
Upper and Lower Bounds for Complete Linkage in
General Metric Spaces
Anna Arutyunova #

Universität Bonn, Germany

Anna Großwendt #

Universität Bonn, Germany

Heiko Röglin #

Universität Bonn, Germany

Melanie Schmidt #

Universität Köln, Germany

Julian Wargalla #

Universität Köln, Germany

Abstract
In a hierarchical clustering problem the task is to compute a series of mutually compatible clusterings
of a finite metric space (P, dist). Starting with the clustering where every point forms its own cluster,
one iteratively merges two clusters until only one cluster remains. Complete linkage is a well-known
and popular algorithm to compute such clusterings: in every step it merges the two clusters whose
union has the smallest radius (or diameter) among all currently possible merges. We prove that the
radius (or diameter) of every k-clustering computed by complete linkage is at most by factor O(k)
(or O(k2)) worse than an optimal k-clustering minimizing the radius (or diameter). Furthermore we
give a negative answer to the question proposed by Dasgupta and Long [6], who show a lower bound
of Ω(log(k)) and ask if the approximation guarantee is in fact Θ(log(k)). We present instances where
complete linkage performs poorly in the sense that the k-clustering computed by complete linkage
is off by a factor of Ω(k) from an optimal solution for radius and diameter. We conclude that in
general metric spaces complete linkage does not perform asymptotically better than single linkage,
merging the two clusters with smallest inter-cluster distance, for which we prove an approximation
guarantee of O(k).

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases Hierarchical Clustering, Complete Linkage, agglomerative Clustering, k-
Center

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.18

Category APPROX

Funding This work has been supported by DFG grants RO 5439/1-1 and SCHM 2765/1-1.

1 Introduction

The k-clustering problem asks for a partition of a point set in a metric space into k subsets
(or clusters). To measure whether the data is clustered well, one option is to pick a center
for every cluster and compute the maximum distance between a point and the center of its
cluster. This objective is to be minimized and is known as k-center. A problem which is
independent of the choice of centers is the k-diameter problem, where we want to minimize
the maximum distance between two points lying in the same cluster. Observe that k-center
and k-diameter are related to each other in the sense that for a fixed set P the cost of an
optimal k-diameter clustering on P is at most twice the cost of an optimal k-center clustering,
which again costs at most as much as an optimal k-diameter clustering. There are other

© Anna Arutyunova, Anna Großwendt, Heiko Röglin, Melanie Schmidt, and Julian Wargalla;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 18; pp. 18:1–18:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arutyunova@uni-bonn.de
mailto:grosswen@cs.uni-bonn.de
mailto:roeglin@cs.uni-bonn.de
mailto:mschmidt@cs.uni-koeln.de
mailto:wargalla@cs.uni-koeln.de
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

objectives to measure the quality of a clustering where every point contributes to the cost of
the clustering, for example k-median and k-means. Here we want to minimize the cost which
equals the sum over all (squared) distances between a point and the center of its cluster.

The k-center problem is NP-hard to approximate with factor α < 2 [12, 14]. This bound is
tight, as both Gonzalez [7] and Hochbaum and Shmoys [13] show. Gonzalez’s 2-approximation
algorithm is a simple, but elegant greedy approach. Starting with an arbitrary point p1 ∈ P ,
one constructs an enumeration P = {p1, . . . , p|P |} by successively choosing as pi+1 a point
from P whose minimum distance to any point from {p1, . . . , pi} is maximal. Assigning every
point from P to its closest neighbor among p1, . . . , pk (the centers) yields a 2-approximation
for the k-center problem for all k = 1, . . . , |P |. One can prove that the resulting clustering
is also a 2-approximation to k-diameter. Another greedy approach is the reverse greedy
algorithm, which starts with all data points as centers and iteratively removes a center such
that the objective stays as small as possible. Hershkowitz and Kehne [11] show that this
algorithm computes an Θ(k)-approximation. Observe that both greedy algorithms compute
an incremental clustering where the centers of a k-clustering are also centers of an l-clustering
if l ≥ k.

Gonzalez’s algorithm [7] allows to compute good clusterings, even if one does not previously
know an appropriate value for k. However, even successive clusterings computed by Gonzalez’s
algorithm and reverse greedy can be radically different and so it can be difficult to compare
them and select one that seems appropriate for the task.

Another greedy approach known as complete linkage starts with every point in its own
cluster and consecutively merges two clusters whose union has the smallest radius (or diameter
when considering the k-diameter objective) among all possible cluster pairs. If we proceed like
this until only one cluster remains, we also obtain a k-clustering for any possible 1 ≤ k ≤ |P |.
However, this time, the resulting clusterings are also hierarchically compatible: for all ℓ ≥ k

the ℓ-clustering is a refinement of the k-clustering. This makes it easier to compare such
clusterings with each other and to choose an appropriate k-clustering. Also, this additional
hierarchical structure is interesting in and of itself. Famous examples include phylogenetic
trees that represent the relationship between animal species in biology.

A series of such hierarchically compatible clusterings C1, . . . , C|P | (with Ck being a k-
clustering for all k) forms a hierarchical clustering. Complete linkage is a common and
popular bottom-up approach to compute these and can be generalized to fit any k-clustering
objective, resulting in so called agglomerative clustering methods. For hierarchical k-means
this is Wards method [16].

To evaluate a hierarchical clustering C1, . . . C|P | we refer to the underlying k-clusterings:
it is an α-approximation if the cost of Ck is at most α times that of an optimal k-clustering
for all 1 ≤ k ≤ |P |.

Related work. For hierarchical k-center and k-diameter, constant factor approximations are
known. For both problems Dasgupta and Long [6] and Charikar et al. [4] give a polynomial-
time 8-approximation. In [15] Lin et al. introduce the concept of nesting. Using this technique,
every approximation algorithm to a k-clustering objective that satisfies their nesting property
can be converted into an algorithm for its hierarchical version. Especially k-median and
k-means satisfy this property and thus (in combination with the currently best constant
factor approximations for k-median [3] and k-means [2]), polynomial time constant factor
approximations do indeed exist for the hierarchical k-median/k-means problem. Yet the
resulting guarantees are relatively high (≈ 56 for k-median and ≈ 3662 for k-means). Nesting
can also be applied to k-center/k-diameter but does not improve upon the 8-approximation.

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:3

As optimal k-clusterings are not necessarily hierarchically compatible, even assuming
unlimited computation power 1-approximations do not exist in general. Das and Kenyon-
Mathieu [5] give an instance for the diameter and Großwendt [10] for the radius where the
best hierarchical clustering is a 2-approximation. Using the concept of nesting by Lin et
al. [15], Großwendt [10] proves an existential upper bound of 4 for hierarchical k-center.

However, greedy algorithms are more common in practical applications. There exist
several theoretical results on upper and lower bounds on the approximation factor for complete
linkage. For metrics induced by norms in Rd, especially the Euclidean metric, Ackermann
et al. [1] prove that, assuming the dimension d to be constant, complete linkage computes
for both the k-center and k-diameter objective an O(log(k)) approximation. This was later
improved by Großwendt and Röglin [8] to O(1). Both works distinguish between two variants
of k-center: one where centers must be from the set P and the second where they can be
arbitrary points chosen from the whole space Rd. In the first case the approximation factor
shown in [1, 8] depends linearly on d and in the second case exponentially on d. For the
k-diameter problem it even depends doubly exponentially on the dimension. Furthermore
Ackermann et al. prove for the lp-metric with 1 ≤ p < ∞ a lower bound of Ω(p

√
log(d)) for

complete linkage for k-diameter and k-center with centers drawn from P [1].
Little is known about complete linkage in general metric spaces. Dasgupta and Long show

in [6] that the lower bound is in Ω(log(k)). With an approach to upper bound the increase
in cost by a complete linkage merge, which we borrow from [1], we obtain in a relatively
straightforward manner an upper bound of O(log(|P | − k)) for complete linkage for k-center.

There exist few results for agglomerative clustering regarding other objectives. Großwendt
et al. [9] analyze Ward’s method for k-means, and show that if the clusters of an optimal
k-means clustering are sufficiently far apart, Ward’s method computes a 2-approximation
and under some additional assumptions in fact reconstructs the optimal clustering.

Our Results. We study upper and lower bounds for the complete linkage algorithm in
general metric spaces for the k-center and k-diameter objective. For k-center in general
metric spaces it is reasonable to assume that centers can be only drawn from P and thus we
only consider this variant. Our main results are:

A lower bound of Ω(k) for complete linkage for k-center and k-diameter, which improves
the currently highest lower bound of Ω(log(k)) by Dasgupta and Long [6] significantly.
An upper bound of O(k) for k-center and an upper bound of O(k2) for k-diameter, which
are to the best of the authors’ knowledge the first non-trivial upper bounds for complete
linkage in general metric spaces.

The lower bound Ω(k) is surprising as it shows that complete linkage does not perform
asymptotically better than single linkage, which merges the two clusters with smallest
distance to each other (the distance of two clusters is the smallest distance between two of
their points). Dasgupta and Long [6] prove a lower bound of Ω(k) for single linkage and
we show that the approximation factor is in fact Θ(k). As single linkage is not designed
to minimize the radius or diameter of emerging clusters, it is a natural assumption that it
performs worse than complete linkage. However our results show that this assumption is
generally not true. It is even still open if complete linkage for k-diameter performs as good
as single linkage, as we are only able to prove an upper bound of O(k2).

Techniques. One of the biggest and most well-known issues concerning single linkage is that
of chaining. If there is a sequence of points x1, . . . , xk ∈ P with dist(xi, xi+1) relatively small
for all i, then single linkage might merge all of them together, despite the resulting cluster

APPROX/RANDOM 2021

18:4 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

r
2x

r d
x

d

Figure 1 On the left we see two k-center clusters with radius r whose centers lie in the same
optimal cluster. The radius of the merged cluster is at most r + 2x. On the right we have a similar
situation for k-diameter but the merged cluster has diameter at most 2d + x.

being quite large. Dasgupta and Long show with their lower bound of Ω(log k) that a similar
process of chaining can also occur when executing complete linkage. They give the example
of points placed on a regular (k × k)-grid with a spacing of 1. The distance is given by the
sum of the discrete metric on the horizontal axis and the logarithm of the absolute value of
the vertical axis. That is, dist((x, y), (x′, y′)) = 1x ̸=x′ + log2(1 + |y − y′|). Now, although an
optimal clustering just consists of the individual rows of the grid, complete linkage might
reproduce the columns instead (assuming that k is a power of 2): iteratively go from top to
bottom and merge vertically neighboring clusters. Every such iteration halves the number of
clusters and, due to the logarithm, only increases the cost by 1, just as when merging along
the rows. Of course, we would have to pay only once to merge horizontally, whereas we have
to pay log2 k times to merge vertically, but complete linkage cannot distinguish between
these two cases. In fact, one can shift the vertical placement by arbitrarily small values to
ensure that complete linkage always chooses the bad case.

We have to heavily modify the example to improve upon this log2 k factor. The funda-
mental problem is this: a vertical merge is only allowed to increase the cost by 1 to tie it
with any horizontal merge, whereas the number of rows occupied by a cluster (and thus its
diameter) doubles. We raise the lower bound by constructing an instance on which complete
linkage iteratively merges diagonally shifted clusters. This process of merging clusters is
much slower and does not require us to introduce a logarithmic scaling: merging one such
cluster into the other incurs a cost of 1, while at the same time increasing the number of
occupied rows only by one. The instance that we describe later is successively built from
smaller components that exhibit exactly this behaviour, while ensuring that any such merge
does not pay for the whole row.

Following the work of Ackermann et al. [1] one can show for complete linkage an upper
bound of log(|P | − k) for k-center. This comes from the following easy property, which is
true for the radius but cannot be transferred to diameter: Suppose the optimal k-center
solution O has cost x. In a complete linkage clustering consisting of more than k clusters two
of its centers must lie in the same optimal cluster and therefore are at distance ≤ 2x to each
other. Thus the merge that is performed by complete linkage increases the cost by at most
2x. However if we replace k-center by k-diameter we see that the cost is more than doubled
in the worst case (see Figure 1), which is not enough to obtain an upper bound polynomial
in k. Thus we introduce another perspective on the cost of a cluster. A cluster is good if
its cost is small enough in comparison to the number of optimal clusters from O which it
intersects. As O consists of k clusters this already implies a sufficiently small upper bound
for good clusters. For all remaining clusters we show that their number is small enough.
This approach leads to an upper bound of O(k2) for k-diameter and, in combination with
the log(|P | − k) upper bound, an upper bound of O(k) for k-center.

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:5

2 Preliminaries

Let (P, dist) be a metric space with n points and 1 ≤ k ≤ n. The k-center problem asks
for a partition of P into k clusters C = {C1, . . . , Ck}. The cost of cluster Ci is given
by cost(Ci) = minc∈Ci

maxx∈Ci
dist(x, c) while the cost of the clustering C is cost(C) =

maxi=1,...,k cost(Ci) and is to be minimized.
In the k-diameter problem we also have to find a partition of P into k clusters C =

{C1, . . . , Ck} and minimize the overall cost. However, we replace the cost of a cluster Ci

by cost(Ci) = maxx,y∈Ci dist(x, y). For both the k-center and the k-diameter problem we
denote by Ok an arbitrary but fixed optimal clustering.

We study the hierarchical version of the above problems, where we ask for a k-clustering
Ck of P for every 1 ≤ k ≤ n. The clusterings must be hierarchically compatible, which means
that Ck−1 is obtained from Ck by merging two of its clusters, i.e., for all 2 ≤ k ≤ n there are
A, B ∈ Ck such that Ck−1 = Ck\{A, B}∪{A∪B}. A sequence of such k-clusterings (Ck)n

k=1 is
called a hierarchical clustering. We say that it is an α-approximation if cost(Ck) ≤ α cost(Ok)
for all 1 ≤ k ≤ n. Thus the task is to find a hierarchical clustering which is a good
approximation to the optimal solution on every level k.

A common class of approaches for computing such hierarchical clusterings are agglomer-
ative linkage algorithms. As outlined above, a hierarchical clustering can be computed in a
bottom-up fashion, where pairs of clusters are merged successively. Agglomerative linkage
procedures do exactly that, with the choice of clusters to be merged at every step given
by a linkage function. Such a linkage function maps all possible pairs of disjoint clusters
onto R+ and the algorithm chooses one pair that minimizes this value: Suppose that we
have already constructed Ck and are using the linkage function f . Then Ck−1 is given by
merging a pair A ̸= B ∈ Ck with f(A, B) = minA′ ̸=B′∈Ck

f(A′, B′). As already stated, the
two linkage functions we are interested in are:

Single linkage: (A, B) 7→ dist(A, B) = min(a,b)∈A×B dist(a, b).
Complete linkage: (A, B) 7→ cost(A ∪ B).

To analyze the performance of the respective agglomerative algorithms we often consider
the smallest clustering from (Ck)n

k=1 (in terms of the number of clusters) whose cost does
not exceed a given bound. This perspective is already used by Großwendt and Röglin [8] and
allows a better handling of the cost. For any x ≥ 0 let t≤x = min{k | cost(Ck) ≤ x} and set
Hx = Ct≤x

. Observe that Hx is the smallest clustering from (Ck)n
k=1 with cost at most x.

Thus it has the useful property that every merge of two clusters in Hx results in a clustering
of cost more than x. Furthermore, for a cluster C ⊆ P and an optimal k-clustering O = Ok

we denote by OC = {O ∈ O | O ∩ C ̸= ∅} the set of all optimal k-clusters hit by C.

3 Approximation Guarantee of Single Linkage

As outlined in [6] there are clustering instances where single linkage builds chains yielding
the lower bound Ω(k) on the approximation factor. We show in Appendix A that this is the
worst case scenario, as in fact single linkage computes an O(k)-approximation for hierarchical
k-center/k-diameter.

▶ Theorem 1. Let (Ck)n
k=1 be the hierarchical clustering computed by single linkage on

(P, dist) and let Ok be an optimal clustering for k-center or k-diameter, respectively. We
have for all 1 ≤ k ≤ n

1. cost(Ck) ≤ (2k + 2) · cost(Ok) for the k-center cost
2. cost(Ck) ≤ 2k · cost(Ok) for the k-diameter cost.

APPROX/RANDOM 2021

18:6 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

1
1

1
2

1

1
2

1

1
2

3

1

1
2

1

1
2

1

1
2

1

1
2

3

3

4

Figure 2 The progression of the first 5 components K1, . . . , K5. The gray sets indicate points
on the same level and form the optimal clusters. When analyzing the instance for the radius, the
encircled points in the K2 and K4 component indicate their optimal centers.

4 Lower Bounds for Complete Linkage

In the following we show that complete linkage performs asymptotically as bad as single
linkage in the worst case. That is, for every k ∈ N we provide an instance Pk on which the
diameter and radius of a k-clustering computed by complete linkage is off by a factor of Ω(k)
from the cost of an optimal solution. This improves upon the previously known lower bound
of Ω(log2(k)) established by Dasgupta and Long. Recall from the introduction that one of
the big problems preventing an improved lower bound was that any horizontal merge already
paid for all the involved rows. As such, for the worst case, one was only allowed to merge
vertically, but this can be done at most log2(k) times. We improve upon this by inductively
constructing an instance from smaller components that are diagonally shifted to produce
bigger ones. Merging two such diagonally shifted components incurs an additional cost of
1, while ensuring at the same time that this does not pay for any future merges of parallel
components.

A k-component Kk = (Gk, ϕk) is a combination of a graph Gk = (Vk, Ek) and a mapping
ϕk : Vk → {1, . . . , k}. The mapping is necessary for the construction of the component and
later on determines an optimal k-clustering on Pk. We refer to ϕk(x) as the level of x. The
other part of the component is an undirected graph Gk, referred to as a k-graph, on 2k−1

points with edge weights in N that describe the distances between the levels.
The 1-component K1 consists of a single point x with ϕ1(x) = 1. All higher components

are constructed inductively from this 1-component. Given the (k − 1)-component Kk−1
we construct Kk as follows: Let K

(0)
k−1 and K

(1)
k−1 be two copies of the (k − 1)-component

Kk−1. For the k-graph Gk we first take the disjoint union of the graphs G
(0)
k−1 and G

(1)
k−1.

This already yields all the points of Gk. For the k-mapping ϕk we set ϕk(x) = ϕ
(i)
k−1(x) + i

for x ∈ V (G(i)
k−1) ⊂ V (Gk). That is, in the first copy the levels stay the same, whereas in

the second all levels are shifted by 1. Finally, to complete Gk, we add one edge of weight
k − 1 from the unique point s ∈ V (Gk) with ϕk(s) = 1 to the unique point t ∈ V (Gk) with
ϕk(t) = k. The progression of the first five components is given in Figure 2.

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:7

The instance Pk is now constructed from the k-component as follows: Let K
(1)
k , . . . , K

(k+1)
k

be k + 1 copies of Kk. Take the disjoint union of the corresponding k-graphs G
(1)
k , . . . , G

(k+1)
k

and connect them by adding edges {x, y} of weight 1 for every two points x ∈ V (G(i)
k) and

y ∈ V (G(j)
k) with ϕ

(i)
k (x) = ϕ

(j)
k (y). Note that the sets of points from the same level constitute

cliques of diameter and radius 1 and form an optimal solution of cost 1. To simplify notation
we omit the indices and write ϕk(x) to denote the level of a point x ∈ V (G(j)

k) ⊂ V (Pk). The
distance between two points in V (Pk) is given by the length of a shortest path.

Let (Ck′)n
k′=1 be the clustering produced by complete linkage on (V (Pk), dist) minimizing

the radius or diameter. Recall that Ck′−1 arises from Ck′ by merging two clusters A, B ∈ Ck′

that minimize the radius or diameter of A∪B. Remember that t≤x = min{k′ | cost(Ck′) ≤ x}
and that Hx = Ct≤x

denotes the smallest clustering with cost smaller or equal to x. We show
in the following two subsections that Hk−1 consists exactly of the k + 1 different k-graphs
that make up the instance resulting in the following theorem.

▶ Theorem 2. For every k ∈ N there exists an instance (V (Pk), dist) on which complete
linkage, minimizing either diameter or radius, computes a solution of diameter k or radius
k
2 , respectively, whereas the cost of an optimal solution is 1.

4.1 A Lower Bound for Diameter-Based Cost
We start with the analysis for diameter-based costs and after that move on to radius-based
costs.

▶ Lemma 3. The distance between two points x, y ∈ V (Pk) is at least as big as the difference
in levels |ϕk(x) − ϕk(y)|.

Proof. By the inductive construction of the components, an edge of weight w can cross at
most w levels. Hence the distance between x and y is at least |ϕk(x) − ϕk(y)|. ◀

Consider an ℓ-graph Gℓ. Instead of talking about the cluster V (Gℓ) in (V (Pk), dist) we
slightly abuse our notation and see Gℓ as a cluster with cost(Gℓ) = maxx,y∈V (Gl) dist(x, y),
i.e., the diameter of V (Gℓ). Using the previous lemma we can show inductively that the
diameter of any ℓ-graph in Pk is ℓ − 1.

▶ Lemma 4. Let Gℓ be an ℓ-graph contained in Pk. We have cost(Gℓ) = ℓ − 1.

Proof. We prove the upper bound cost(Gℓ) ≤ ℓ − 1 by induction. The 1-graphs are points
and so the claim follows trivially for ℓ = 1. Assume now that we have shown the claim for
ℓ − 1. Let s, t ∈ V (Gℓ) be points such that dist(s, t) = cost(Gℓ). If these points lie in the
same graph, say G

(0)
ℓ−1, of the two (ℓ − 1)-graphs G

(0)
ℓ−1 and G

(1)
ℓ−1 that make up Gℓ, then

cost(Gℓ) = dist(s, t) ≤ cost(G(0)
ℓ−1) ≤ ℓ − 2 < ℓ − 1

by induction and we are done. Otherwise we may assume that s ∈ V (G(0)
ℓ−1) and t ∈ V (G(1)

ℓ−1).
This leaves us with another case analysis. If s is the unique point with level 1 and t is the
unique point in level ℓ in Gℓ then we are again done, since by construction there exists an
edge between s and t of weight ℓ − 1. Otherwise one of s or t must share a level with a point
not in the same (ℓ − 1)-graph as themselves. Without loss of generality we may assume that
s lies in the same level as some u ∈ V (G(1)

ℓ−1). By induction dist(u, t) ≤ ℓ − 2 and so

cost(Gℓ) = dist(s, t) ≤ dist(s, u) + dist(u, t) ≤ 1 + ℓ − 2 = ℓ − 1.

This concludes the proof of the upper bound cost(Gℓ) ≤ ℓ − 1.
To see the lower bound cost(Gℓ) ≥ ℓ−1, we apply Lemma 3 to the unique point s with level

1 and the unique point t with level ℓ in Gℓ. This shows that cost(Gℓ) ≥ dist(s, t) ≥ ℓ − 1. ◀

APPROX/RANDOM 2021

18:8 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

The goal now is to show that complete linkage actually reconstructs these graphs as
clusters. We already computed the cost of an ℓ-graph and now it is left to observe that
merging two ℓ-graphs costs at least ℓ.

▶ Lemma 5. Complete linkage might merge clusters on (V (Pk), dist) in such a way that for
all ℓ ≤ k, the clustering Hℓ−1 consists exactly of the ℓ-graphs that make up Pk.

Proof. We again prove the claim by induction. Complete linkage always starts with every
point in a separate cluster. Since those are exactly the 1-graphs and any merge costs at least
1, the claim follows for ℓ = 1. Suppose now that Hℓ−1 consists exactly of the ℓ-graphs of the
instance. Since we are dealing with integer weights, any new merge increases the cost by at
least 1 and so we may merge all pairs of ℓ-graphs that form the (ℓ + 1)-graphs. These are
cheapest merges as they altogether increase the cost from ℓ − 1 to ℓ (see Lemma 4). To finish
the proof we are left to show that at this point there are no more free merges left. Take any
two (ℓ + 1)-graphs Gℓ+1 ̸= G′

ℓ+1 contained in the current clustering. If they do not exactly
cover the same levels, then the distance between the point in the lowest level to the point
in the highest level is strictly more than ℓ by Lemma 3. Hence, we can assume that they
share the same levels, say level λ up to level ℓ + λ. Denote by s the unique point in V (Gℓ+1)
with ϕk(s) = λ and by t the unique point in V (G′

ℓ+1) with ϕk(t) = ℓ + λ. A shortest path
connecting s and t must contain an edge {u, w} with u ∈ V (Gℓ+1) and w ∈ V (Pk)\V (Gℓ+1).
Such an edge either weights at least ℓ + 1 or weights 1 and connects points in the same level,
i.e., ϕk(u) = ϕk(w). In the first case we directly obtain dist(s, t) ≥ ℓ + 1. In the second case
we use Lemma 3 and obtain

dist(s, t) = dist(s, u) + dist(u, w) + dist(w, t)
≥ |ϕk(s) − ϕk(u)| + 1 + |ϕk(w) − ϕk(t)|
= |ϕk(s) − ϕk(t)| + 1
= ℓ + 1.

It follows that Hℓ consists exactly of the (ℓ + 1)-graphs that make up Pk. ◀

Proof of Theorem 2 (diameter). Lemma 5 shows that Hk−1 can consist of all the k-graphs
that make up Pk. There are exactly k + 1 of them and so there is one merge remaining to
get a k-clustering. By definition of Hk−1, this last merge increases the cost by at least 1
and so the k-clustering produced by complete linkage costs at least k, whereas the optimal
clustering consisting of the k individual levels costs 1. ◀

4.2 A Lower Bound for Radius-Based Costs
We show that the instance (V (Pk), dist) also yields a lower bound of k/2 for radius-based
costs. This requires some additional work, as we now also have to keep track of the centers
that induce an optimal radius. For an ℓ-graph Gℓ we again slightly abuse the notation and
talk about Gℓ as a cluster with cost(Gℓ) = minc∈V (Gℓ) maxx∈V (Gℓ) dist(c, x), the radius of
V (Gℓ).

To prove Lemma 6 we show that there is a point in Pk for which the following holds:
For all but one of the ℓ-graphs that constitute G2ℓ we can find a point that we can reach
by an edge of weight 1. Since the diameter of these graphs is ℓ − 1, this is sufficient.
The remaining ℓ-graph lies in the same (ℓ + 1)-graph as our point and so we are again
done by considering the diameter. Also there are no points that induce a smaller radius,
since the diameter of G2ℓ is already 2ℓ − 1.

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:9

▶ Lemma 6. Let G2ℓ be any of the 2ℓ-graphs that constitute Pk for 1 ≤ ℓ ≤ k
2 arbitrary.

Then it holds that cost(G2ℓ) = ℓ and furthermore, all optimal centers that induce this cost
are themselves already contained in G2ℓ (and not in any other 2ℓ-graph).

Proof. By Lemma 4 we know that the diameter of G2ℓ is 2ℓ − 1. Thus the radius of G2ℓ is at
least ℓ. To show the upper bound of ℓ suppose that G2ℓ covers the levels λ up to λ + 2ℓ − 1
in Pk. Consider the unique (ℓ + 1)-graph Hℓ+1 contained in G2ℓ covering the levels λ + ℓ − 1
to λ + 2ℓ − 1. Let c be the unique point in Hℓ+1 with level λ + ℓ − 1. By Lemma 4 the
diameter of Hℓ+1 is ℓ, so any point in Hℓ+1 is at distance ≤ ℓ to c. Consider now a point
x ∈ V (G2ℓ)\V (Hℓ+1) and the ℓ-graph Hℓ containing x. We claim that Hℓ contains a point y

with level λ + ℓ − 1. If this is not true then Hℓ covers the levels λ + ℓ up to λ + 2ℓ − 1 and
therefore also contains the unique point in G2ℓ with level λ + 2ℓ − 1. This is not possible as
the unique point in G2ℓ with level λ + 2ℓ − 1 is already contained in Hℓ+1. So using that the
diameter of Hℓ is ℓ − 1 and ϕk(c) = ϕk(y) we obtain

dist(c, x) ≤ dist(c, y) + dist(y, x) ≤ 1 + (ℓ − 1) = ℓ.

Now we prove that all optimal centers must be contained in G2ℓ. For all points c ∈
V (Pk)\V (G2ℓ) we have to show that maxx′∈V (G2ℓ) dist(c, x′) ≥ ℓ + 1. Suppose that ϕk(c) ≤
λ+ℓ−1. Let x be the unique point in G2ℓ with level λ+2ℓ−1, we claim that dist(c, x) ≥ ℓ+1.
Consider a shortest path between c and x and let {u, w} be an edge on this path with
u ∈ V (Pk)\V (G2ℓ) and w ∈ V (G2ℓ). By construction {u, w} either weights at least 2ℓ in
which case

dist(c, x) ≥ 2ℓ ≥ ℓ + 1

or it weights 1 and ϕk(u) = ϕk(w), so

dist(c, x) = dist(c, u) + dist(u, v) + dist(v, x)
≥ |ϕk(c) − ϕk(u)| + 1 + |ϕk(w) − ϕk(x)|
= |ϕk(c) − ϕk(x)| + 1
≥ ℓ + 1.

In case ϕk(c) ≥ λ + ℓ we can prove analogously that dist(c, y) ≥ ℓ + 1 for the unique point y

in G2ℓ with level λ. This finishes the proof. ◀

Now we make sure that complete linkage completely reconstructs these components. In
particular we show that merging 2ℓ-graphs which cover the same levels increases the cost
of our solution. Here we make use of the fact that sets of optimal centers for any pair of
2ℓ-graphs do not intersect. Lemma 7 ensures that the cost indeed increases.

▶ Lemma 7. Let C, D be two subsets of V (Pk) with cost(C) = cost(D). Let Z(C) and
Z(D) denote the set of all optimal centers for C respectively D. If Z(C) ∩ Z(D) = ∅ then
cost(C ∪ D) > cost(C).

Proof. Let x ∈ V (Pk). Since Z(C) ∩ Z(D) = ∅ this point can be an optimal center for at
most one of the sets. Assume without loss of generality that x /∈ Z(D). We have

max
y∈C∪D

dist(y, x) ≥ max
y∈D

dist(y, x) > cost(D) = cost(C)

So we have for all x ∈ V (Pk) that maxy∈C∪D dist(y, x) > cost(C) which proves the lemma.
◀

APPROX/RANDOM 2021

18:10 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

Now, with this we can prove that the merging behavior of complete linkage reconstructs
our components. Observe that Theorem 2 is an immediate consequence of Corollary 8.

▶ Corollary 8. Complete linkage might merge clusters in (V (Pk), dist) in such a way, that
for 1 ≤ ℓ ≤ k

2 , the clustering Hℓ consists exactly of the 2ℓ-graphs that make up Pk.

Proof. The proof is an analogous induction to Lemma 5. Consider the case ℓ = 1. The
first merge increases the cost to 1. Observe by Lemma 6 that the cost of a 2-graph is 1.
Furthermore, the same lemma shows that the sets of optimal centers for any pair of 2-graphs
do not intersect and so, as shown in Lemma 7 any further merge necessarily has to increase
the cost. Hence H1 consists exactly of the 2-graphs.

Assume now that the claim holds for Hℓ. The induction step works essentially the same
as the base case. Any merge will increase the cost of the solution by at least 1 by definition
of Hℓ and so we might as well merge all 2ℓ-graphs that together compose a (2ℓ + 2)-graph as
this is a cheapest choice (Lemma 6). Furthermore, any additional merge would increase the
cost to at least ℓ + 2 (again by Lemma 7) and so Hℓ+1 consist of the (2ℓ + 2)-graphs. ◀

Notice that in our analysis we decided which clusters will be merged by complete linkage
whenever it has to choose between two merges of the same cost. However with some
adjustments on the instance Pk we can show a lower bound of Ω(k) for both, diameter and
radius, for any behavior of complete linkage on ties. For more details we refer to Appendix B.

5 An Upper Bound for Complete Linkage

Even though complete linkage is often used when it comes to computing a hierarchical
clustering, there are no known non-trivial upper bounds for its approximation guarantee in
general metric spaces, to the best of the authors’ knowledge. We give an upper bound for
complete linkage for hierarchical k-center and hierarchical k-diameter.

5.1 An Upper Bound for Radius-Based Cost
We show that the approximation ratio of the radius of any k-clustering Ck produced by
complete linkage relative to an optimal k-center clustering is in O(k).

▶ Theorem 9. Let (Ck)n
k=1 be the hierarchical clustering computed by complete linkage on

(P, dist) optimizing the radius. For all 1 ≤ k ≤ n the radius cost(Ck) is upper bounded by
O(k) cost(Ok), where Ok is an optimal k-center clustering.

To simplify the notation we fix an arbitrary k and assume that the optimal k-clustering
O = Ok has cost cost(O) = 1

2 . The latter is possible without loss of generality by scaling the
metric appropriately.

We split the proof of Theorem 9 into two parts. In the first, we derive a crude upper bound
for the increasing cost of clusterings produced during the execution of complete linkage. This
part follows the work of Ackermann et al. [1], who use the same bound to estimate the cost of
some few merge steps. Proposition 12 shows that the difference in cost between Ck and Ct for
t > k is at most ⌈log(t − k)⌉ + 1. That is, cost(Ck) ≤ ⌈log(t − k)⌉ + 1 + cost(Ct) holds for all
1 ≤ k < t ≤ n. A clustering Ct whose cost we can estimate directly (i.e. without refering to
any other clustering) thus yields a proper upper bound for cost(Ck). Ideally, this clustering
should consist of relatively few clusters (so that ⌈log(t − k)⌉ is small), while at the same
time not being too expensive. Of course, however, these criteria oppose each other. Naively
choosing the initial clustering Ct = Cn is not good enough. Although its cost is minimal, the
number of clusters is too high, only yielding an upper bound of cost(Ck) ≤ ⌈log(n − k)⌉ + 1.
In the second part of the proof we thus set out to find a different clustering to start from.

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:11

Part 1: An estimate of the relative difference in cost

When dealing with radii, any merge done by complete linkage previous to reaching a k-
clustering increases the cost by at most 2 cost(O) = 1 (Figure 1). This is due to the fact that
the centers of two of those clusters are contained in the same optimal cluster.

We show that complete linkage clusterings at times t≤x and t≤x+1 can have at most k

clusters in common. All other clusters from Hx are merged in Hx+1.

▶ Lemma 10. For all x ≥ 0 the clustering Hx+1 contains at most k clusters of cost at most
x. In particular, it holds that |Hx+1 ∩ Hx| ≤ k.

Proof. Assume on the contrary that there exist k +1 pairwise different clusters D1, . . . , Dk+1
at time t≤x+1 of cost at most x. Denote by di ∈ Di a point that induces the smallest radius,
i.e. cost(Di) = maxd∈Di

dist(d, di) for all i. Then two of these points, say d1 and d2, have to
be contained in the same optimal cluster O ∈ O. Hence, we know that

cost(D1 ∪ D2) ≤ 1 + max
i∈{1,2}

cost(Di) ≤ 1 + x

because dist(d1, d2) ≤ 2 cost(O) ≤ 2 cost(O) = 1 and cost(Di) ≤ x for i = 1, 2. This
contradicts the definition of Hx+1, as D1 and D2 can still be merged without pushing the
cost beyond x + 1. ◀

With this we can upper bound |Hx+i| in terms of |Hx| for all i ∈ N. The proof of
Corollary 11 can be found in Appendix C.

▶ Corollary 11. For all i ∈ N+ and x ≥ 0 it holds that |Hx+i| ≤ k + 1
2i (|Hx| − k).

▶ Proposition 12. For all k < t ≤ n it holds that cost(Ck) ≤ ⌈log(t − k)⌉ + 1 + cost(Ct).

Proof. Let x = cost(Ct), so that Hx consists of at most t clusters. Applying Corollary 11
with i = ⌈log(t − k)⌉ + 1 then shows that

|Hx+i| < k + 1
t − k

(|Hx| − k) ≤ k + 1.

That is, Hx+i emerges from Ck by merging some (or none) of its clusters and we can conclude
that cost(Ck) ≤ cost(Hx+i) ≤ x + i = cost(Ct) + ⌈log(t − k)⌉ + 1. ◀

Part 2: A cheap clustering with few clusters

Suppose that there exists a complete linkage clustering Ct for some t > k with t ∈ O(2k)
clusters and cost(Ct) ∈ O(k). Then applying Proposition 12 shows that

cost(Ck) ∈ log(O(2k)) + 1 + O(k) = O(k) = O(k) cost(O)

and Theorem 9 is proven (recall that cost(O) = 1
2). We show that Ct = H4k+2 is a sufficiently

good choice. To estimate the size of H4k+2, we distinguish between active and inactive
clusters. Remember that OC = {O ∈ O | O ∩ C ≠ ∅} is the set of optimal clusters hit by C.

▶ Definition 13. We call a cluster C ∈ Hx active, if cost(C) ≤ 4 · |OC |, or if there exists an
active cluster C ′ ∈ Hx−1 such that OC ⊆ OC′ . Otherwise, C is called inactive.

APPROX/RANDOM 2021

18:12 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

The behavior that makes complete linkage more difficult to analyze than single linkage
is that the former sometimes merges clusters that are quite far apart. That is, contrary to
single linkage, complete linkage can produce clusters that are very expensive relative to the
number of optimal clusters hit by them. We mark such clusters as inactive and count them
directly the first time they are created. We will see that the number of such clusters is small.
However the number of active clusters is potentially large, but if the cost of the clustering
reaches 4k + 2, this number can also be bounded as we see in the following lemma.

▶ Lemma 14. There are at most 2k active clusters in H4k+2.

Proof. Notice that at time t≤4k+2 there cannot exist two active clusters C1 and C2 with
OC1 ⊆ OC2 . Indeed, since C2 hits all the optimal clusters hit by C1 we get that

cost(C1 ∪ C2) ≤ cost(C2) + 1 ≤ 4|OC2 | + 1 ≤ 4k + 1

and so C1 and C2 would have been merged in H4k+2. Now, if there are more than 2k active
clusters in H4k+2, then at least two of them must hit exactly the same set of optimal clusters.
Since we have just ruled this out, the lemma follows. ◀

We estimate the number of inactive clusters, by looking at the circumstances under which
they arise. As it happens, at each step there are not many clusters whose merge yields an
inactive cluster.

▶ Lemma 15. There are at most 4k2 + k inactive clusters in H4k+2.

Proof. Let mx be the number of inactive clusters in Hx. We show that the recurrence
relation mx ≤ mx−1 + k holds for any x ∈ N. In that case m4k+2 ≤ (4k + 1)k = 4k2 + k

since m1 = 0 and we are done.
To prove the recurrence relation first fix some arbitrary x ∈ N and let D ∈ Hx be an

inactive cluster. Let D1, . . . , Dℓ ∈ Hx−1 be the clusters whose merge results in D. We show
that none of them can be active at time t≤x−1 and have cost at least x − 2. Since this only
leaves few possible clusterings, we get the recurrence inequality given above. Suppose that
for one of the clusters, say Di, it holds that 4 · |ODi | ≥ cost(Di) ≥ x − 2. Right away, notice
that |ODi

| < |OD| since otherwise D would also be active by definition. But then

cost(D) ≤ x ≤ cost(Di) + 2 ≤ 4|ODi
| + 2 < 4(|ODi

| + 1) ≤ 4|OD|

contradicts the assumption of D being inactive. As such, we know that all Di (i = 1, . . . , ℓ)
must be inactive or have cost less than x − 2. In other words, each inactive cluster in Hx

descends from the set

{D ∈ Hx−1 | D is inactive} ∪ {D ∈ Hx−1 | cost(D) < x − 2}.

The cardinality of the set on the left is mx−1 and, by Lemma 10, the cardinality of the set
on the right is at most k. This proves the claim. ◀

▶ Corollary 16. H4k+2 consists of at most 2k + 4k2 + k clusters.

Notice that Theorem 9 is an immediate consequence of Corollary 16 and Proposition 12.

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:13

5.2 An Upper Bound for Diameter-Based Cost
The main challenge in proving an upper bound on the approximation guarantee of complete
linkage when replacing the k-center objective by the k-diameter objective is to deal with the
possibly large increase of cost after a merge step (see Figure 1).

For some arbitrary but fixed k let O denote an optimal k-diameter solution and assume
that cost(O) = 1 from now on. To motivate our approach consider the clustering H1
computed by complete linkage at time t≤1. Observe that every optimal cluster can fully
contain at most one cluster from H1, as the union of such clusters would cost at most 1.
Now, consider the graph G = (V, E) with V = O and edges {A, B} ⊂ V for every cluster
C ∈ H1 intersecting A and B. If there is such an edge {A, B}, then the cost of merging A

and B is upper bounded by 3. We can go even further and consider the merge of all optimal
clusters in a connected component of G. Suppose the size of the connected component is
m, then the resulting cluster costs at most 2m − 1. There are two extreme cases in which
we could end up: if E = ∅, then H1 = O and complete linkage has successfully recovered
the optimal solution. On the other hand, if G is connected, then merging all points costs
at most 2k − 1 and we get an O(k)-approximative solution. The remaining cases are more
difficult to handle. We proceed by successively adding edges between optimal clusters, while
maintaining the property that for a connected component Z in G merging ∪A∈V (Z)A costs at
most |V (Z)|2. This leads to an upper bound of k2 for all clusters C constructed by complete
linkage with C ⊂ ∪A∈V (Z)A. We show that the number of clusters which do not admit this
property is sufficiently small, such that in the end, we are able to prove that Hk2 consists of
at most k clusters. This immediately leads the following theorem.

▶ Theorem 17. Let (Ck)n
k=1 be the hierarchical clustering computed by complete linkage on

(P, dist) optimizing the diameter. For all 1 ≤ k ≤ n the diameter cost(Ck) is upper bounded
by k2 cost(Ok), where Ok is an optimal k-diameter clustering.

Essential for this section is a sequence of cluster graphs Gt = (Vt, Et) for t = 1, . . . , k2

constructed directly on the set Vt = O of optimal k-clusters. We start with the cluster
graph G1 that contains edges {A, B} for every two vertices A, B ∈ V1 = O that are hit by a
common cluster from H1. To this we successively add edges based on a vertex labeling in
order to create the remaining cluster graphs G2, . . . , Gk2 . The labeling distinguishes vertices
as being either active or inactive. We denote the set of active vertices in Vt by V a

t and the
set of inactive ones by V i

t . In the beginning (t = 1) the inactive vertices are set to precisely
those that are isolated: V i

1 = {O ∈ V1 | δG1(O) = ∅}. For t ≥ 2, the labeling is outlined in
Definition 18. Over the course of time, active vertices may become inactive, but inactive
vertices never become active again.

Given a labeling for Vt+1, we construct Gt+1 from Gt by adding additional edges: If there
are two active vertices A, B ∈ V a

t+1 that are both hit by a common cluster from Ht+1, we
add an edge {A, B} to Et+1.

▶ Definition 18. Let A ∈ Vt+1 be an arbitrary optimal cluster and ZA the connected
component in Gt that contains A. We call A inactive (i.e., A ∈ V i

t+1) if ⌈cost(ZA)⌉ ≤ t,
and active otherwise. Here, and in the following cost(ZA) = cost(

⋃
B∈V (ZA) B) denotes the

cost of merging all optimal clusters contained in V (ZA).

Thus if a connected component in Gt has small cost, then all vertices in this component
become inactive in Gt+1 by definition. We state the following useful properties of inactive
vertices in (Gt)k2

t=1.

APPROX/RANDOM 2021

18:14 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

▶ Lemma 19. If Z is a connected component in Gt+1 with V (Z) ∩ V i
t+1 ̸= ∅, then

1. Z is also a connected component in Gt and ⌈cost(Z)⌉ ≤ t,
2. we have V (Z) ⊆ V i

t+1, i.e., all vertices in Z become inactive at the same time.
Moreover we have V i

t ⊆ V i
t+1, so once vertices become inactive, they stay inactive. Equival-

ently, V a
t+1 ⊆ V a

t .

Proof. Take any inactive vertex A ∈ V i
t+1 ∩ V (Z) and consider the connected component ZA

in Gt containing A. By Definition 18, we have that ⌈cost(ZA)⌉ ≤ t and so all other vertices
in ZA have to be in V i

t+1 as well. We observe that Et+1 \ Et only contains edges between
vertices from V a

t+1 by construction. This shows Z = ZA.
It is left to show that inactive vertices stay inactive. For t = 1 the inactive vertices V i

1
are already connected components with cost at most 1. As such, they remain inactive at
step t = 2. For t ≥ 2, consider an inactive vertex A ∈ V i

t and the connected component
Z ⊆ Gt containing it. We showed previously that V (Z) ⊂ V i

t and so Z is also a connected
component in Gt+1 with ⌈cost(Z)⌉ ≤ t − 1 < t and thus A ∈ V (Z) ⊂ V i

t+1. ◀

▶ Definition 20. Let C ∈ Ht for some fixed t ∈ N. We define It = {C ∈ Ht | OC ∩ V i
t ̸= ∅}

as the set of all clusters in Ht which hit at least one inactive vertex of Gt. We call these
clusters inactive and all clusters from Ht\It active.

We prove the following easy property about active clusters.

▶ Lemma 21. If C ∈ Ht \ It, then Gt[OC] forms a clique. In particular there exists a
connected component in Gt that fully contains OC .

Proof. By definition of It, OC must consist exclusively of active vertices. Since all of them
are hit by C ∈ Ht there exists an edge {A, B} ∈ Et for every pair A, B ∈ OC . In other
words, Gt[OC] forms a clique and the claim follows. ◀

This does not necessarily hold for an inactive cluster C ∈ It. As C contains at least one
inactive vertex, the connected component Z which contains this vertex does not grow. If
later on complete linkage merges C with another cluster the result is an inactive cluster
which may hit vertices outside of Z. So Gt′ does not reflect the progression of C for t′ ≥ t.
However, the number of such clusters cannot exceed |V i

t |.

▶ Lemma 22. The number of inactive clusters in Ht is at most the number of inactive
vertices at time t. That is, |It| ≤ |V i

t | holds for all t ∈ N.

Proof. We prove the claim by showing that the following inductive construction defines a
family of injective mappings ϕt : It → V i

t :
Let C ∈ I1 be an inactive cluster. By definition C thus has to intersect an inactive
optimal cluster A ∈ V i

1 . Actually, there can only be one such cluster, as any other
optimal cluster that is hit would induce an edge incident to A in G1, making it active.
Set ϕ1(C) = A, so that OC = {ϕ1(C)}.
For t > 1 and C ∈ It we distinguish two cases: If there is no cluster in It−1 that is a
subset of C, we pick an arbitrary but fixed A ∈ OC ∩V i

t and set ϕt(C) = A. Otherwise, we
know that C must descend from some cluster D ∈ It−1 and we can set ϕt(C) = ϕt−1(D).
Since ϕt−1(D) ∈ V i

t−1 ⊂ V i
t by Lemma 19, this shows that ϕt really maps into V i

t .

Suppose that there exist two inactive clusters C, D ∈ I1 that are mapped to the same
inactive vertex A ∈ V i

1 . Then, by the construction of ϕ1, OC = {A} = OD shows that C and
D are actually fully contained in the same optimal cluster. The optimal cluster has diameter
at most 1 and so C and D would have already been merged in H1. As this is not possible,
ϕ1 has to be injective.

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:15

Now, let t ≥ 2 be arbitrary and assume ϕt−1 to be injective. We show that in that case
ϕt also has to be injective. Suppose on the contrary, that there exist two different clusters
C, D ∈ It with ϕt(C) = ϕt(D). We distinguish three cases.
Case 1: Both C and D descend from (i.e., contain) clusters C ′, D′ ∈ It−1 with ϕt(C) =

ϕt−1(C ′) and ϕt(D) = ϕt−1(D′), respectively. Then ϕt−1(C ′) = ϕt(C) = ϕt(D) =
ϕt−1(D′) entails that C ′ = D′, since ϕt−1 is assumed to be injective. Clearly, C ′ = D′

cannot end up being a subset of two different clusters in It and so we end up in a
contradiction.

Case 2: Neither C nor D descend from a cluster in It−1. In other words, C and D fully
descend from clusters in Ht−1 \ It−1 and so there exist clusters C ′, D′ ∈ Ht−1 \ It−1
contained in C and D, respectively, such that A = ϕt(C) = ϕt(D) ∈ OC′ ∩ OD′ .
Applying Lemma 21 yields the existence of a connected component Z in Gt−1 with
V (Z) ⊃ OC′ ∪ OD′ . We show that this connected component has cost at most t − 1.
In that case, C ′ and D′ should have already been merged in Ht−1; a contradiction.
To show that cost(Z) ≤ t − 1, consider the connected component Z ′ in Gt containing
A = ϕt(C) = ϕt(D) ∈ OC ∩ OD ∩ V i

t . Since A was chosen from a subset of V i
t , we know

from Lemma 19 that Z ′ is also a connected component in Gt−1 with cost(Z ′) ≤ t − 1.
Now, A ∈ V (Z) ∩ V (Z ′) shows that Z = Z ′ and so we are done.

Case 3: D contains a cluster D′ ∈ It−1, so that ϕt(D) = ϕt−1(D′) ∈ V i
t−1, whereas C does

not. (The symmetric case with the roles of C and D swapped is left out.) Since C

fully descends from Ht−1 \ It−1, we know that OC ⊆ V a
t−1. But this already yields a

contradiction: V a
t−1 ∋ ϕt(C) = ϕt(D) = ϕt−1(D′) ∈ V i

t−1.
This covers all possible cases, with each one ending in a contradiction. Hence ϕt has to be
injective and by induction this holds for all t ∈ N. ◀

Active clusters from Ht are nicely represented by the graph Gt as it is shown in Lemma 21.
We can indirectly bound the cost of active clusters by bounding the cost of the connected
components they are contained in.

▶ Lemma 23. Let Z be a connected component in Gt. If V (Z) ⊂ V a
t , we have cost(Z) ≤

|V (Z)|2.

Proof. Again, we prove this via an induction over t. For t = 1 and A, B ∈ V (Z) we want to
upper bound the distance between p ∈ A and q ∈ B. Let A = Q1, . . . , Qs = B be a simple
path connecting A and B in Z. We know by definition of G1 that for j = 1, . . . , s − 1 there
is a pair of points pj ∈ Qj and qj ∈ Qj+1 with dist(pj , qj) ≤ 1. Using the triangle inequality
we obtain

dist(p, q) ≤ dist(p, p1) +
s−2∑
j=1

(
dist(pj , qj) + dist(qj , pj+1)

)
+ dist(ps−1, qs−1) + dist(qs−1, q)

≤ 2s − 1.

Here we use that qj and pj+1 are in the same optimal cluster, thus the distance between
those points is at most one.

Since V (Z) contains only active vertices we have |V (Z)| ≥ 2. Using the above upper
bound on the distance between two points in

⋃
A∈V (Z) A we obtain

cost(Z) ≤ 2|V (Z)| − 1 ≤ |V (Z)|2.

APPROX/RANDOM 2021

18:16 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

For t > 1 let Z1, . . . , Zu denote the connected components in Gt−1 with V (Z) =⋃u
j=1 V (Zj). Let j, j′ ∈ {1, . . . , u}. We observe that V (Zj) ⊂ V (Z) ⊂ V a

t ⊂ V a
t−1. Thus we

obtain by induction that

cost(Zj) ≤ |V (Zj)|2. (1)

Suppose that ⌈cost(Zj)⌉ ≤ t − 1. Then V (Zj) ⊂ V i
t by definition, which is a contradiction to

V (Z) ∩ V i
t = ∅. So we must have

t ≤ ⌈cost(Zj)⌉. (2)

Combining (1) and (2) we obtain

t ≤
√

⌈cost(Zj)⌉⌈cost(Zj′)⌉ ≤
√

|V (Zj)|2|V (Zj′)|2 = |V (Zj)||V (Zj′)|. (3)

For A, B ∈ V (Z) we want to upper bound the distance between p ∈ A and q ∈ B. Let
A = Q1, . . . , Qs = B be a simple path connecting A and B in Z which enters and leaves
every connected component Zj for j ∈ {1, . . . , u} at most once. We divide the path into
several parts such that every part lies in one connected component from {Z1, . . . , Zu}. Let
1 = m1 < m2 < . . . < ml = s such that Qmj

. . . , Qmj+1−1 lie in one connected component
Z(j) ∈ {Z1, . . . , Zu} and Z(j) ̸= Z(j+1) for all j ∈ {1, . . . , l}. Since (Qmj−1, Qmj) ∈ Et we
know that there exists a cluster in Ht that intersects Qmj−1 and Qmj

, thus there is a pair
of points pj ∈ Qmj−1 and qj ∈ Qmj

such that dist(pj , qj) ≤ t. We obtain

dist(p, q) ≤
l−1∑
j=1

(
cost(Z(j)) + dist(pj , qj)

)
+ cost(Z(l)) ≤

l∑
j=1

(
|V (Z(j))|2 + t

)
≤

(l∑
j=1

|V (Z(j))|
)2

= |V (Z)|2.

For the second inequality we use (1) and dist(pj , qj) ≤ t. For the third inequality we use (3).
So we obtain the claimed upper bound on the cost of Z. ◀

We see that a connected component in Gk2 cannot contain two active clusters, yielding the
following upper bound.

▶ Lemma 24. At time t≤k2 the number of active clusters is less than or equal to the number
of active vertices. In other words, |Hk2 \ Ik2 | ≤ |V a

k2 |.

Proof. By Lemma 21 we know that every cluster C ∈ Hk2 \ Ik2 is fully contained in a
connected component ZC from Gk2 . We show that mapping any such C to an arbitrary
vertex in ZC yields an injective map φ : Hk2 \Ik2 ↪−→ V a

k2 . First, notice that φ is well-defined:
If ZC contains an inactive vertex, then all its vertices are inactive (Lemma 19), contradicting
the choice of C as active.

Suppose now that there are two different clusters C, C ′ ∈ Hk2 \ Ik2 that are mapped to
the same vertex φ(C) = φ(C ′). Then the connected components ZC and ZC′ , in which they
are embedded, already have to coincide (ZC = ZC′). But we have just shown (Lemma 23),
that cost(ZC) ≤ |V (ZC)|2 ≤ k2 and so C and C ′ would have already been merged in Hk2 .
As such the images of both cannot coincide and the map is injective. ◀

Together with the bound for the number of inactive clusters we are now able to prove the
theorem.

Proof of Theorem 17. Using Lemma 22&24 we obtain |Hk2 | = |Hk2 \ Ik2 | + |Ik2 | ≤
|V a

k2 | + |V i
k2 | = k, yielding cost(Ck) ≤ cost(Hk2) ≤ k2 cost(Ok). ◀

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:17

References
1 Marcel R. Ackermann, Johannes Blömer, Daniel Kuntze, and Christian Sohler. Analysis of ag-

glomerative clustering. Algorithmica, 69(1):184–215, 2014. doi:10.1007/s00453-012-9717-4.
2 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for

k-means and euclidean k-median by primal-dual algorithms. SIAM J. Comput., 49(4), 2020.
doi:10.1137/18M1171321.

3 Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh.
An improved approximation for k-median and positive correlation in budgeted optimization.
ACM Trans. Algorithms, 13(2):23:1–23:31, 2017. doi:10.1145/2981561.

4 Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. SIAM J. Comput., 33(6):1417–1440, 2004. doi:10.1137/
S0097539702418498.

5 Aparna Das and Claire Kenyon-Mathieu. On hierarchical diameter-clustering and the supplier
problem. Theory Comput. Syst., 45(3):497–511, 2009. doi:10.1007/s00224-009-9186-6.

6 Sanjoy Dasgupta and Philip M. Long. Performance guarantees for hierarchical clustering. J.
Comput. Syst. Sci., 70(4):555–569, 2005. doi:10.1016/j.jcss.2004.10.006.

7 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci., 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

8 Anna Großwendt and Heiko Röglin. Improved analysis of complete-linkage clustering. Al-
gorithmica, 78(4):1131–1150, 2017. doi:10.1007/s00453-017-0284-6.

9 Anna Großwendt, Heiko Röglin, and Melanie Schmidt. Analysis of ward’s method. In
Timothy M. Chan, editor, Proc. of the Thirtieth Annu. ACM-SIAM Symp. on Discrete
Algorithms, SODA, pages 2939–2957. SIAM, 2019. doi:10.1137/1.9781611975482.182.

10 Anna-Klara Großwendt. Theoretical Analysis of Hierarchical Clustering and the Shadow Vertex
Algorithm. PhD thesis, University of Bonn, 2020. URL: http://hdl.handle.net/20.500.
11811/8348.

11 D. Ellis Hershkowitz and Gregory Kehne. Reverse greedy is bad for k-center. Inf. Process.
Lett., 158:105941, June 2020. doi:10.1016/j.ipl.2020.105941.

12 Dorit S. Hochbaum. When are np-hard location problems easy? Ann. Oper. Res., 1(3):201–214,
1984. doi:10.1007/BF01874389.

13 Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem.
Math. Oper. Res., 10(2):180–184, 1985. doi:10.1287/moor.10.2.180.

14 Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems. Discret.
Appl. Math., 1(3):209–215, 1979. doi:10.1016/0166-218X(79)90044-1.

15 Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P. Williamson. A
general approach for incremental approximation and hierarchical clustering. SIAM J. Comput.,
39(8):3633–3669, 2010. doi:10.1137/070698257.

16 Joe H. Ward, Jr. Hierarchical grouping to optimize an objective function. J. of the Am. Stat.
Assoc., 58:236–244, 1963. doi:10.1080/01621459.1963.10500845.

A Single Linkage

Let (Ck)n
i=1 be the hierarchical clustering computed by single linkage on (P, dist). Recall

that Ck−1 arises from Ck by merging two clusters A, B ∈ Ck that minimize dist(A, B).
We first compare the radius of Ck to the cost of an optimal k-center clustering O.

We introduce a graph G whose vertices are the optimal clusters V (G) = O and whose
edges E(G) = {{O, O′} ⊆ O | dist(O, O′) ≤ 2 cost(O)} connect all pairs of optimal clusters
O, O′ ∈ O with distance at most twice the optimal radius.

We make a similar construction to compare the diameter of Ck to the cost of an optimal
k-diameter clustering O ′. We consider the graph G′ with V (G′) = O ′ where two clusters in
O ′ are connected via an edge if their distance is at most cost(O ′).

APPROX/RANDOM 2021

https://doi.org/10.1007/s00453-012-9717-4
https://doi.org/10.1137/18M1171321
https://doi.org/10.1145/2981561
https://doi.org/10.1137/S0097539702418498
https://doi.org/10.1137/S0097539702418498
https://doi.org/10.1007/s00224-009-9186-6
https://doi.org/10.1016/j.jcss.2004.10.006
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1007/s00453-017-0284-6
https://doi.org/10.1137/1.9781611975482.182
http://hdl.handle.net/20.500.11811/8348
http://hdl.handle.net/20.500.11811/8348
https://doi.org/10.1016/j.ipl.2020.105941
https://doi.org/10.1007/BF01874389
https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.1016/0166-218X(79)90044-1
https://doi.org/10.1137/070698257
https://doi.org/10.1080/01621459.1963.10500845

18:18 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

To estimate the cost of a single linkage cluster C ∈ Ck we look at the optimal clusters hit
by C. The next lemma shows that for any two points in C we can find a path connecting
them that passes through a chain of optimal clusters with distance at most 2 cost(O) or
cost(O ′) when considering the radius or diameter, respectively. One can already anticipate
that this gives an upper bound of O(k) on the radius or diameter of any such cluster C. In
Figure 3 we see an example of such a cluster C and the optimal clusters hit by C.

▶ Lemma 25. Let C ∈ Ct be a cluster computed by single linkage at a time step t ≥ k.
Then the graphs G[OC] and G′[O ′

C] induced by the vertex set of optimal clusters hit by C are
connected.

Proof. We prove the lemma for G[OC] by induction. At the beginning (t = n) the lemma
obviously holds, since any cluster contained in Cn is a point and thus hits only one single
optimal cluster. Assume now that the claim holds for t > k. By the pidgeonhole principle
there must exist two clusters C, C ′ ∈ Ct with two points c ∈ C and c′ ∈ C ′ lying in the same
optimal cluster O ∈ O. We know that dist(C, C ′) ≤ 2 cost(O) ≤ 2 cost(O). But this value
is exactly the objective that single linkage minimizes, so we know in particular that this
upper bound also holds for the distance between the clusters D, D′ chosen by single linkage.
Combining this with the induction hypothesis that both G[OD] and G[OD′] are connected
finishes the proof. One proves analogously that G′[O ′

C] is connected. ◀

As we see in Figure 3 this already yields an upper bound of 2k cost(O ′) on the diameter of
C. We estimate the radius of C by looking at the paths going through optimal clusters in OC

that are at distance at most 2 cost(O) from one another. Choosing the center appropriately
and uncoiling these paths in our original space P yields our upper bound of (2k + 2) cost(O).

▶ Theorem 1. Let (Ck)n
k=1 be the hierarchical clustering computed by single linkage on

(P, dist) and let Ok be an optimal clustering for k-center or k-diameter, respectively. We
have for all 1 ≤ k ≤ n

1. cost(Ck) ≤ (2k + 2) · cost(Ok) for the k-center cost
2. cost(Ck) ≤ 2k · cost(Ok) for the k-diameter cost.

Proof. We prove the statement for k-center. Fix an arbitrary time step 1 ≤ k ≤ n and denote
O = Ok. Let C ∈ Ck be an arbitrary cluster and P a longest simple path in G[OC]. Choose
as center for C an arbitrary vertex c ∈ C ∩ O from an optimal cluster O lying in the middle
of P . Note that by this choice every other vertex in G[OC] is reachable from O by a path of
length at most k

2 . Uncoiling such paths in P gives us an upper bound of 2(k + 1) cost(O)
for the distance between c and any other point z ∈ C as follows: If Oz ∈ O is the optimal
cluster containing z, then by choice of O, there exists a path O = O1, . . . , Oℓ+1 = Oz in
G[OC] of length ℓ ≤ k

2 connecting them. That means, for each i = 1, . . . , ℓ there exist points
xi ∈ Oi, yi+1 ∈ Oi+1 such that dist(xi, yi+1) ≤ 2 cost(O). Hence

dist(c, z) ≤ dist(c, x1) +
ℓ−1∑
i=1

(dist(xi, yi+1) + dist(yi+1, xi+1))

+ dist(xℓ, yℓ+1) + dist(yℓ+1, z)
≤ 2(2ℓ + 1) cost(O) ≤ 2(k + 1) cost(O).

Using Lemma 25 one proves the statement for k-diameter analogously. ◀

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:19

· · · · · ·

x y

c

A1

A⌈ ℓ
2 ⌉

Aℓ

C

· · · · · ·

x y
A1 Aℓ

C

Figure 3 Cluster C hits the optimal clusters A1, . . . , Aℓ with dist(Ai, Ai+1) ≤ 2 cost(O) when
considering the radius on the left and dist(Ai, Ai+1) ≤ cost(O ′) when considering the diameter on
the right. In the left picture, we see that choosing center c in A⌈ ℓ

2 ⌉ leads to radius ≤ 2(ℓ + 1) cost(O).
Similarly the diameter of C in the right picture is at most 2ℓ cost(O).

B A Lower Bound for Complete Linkage without Bad Ties

In this section we focus on modifying the instance (V (Pk), dist) such that merging two
ℓ-graphs Gℓ, G′

ℓ which are part of the same (ℓ + 1)-graph is slightly cheaper than performing
any other merge in a clustering consisting of all ℓ-graphs.

B.1 Diameter-Based Cost

We explain how to adjust the construction of the k-components for the diameter. Let
ϵ ∈ (0, 1

2). The definition of K1 stays the same. As before a k-component is constructed
from two copies K

(0)
k−1, K

(1)
k−1 of the (k − 1)-component by taking the disjoint union of the

corresponding graphs and increasing the level of each point in K
(1)
k−1 by one. Here we do

not add an edge of weight k − 1 between the unique point s ∈ V (G(0)
k−1) with level 1 and

t ∈ V (G(1)
k−1) with level k. Instead we complete Gk by adding edges of weight (k − 1)(1 − ϵ)

between x ∈ V (G(0)
k−1) and y ∈ V (G(1)

k−1) if they are not on the same level, i.e., ϕk(x) ̸= ϕk(y).
The instance Pk is then constructed from k-copies K

(1)
k , . . . , K

(k)
k of the k-component Kk.

We take the disjoint union of the corresponding k-graphs G
(1)
k , . . . , G

(k)
k and connect them

by adding edges {x, y} of weight 1 for every two points x ∈ V (G(i)
k) and y ∈ V (G(j)

k) with
ϕ

(i)
k (x) = ϕ

(j)
k (y).

We show that the clustering computed by complete linkage on (V (Pk), dist) at time
t≤ℓ(1−ϵ) consists exactly of the (ℓ + 1)-graphs that make up the instance.

▶ Lemma 26. The distance between two points x, y ∈ V (Pk) is at least |ϕk(x)−ϕk(y)|(1− ϵ).

Proof. By the inductive construction of the components, an edge which crosses w levels costs
at least w(1 − ϵ). Hence the distance between x and y is at least |ϕk(x) − ϕk(y)|(1 − ϵ). ◀

As before we use the previous lemma to show that the diameter of any ℓ-graph in Pk is
(ℓ − 1)(1 − ϵ).

▶ Lemma 27. Let Gℓ be an ℓ-graph contained in Pk. We have cost(Gℓ) = (ℓ − 1)(1 − ϵ).

Proof. We prove the upper bound cost(Gℓ) ≤ (ℓ − 1)(1 − ϵ) by induction. The 1-graphs are
points and so the claim follows trivially for ℓ = 1. Assume now that we have shown the claim
for ℓ − 1. Let Gℓ be an ℓ-graph and s, t ∈ V (Gℓ) points such that cost(Gℓ) = dist(s, t). If

APPROX/RANDOM 2021

18:20 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

these points lie in the same graph, say G
(0)
ℓ−1, of the two (ℓ − 1)-graphs G

(0)
ℓ−1 and G

(1)
ℓ−1 that

make up Gℓ, then

dist(s, t) ≤ cost(G(0)
ℓ−1) ≤ (ℓ − 2)(1 − ϵ) < (ℓ − 1)(1 − ϵ)

by induction and we are done. Otherwise we may assume that s ∈ V (G(0)
ℓ−1) and t ∈ V (G(1)

ℓ−1).
We distinguish two cases. If ϕk(s) = ϕk(t) these points are connected by an edge of weight
one by construction. Notice that an ℓ-graph does not contain points with the same level if
ℓ ≤ 2. Using ϵ ≤ 1

2 and ℓ ≥ 3 we obtain

dist(s, t) = 1 ≤ (ℓ − 1)(1 − ϵ).

If s and t are on different levels there is an edge of weight (ℓ − 1)(1 − ϵ) between s and t by
construction. Thus we obtain in all cases

cost(Gℓ) = dist(s, t) ≤ (ℓ − 1)(1 − ϵ).

To see the lower bound cost(Gℓ) ≥ (ℓ − 1)(1 − ϵ), we apply Lemma 26 to the unique point
s ∈ V (Gℓ) with ϕℓ(s) = 1 and the unique point t ∈ V (Gℓ) with ϕℓ(t) = ℓ. This shows that
cost(Gℓ) ≥ dist(s, t) ≥ (ℓ − 1)(1 − ϵ). ◀

We show that complete linkage must reconstruct these components as clusters.

▶ Lemma 28. Complete linkage must merge clusters on (V (Pk), dist) in such a way that for
all ℓ < k, the clustering Hℓ(1−ϵ) consists exactly of the (ℓ + 1)-graphs that make up Pk.

Proof. We prove the claim by induction. Complete linkage always starts with every point in
a separate cluster. Since those are exactly the 1-graphs and any merge of two points costs
at least (1 − ϵ), the claim follows for ℓ = 0. Suppose now that H(ℓ−1)(1−ϵ) consists exactly
of the ℓ-graphs of the instance. Consider two ℓ-graphs Gℓ ̸= G′

ℓ contained in the current
clustering. We compute the cost of merging Gℓ with G′

ℓ. For this purpose we distinguish
whether they are contained in the same (ℓ + 1)-graph or not.

Case 1: If they are contained in the same (ℓ + 1)-graph Gℓ+1 merging Gℓ with G′
ℓ results in

Gℓ+1. We obtain by Lemma 27, that cost cost(Gℓ+1) = ℓ(1 − ϵ).
Case 2: If they are not contained in the same (ℓ + 1)-graph, we show that merging Gℓ with

G′
ℓ costs more than ℓ(1 − ϵ). We make the following observations.

1. The edges connecting x ∈ V (Gℓ) and y ∈ V (G′
ℓ) with ϕk(x) ̸= ϕk(y) are of weight

≥ (ℓ + 1)(1 − ϵ).
2. There exist s ∈ V (Gℓ) and t ∈ V (G′

ℓ) with |ϕk(s) − ϕk(t)| ≥ ℓ − 1.
The last observation follows from the fact that each of the graphs contains two points
whose difference in levels is exactly ℓ − 1.
We prove that dist(s, t) > ℓ(1 − ϵ) and therefore merging Gℓ with G′

ℓ costs more than
ℓ(1− ϵ). Any shortest path connecting s and t in Pk must contain an edge {u, w} between
a point u ∈ V (Gℓ) and a point w ∈ V (G′

ℓ). By above observation this edge is either of
weight ≥ (ℓ + 1)(1 − ϵ) or u and w are on the same level and the edge is of weight 1. In
the first case we conclude

dist(s, t) ≥ (ℓ + 1)(1 − ϵ) > ℓ(1 − ϵ).

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:21

In the second case we obtain that

dist(s, t) = dist(s, u) + 1 + dist(w, t)
≥ |ϕk(s) − ϕk(u)|(1 − ϵ) + 1 + |ϕk(w) − ϕk(t)|(1 − ϵ)
= |ϕk(s) − ϕk(t)|(1 − ϵ) + 1
≥ (ℓ − 1)(1 − ϵ) + 1
> ℓ(1 − ϵ).

We see that Hℓ(1−ϵ) must consists exactly of the (ℓ + 1)-graphs of Pk. ◀

Lemma 28 shows that H(k−1)(1−ϵ) consists of all the k-graphs that make up Pk. There are
exactly k of them, thus the k-clustering produced by complete linkage costs (k − 1)(1 − ϵ).

▶ Corollary 29. However the tie-breaks are resolved, complete linkage computes a k-clustering
on (V (Pk), dist) with diameter (k − 1)(1 − ϵ) while the optimal k-clustering has diameter 1.

B.2 Radius-Based Cost
We explain how to adjust the construction of the k-components for the radius. Let ϵ ∈ (0, 1

2).
The definition of K1 does not change. As before a k-component is constructed from two copies
K

(0)
k−1, K

(1)
k−1 of the (k−1)-component by taking the disjoint union of the corresponding graphs

and increasing the level of each point in K
(1)
k−1 by one. We complete Gk by adding edges

between x ∈ V (G(0)
k−1) and y ∈ V (G(1)

k−1) if ϕk(x) ̸= ϕk(y) and we assign this edge a weight
of ⌈ k

2 ⌉(1 − ϵ) if |ϕk(x) − ϕk(y)| ≤ ⌈ k
2 ⌉ − 1 and otherwise a weight of |ϕk(x) − ϕk(y)|(1 − ϵ).

As before the instance Pk is constructed from k-copies K
(1)
k , . . . , K

(k)
k of the k-component

Kk. We take the disjoint union of the corresponding k-graphs G
(1)
k , . . . , G

(k)
k and connect

them by adding edges {x, y} of weight 1 for every two points x ∈ V (G(i)
k) and y ∈ V (G(j)

k)
with ϕ

(i)
k (x) = ϕ

(j)
k (y). We observe that Lemma 26 still holds on the adjusted instance. Also

notice that the diameter of an ℓ-graph is still upper bounded by (ℓ − 1)(1 − ϵ).

▶ Lemma 30. Let G2ℓ be any of the 2ℓ-graphs that constitute Pk for 1 ≤ ℓ ≤ k
2 . It holds that

cost(G2ℓ) = ℓ(1 − ϵ). Furthermore let G′
2ℓ be a second 2ℓ-graph which is not contained in the

same 2(ℓ + 1)-graph as G2ℓ. Any cluster containing G2ℓ and G′
2ℓ costs at least ℓ(1 − ϵ) + 1.

Proof. We know that G2ℓ contains points s and t with |ϕk(s) − ϕk(t)| = 2ℓ − 1. Thus for
any x ∈ V (Pk) we have max{|ϕk(s) − ϕk(x)|, |ϕk(t) − ϕk(x)|} ≥ ℓ. By Lemma 26 we know
that max{dist(s, x), dist(t, x)} ≥ ℓ(1 − ϵ) and therefore cost(G2ℓ) ≥ ℓ(1 − ϵ).

To prove the upper bound suppose that G2ℓ covers the levels λ up to λ + 2ℓ − 1 in Pk.
Consider the unique (ℓ + 1)-graph Hℓ+1 contained in G2ℓ covering the levels λ + ℓ − 1 to
λ + 2ℓ − 1. Let c be the unique point in Hℓ+1 with level λ + ℓ − 1. Remember that the
diameter of Hℓ+1 is at most ℓ(1 − ϵ), so any point in Hℓ+1 is at distance ≤ ℓ(1 − ϵ) to
c. Consider now a point x ∈ V (G2ℓ)\V (Hℓ+1). We know that ϕk(x) < λ + 2ℓ − 1. Thus
|ϕk(x) − ϕk(c)| ≤ ℓ − 1. By construction there exists an edge of weight at most ℓ(1 − ϵ)
between x and c and thus dist(x, c) ≤ ℓ(1 − ϵ).

It is left to show that any cluster containing G2ℓ and G′
2ℓ costs at least ℓ(1 − ϵ) + 1.

Let y ∈ V (Pk) and let H2(ℓ+1) be the 2(ℓ + 1)-graph containing y. Assume without
loss of generality that G2ℓ is not contained in H2(ℓ+1). Let x ∈ V (G2ℓ) be a point with
|ϕk(x) − ϕk(y)| ≥ ℓ. We claim that dist(x, y) ≥ (ℓ − 1)(1 − ϵ) + 1. A shortest path connecting
x and y must contain an edge {u, w} with u ∈ V (Pk)\V (H2(ℓ+1)) and w ∈ V (H2(ℓ+1)). We

APPROX/RANDOM 2021

18:22 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

know by construction that either ϕk(u) = ϕk(w), or the edge weights at least (ℓ + 2)(1 − ϵ).
In the first case we use Lemma 26 and obtain

dist(x, y) = dist(x, u) + dist(u, w) + dist(w, y)
≥ |ϕk(x) − ϕk(u)|(1 − ϵ) + 1 + |ϕk(w) − ϕk(y)|(1 − ϵ)
= |ϕk(x) − ϕk(y)|(1 − ϵ) + 1
≥ ℓ(1 − ϵ) + 1

and in the second case we obtain

dist(x, y) ≥ (ℓ + 2)(1 − ϵ) ≥ ℓ(1 − ϵ) + 1. ◀

This immediately leads the following results.

▶ Corollary 31. Complete linkage must merge clusters on (V (Pk), dist) in such a way that
for all 1 ≤ ℓ ≤ k

2 , the clustering Hℓ(1−ϵ) consists exactly of the 2ℓ-graphs that make up Pk.

▶ Corollary 32. However the tie-breaks are resolved, complete linkage computes a k-clustering
on (V (Pk), dist) with radius k

2 (1 − ϵ), while the optimal k-clustering has radius 1.

C An Upper Bound for Radius-Based Cost

▶ Corollary 11. For all i ∈ N+ and x ≥ 0 it holds that |Hx+i| ≤ k + 1
2i (|Hx| − k).

Proof. First, we consider what happens when we increase the cost by 1. We fix an arbitrary
x′ ≥ 0. Lemma 10 shows that at most k clusters from Hx′ are left untouched, while the
remaining |Hx′ | − k clusters have to be merged with at least one other cluster (thus at least
halving the number of those clusters) to get to Hx′+1. This yields a bound of

|Hx′+1| ≤ k + 1
2(|Hx′ | − k).

Now, the case for general i ∈ N follows by a straightforward induction. We have just
shown that the claim is true for i = 1, where we set x′ = x. For the induction step suppose
that

|Hx+i−1| ≤ k + 1
2i−1 (|Hx| − k).

Substituting this into the inequality

|Hx+i| ≤ k + 1
2(|Hx+i−1| − k),

derived from the first part of our proof with x′ = x + i − 1, yields

|Hx+i| ≤ k +
k + 1

2i−1 (|Hx| − k) − k

2 = k + 1
2i

(|Hx| − k)

as claimed. ◀

	1 Introduction
	2 Preliminaries
	3 Approximation Guarantee of Single Linkage
	4 Lower Bounds for Complete Linkage
	4.1 A Lower Bound for Diameter-Based Cost
	4.2 A Lower Bound for Radius-Based Costs

	5 An Upper Bound for Complete Linkage
	5.1 An Upper Bound for Radius-Based Cost
	5.2 An Upper Bound for Diameter-Based Cost

	A Single Linkage
	B A Lower Bound for Complete Linkage without Bad Ties
	B.1 Diameter-Based Cost
	B.2 Radius-Based Cost

	C An Upper Bound for Radius-Based Cost

