ |E| an edge from the stream do
4: for u ∈ e do
5: w∗

u(e)← min{wu(Qu,q.top()) : 1 ≤ q ≤ bu}
6: qu(e)← q such that wu(Qu,q.top()) = w∗

u(e)
7: if f(e |S) > α

∑
u∈e w∗

u(e) then
8: π ← a random variable equal to 1 with probability p and 0 otherwise
9: if π = 0 then continue ▷ skip edge e with probability 1− p

10: g(e)← f(e |S)−
∑

u∈e w∗
u(e)

11: S ← S ∪ {e}
12: for u ∈ e do
13: wu(e)← w∗

u(e) + g(e)
14: ru(e)← Qu,qu(e).top()
15: Qu,qu(e).push(e)

Algorithm 3 uses, for α = 1 + ε, O(log1+ε(W/ε) · |Mmax|) variables, where Mmax denotes
the maximum cardinality b-matching and W denotes the maximum quotient f(e | Y )

f(e′ | X) , for
X ⊆ Y ⊆ E, e, e′ ∈ E, f(e′ |X) > 0 (in Appendix A we explain how to guarantee such
space complexity when f is linear – the general case of a submodular function follows similar
ideas).

3.2 Analysis for Monotone Submodular Function Maximization
Let α = 1 + ε. In this section, p = 1 (so we have actually a deterministic algorithm for the
monotone case). The following two lemmas relate the total gain g(S) with the marginal
values f(S | ∅) and f(Mopt |S).

▶ Lemma 11. It holds that g(S) ≥ ε
1+ε f(S | ∅).

Proof. For an element e = et ∈ S we have f
(
e |S(t−1)) ≥ (1 + ε)

∑
u∈e w∗

u(e) so

g(e) = f
(

e |S(t−1)
)
−
∑
u∈e

w∗
u(e) ≥ f

(
e |S(t−1)

)(
1− 1

1 + ε

)
,

implying that

g(S) =
∑
e∈S

g(e) ≥
∑

e=et∈S

f
(

e |S(t−1)
)(

1− 1
1 + ε

)
= ε

1 + ε
f(S | ∅). ◀

As in the previous section, if an edge e is discarded, we assume that w∗
v(e) = wv(e) for

each v ∈ e.

▶ Lemma 12. It holds that 2(1 + ε)g(S) ≥ f(Mopt |S).

Proof. The only elements e = et missing in S are the ones satisfying the inequality
f(e |S(t−1)) ≤ (1 + ε)

∑
u∈e w∗

u(e). So by submodularity,

f(Mopt |S) ≤
∑

e∈Mopt\S

f(e |S) ≤
∑

e=et∈Mopt\S

f(e |S(t−1))

≤
∑

e∈Mopt\S

(1 + ε)
∑
u∈e

w∗
u(e) = (1 + ε)

∑
e∈Mopt\S

∑
u∈e

wu(e)

APPROX/RANDOM 2021
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= (1 + ε)
∑
u∈V

wu((Mopt\S) ∩ δ(u)) ≤ (1 + ε)
∑
u∈V

wu(Qu)

≤ 2(1 + ε)g(S),

similar to the proof of Lemma 6. ◀

▶ Lemma 13. Algorithm 2 outputs a feasible b-matching with f(M) ≥ g(S) + f(∅).

Proof. As argued in the proof of Lemma 7, M respects the capacities and so is feasible.
Now, suppose that M = {et1 , · · · , et|M|} , t1 < · · · < t|M |. Then

f(M) = f(∅) +
|M |∑
i=1

f(eti | {et1 , · · · , eti−1}) ≥ f(∅) +
|M |∑
i=1

f(eti |S(ti−1)) ≥ f(∅) + g(S),

as the values f(eti
|S(ti−1)) play the same role as the weights in Lemma 7. ◀

▶ Theorem 14. Algorithms 3 and 2 provide a 3 + 2
√

2 approximation if we set ε = 1√
2 .

Proof. By Lemmas 11 and 12, we derive
(
2 + 2ε + 1+ε

ε

)
g(S) ≥ f(Mopt |S) + f(S | ∅) =

f(Mopt ∪ S | ∅) ≥ f(Mopt | ∅), where the last inequality is due to the monotonicity of f . By
Lemma 13, the output b-matching M guarantees that f(M) ≥ g(S) + f(∅). As a result,(
3 + 2ε + 1

ε

)
f(M) ≥ f(Mopt | ∅) + f(∅) = f(Mopt). Setting ε = 1√

2 gives the result. ◀

▶ Remark 15. When bv = 1 for all v ∈ V (i.e. simple matching), our algorithm behaves
exactly the same as the algorithm of Levin and Wajc [12]. Therefore their tight example also
applies to our algorithm. In other words, our analysis of approximation ratio is tight.

3.3 Analysis for Non-Monotone Submodular Function Maximization
In this section, we suppose that 1

3+2ε ≤ p ≤ 1
2 .

▶ Lemma 16. It holds that(
2(1 + ε) + 1 + ε

ε

)
E[g(S)] ≥ E[f(S ∪Mopt | ∅).]

Proof. From Lemma 11 we have that for any execution of the algorithm (a realization
of randomness), the inequality 1+ε

ε g(S) ≥ f(S | ∅) holds, so it is also true in expectation.
We will try to prove in the following that 2(1 + ε)E[g(S)] ≥ E[f(Mopt |S)], which is the
counterpart of Lemma 12.

First, we show that for any e ∈Mopt:

(1 + ε)E
[∑

u∈e

wu(e)
]
≥ E[f(e |S)] (2)

We will use a conditioning similar to the one used in [12]. Let e = et ∈Mopt. We consider
the event Ae = [f(e |S(t−1)) ≤ (1 + ε)

∑
u∈e w∗

u(e)]. Notice that if Ae holds, e is not part of
S and w∗

v(e) = wv(e) for each v ∈ e. Now by submodularity,

E[f(e |S) |Ae] ≤ E[f(e |S(t−1)) |Ae] ≤ E

[
(1 + ε)

∑
u∈e

w∗
u(e) |Ae

]

= (1 + ε)E
[∑

u∈e

wu(e) |Ae

]
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Next we consider the condition Ae (where the edge e should be added into S with probability
p). As p ≤ 1

2 , and for e = et = {u, v} we have wu(e) + wv(e) = 2f(e |S(t−1))−w∗
u(e)−w∗

v(e)
when e is added to S, we get

E

[∑
u∈e

wu(e) |Ae

]
= p · E

[
2f(e |S(t−1))−

∑
u∈e

w∗
u(e) |Ae

]
+ (1− p) · E

[∑
u∈e

w∗
u(e) |Ae

]

= 2p · E
[
f(e |S(t−1)) |Ae

]
+ (1− 2p) · E

[∑
u∈e

w∗
u(e) |Ae

]
≥ 2p · E

[
f(e |S(t−1)) |Ae

]
.

As a result, for p ≥ 1
3+2ε ,

(1 + ε)E
[∑

u∈e

wu(e) |Ae

]
≥ 2p(1 + ε) · E

[
f(e |S(t−1)) |Ae

]
≥ (1− p) · E

[
f(e |S(t−1)) |Ae

]
≥ E

[
f(e |S) |Ae

]
,

where the last inequality holds because with probability p we have f(e |S) = 0 (as e ∈ S)
and with probability 1− p, f(e |S) ≤ f(e |S(t−1)) (by submodularity).

So we have proven inequality (2) and it follows that

E
[
f(Mopt |S)

]
≤

∑
e∈Mopt

E [f(e |S)] ≤ (1 + ε)
∑

e∈Mopt

E

[∑
u∈e

wu(e)
]

= (1 + ε)
∑
u∈V

∑
e∈Mopt∩δ(u)

E [wu(e)] ≤ (1 + ε)
∑
u∈V

E [wu(Qu)]

= 2(1 + ε)E[g(S)],

where in the last inequality we use the fact that Lemma 5 holds for every realization of
randomness.

Now the bounds on E [f(Mopt |S)] and the bound on E [f(S | ∅)] argued in the beginning
give the proof of the lemma. ◀

Then we will use the following lemma, due to due to Buchbinder et al. [1]:

▶ Lemma 17 (Lemma 2.2 in [1]). Let h : 2N → R+ be a non-negative submodular function,
and let B be a random subset of N containing every element of N with probability at most p

(not necessarily independently), then E[h(B)] ≥ (1− p)h(∅).

▶ Theorem 18. Algorithm 3 run with p = 1
3+2ε provides a set S, upon which Algorithm 2

outputs a b-matching M satisfying:(
4ε2 + 8ε + 3

2ε

)
E[f(M)] ≥ f(Mopt).

This ratio is optimized when ε =
√

3
2 , which gives a 4 + 2

√
3 approximation.

Proof. Combining Lemma 13 and Lemma 16,(
2(1 + ε) + 1 + ε

ε

)
E[f(M)] ≥ E[f(S ∪Mopt)].

APPROX/RANDOM 2021



14:10 Semi-Streaming Submodular Function Maximization Under b-Matching Constraint

Now we can apply Lemma 17 by defining h : 2E → R+ as, for any X ⊆ E, h(X) = f(X ∪
Mopt) (trivially h is non-negative and submodular). As any element of E has the probability of
at most p to appear in S, we derive E[f(S∪Mopt)] = E[h(S)] ≥ (1−p)h(∅) = (1−p)f(Mopt).
Therefore,(

3 + 2ε + 1
ε

)
E[f(M)] ≥ E[f(S ∪Mopt)] ≥ (1− p)f(Mopt).

As p = 1
3+2ϵ , we have(

4ε2 + 8ε + 3
2ε

)
· E[f(M)] ≥ f(Mopt).

This ratio is optimized when ε =
√

3
2 , which gives a 4 + 2

√
3 ≈ 7.464 approximation. ◀

4 Matroid-constrained Maximum Submodular b-Matching

In this section we consider the more general case of a b-matching on a k-uniform hypergraph
and we impose a matroid constraint M = (E, I). A matching M ⊆ E is feasible only if it
respects the capacities of the vertices and is an independent set in M.

4.1 Description of the Algorithm
For the streaming phase, our algorithm, formally described in Algorithm 4, is a further
generalization of Algorithm 3 in the last section.

We let α = 1 + ε and γ > 1. For the matroid M, we maintain a set QM =
{QM,1, · · · , QM,rM}, where rM is the rank of M, to store the elements (so if an edge
e is part of S, it appears in a total of k + 1 queues, k of them corresponding to the vertices
in e, and the remaining one corresponding to the matroid).

To facilitate the presentation, we write Top(QM) to denote the set of the elements on
top of the queues of QM. Lines 8-13 will guarantee that Top(QM) is an independent set (in
fact a maximum weight base among all elements arrived so far, according to the reduced
weights – see Lemma 20). In the end of the algorithm (Lines 26-27), we erase all elements
that are not part of Top(QM) and let the final output Sf be simply Top(QM). Sf is then
fed into the greedy, Algorithm 2, to produce the b-matching. The pointers rv are updated
(Line 27), so that the queues could be regarded as if they contained only elements of Sf .

Here we give some intuition. We retain only the elements Top(QM) because they are
independent (hence any subset of them chosen by the Greedy algorithm), releasing us from
the worry that the output is not independent. We set γ > 1 to ensure that the gain of new
edges in the same queue of QM grows quickly. By doing this, Top(QM), by itself, contributes
to a significant fraction of all gains in g(S) (see Lemma 24). However, an overly large γ

causes us to throw away too many edges (see Line 14), thus hurting the final approximation
ratio. To optimize, we thus need to choose γ carefully.

The number of variables used by this algorithm is O(min{k · logγ·(1+ε)(W/ε) · rM, k ·
log1+ε(W/ε)·|Mmax|}), where Mmax denotes the maximum-cardinality b-matching W denotes
the maximum quotient f(e | Y )

f(e′ | X) , for X ⊆ Y ⊆ E, e, e′ ∈ E, f(e′ |X) > 0.

4.2 Analysis for Monotone Submodular Function Maximization
In this section, p = 1. For each discarded elements e ∈ E\S, similarly as before, we set
wM(e) = w∗

M(e).
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Algorithm 4 Streaming phase for Matroid-constrained Maximum Submodular b-Matching.

1: S ← ∅
2: QM ← (QM,1 = ∅, · · · , QM,rM = ∅)
3: ∀v ∈ V : Qv ← (Qv,1 = ∅, · · · , Qv,bv = ∅)
4: for e = et, 1 ≤ t ≤ |E| an edge from the stream do
5: for u ∈ e do
6: w∗

u(e)← min{wu(Qu,q.top()) : 1 ≤ q ≤ bu}
7: qu(e)← q such that wu(Qu,q.top()) = w∗

u(e)
8: if Top(QM) ∪ {e} ∈ I then
9: w∗

M(e)← 0
10: qM(e)← q such that QM,q is empty
11: if Top(QM) ∪ {e} contains a circuit C then
12: w∗

M(e)← mine′∈C\{e} wM(e′)
13: qM(e) ← q such that wM(QM,q.top()) is equal to mine′∈C\{e} wM(e′) and

QM,q.top() ∈ C

14: if f(e |S) > α(
∑

u∈e w∗
u(e) + γ · w∗

M(e)) then
15: π ← a random variable equal to 1 with probability p and 0 otherwise
16: if π = 0 then continue ▷ skip edge e with probability 1− p

17: g(e)← f(e |S)−
∑

u∈e w∗
u(e)− w∗

M(e)
18: S ← S ∪ {e}
19: for u ∈ e do
20: wu(e)← w∗

u(e) + g(e)
21: ru(e)← Qu,qu(e).top()
22: Qu,qu(e).push(e)
23: wM(e)← w∗

M(e) + g(e)
24: rM(e)← QM,qM(e).top()
25: QM,qM(e).push(e)
26: Sf ← Top(QM)
27: update the values of rv for v ∈ V as necessary so that only the elements in Sf are

considered as present in the queues (elements not in Sf are skipped in the sequences of
recursive values of rv)

We introduce some basic facts in matroid theory, e.g., see [16].

▶ Proposition 19. Given a matroid M = (E, I) with weight w : E → R+, then

(i) An independent set I ∈ I is a maximum weight base if and only if, for every element
e ∈ E\I, I ∪ {e} contains a circuit and w(e) ≤ mine′∈C\{e} w(e′).

(ii) If I ∈ I, I ∪{e} contains a circuit C1 and I ∪{e′} contains a circuit C2 and C1 and C2
contain a common element e′′ ∈ I, then there exists another circuit C3 ⊆ (C1∪C2)\{e′′}.

▶ Lemma 20. Let {e1, · · · , et} be the set of edges arrived so far. Then Top(QM) = Top(Q(t)
M)

forms a maximum weight base in {e1, · · · , et} with regard to the reduced weight wM.

Proof. This can be easily proved by induction on the number of edges arrived so far and
Proposition 19. ◀

▶ Corollary 21. At the end of the algorithm, wM(QM) ≥ wM(Mopt).

APPROX/RANDOM 2021
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The next two lemmas relate the total gain g(S) with f(S | ∅) and f(Mopt |S).

▶ Lemma 22. It holds that g(S) ≥ ε
1+ε f(S | ∅).

Proof. Same proof as for Lemma 11. ◀

▶ Lemma 23. It holds that (1 + ε)(k + γ)g(S) ≥ f(Mopt |S).

Proof. By the same argument as in the proof of Lemma 12, we have∑
e∈Mopt\S

(1 + ε)
∑
u∈e

w∗
u(e) ≤ (1 + ε)k · g(S).

Moreover, Corollary 21 shows that g(S) = wM(QM) ≥ wM(Mopt) and we know that

wM(Mopt) ≥
∑

e∈Mopt\S

wM(e) =
∑

e∈Mopt\S

w∗
M(e).

As a result, we obtain

f(Mopt |S) ≤
∑

e∈Mopt\S

f(e |S) ≤
∑

e=et∈Mopt\S

f(e |S(t−1))

≤ (1 + ε)
∑

e∈Mopt\S

∑
u∈e

w∗
u(e) + γ · w∗

M(e)

≤ (1 + ε)(k + γ)g(S). ◀

The following lemma states that Sf retains a reasonably large fraction of the gains
compared to S.

▶ Lemma 24. It holds that
(

1 + 1
γ·(1+ε)−1

)
g(Sf ) ≥ g(S).

Proof. We have, for all element e = et ∈ Sf ,

g(e) = f(e |S(t−1))−
∑
u∈e

w∗
u(e)− w∗

M(e)

≥ (1 + ε− 1)
∑
u∈e

w∗
u(e) + (γ · (1 + ε)− 1)w∗

M(e)

≥ (γ · (1 + ε)− 1)w∗
M(e) = (γ · (1 + ε)− 1)

∑
e′∈Q

(t−1)
M,qM(e)

g(e′).

Recalling that qM(e) is the index of the queues in QM where e is put (see Lines 13 and
25 of Algorithm 4),

g(S) =
∑

e=et∈Sf

g(e) +
∑

e′∈Q
(t−1)
M,qM(e)

g(e′)

 ≤ ∑
e∈Sf

(
1 + 1

γ · (1 + ε)− 1

)
g(e),

and the proof follows. ◀

▶ Lemma 25. It holds that
(

1 + 1
γ·(1+ε)−1

) (
(1 + ε)(k + γ) + 1 + 1

ε

)
g(Sf ) ≥ f(Mopt | ∅).

Proof. By Lemmas 22 and 23, we have that
(
(1 + ε)(k + γ) + 1 + 1

ε

)
g(S) ≥ f(Mopt |S) +

f(S | ∅) = f(Mopt ∪ S | ∅) ≥ f(Mopt | ∅) because f is monotone. Then we use Lemma 24. ◀
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▶ Lemma 26. With Sf as input, Algorithm 2 returns a feasible b-matching M with f(M) ≥
g(Sf ) + f(∅).

Proof. As argued in Lemma 7, M respects the capacities. Furthermore, as Sf is by con-
struction an independent set in M and M ⊆ Sf ∈ I, we have M ∈ I. So M is a feasible
b-matching. Finally, using an analysis similar to the one in the proof of Lemma 13, we have
f(M) ≥ g(Sf ) + f(∅) (the only difference being that now the “weight” f(et |S(t−1)) of an
element can be larger than the sum of the gains of the elements below it in the queues, which
is not an issue for the analysis). ◀

As a result, we get the following theorem (the same way we obtained Theorem 14):

▶ Theorem 27. For non-negative monotone submodular functions, Algorithm 4 with p = 1
combined with Algorithm 2 provides a feasible b-matching such that(

1 + 1
γ · (1 + ε)− 1

)(
(1 + ε)(k + γ) + 1 + 1

ε

)
f(M) ≥ f(Mopt).

By setting ε = 1 and γ = 2, we attain the approximation ratio of 4
3 (2k + 6) for all k.

It is possible to obtain better ratios for a fixed k by a more careful choice of the parameters
ε and γ. For instance when k = 2, 3, and 4, we have the respective ratios of 13.055, 15.283,

and 17.325.

4.3 Analysis for Non-Monotone Submodular Function Maximization
In this section, we assume 1

1+(k+γ)(1+ε) ≤ p ≤ 1
k+γ . The following lemma is the counterpart

of Lemma 16, whose proof again uses the technique of conditioning (in a more general form).

▶ Lemma 28. It holds that
(
(1 + ε)(k + γ) + 1+ε

ε

)
E[g(S)] ≥ E[f(S ∪Mopt | ∅)].

Proof. By Lemma 22, for any realization on randomness, we have 1+ε
ε g(S) ≥ f(S | ∅), so

the inequality also holds in expectation.
We next show that, for any e ∈Mopt we have

E[f(e |S)] ≤ (1 + ε)E
[∑

u∈e

wu(e) + γ · wM(e)
]

. (3)

Let e ∈ Mopt. Conditioning on Ae = [f(e |S(t−1)) ≤ (1 + ε)(
∑

u∈e w∗
u(e) + γ · w∗

M(e))]
(i.e. e cannot be part of S), we have

E[f(e |S) |Ae] ≤ E[f(e |S(t−1)) |Ae]

≤ E

[
(1 + ε)(

∑
u∈e

w∗
u(e) + γ · w∗

M(e)) |Ae

]

= (1 + ε)E
[∑

u∈e

wu(e) + γ · wM(e) |Ae

]
.

For the condition Ae, recall that it means that with probability p, the edge is added into
S and with probability 1− p, it is not. So

E

[∑
u∈e

wu(e) + γ · wM(e) |Ae

]

APPROX/RANDOM 2021
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= p · E

[
(k + γ)f(e |S(t−1))− (k + γ − 1)

(∑
u∈e

w∗
u(e)

)
− kw∗

M(e) |Ae

]

+ (1− p) · E
[∑

u∈e

w∗
u(e) + γ · w∗

M(e) |Ae

]

≥ p · E

[
(k + γ)f(e |S(t−1))− (k + γ − 1)

(∑
u∈e

w∗
u(e)

)
− (k + γ − 1)γ · w∗

M(e) |Ae

]

+ (1− p) · E
[∑

u∈e

w∗
u(e) + γ · w∗

M(e) |Ae

]

= (k + γ) · p · E
[
f(e |S(t−1)) |Ae

]
+ (1− (k + γ) · p) · E

[∑
u∈e

w∗
u(e) + γ · w∗

M(e) |Ae

]
≥ (k + γ) · p · E

[
f(e |S(t−1)) |Ae

]
,

where in the second step we use the fact that γ > 1 and in the last inequality that p ≤ 1
k+γ .

Now as p ≥ 1
1+(k+γ)(1+ε) , we have

(1 + ε)E
[∑

u∈e

wu(e) + γ · wM(e) |Ae

]
≥ (1 + ε)(k + γ) · p · E

[
f(e |S(t−1)) |Ae

]
≥ (1− p) · E

[
f(e |S(t−1)) |Ae

]
≥ E

[
f(e |S) |Ae

]
,

and we have established (3).
Similar to the proof of Lemma 16 we get

E
[
f(Mopt |S)

]
≤

∑
e∈Mopt

E [f(e |S)]

≤ (1 + ε)
∑

e∈Mopt

E

[∑
u∈e

wu(e)
]

+ (1 + ε)γ · E[wM(Mopt)]

≤ k(1 + ε)E[g(S)] + (1 + ε)γ · E[wM(Mopt)].

By Lemma 21 we know that for any realization of randomness, wM(Mopt) ≤ wM(Sf ) = g(S).
Thus we get E [f(Mopt |S)] ≤ (k + γ)(1 + ε)E[g(S)].

Now the bound on E [f(Mopt |S)] and the bound on E [f(S | ∅)] (argued in the beginning
of the proof) give us the lemma. ◀

Finally, using Lemma 17 we obtain:

▶ Theorem 29. For non-negative submodular functions, Algorithm 4 with p = 1
1+(k+γ)(1+ε)

combined with Algorithm 2 provides a b-matching M independent in M such that:

1 + (k + γ)(1 + ε)
(k + γ)(1 + ε)

(
1 + 1

γ · (1 + ε)− 1

)(
(1 + ε)(k + γ) + 1 + 1

ε

)
E[f(M)] ≥ f(Mopt).

Setting ε = 1 and γ = 2 we obtain the ratio of 2k+5
2k+4 ·

4
3 · (2k + 6) for all k.

As in the last section, it is possible to obtain better ratios for a fixed k by a more careful
choice of the parameters ε and γ. For instance when k = 2, 3, and 4, we have the respective
ratios of 14.857, 17.012, and 18.999.
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A Making Algorithm 1 Memory-Efficient

We explain how to guarantee the space requirement promised in Theorem 1. In this section,
wmin denotes the minimum non-zero value of the weight of an edge, and wmax the maximum
weight of an edge. Moreover, we set W = wmax/wmin. We also define Mmax as a given
maximum cardinality b-matching.

Let α = (1 + ε) > 1. In Algorithm 5 we add an edge e to S only if w(e) > α
∑

u∈e w∗
u(e)

(Line 7). For the moment we set d = 0 in our analysis, ignoring Lines 14-16 of the algorithm.

▶ Lemma 30. The set S obtained at the end of algorithm 5 when d = 0 guarantees that
2αg(S) ≥ w(Mopt).
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Algorithm 5 Streaming phase for weighted matching, memory-efficient.

1: S ← ∅
2: ∀v ∈ V : Qv ← (Qv,1 = ∅, · · · , Qv,bv

= ∅)
3: for e = et, 1 ≤ t ≤ |E| an edge from the stream do
4: for u ∈ e do
5: w∗

u(e)← min{wu(Qu,q.top()) : 1 ≤ q ≤ bu}
6: qu(e)← q such that wu(Qu,q.top()) = w∗

u(e)
7: if w(e) > α

∑
u∈e w∗

u(e) then ▷ stricter condition here
8: g(e)← w(e)−

∑
u∈e w∗

u(e)
9: S ← S ∪ {e}

10: for u ∈ e do
11: wu(e)← w∗

u(e) + g(e)
12: ru(e)← Qu,qu(e).top()
13: Qu,qu(e).push(e)
14: if d = 1 and Qu,qu(e).length() > β then ▷ remove some small element
15: let e′ be the β + 1-th element from the top of Qu,qu(e)
16: mark e′ as erasable, so that when it will no longer be on the top of any

queue, it will be removed from S and from all the queues it appears in

Proof. We proceed as in [9]. Let wα : E → R such that wα(e) = w(e) for e ∈ S and
wα(e) = w(e)

α for e ∈ E\S. We can observe that with the weights wα, Algorithm 1 gives the
same set S as Algorithm 5 with the weights w. We deduce that wα(Mopt) ≤ 2g(S) and then,
as w ≤ αwα, we get 2αg(S) ≥ w(Mopt). ◀

Hence, using same arguments as in [10, 12] we obtain the following:

▶ Theorem 31. Algorithm 5 (with d = 0) combined with Algorithm 2 gives a 2 + ε approx-
imation algorithm by using O

(
log1+ε(W/ε) · |Mmax|

)
variables.

Proof. In a given queue, the minimum non-zero value that can be attained is ε
1+ε wmin and

the maximum value that can be attained is wmax. As the value of the top element of the
queue increases at least by a factor 1 + ε for each inserted element, a given queue contains
at most log1+ε(W/ε) + 1 edges. Hence, a vertex v ∈ V contains at most min{|δ(v)|, bv ·
(log1+ε(W/ε) + 1)} elements of S at the end of the algorithm.

Then let U ⊆ V be the set of saturated vertices of V by Mmax, i.e. the set of vertices
v ∈ V such that |δ(v) ∩Mmax| = min{|δ(v)|, bv}. By construction, U is a vertex cover and∑

v∈U min{|δ(v)|, bv} ≤ 2|Mmax|. As all edges of S have at least one endpoint in U , we get:

|S| ≤
∑
v∈U

|δ(v) ∩ S| ≤
∑
v∈U

min{|δ(v)|, bv · (log1+ε(W/ε) + 1)}

≤
∑
v∈U

min{|δ(v)|, bv} · (log1+ε(W/ε) + 1) ≤ 2(log1+ε(W/ε) + 1) · |Mmax|,

so the memory consumption of the algorithm is O(log1+ε(W/ε) · |Mmax|) ◀

Modifying an idea from Ghaffari and Wajc [10] we can further improve the memory
consumption of the algorithm, especially if W is not bounded. For that, set β = 1+ 2 log(1/ε)

log(1+ε) =
1 + log1+ε(1/ε2) in Algorithm 5 as the maximum size of a queue, and set d = 1 (so that we
now consider the whole code).
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Consider an endpoint u of the newly-inserted edge e. If the queue Qu,qu(e) becomes too
long (more than β elements), it means the gain g(e′) of the β + 1-th element from the top
of the queue (we will call that element e′) is very small compared to g(e), so we then can
“potentially” remove e′ from S and from the queues without hurting too much g(S). In the
code, we will mark this edge e′ as erasable, so that when e′ will no longer be on top of any
queue, it will be removed from S and all the queues it appears in. To be able to do these
eviction operations, the queues have to be implemented with doubly linked lists.

If an edge e = {u, v} is marked as erasable by Algorithm 5 (d = 1) because an edge
e′ = {u, v′} is added to S, then we say that e′ evicted e (and that e was evicted by e′).

▶ Lemma 32. If e = {u, v} is evicted by e′ = {u, v′}, then g(e′) ≥ g(e)/ε.

Proof. We have g(e′) ≥ ε(w∗
u(e′) + w∗

v′(e′)) ≥ εw∗
u(e′) ≥ ε(1 + ε)β−1g(e) ≥ g(e)/ε because

after e = et is added to Qu,qu(e) we have wu(Q(t)
u,qu(e)) ≥ g(e) and each time an element is

added to Qu,qu(e) the value wu(Qu,qu(e)) is multiplied at least by (1 + ε). ◀

▶ Theorem 33. For ε ≤ 1
4 , Algorithm 5 with d = 1 combined with Algorithm 2 gives a 2 + ε

approximation algorithm by using O
(
log1+ε(1/ε) · |Mmax|+

∑
v∈V bv

)
variables.

Proof. For an element e that was not evicted from S in Algorithm 5, denote by Ee the
elements that were evicted by e directly or indirectly (in a chain of evictions). This set Ee

contains at most 2 elements that were directly evicted when e was inserted in S, and their
associated gain is at most εg(e) for each, and at most 4 elements indirectly evicted by e

when these 2 evicted elements were inserted in S, and their associated gain is at most equal
to ε2g(e) for each, and so on. Then, as ε ≤ 1

4 ,

∑
e′∈Ee

g(e′) ≤
∞∑

i=1
(2ε)ig(e) ≤ 2εg(e)

∞∑
i=0

(1/2)i = 4εg(e)

Therefore, if S0 denotes the set S obtained by Algorithm 5 when d = 0 and S1 denotes
the set S obtained by Algorithm 5 when d = 1, we get:

g(S0)− g(S1) ≤ 4εg(S1)

because the elements inserted in S are exactly the same for the two algorithms, the only
difference being that some elements are missing in S1 (but these elements were removed
when they no longer had any influence on the values of w∗ and thereby no influence on the
choice of the elements inserted in S afterwards). We have then:

w(Mopt) ≤ 2(1 + ε)g(S0) ≤ 2(1 + ε)(1 + 4ε)g(S1) ≤ 2(1 + 6ε)g(S1)

and Algorithm 2 will provide a 2(1 + 6ε) approximation of the optimal b-matching. In fact,
the analysis of Algorithm 2 with S1 as input is almost the same as in the proof of Lemma 7,
the only difference being that now the weight of an element is no longer necessarily equal to
the sum of the gains of elements below it but can be higher (which is not an issue).

Regarding the memory consumption of the algorithm, one can notice that, using the
same notation U for the set of the elements saturated by Mmax as previously, and because
there are only up to

∑
v∈V bv elements on top of the queues that cannot be deleted (and

thus these edges are the ones making some queues in U exceed the limit β), we obtain:

|S| ≤
∑
v∈V

bv +
∑
v∈U

β ·min{|δ(v)|, bv} ≤
∑
v∈V

bv + 2β · |Mmax|,

and therefore the algorithm uses O
(∑

v∈V bv + log1+ε(1/ε) · |Mmax|
)

variables. ◀
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▶ Remark 34. Ideas presented here for the maximum weight b-matching can be easily extended
to submodular function maximization and for hypergraphs under a matroid constraint, namely
for the algorithms presented in Sections 3 and 4.

B Example of Different Behavior Compared to [12]

Here is an example to show the difference of behavior between our algorithm and the one
proposed in [12]. Consider a set of four vertices V = {v1, v2, v3, v4}. We set bv1 = 2 and
bvi

= 1 for 2 ≤ i ≤ 4. Let E = {e1, e2, e3} with e1 = {v1, v2} and w(e1) = 2, e2 = {v1, v3}
and w(e2) = 7, e3 = {v1, e4} and w(e3) = 4. Using only one dual variable for each vertex, the
algorithm of Levin and Wajc [12] takes e1 and e2 but discards e3 because the dual variable
ϕv1 is equal to 4 when e3 is processed. On the other hand, our algorithm, when processing e3,
compares w(e3) with wv1(e1) = 2. Therefore, e3 is added into S and our algorithm provides
a b-matching of weight 11 instead of 9.


	1 Introduction
	1.1 Our Contribution
	1.2 Our Technique

	2 Maximum Weight b-Matching
	2.1 Description of the Algorithm
	2.2 Analysis for Maximum Weight b-Matching

	3 Submodular Function Maximization
	3.1 Description of the Algorithm
	3.2 Analysis for Monotone Submodular Function Maximization
	3.3 Analysis for Non-Monotone Submodular Function Maximization

	4 Matroid-constrained Maximum Submodular b-Matching
	4.1 Description of the Algorithm
	4.2 Analysis for Monotone Submodular Function Maximization
	4.3 Analysis for Non-Monotone Submodular Function Maximization

	A Making Algorithm 1 Memory-Efficient
	B Example of Different Behavior Compared to [12]

