
General Knapsack Problems in a Dynamic Setting
Yaron Fairstein #

Computer Science Department, Technion, Haifa, Israel

Ariel Kulik #

Computer Science Department, Technion, Haifa, Israel

Joseph (Seffi) Naor #

Computer Science Department, Technion, Haifa, Israel

Danny Raz #

Computer Science Department, Technion, Haifa, Israel

Abstract
The world is dynamic and changes over time, thus any optimization problem used to model real life
problems must address this dynamic nature, taking into account the cost of changes to a solution
over time. The multistage model was introduced with this goal in mind. In this model we are given
a series of instances of an optimization problem, corresponding to different times, and a solution is
provided for each instance. The strive for obtaining near-optimal solutions for each instance on one
hand, while maintaining similar solutions for consecutive time units on the other hand, is quantified
and integrated into the objective function. In this paper we consider the Generalized Multistage
d-Knapsack problem, a generalization of the multistage variants of the Multiple Knapsack problem,
as well as the d-Dimensional Knapsack problem. We present a PTAS for Generalized Multistage
d-Knapsack.

2012 ACM Subject Classification Theory of computation → Packing and covering problems; Theory
of computation → Problems, reductions and completeness

Keywords and phrases Multistage, Multiple-Knapsacks, Multidimensional Knapsack

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.15

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2105.00882

1 Introduction

In many optimization settings, the problem of interest is defined over a time horizon in which
the actual setting evolves, resulting in changes over time to the problem constraints and the
objective function. Thus, even if the optimization problem at hand can be solved efficiently
for a single time unit, it may not be clear how to extend this solution to a time-evolving
setting.

An example of such a setting comes from the world of cloud management. A cloud provider
maintains a data center with servers and offers clients virtual machines having different
processing capabilities. Each client demands a virtual machine (with certain properties),
and if provided it must pay for it. It would be naïve to assume that the demand of clients is
static over time. Factors, such as peak vs. off-hours, and the day of the week, might affect
client demand. Also, the cloud provider might either turn off servers to reduce hardware
deterioration and electricity usage, or open more servers to meet higher demand. Thus,
the optimization problem is partitioned into multiple stages, where in each stage there are
different constraints and possibly a different optimization goal.

© Yaron Fairstein, Ariel Kulik, Joseph Naor, and Danny Raz;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 15; pp. 15:1–15:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yyfairstein@gmail.com
mailto:Kulik@cs.technion.ac.il
mailto:Naor@cs.technion.ac.il
mailto:danny@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.15
https://arxiv.org/abs/2105.00882
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 General Knapsack Problems in a Dynamic Setting

A simple solution is to ignore the dynamicity of the problem, and solve each stage
separately and independently of other stages. Thus, profit at each stage is maximized,
ignoring the solutions computed for the other stages. Such a solution may result in disgruntled
clients, as it can lead to intermittent service between stages. Instead, we will aim for a
multistage solution that balances between the optimum of each stage, while preserving some
continuity between consecutive stages. This will be achieved by incorporating the continuity
of the solution into the overall profit.

The multistage model was first introduced by Gupta et al. [18] and Eisenstat et al. [9]
to address dynamic environments. Since its introduction, it has received growing attention
(examples include [1, 12, 2, 4, 15, 8]). In the multistage model we are given a sequence of
instances of an optimization problem. A solution constitutes of a series of solutions, one for
each instance.

Two different ideas were used to enforce a balance between single stage optimality and
continuity. In [9, 18] a change cost is charged for the dissimilarity of consecutive solutions,
while in [4] additional gains were given for their similarity. In the aforementioned cloud
management problem, the change cost can be interpreted as installation costs and eviction
costs charged when a client is initially served, and then its service is discontinued. The gains
can be modeled as increased costs the client is charged to guarantee the continuity of its
service.

The cloud management problem described above can be viewed as a multistage problem
where the underlying optimization problem is the Multiple Knapsack problem (MKP). In
MKP we are given a set of items, each associated with a weight and a profit. Also, we are
given a set of bins, each one having a capacity. A feasible solution for MKP is an assignment
of items to bins such that the total weight of the items assigned to each bin does not exceed
its capacity. The objective is to find a feasible solution maximizing the profit accrued from
the assigned items. In the context of the cloud management setting, the items are the virtual
machine demands of the clients and the bins are the available servers.

1.1 Problem Definition
We study the Generalized Multistage d-Knapsack problem. We begin with an informal
description of the problem. An instance of the problem consists of T stages, where in each
stage we are given an instance of a generalization of the classic knapsack problem. While
the instances differ between stages, in all stages the same set of items I can be packed. The
continuity of the solution is enforced by quantifying the similarity of consecutive solutions
and integrating it into the objective function.

We quantify continuity by four types of values. The first two values specify gains earned
for the similarity of solutions. For example, if an item i is packed in stages t − 1 and t, gain
g+

i,t is awarded. Similarly, g−
i,t is awarded if i is not packed in t − 1 and t. The other two

values define the cost of changes between consecutive solutions. For example, if an item i

was not packed in stage t − 1, and it is decided to pack it in stage t, a change cost of c+
i,t is

charged. Similarly, c−
i,t is charged if i is packed in t, but not in t + 1.

The packing problem at each stage generalizes the Multiple Knapsack problem, as well as
the d-Dimensional Knapsack problem. In each instance of the problem we are given d sets of
bins, and the weight an item occupies in a bin depends on the set to which the bin belongs
to. The profit of an item is accrued once it is assigned to some bin in all d sets of bins. This
problem is called d-Multiple Knapsack Constraints Problem and is formally defined below.

A Multiple Knapsack Constraint (MKC) is a tuple K = (w, B, W) defined over a set
of items I. The function w : I → R+ defines the weight of the items, B is a set of bins,
each equipped with a capacity defined by the function W : B → R+. An assignment is a

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:3

function A : B → 2I , defining which items are assigned to each of the bins. An assignment
is feasible if w(A(b)) =

∑
i∈A(b) wi ≤ W (b) for each bin b ∈ B. Similarly, given a tuple of

MKCs K = (Kj)d
j=1 over I, a tuple of d assignments A = (Aj)d

j=1 is feasible for K if for each
j = 1, . . . , d assignment Aj is a feasible assignment for Kj . We say A is an assignment of set
S ⊆ I if S = ∪b∈BAb.

In d-Multiple Knapsack Constraints Problem (d-MKCP), a problem first introduced in
[11], we are given a tuple (I, K, p), where I is a set of items, K is a tuple of d MKCs and
p : I → R≥0 defines the profit of each item. A feasible solution for d-MKCP is a set S ⊆ I

and a tuple of feasible assignments A (w.r.t K) of S. The goal is to find a feasible solution
that maximizes p(S) =

∑
i∈S p(i). We note that if there exists an item with negative profit

it can be discarded in advance. This fact is used later on, in Section 2.1.
The Generalized Multistage d-Knapsack problem (d-GMK), is the multistage model of

d-MKCP. The problem is defined over a time horizon of T stages as follows. An instance of
the problem is a tuple

(
(Pt)T

t=1, g+, g−, c+, c−), where Pt = (I, Kt, pt) is a dt-MKCP instance
with dt ≤ d for t ∈ [T], g+, g− ∈ RI×[2,T]

+ are the gain vectors and c+, c− ∈ RI×[1,T]
+ are the

change cost vectors.1 We use g+
i,t and g−

i,t to denote the gain of item i at stage t. Similarly,
we use c+

i,t and c−
i,t to denote the change cost of item i at stage t.

A feasible solution for d-GMK is a tuple (St, At)T
t=1, where (St, At) is a feasible solution

for Pt (note that At is a tuple of assignments of St). Throughout the paper we assume
S0 = ST +1 = ∅ and denote the objective function of instance Q by fQ : IT → R, where

fQ
(
(St)T

t=1
)

=
T∑

t=1

∑
i∈St

pt(i) +
T∑

t=2

 ∑
i∈St−1∩St

g+
i,t +

∑
i/∈St−1∪St

g−
i,t

−

T∑
t=1

 ∑
i∈St\St−1

c+
i,t +

∑
i∈St\St+1

c−
i,t

 .

The goal is to find a feasible solution that maximizes the objective function fQ.
A study of d-GMK reveals it does not admit a constant factor approximation algorithm

(see Section 3). We found that in hard instances the change costs are much larger than the
profits. Thus we consider an important parameter of the problem, the profit-cost ratio. It is
defined as the maximum ratio, over all items, between the change cost (c+, c−) and the profit
of an item over all stages. It is denoted by ϕQ for any instance Q, and is formally defined as

ϕQ = min
({

∞
}⋃{

r ≥ 0
∣∣∣ ∀i ∈ I, t1, t2 ∈ [T] : max

{
c+

i,t1
, c−

i,t1

}
≤ r · pt2(i)

})
We show that d-GMK instances where the profit-cost ratio is bounded by a constant admit a
PTAS.

We also consider Subdmodular d-GMK, a submodular variant of d-GMK where the profit
functions are replaced with monotone submodular set functions. A set function p : 2I → R
is submodular if for every A ⊆ B ⊆ I and i ∈ I \ B it holds that p(A ∪ {i}) − p(A) ≥
p(B ∪ {i}) − p(B). Submodular functions appear naturally in many settings such as coverage
[13], matroid rank [5] and cut functions [14]. We use similar techniques to develop the
algorithms for d-GMK and Submodular d-GMK. Thus, we focus on d-GMK and defer the
formal definition as well as the algorithm for Submoduar d-GMK to the full version of this
paper [10].

1 We use the notations [n, m] = {i ∈ N | n ≤ i ≤ m} and [n] = [1, n] for n, m ∈ N.

APPROX/RANDOM 2021

15:4 General Knapsack Problems in a Dynamic Setting

Both d-GMK and Submodular d-GMK generalize the Multistage Knapsack problem
recently considered by Bampis et al. [4]. There are several aspects by which it is generalized.
First, handling multiple knapsack constraints as well as d-dimensional knapsack vs a single
knapsack in [4]. Second, the profit earned from assigning items can be described as a
submodular function, not only by a modular function. Third, [4] considered only symmetric
gains, i.e., the same gain is earned whether an item is assigned or not assigned in consecutive
stages. Lastly, change costs were not considered in [4].

1.2 Our Results
Our main result is stated in the following theorem.

▶ Theorem 1. For any fixed d ∈ N and ϕ ≥ 1 there exists a randomized PTAS for d-GMK
with a profit-cost ratio bounded by ϕ.

The result uses the general framework of [4], in which the authors first presented an algorithm
for instances with bounded time horizon, and then showed how it can be scaled for general
instances. To handle bounded time horizons we show an approximation factor preserving
reduction (as defined in [22]2) from d-GMK to a generalization of q-MKCP. The reduction
illuminates the relationship between d-GMK and q-MKCP. As q-MKCP admits a PTAS [11],
this results in a PTAS for d-GMK instances with a bounded time horizon.

We note the reduction can be applied to the problem considered in [4] as well. In this
case the target optimization problem is d-dimensional knapsack with a matroid constraint.
As the latter problem is known to admit a PTAS [17], this suggest a simpler solution for
bounded time horizon in comparison to the one given in [4].

To generalize the result to unbounded time horizon we use an approach similar to
[4], though a more sophisticated analysis was required to handle the change costs. The
generalization is achieved by cutting the time horizon into sub-instances with a fixed time
horizon. Each sub-instance is solved separately, and then the solutions are combined to
create a solution for the full instance. Handling change costs is trickier as cutting an instance
may lead to an excessive charge of change costs at the cut points. We must compensate for
these additional costs, or we will not be able to bound the value of the solution.

The results for the modular variant generalizes the PTAS for Multistage Knapsack [4].
For d ≥ 2, we cannot expect better results as even d-KP, also generalized by d-GMK, does
not admit an efficient PTAS (EPTAS). Theorem 2 shows an EPTAS cannot be obtained for
1-GMK as well

▶ Theorem 2. Unless W [1] = FPT , there is no EPTAS for 1-GMK, even if the length of
the time horizon is T = 2, the set of bins in each MKC contains one bin and there are no
change costs.

The theorem is proved using a simple reduction from 2-dimensional knapsack. Bampis et
al. [4] considered a similar withered down instance and proved that even if the gains are
symmetric (i.e., g+

i,t = g−
i,t) a Fully PTAS (FPTAS) does not exist for the problem.

Using a reduction from multidimensional knapsack we show that 1-GMK, in its general
form, cannot be approximated to any constant factor.

▶ Theorem 3. For any d ≥ 1, there is no polynomial time approximation algorithm for
d-GMK with a constant approximation ratio, unless NP = ZPP .

2 A formal definition is provided in Appendix A for completeness

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:5

This result justifies our study of the special cases of d-GMK in which the profit-cost ratio is
bounded by a constant.

The techniques used to develop the algorithm for d-GMK can be adjusted slightly to
produce an approximation algorithm for Submodular d-GMK. The complete details are given
in the full version of this paper [10].

▶ Theorem 4. For any fixed d ∈ N and ϵ > 0 there exists a randomized
(
1 − 1

e − ϵ
)
-

approximation algorithm for Submodular d-GMK.

In the submodular variant one cannot hope for vast improvement over our results as the
algorithm is almost tight. This is due to the hardness results for submodular maximization
subject to a cardinality constraint presented by Nemhauser and Wolsey [20].

1.3 Related Work

In the multistage model we are given a series of instances of an optimization problem, and we
search for a solution which optimizes each instance while maintains some similarity between
solutions. Many optimization problem were considered under this framework. These include
matching [2, 7], clustering [8], subset sum [3], vertex cover [15] and minimum s − t path [16].

The multistage model was first presented by both Eisenstat et al. [9] and Gupta et al.
[18]. In [9] the Multistage Facility Location problem was considered, where the underlying
metric in which clients and facility reside changes over time. A logarithmic approximation
algorithm was presented for two variants of the problem; the hourly opening costs where the
opening cost of a facility is charged at each stage in which it is open, and the fixed opening
costs where a facility is open at all stages after its opening costs is paid. A logarithmic
hardness result was also presented for the fixed opening costs variant. An et al. [1] improved
the result for the hourly opening costs variant and presented a constant factor approximation.
Fairstein et al. [12] proved that the logarithmic hardness result does not hold if only the
client locations change over time and the facilities are static.

As mentioned, the multistage model was also introduced by Gupta et al. [18], where the
Multistage Matroid Maintenance (MMM) problem was considered. In MMM we are given
a set of elements equipped with costs that change over time. In addition, we are given a
matroid. The goal is to select a base of minimum costs at each stage whilst minimizing the
cost of the difference of bases selected for consecutive stages. Gupta et al. [18] presented a
logarithmic approximation algorithm for the problem, as well as fitting lower bound, proving
this result is tight.

Organization

Section 2 provides the approximation schemes from Theorem 1. Hardness results are presented
in Section 3.

2 Approximation Scheme for d-GMK

In this section we derive the approximation scheme for d-GMK with bounded profit-cost
ratio. In Section 2.1 we show how a PTAS for instances with bounded time horizon can be
obtain via a reduction to a variant of d-MKCP. Subsequently, in Section 2.2 we show how
the algorithm for bounded time horizon can be used to approximate general instance.

APPROX/RANDOM 2021

15:6 General Knapsack Problems in a Dynamic Setting

2.1 Bounded Time Horizon
In this section we provide a reduction from an instance of q-GMK to a generalization of
d-MKCP (for specific values of d and q). The generalization was presented in [11] and is called
d-MKCP With A Matroid Constraint (d-MKCP+) and is defined by a tuple (I, K, p, I), where
(I, K, p) forms an instance of d-MKCP. Also, the set I ⊆ 2I defines a matroid3 constraint. A
feasible solution for d-MKCP+ is a set S ∈ I and a tuple of feasible assignments A (w.r.t
K) of S. The goal is to find a feasible solution which maximizes

∑
i∈S p(i). The following

definition presents the construction of the reduction.

▶ Definition 5. Let Q =
(
(Pt)T

t=1, g+, g−, c+, c−) be an instance of d-GMK, where Pt =
(I, Kt, pt) and Kt = (Kt,j)dt

j=1. Define R(Q) =
(
E, K̃, p̃, I

)
where

E = I × 2[T]

I =
{

S ⊆ E
∣∣ ∀i ∈ I :

∣∣S ∩
(
{i} × 2[T])∣∣ ≤ 1

}
For t ∈ [T], j ≤ dt set MKC K̃t,j = (w̃t,j , Bt,j , Wt,j) over E,
where Kt,j = (wt,j , Bt,j , Wt,j) and

w̃t,j((i, D)) =
{

wt,j(i) t ∈ D

0 otherwise

For t = 1, ..., T, dt < j ≤ d set MKC K̃t,j = (w0, {b}, W0) over E, where w0 : 2E → {0},
W0(b) = 0 and b is an arbitrary bin (object).
K̃ =

(
K̃t,j

)
t∈[T],j∈[d].

The objective function p̃ is defined as follows.

p̃(S) =
∑

(i,D)∈S

(∑
t∈D

pt(i) +
∑

t∈D:t−1∈D

g+
i,t +

∑
t/∈D:t−1/∈D

g−
i,t −

∑
t∈D:t−1/∈D

c+
i,t −

∑
t∈D:t+1/∈D

c−
i,t

)
Each element (i, D) ∈ E states the subset of stages in which item i is assigned. I.e., i is

only assigned in stages t ∈ D. Thus any solution should include at most one element (i, D)
for each i ∈ I. This constraint is fully captured by the partition matroid constraint defined
by the set of independent sets I. Finally, if an element (i, D) is selected, we must assign i in
each MKC Kt,j for j ∈ [dt], t ∈ D. This is captured by the weight function w̃, as an element
(i, D) weighs wt,j(i) if and only if t ∈ D (otherwise its weight is zero and it can be assigned
for “free”).

▶ Lemma 6. For any d-GMK instance Q with time horizon T , it holds that R(Q) is a
dT -MKCP+ instance.

Proof. Let Q =
(
(Pt)T

t=1, g+, g−, c+, c−) be an instance of d-GMK, where Pt = (I, Kt, pt)
and Kt = (Kt,j)dt

j=1. Also, let R(Q) =
(
E, K̃, p̃, I

)
be the reduced instance of Q as defined in

Definition 5. It is easy to see that the set I is the independent sets of a partition matroid, as
for each item i at most one element (i, D) can be chosen. Thus, I is the family of independent
sets of a matroid as required.

Next, K defines a tuple of MKCs, so all that is left to prove is that p̃ is non-negative and
modular. For each element (i, D) ∈ E we can define a fixed value

v((i, D)) =
∑
t∈D

pt(i) +
∑

t∈D: t−1∈D

g+
i,t +

∑
t/∈D: t−1/∈D

g−
i,t −

∑
t∈D: t−1/∈D

c+
i,t +

∑
t∈D: t+1/∈D

c−
i,t

It immediately follows that p̃(S) =
∑

e∈S v(e) and that p̃ is modular. As stated in Section 1.1,
elements with negative values are discarded in advance such that p̃ is also non-negative. ◀

3 A formal definition for matroid can be found in [21]

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:7

▶ Lemma 7. Let Q be an instance of d-GMK with time horizon T . For any feasible
solution (St, At)T

t=1 of Q there exists a feasible solution
(
S, (Ãt,j)t∈[T],j∈[d]

)
of R(Q) such

that fQ
(
(St)T

t=1
)

= p̃(S).

Proof. Let Q =
(
(Pt)T

t=1, g+, g−, c+, c−) be an instance of d-GMK, where Pt = (I, Kt, pt)
and Kt = (Kt,j)dt

j=1. Also, let R(Q) =
(
E, K̃, p̃, I

)
be the reduced instance of Q, where

K̃ =
(
K̃t,j

)
t∈[T],j∈[d] and K̃t,j = (w̃, Bt,j , Wt,j) (see Definition 5). Consider some feasible

solution (St, At)T
t=1 for Q, where At = (At,j)dt

j=1. In the following we define a solution(
S,
(
Ãt,j

)
t∈[T], j∈[d]

)
for R(Q). Let

S = {(i, D) | i ∈ I, D = {t ∈ [T] | i ∈ St}}

It can be easily verified that S ∈ I. The value of the subset S is

p̃(S) =∑
(i,D)∈S

(∑
t∈D

pt(i) +
∑

t∈D: t−1∈D

g+
i,t +

∑
t/∈D: t−1/∈D

g−
i,t −

∑
t∈D: t−1/∈D

c+
i,t −

∑
t∈D: t+1/∈D

c−
i,t

)
=

T∑
t=1

∑
i∈St

pt(i) +
T∑

t=2

 ∑
i∈St−1∩St

g+
i,t +

∑
i/∈St−1∪St

g−
i,t

−
T∑

t=1

 ∑
i∈St\St−1

c+
i,t +

∑
i∈St\St+1

c−
i,t

 =

fQ
(
(St)T

t=1
)

.

Next, for each t ∈ [T], j ∈ [d] we present an assignment Ãt,j of S. Consider the following
two cases:
1. If j > dt, recall K̃t,j = (w0, {b}, W0) where w0(i, D) = 0 for all (i, D) ∈ E and W0(b) = 0.

We define Ãt,j by Ãt,j(b) = S. It thus holds that w0(Ãt,j(b)) = 0 = W0. That is, Ãt,j is
feasible.

2. If j ≤ dt, let b∗ ∈ Bt,j be some unique bin in Bt,j and define assignment Ãt,j : Bt,j → 2E

by

Ãt,j(b) =
(

At,j(b) × 2[T]
)

∩ S ∀b ∈ Bt,j \ {b∗}

Ãt,j(b∗) =
((

At,j(b∗) × 2[T]
)

∩ S
)

∪ {(i, D) ∈ S | t ̸∈ D}
(1)

The assignment Ãt,j is a feasible assignment w.r.t K̃t,j since for each bin b ∈ Bt,j it holds
that ∑

(i,D)∈Ãt,j(b)

w̃t,j((i, D)) =
∑

i∈At,j(b)

wt,j(i) ≤ Wt,j(b)

Let (i, D) ∈ S. If i ∈ St there is b ∈ Bt,j such that i ∈ At,j(b), hence (i, D) ∈ Ãt,j(b) by
(1). If i ̸∈ St then t /∈ D and thus (i, D) ∈ Ãt,j(b∗). Overall, we have S ⊆

⋃
b∈Bt,j

Ãt,j(b).
By (1) it follows that S ⊇

⋃
b∈Bt,j

Ãt,j(b) as well, thus S =
⋃

b∈Bt,j
Ãt,j(b). I.e, Ãt,j is

an assignment of S.
Note that the assignments can be constructed in polynomial time. We can conclude that(

S,
(
Ãt,j

)
t∈[A],j∈[d]

)
is a feasible solution for R(Q), and its value is fQ

(
(St)T

t=1
)
. ◀

▶ Lemma 8. Let Q be an instance of d-GMK (with arbitrary time horizon T). For any
feasible solution

(
S, (Ãt,j)t∈[T],j∈[d]

)
for R(Q) a feasible solution (St, At)T

t=1 for Q such that
fQ
(
(St)T

t=1
)

= f̃(S) can be constructed in polynomial time.

APPROX/RANDOM 2021

15:8 General Knapsack Problems in a Dynamic Setting

The proof of Lemma 8 is similar to the proof of Lemma 7, thus it is deferred to Appendix A.
For any d-GMK instance with a fixed time horizon T , the reduction R(Q) can be

constructed in polynomial (as |E| = |I|·2|T |). The next corollary follows from this observation
and lemmas 7 and 8.

▶ Corollary 9. For any fixed T ∈ N, there exists an approximation factor preserving reduction
from d-GMK with a time horizon bounded by T to dT -MKCP+.

In [11] a PTAS for d-MKCP+ is presented. Thus, the next lemma follows from the above
corollary.

▶ Lemma 10. For any fixed T ∈ N there exists a randomized PTAS for d-GMK with a time
horizon bounded by T .

2.2 General Time Horizon
In this section we present an algorithm for d-GMK with a general time horizon T . This is
done by cutting the time horizon at several stages into sub-instances. Each sub-instance is
optimized independently and then the solutions are combined to create a solution for the
complete instance. A somewhat similar technique was used in [4]. However, they considered
a model without change costs which is much simpler. Our analysis is more delicate as it
requires local consideration of the assignment of each item to ensure that any additional
costs charged are covered by profit and gains earned.

Given an instance Q =
(
(Pt)T

t=1, g+, g−, c+, c−) we define a sub-instance for the sub-
range [t1, t2], denoted throughout this section by

(
(Pt)t2

t=t1
, g+, g−, c+, c−) without shifting

or truncating the gain and change costs vectors. For example, for t ∈ [t1, t2] gain g+
i,t is

earned for assigning item i in stages t and t + 1. Also, observe that stages t1 − 1 and t2 + 1
are outside the scope of the instance. Thus, when evaluating a solution for the sub-instance
it is assumed that St1−1 = St2+1 = ∅.

Given an integer T ∈ N, a set of cut points U = {u0, ..., uk} of T is a set of integers such
that for every j = 0, ..., k − 1 it holds that uj < uj+1 and 1 = u0 < uk = T + 1.

▶ Definition 11. Let Q =
(
(Pt)T

t=1, g+, g−, c+, c−) be an instance of d-GMK, where Pt =
(I, Kt, pt). Also, let U = {u0, . . . , uk} be a set of cut points. The tuple of d-GMK instances

QU =
(

(Pt)
uj+1−1
t=uj

, g+, g−, c+, c−
)k−1

j=0
is defined as the cut instances of Q w.r.t U .

▶ Definition 12. Let Q be an instance of d-GMK, U = {u0, ..., uk} be a set of cut points

and QU be the respective cut instances. Also, let
(

(St, At)uj+1−1
t=uj

)k−1

j=0
be a tuple of feasible

solutions for the tuple of cut instances QU . Then, the solution (St, At)T
t=1 for Q is called a

cut solution.

The next corollary elaborates on the relationship between a cut solution and the cut
instance solutions from which it is constructed.

▶ Corollary 13. Given any d-GMK instance Q, cut points U , cut instances QU and feasible
solutions for the cut instances, the respective cut solution is a feasible solution for Q, and its
value is at least the sum of values of the solutions for the cut instances.

The proof of the corollary is fairly simple, and is defered to Appendix A. We are now ready
to present the algorithm for d-GMK with general time horizon length.

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:9

Algorithm 1 General Time Horizon.

Input :0 < ϵ < 1
4 , ϕ ≥ 1, a d-GMK instance Q with time horizon T such that ϕQ ≤ ϕ,

and α-approximation algorithm A for d-GMK with time horizon T ≤ 2ϕ
ϵ2 .

1 Set µ = ϵ2

ϕ .
2 for j = 1, ..., 1

µ do
3 Set Uj =

{
a
µ + j − 1

∣∣∣ a ∈ N, a ≥ 1, a
µ + j − 1 ≤ T − 1

µ

}
∪ {1, T + 1}.

4 Find a solution for each cut instance in QUj
using algorithm A and set Sj as the

respective cut solution.
5 Return the solution Sj which maximizes the objective function fQ.

Before analysing the algorithm we present several definitions and lemmas that are
essential for the proof. First, we start by reformulating the solution. Instead of describing the
assignment of items by the tuple (St)T

t=1, we define a new set of elements E = I × [T] × [T],
where each element (i, t1, t2) ∈ E states that item i is assigned in the interval [t1, t2]. Given
a feasible solution (St, At)T

t=1 for Q we denote the representation of (St)T
t=1 as a subset of E

by E
(
(St)T

t=1
)

and it is equal to

E
(
(St)T

t=1
)

= {(i, t1, t2) ∈ E | ∀t ∈ [t1, t2] : i ∈ St and i /∈ St1−1 ∪ St2+1} .

If S̃ = E
(
(St)T

t=1
)
, we define the reverse mapping as S̃(t) = {i ∈ I | ∃(i, t1, t2) ∈ S : t ∈

[t1, t2]} = St. Now, we can define a solution for d-GMK using our new representation as
(S̃, At)T

t=1.

▶ Definition 14. The value, v(e), of element e = (i, t1, t2) is defined as the total value
earned from assigning i in the range [t1, t2] minus the change costs charge for assigning and
discarding it. Formally,

v(e) =
t2∑

t=t1

pt(i) +
t2∑

t=t1+1
g+

i,t − c+
i,t1

− c−
i,t2

The value of solution S̃ ⊆ E for d-GMK instance Q is
∑

e∈S̃ v(e) +
∑T

t=2
∑

i/∈S̃(t−1)∪S̃(t) g−
i,t

and it is equal to fQ
(
(S̃(t))T

t=1
)
.

In Algorithm 1 we consider a solution for a tuple of cut instances created by cutting an
instance at a set of cut points. Here we consider the opposite action, the effect of cutting a
solution at these cut points. We start by considering a single cut point.

▶ Definition 15. Given an element e = (i, t1, t2) and a cut point u ∈ (t1, t2] we define the
outcome of cutting e at u as the set of intervals u(e) = {(i, t1, u − 1), (i, u, t2)}. Also, the loss
caused by cutting e at u is defined as the difference between the value of e and the sum of
value of elements in u(e). It is denoted by ℓ(e, u) and is equal to

ℓ(e, u) = v(e) −
∑

e′∈u(e)

v(e′) = g+
i,u + c+

i,u + c−
i,u−1 (2)

We can similarly extend the definition to include more than one cut point as follows.

▶ Definition 16. Given a set of cut points U = {u0, u1, . . . , uk} and an element e = (i, t1, t2)
define U(e) as the set of elements created by cutting the e at all cut points in U . Formally,

U ((i, t1, t2)) =
{

(i, max{t1, ur−1}, min{ur − 1, t2})
∣∣∣r ∈ [k] and [ur−1, ur − 1] ∩ [t1, t2] ̸= ∅

}

APPROX/RANDOM 2021

15:10 General Knapsack Problems in a Dynamic Setting

Consider the following example as a demonstration of the above definition. If e = (i, t1, t2)
and (t1, t2] ∩ Uj = {u2, u3}, then Uj(e) = {(i, t1, u2 − 1), (i, u2, u3 − 1), (i, u3, t2)}.

The definition of loss caused by cutting an element can be extended to a set of cut points
U . If element e = (i, t1, t2) is cut by a of cut points U the loss is

ℓ(e, U) = v(e) −
∑

e′∈U(e)

v(e′) =
∑

u∈U∩(t1,t2]

(
g+

i,u + c+
i,u + c−

i,u−1
)

=
∑

u∈U∩(t1,t2]

ℓ(e, u) (3)

since only gains g+ are lost due to cutting as well as change cost for splitting an assignment
into two intervals. This means that even if an element is cut multiple times, the loss due to
each cut point can be considered separately.

▶ Lemma 17. Let 0 < ϵ < 1
4 , ϕ ≥ 1 and A be an α-approximation algorithm for d-GMK with

time horizon T ≤ 2ϕ
ϵ2 . Also, let Q be an instance of d-GMK such that ϕQ ≤ ϕ. Algorithm 1

approximates Q within a factor of (1 − ϵ)α.

Proof. Let Q =
(
(Pt)T

t=1, g+, g−, c+, c−) be an instance of d-GMK with time horizon T

and profit-cost ratio ϕQ ≤ ϕ. We assume for simplicity ϕ is integral. Let 0 < ϵ < 1
4

and µ = ϵ2

ϕ . Also, let A be an α-approximation algorithm for d-GMK with time horizon
T ′ ≤ 2ϕ

ϵ2 = 2
µ . Note, if T ≤ 2

µ , the cut points set U0 is an empty set, and in this case A

returns an α-approximation solution for Q as required.
Let Uj = {uj

1, . . . , uj
kj

} for j = 1, . . . 1
µ . We show that there exists a set of cut points Uj

and a tuple of solutions
(

(St, At)
uj

r+1−1
t=uj

r

)kj−1

r=0
for each cut instance in QUj = (qr

j)kj−1
r=0 , such

that the sum of values of the solutions,
∑kj−1

r=0 fqr
j

(
(St)ur+1−1

t=ur

)
, is sufficiently large. From

Corollary 13 it follows that the value of a cut solution is larger than the sum of its parts
(due to lost gains and change costs saved if an item is assigned in adjacent instances). Thus,
this also proves that the maximum cut solution found is sufficiently large as well.

Let (S∗
t , A∗

t)T
t=1 be an optimal solution for Q, and let S̃∗ = E

(
(S∗

t)T
t=1
)
. We par-

tition S̃∗ into two subsets by the length of the interval they describe. Formally, X ={
(i, t1, t2) ∈ S̃∗ | t2 − t1 < ϕ

ϵ

}
and Y = S̃∗ \ X. So X contains short intervals, and Y

contains long intervals.
Define S̃j as the subset of elements longer than ϕ in ∪e∈Y Uj(e) as well as short elements

e ∈ X that are not cut by Uj . I.e.,

S̃j = {e ∈ X | Uj(e) = {e}} ∪
⋃

e∈Y

{(i, t1, t2) ∈ Uj(e) | t2 − t1 ≥ ϕ}

At each stage t ∈ [T] it holds that S̃j(t) ⊆ S∗
t . Thus there exists a tuple of assign-

ments, denoted by Aj
t , such that (S̃j , Aj

t)T
t=1 is a feasible solution for Q. We partition

set S̃j as follows. Let S̃j,r =
{

(i, t1, t2) ∈ S̃j | [t1, t2] ⊆ [uj
r, uj

r+1 − 1]
}

. It holds that

S̃j = ∪kj−1
r=0 S̃j,r as each element (i, t1, t2) is contained in exactly one interval [uj

r, uj
r+1 − 1].

Thus
(

(S̃j,r, Aj
t)uj

r+1−1
t=uj

r

)kj−1

r=0
is a tuple of feasible solutions for the cut instances in QUj

such

that (S̃j,r, Aj
t)uj

r+1−1
t=uj

r
is a solution for the r-th instance. The value of all elements in the

defined solutions for the cut instances is
kj−1∑
r=0

∑
e∈S̃j,r

v(e) =
∑
e∈S̃j

v(e) =
∑

e∈X:Uj(e)={e}

v(e) +
∑
e∈Y

∑
e′=(i,t1,t2)∈Uj(e):t2−t1≥ϕ

v(e′)

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:11

Thus, after including the value of gains g− earned by solutions S̃j,r, we can bound the total
value of optimal solutions for all cut instances QUj

by∑
e∈X:Uj(e)={e}

v(e)+
∑
e∈Y

∑
e′=(i,t1,t2)∈Uj(e):

t2−t1≥ϕ

v(e′)+
∑

t∈[uj
r+1,uj

r+1−1]:

uj
r∈Uj

∑
i/∈S̃j,r(t−1)∪S̃j,r(t)

g−
i,t (4)

We define B as the total sum of values of optimal solutions for the cut instances
(
QUj

) 1
µ

j=1.
By utilizing Equation (4) we can bound B as follows.

B ≥

1
µ∑

j=1

kj−1∑
r=0

 ∑
e∈S̃j,r

v(e) +
∑

t∈[uj
r+1,uj

r+1−1]:uj
r∈Uj

∑
i/∈S̃j,r(t−1)∪S̃j,r(t)

g−
i,t

=

1
µ∑

j=1

∑
e∈S̃j

v(e) +

1
µ∑

j=1

∑
t∈[2,T]\Uj

∑
i/∈S̃j(t−1)∪S̃j(t)

g−
i,t

=
∑
e∈X

∑
j∈[1

µ]:Uj(e)={e}

v(e) +
∑
e∈Y

1
µ∑

j=1

∑
e′=(i,t1,t2)∈Uj(e):t2−t1≥ϕ

v(e′)

+

1
µ∑

j=1

∑
t∈[2,T]\Uj

∑
i/∈S̃j(t−1)∪S̃j(t)

g−
i,t

(5)

We bound the value of each of the three terms separately by comparing it to the value of the
optimal solution.

Consider the first term, value earned from short elements, i.e., elements e = (i, t1, t2) ∈ X.
It holds that e ∈ S̃j if and only if Uj(e) = {e} which means that (t1, t2] ∩ Uj = ∅. Since for
every j1 ̸= j2 it holds that Uj1 ∩ Uj2 = {1, T + 1} and since there are 1

µ sets of cut point, for
each element e ∈ X it holds that e ∈ S̃j for at least 1

µ − ϕ
ϵ values of j ∈ [1

µ]. Thus,

∑
e∈X

∑
j∈[1

µ]:Uj(e)={e}

v(e) ≥
(

1
µ

− ϕ

ϵ

)∑
e∈X

v(e) = 1
µ

(1 − ϵ)
∑
e∈X

v(e) (6)

Next, we bound the second term, the value earned from long elements, e ∈ Y . Consider
the set of cut points Uj . Two operators are applied to each long element. First, it is cut and
the subset Uj(e) is defined. Second, short elements are discarded from Uj(e). The resulting
subset is {(i, t1, t2) ∈ Uj(e) | t2 − t1 ≥ ϕ} and therefore we would like to bound the difference

∑
e∈Y

v(e) −
∑

e′∈{(i,t1,t2)∈Uj(e) | t2−t1≥ϕ}

v(e′)

Consider an element e = (i, t1, t2) ∈ Y cut by cut points set Uj . As shown in Equation (3),
the loss caused by cutting e at cut point u ∈ (t1, t2] is independent of other cuts that are
applied to e and is equal to ℓ(e, u). Thus we can consider each cut point separately.

As mentioned above, if e = (i, t1, t2) ∈ Y , the second operator discards elements e′ ∈ Uj(e)
that are short. Since the distance between each pair of cut points in Uj is at least 1

µ = ϕ
ϵ2 > ϕ,

each such short element e′ is either (i, t1, u) or (i, u, t2) for some unique cut point u ∈ Uj . In
addition, it must hold that either u − t1 < ϕ or t2 − u < ϕ. We associate the value lost by
discarding e′ to this unique cut point u.

APPROX/RANDOM 2021

15:12 General Knapsack Problems in a Dynamic Setting

Let e = (i, t1, t2) ∈ Y and u ∈ Uj be a cut point such that u ∈ (t1, t2], i.e., u cuts e.
There are three cases to consider.
1. If u−t1 < ϕ, element e′ = (i, t1, u−1) ∈ Uj(e) is discarded and a loss of v(e′) is associated

with u in addition to ℓ(e, u). Thus the total loss is at most

v(e′) + ℓ(e, u) =
u−1∑
t=t1

pt(i) +
u−1∑

t=t1+1
g+

i,t − c+
i,t1

− c−
i,u−1 + g+

i,u + c+
i,u + c−

i,u−1 ≤

≤
u−1∑
t=t1

pt(i) +
u∑

t=t1+1
g+

i,t + c+
i,u−1 ≤

u+ϕ−1∑
t=t1

pt(i) +
u+ϕ−1∑
t=t1+1

g+
i,t

where the equality is due to Equation (2) and the last inequality is due to the profit-cost
ratio.

2. If t2 − u < ϕ, element e′ = (i, u, t2) ∈ Uj(e) is discarded and a loss of v(e′) is associated
with u in addition to ℓ(e, u). Thus the total loss is at most

v(e′) + ℓ(e, u) =
t2∑

t=u

pt(i) +
t2∑

t=u+1
g+

i,t − c+
i,u − c−

i,t2
+ g+

i,u + c+
i,u + c−

i,u−1 ≤

≤
t2∑

t=u

pt(i) +
t2∑

t=u

g+
i,t + c−

i,u−1 ≤
t2∑

t=u−ϕ

pt(i) +
t2∑

t=u−ϕ+1
g+

i,t

where the equality is due to Equation (2) and the last inequality is due to the profit-cost
ratio.

3. If t2 − u ≥ ϕ and u − t1 ≥ ϕ, no elements are discarded from Uj(e). Thus the only loss is
ℓ(e, u) and can be bounded by

ℓ(e, u) = g+
i,u + c+

i,u + c−
i,u−1 ≤

u+ϕ−1∑
t=u−ϕ

pt(i) +
u+ϕ−1∑

t=u−ϕ+1
g+

i,t

Overall we can bound the loss induced by cutting long elements at cut points Uj (due to loss
ℓ(e, u) and discarded short elements) by

∑
(i,t1,t2)∈Y

∑
u∈(t1,t2]∩Uj

min{t2,u+ϕ−1}∑
t=max{t1,u−ϕ}

pt(i) +
min{t2,u+ϕ−1}∑

t=max{t1+1,u−ϕ+1}

g+
i,t

This means that the total value gained from elements that were originally in Y is

∑
e∈Y

1
µ∑

j=1

∑
e′=(i,t1,t2)∈u(e,Uj):t2−t1≥ϕ

v(e′) ≥

1
µ

∑
e∈Y

v(e) −

1
µ∑

j=1

∑
(i,t1,t2)∈Y

∑
u∈[t1+1,t2]∩Uj

min{t2,u+ϕ−1}∑
t=max{t1,u−ϕ}

pt(i) +
min{t2,u+ϕ−1}∑

t=max{t1+1,u−ϕ+1}

g+
i,t

 ≥

1
µ

∑
e∈Y

v(e) −
∑

(i,t1,t2)∈Y

∑
u∈[t1+1,t2]

min{t2,u+ϕ−1}∑
t=max{t1,u−ϕ}

pt(i) +
min{t2,u+ϕ−1}∑

t=max{t1+1,u−ϕ+1}

g+
i,t

 ≥

1
µ

∑
e∈Y

v(e) − 2ϕ
∑

(i,t1,t2)∈Y

 ∑
t∈[t1,t2]

pt(i) +
∑

t∈[t1+1,t2]

g+
i,t

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:13

where the second inequality follows from the fact that for every j1 ̸= j2 it holds that
Uj1 ∩ Uj2 = {1, T + 1}. The last inequality is due to the fact that the profit and gains of
element (i, t1, t2) is lost at stage t ∈ [t1, t2] if it is cut by a cut point u such that |u − t| ≤ ϕ.
Thus, its value is lost in at most 2ϕ instances. Due to the profit-cost ratio, for each long
element e = (i, t1, t2) ∈ Y it holds that

c+
i,t1

+ c−
i,t2

≤ 2ϕ ·
∑t2

t=t1
pt(i) +

∑t2
t=t1+1 g+

i,t

t2 − t1
≤ ϵ ·

t2∑
t=t1

pt(i) + ϵ ·
t2∑

t=t1+1
g+

i,t

By substituting 4ϕ(c+
i,t1

+ c−
i,t2

) ≤ 4ϕϵ
(∑t2

t=t1
pt(i) +

∑t2
t=t1+1 g+

i,t

)
we get that

1
µ

∑
e∈Y

v(e) − 2ϕ
∑

(i,t1,t2)∈Y

(
t2∑

t=t1

pt(i) +
t2∑

t=t1+1
g+

i,t

)
=

∑
(i,t1,t2)∈Y

(
1
µ

(
t2∑

t=t1

pt(i) +
t2∑

t=t1+1
g+

i,t − c+
i,t1

− c−
i,t2

)
− 2ϕ

(
t2∑

t=t1

pt(i) +
t2∑

t=t1+1
g+

i,t

))
≥

∑
(i,t1,t2)∈Y

((
1
µ

− 2ϕ − 4ϕϵ

)(t2∑
t=t1

pt(i) +
t2∑

t=t1+1
g+

i,t

)
−
(

1
µ

− 4ϕ

)(
c+

i,t1
+ c−

i,t2

))
≥

(
1
µ

− 2ϕ − 4ϕϵ

)∑
e∈Y

v(e) ≥
(

1
µ

− ϕ

ϵ

)∑
e∈Y

v(e)

where the last inequality follows the fact that ϵ < 1
4 . Overall, we get that

∑
e∈Y

1
µ∑

j=1

∑
e′=(i,t1,t2)∈Uj(e):t2−t1≥ϕ

v(e′) ≥
(

1
µ

− ϕ

ϵ

)∑
e∈Y

v(e) (7)

Lastly, we bound the third term, gains g− earned in all cut instance solutions. Consider
a cut point set Uj and gain g−

i,t earned in solution S̃∗, i.e., i /∈ S∗
t−1 ∪ S∗

t . Therefore, any
element (i, t1, t2) such that t ∈ [t1, t2] or t − 1 ∈ [t1, t2] is not in S̃j . Thus, unless t ∈ Uj , gain
g−

i,t is earned in S̃j and in some solution S̃j,r ⊆ S̃j such that t ∈ [uj
r, uj

r+1 − 1] and uj
r ∈ Uj .

Again, we can use the fact that for every j1 ̸= j2 it holds that Uj1 ∩ Uj2 = {1, T + 1} and get
that

1
µ∑

j=1

∑
t∈[2,T]\Uj

∑
i/∈S̃j(t−1)∩S̃j(t)

g−
i,t ≥

(
1
µ

− 1
) T∑

t=1

∑
i/∈S̃∗(t−1)∩S̃∗(t)

g−
i,t (8)

By substituting inequalities (6),(7) and (8) in Inequality (5) we get that

B ≥
(

1
µ

− ϕ

ϵ

)∑
e∈S̃∗

v(e) +
∑

t∈[2,T]

∑
i/∈S̃∗(t−1)∩S̃∗(t)

g−
i,t

 =
(

1
µ

− ϕ

ϵ

)
fQ((S∗

t)T
t=1)

For each set of values, their average is smaller or equal to their maximum value. Thus
there must exist at least one set of cut points Uj∗ such that the sum of values of the solutions(
S̃j∗,r

)kj−1
r=0 for its cut instances, QU∗

j
, is at least µ · B, the average value of a set of solutions

for a set of cut instance QUj (for j = 1, . . . , 1
µ). We get that∑

e∈S̃j∗

v(e) +
∑

t∈[2,T]

∑
i/∈S̃j∗ (t−1)∩S̃j∗ (t)

g−
i,t ≥ µB = (1 − ϵ) fQ

(
(S∗

t)T
t=1
)

APPROX/RANDOM 2021

15:14 General Knapsack Problems in a Dynamic Setting

At iteration j∗, in which Algorithm 1 considers the cut instances QUj∗ , algorithm A provides
an approximate solution for each cut instance. Thus the value of the solution returned by A

for the r-th cut instance is at least

α ·

 ∑
e∈S̃j∗,r

v(e) +
∑

t∈[uj
r+1,uj

r+1−1]:uj
r∈Uj

∑
i/∈S̃j∗,r(t−1)∪S̃j∗,r(t)

g−
i,t

Summing over all cut instances in QUj∗ provides a solution with value at least

α ·

 ∑
e∈S̃j∗

v(e) +
∑

t∈[2,T]

∑
i/∈S̃j∗ (t−1)∩S̃j∗ (t)

g−
i,t

 ≥ (1 − ϵ) · α · fQ
(
(S∗

t)T
t=1
)

◀

The correctness of Theorem 1 follows immediately from Theorem 17 and Lemma 10.

3 Hardness Results

In this section we present two hardness results for 1-GMK. First, we show no constant
approximation ratio exists for 1-GMK (with unbounded profit-cost ratio), even if there is
only one bin per stage. Then, we show that even if we wither down the model by removing
the change costs, limiting the time horizon length to T = 2, and only having a single bin per
stage, the problem still does not admit an EPTAS.

The above results are proved by showing an approximation preserving reduction from
d-Dimensional Knapsack (d-KP) and Multidimensional Knapsack. For d ∈ N, in d-KP we
are given a set of items I, each equipped with a profit pi, as well as a d-dimensional weight
vector w̄i ∈ [0, 1]d. We denote j-th coordinate of w̄i by w̄i

j . In addition, we are given a single
bin equipped with a d-dimensional capacity vector W̄ ∈ Rd

≥0. A subset S ⊆ I is a feasible
solution if

∑
i∈S w̄i ≤ W̄ . The objective is to find a feasible solution S which maximizes∑

i∈S pi.
The Multidimensional Knapsack problem is the generalization of d-KP in which d is not

fixed. That is, the input for the problem is a d-KP instance for some d ∈ N. The solutions
and their values are the solution and values of the d-KP instance.

Note that d-KP is a special case of d-MKCP, where the set of MKCs is K = (Kj)d
j=1.

The j-th MKC is Kj = (wj , Bj , Wj), where wj(i) = w̄i
j , Bj = {b} and Wj(b) = W̄j , where

W̄j is the j-th coordinate of the capacity vector W̄ . Finally, the profit function p : I → R≥0
is defined as p(i) = pi for any i ∈ I. For simplicity we will use this notation for d-KP and
Multidimensional Knapsack throughout this section.

▶ Lemma 18. There is an approximation preserving reduction from the Multidimensional
Knapsack problem to 1-GMK with a single bin in each stage.

Proof. Let Q = (I, K, p) be an instance of Multidimensional Knapsack, where K = (Kj)d
j=1.

We define an instance of 1-GMK as follows. Define T = d, and for j = 1, . . . , d define
Pj = (I, (Kj), h) with h(i) = p(i)

d for all i ∈ I. The gains vectors are defined as zero vectors,
g+ = g− = #»0 . Finally, we define the change cost vectors. For all i ∈ I we set

c+
i,t =

{
p(i) t ∈ [2, d]
0 otherwise.

, c−
i,t =

{
p(i) t ∈ [1, d − 1]
0 otherwise.

The tuple Q̃ =
(
(Pt)d

t=1, g+, g−, c+, c−) is a 1-GMK instance with time horizon T = d.

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:15

Let (S, A) be a feasible solution for Q, where A = (Aj)d
j=1. We can easily construct a

solution for Q̃ by setting Aj = (Aj) for j = 1, . . . , d. Then, (St, At)d
t=1, where Sj = S for

j = 1, . . . , d, is a solution for Q̃. Note that all items are either assigned or not assigned in all
stages. Thus the value of the solution is

fQ̃((St)d
t=1) =

d∑
t=1

h(St) −
T∑

t=1

 ∑
i∈St\St+1

c−
i,t +

∑
i∈St\St−1

c+
i,t

 = d · h(S) = p(S)

The solution is also feasible as for every j ∈ [d] it holds that Aj is a feasible assignments for
MKC Kj .

Next, let (St, At)d
t=1 be a feasible solution for Q̃, where Aj = (Ãj) for j = 1, . . . , d. For

j = 1, . . . , d let Bj = {bj}. We define the selected items set as S =
⋂

j∈[d] Sj and define
the assignments accordingly, Aj(bj) = S for j = 1, . . . , d and A = (Aj)d

j=1. Consider some
j ∈ [s], the assignment Aj is feasible as Aj(bj) ⊆ Ãj(bj) and∑

i∈Aj(bj)

wj(i) ≤
∑

i∈Ãj(bj)

wj(i) ≤ Wj(bj)

The value of the solution is

p(S) = d · h(S) ≥
d∑

t=1
h(St) −

T∑
t=1

 ∑
i∈St\St+1

c−
i,t +

∑
i∈St\St−1

c+
i,t

 = fQ̃((St)d
t=1)

where the inequality follows from the construction of Q̃. Furthermore, note that S can be
constructed in polynomial time, which concludes the proof. ◀

In [6] Chekuri and Kahanna showed that Multidimensional Knapsack does not admit any
constant approximation ratio unless NP = ZPP . Theorem 3 follows immediately from the
hardness result of [6] and Lemma 18.

We now proceed to the second hardness result.

▶ Lemma 19. There is an approximation preserving reduction from 2-Dimensional Knapsack
problem to 1-GMK with time horizon T = 2, no change costs and a single bin per stage.

Proof. Let Q = (I, K, p) be an instance of 2-dimensional knapsack, where K = (K1, K2).
Also, since p is modular, it holds that p(S) =

∑
i∈S pi.

We define an instance of 1-GMK as follows. Set T = 2, P1 = (I, (K1), h) and P2 =
(I, (K2), h), where h is the zero function, i.e., h : I → {0} such that ∀i ∈ I it holds that
h(i) = 0. Since there are only two stages, gains exists only for stage for t = 2. Set g+

i,2 = p(i)
and g−

i,2 = 0 for each item i ∈ I. Finally, we set the change cost vectors as c+ = c− = #»0 .
The tuple Q̃ = ((P1, P2), g+, g−, c+, c−) is a 1-GMK instance with time horizon T = 2. Note
that since all profits, change costs and gains g− are zero we can write the objective function
as

fQ̃ ((S1, S2)) =
∑

i∈S1∩S2

g+
i,2.

Let (S, A) be a feasible solution for Q, where A = (A1, A2). We can easily construct
a solution for the Q̃ by setting A1 = (A1) and A2 = (A2). Then, (St, At)2

t=1, where
S1 = S2 = S, is a solution for Q̃. Note that all items are either assigned in both stages or
not assigned in both stages. Thus the value of the solution is

fQ̃((S, S)) =
∑

i∈S1∩S2

g+
i,2 =

∑
i∈S

g+
i,2 =

∑
i∈S

pi = p(S)

APPROX/RANDOM 2021

15:16 General Knapsack Problems in a Dynamic Setting

The solution is also feasible as A1 and A2 are feasible assignments of K1 and K2 (respectively).
Next, let (St, At)2

t=1 be a feasible solution for Q̃, where A1 = (Ã1) and A2 = (Ã2). Let
B1 = {b1} and B2 = {b2}. We define the selected items set as S = S1 ∩ S2 and define the
assignments accordingly, A1(b1) = A2(b2) = S and A = (A1, A2). Assignment A1 is feasible
as A1(b1) ⊆ Ã1(b1) and∑

i∈A1(b1)

w1(i) ≤
∑

i∈Ã1(b1)

w1(i) ≤ W1(b1)

A similar statement shows that assignment A2 is feasible as well. The value of the solution is

p(S) =
∑
i∈S

p(i) =
∑
i∈S

g+
i,2 =

∑
i∈S1∩S2

g+
i,2 = fQ̃((S, S))

which concludes the proof. ◀

In [19] Kulik and Shachnai showed that there is no EPTAS for 2-KP unless W [1] = FPT .
Theorem 2 follows immediately from the hardness result of [19] and Lemma 19.

References
1 Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic facility location via

exponential clocks. ACM Transactions on Algorithms (TALG), 13(2):1–20, 2017.
2 Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th Paschos. Multistage

matchings. In 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT
2018), volume 101, pages 7–1, 2018.

3 Evripidis Bampis, Bruno Escoffier, Kevin Schewior, and Alexandre Teiller. Online multistage
subset maximization problems. In European Symposium on Algorithms (ESA), volume 144.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

4 Evripidis Bampis, Bruno Escoffier, and Alexandre Teiller. Multistage knapsack. In Mathemat-
ical Foundations of Computer Science (MFCS), volume 138, pages 22–1. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2019.

5 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodular set
function subject to a matroid constraint. In International Conference on Integer Programming
and Combinatorial Optimization, pages 182–196. Springer, 2007.

6 Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems. SIAM journal
on computing, 33(4):837–851, 2004.

7 Markus Chimani, Niklas Troost, and Tilo Wiedera. Approximating multistage matching
problems. arXiv preprint arXiv:2002.06887, 2020.

8 Shichuan Deng, Jian Li, and Yuval Rabani. Approximation algorithms for clustering with
dynamic points. In 28th Annual European Symposium on Algorithms (ESA 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

9 David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility location in evolving metrics.
In International Colloquium on Automata, Languages, and Programming, pages 459–470.
Springer, 2014.

10 Yaron Fairstein, Ariel Kulik, Danny Raz, et al. General knapsack problems in a dynamic
setting. arXiv preprint arXiv:2105.00882, 2021.

11 Yaron Fairstein, Ariel Kulik, and Hadas Shachnai. Modular and submodular optimization with
multiple knapsack constraints via fractional grouping. In 29th Annual European Symposium
on Algorithms (ESA 2021), 2021. (To appear).

12 Yaron Fairstein, Seffi Joseph Naor, and Danny Raz. Algorithms for dynamic nfv workload. In
International Workshop on Approximation and Online Algorithms, pages 238–258. Springer,
2018.

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:17

13 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

14 Uriel Feige and Michel Goemans. Approximating the value of two power proof systems, with
applications to max 2sat and max dicut. In Proceedings Third Israel Symposium on the Theory
of Computing and Systems, pages 182–189. IEEE, 1995.

15 Till Fluschnik, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche. Multistage vertex
cover. In 14th International Symposium on Parameterized and Exact Computation (IPEC
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

16 Till Fluschnik, Rolf Niedermeier, Carsten Schubert, and Philipp Zschoche. Multistage st
path: Confronting similarity with dissimilarity in temporal graphs. In 31st International
Symposium on Algorithms and Computation (ISAAC 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

17 Fabrizio Grandoni and Rico Zenklusen. Approximation schemes for multi-budgeted independ-
ence systems. In European Symposium on Algorithms, pages 536–548. Springer, 2010.

18 Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage optimization
for matroids and matchings. In International Colloquium on Automata, Languages, and
Programming, pages 563–575. Springer, 2014.

19 Ariel Kulik and Hadas Shachnai. There is no eptas for two-dimensional knapsack. Information
Processing Letters, 110(16):707–710, 2010.

20 George L Nemhauser and Laurence A Wolsey. Best algorithms for approximating the maximum
of a submodular set function. Mathematics of operations research, 3(3):177–188, 1978.

21 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

22 Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

A Omitted Proofs and Definition

▶ Definition 20. Let Π1, Π2 be two maximization problems. An approximation factor
preserving reduction from Π1 to Π2 consists of two polynomial time algorithms f, g such that
for any two instances I1 of problem Π1 and I2 = f(I1) of problem Π2 it holds that

I2 ∈ Π2 and OPTΠ2(I2) ≥ OPTΠ1(I1).
for any solution s2 for I2, solution s1 = g(I1, s2) is a solution for I1 and objΠ1(I1, s1) ≥
objΠ2(I2, s2).

where OPTΠ(I) is the value of an optimal solution for instance I of problem Π, and objΠ(I, s)
is the value of solution s for instance I of problem Π.

Proof of Lemma 8. Let Q =
(
(Pt)T

t=1, g+, g−, c+, c−) be an instance of d-GMK, where
Pt = (I, Kt, pt) and Kt = (Kt,j)dt

j=1. Also, let R(Q) =
(
E, K̃, p̃, I

)
be the reduced instance

of Q. and
(

S,
(
Ãt,j

)
t∈[T], j∈[d]

)
be a feasible solution for R(Q). We define the solution

(St, At)T
t=1 for Q as follows. For every stage t we set St = {i ∈ I | ∃(i, D) ∈ S : t ∈ D}.

For every t = 1, . . . , T , j = 1, . . . , dt and bin b ∈ Bt,j (the set of bins in MKC Kt,j) let
At,j(b) = {i ∈ I | ∃(i, D) ∈ Ãt,j(b) : t ∈ D}. Observe that the sets (St)T

t=1 and assignments
(At,j)t∈[T], j∈[dt] can be constructed in polynomial time as at most |I| elements can be chosen
due to the matroid constraint. The assignment At,j is an assignment of St since

St = {i ∈ I | ∃(i, D) ∈ S : t ∈ D} =
⋃

b∈Bt,j

{i ∈ I | (i, D) ∈ Ãt,j(b) : t ∈ D} =
⋃

b∈Bt,j

At,j(b),

where the second equality follows the feasibility of the solution for R(Q). In addition, At,j is

APPROX/RANDOM 2021

15:18 General Knapsack Problems in a Dynamic Setting

a feasible assignment for MKC Kt,j since for every bin b ∈ Bt,j it holds that∑
i∈At,j(b)

wt,j(i) =
∑

(i,D)∈Ãt,j(b):t∈D

w̃t,j((i, D)) =
∑

(i,D)∈Ãt,j(b)

w̃t,j((i, D)) ≤ Wt,j(b)

Thus (St, At)T
t=1 is a feasible solution for Q.

Lastly, consider the value of the solution for Q. It holds that

fQ
(
(St)T

t=1
)

=

T∑
t=1

∑
i∈St

pt(i) +
T∑

t=2

 ∑
i∈St−1∩St

g+
i,t +

∑
i/∈St−1∪St

g−
i,t

−
T∑

t=1

 ∑
i∈St\St−1

c+
i,t +

∑
i∈St\St+1

c−
i,t

 =

∑
(i,D)∈S

(∑
t∈D

pt(i) +
∑

t∈D:t−1∈D

g+
i,t +

∑
t/∈D:t−1/∈D

g−
i,t −

∑
t∈D:t−1/∈D

c+
i,t −

∑
t∈D:t+1/∈D

c−
i,t

)
=

p̃(S)

◀

Proof of Corollary 13. Let Q be an instance of d-GMK, U be a set of cut points. Also, let
QU = (qj)k−1

j=0 =
(

(Pt)
uj+1−1
t=uj

, g+, g−, c+, c−
)k−1

j=0
be the corresponding tuple of cut instances,

and
(

(St, At)
uj+1−1
t=uj

)k−1

j=0
be a tuple of feasible solutions for the cut instances.

We define the solution (St, At)T
t=1 for Q. It is easy to see that the assignments At to Kt

are all feasible assignments of St. In addition, it holds that

fQ
(
(St)T

t=1
)

=
T∑

t=1
pt(St) +

T∑
t=2

 ∑
i∈St−1∩St

g+
i,t +

∑
i/∈St−1∪St

g−
i,t

−
T∑

t=1

 ∑
i∈St\St+1

c−
i,t +

∑
i∈St\St−1

c+
i,t

 ≥

k−1∑
j=0

uj+1−1∑
t=uj

pt(St) +
uj+1−1∑
t=uj+1

 ∑
i∈St−1∩St

g+
i,t +

∑
i/∈St−1∪St

g−
i,t

−

uj+1−1∑
t=uj+1

 ∑
i∈St\St+1

c−
i,t +

∑
i∈St\St−1

c+
i,t

−
∑

i∈Suj+1−1

c−
i,uj+1

−
∑

i∈Suj

c+
i,uj

 =

k−1∑
j=0

fqj

(
(St)

uj+1−1
t=uj

)
where fqj

is the objective functions of cut instance qj . This proves that a cut solution has a
higher value than the sum of solutions for cut instance from which it was created. ◀

	1 Introduction
	1.1 Problem Definition
	1.2 Our Results
	1.3 Related Work

	2 Approximation Scheme for –GMK
	2.1 Bounded Time Horizon
	2.2 General Time Horizon

	3 Hardness Results
	A Omitted Proofs and Definition

