
Approximation Algorithms for Demand Strip
Packing
Waldo Gálvez #

Technische Universität München, Germany

Fabrizio Grandoni #

IDSIA, USI-SUPSI, Lugano, Switzerland

Afrouz Jabal Ameli #

IDSIA, USI-SUPSI, Lugano, Switzerland

Kamyar Khodamoradi #

Universitä Würzburg, Germany

Abstract
In the Demand Strip Packing problem (DSP), we are given a time interval and a collection of tasks,
each characterized by a processing time and a demand for a given resource (such as electricity,
computational power, etc.). A feasible solution consists of a schedule of the tasks within the
mentioned time interval. Our goal is to minimize the peak resource consumption, i.e. the maximum
total demand of tasks executed at any point in time.

It is known that DSP is NP-hard to approximate below a factor 3/2, and standard techniques
for related problems imply a (polynomial-time) 2-approximation. Our main result is a (5/3 + ε)-
approximation algorithm for any constant ε > 0. We also achieve best-possible approximation
factors for some relevant special cases.

2012 ACM Subject Classification Theory of computation → Packing and covering problems; Theory
of computation → Scheduling algorithms

Keywords and phrases Strip Packing, Two-Dimensional Packing, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.20

Category APPROX

Related Version Full Version: https://arxiv.org/pdf/2105.08577.pdf [17]

Funding Waldo Gálvez: Supported by the European Research Council, Grant Agreement No. 691672,
project APEG.
Fabrizio Grandoni: Partially supported by the SNF Excellence Grant 200020B_182865.
Afrouz Jabal Ameli: Partially supported by the SNF Excellence Grant 200020B_182865.
Kamyar Khodamoradi: Partially supported by Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - Project number 399223600. This project was carried out in part when the
author was a postdoctoral researcher at IDSIA, USI-SUPSI, Switzerland.

1 Introduction

Consider the following scenario: we are given a time interval and a collection of tasks, where
each task is characterized by a processing time (no longer than the time interval) and a
demand for a given resource. A feasible solution consists of a schedule of all the tasks within
the mentioned time interval, and our goal is to minimize the peak resource consumption,
i.e. the maximum total demand of tasks scheduled at any point in time. It is easy to
imagine concrete applications of this scenario; for example, the considered resource might be
electricity, bandwidth along a communication channel, or computational power.

© Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Kamyar Khodamoradi;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 20; pp. 20:1–20:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:galvez@in.tum.de
https://orcid.org/0000-0002-6395-3322
mailto:fabrizio@idsia.ch
mailto:afrouz@idsia.ch
mailto:kamyar.khodamoradi@uni-wuerzburg.de
https://orcid.org/0000-0003-1289-6839
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.20
https://arxiv.org/pdf/2105.08577.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Approximation Algorithms for Demand Strip Packing

The above scenario can be naturally formalized via the following Demand Strip Packing
problem (DSP). We interpret the time interval as a path graph G = (V, E) with W edges,
where each edge is interpreted as a time slot where we can start to process a task. Let
I = {1, . . . , n} be the set of tasks, where task i has integer processing time (or width)
w(i) ∈ [1, W] and integer demand (or height) h(i) ≥ 0. A feasible solution (or schedule of the
tasks) consists of a subpath P (i) of G for each i ∈ I containing precisely w(i) edges. Our
goal is to minimize the peak resource consumption (or simply peak) which is defined as

max
e∈E

∑
i∈I:e∈P (i)

h(i).

A problem closely related to DSP is the Geometric Strip Packing problem (GSP)1, which
can be interpreted as a variant of DSP with an extra geometric packing constraint. Here
we are given an axis-aligned half-strip of integer width W (and unbounded height) and a
collection of open rectangles (or tasks), where each rectangle i has integer width w(i) ∈ [1, W]
and integer height h(i) ≥ 0. Our goal is to find an axis-aligned non-overlapping packing
of all the rectangles within the strip that minimizes the peak height, i.e. the maximum
height spanned by any rectangle. Notice that one can reinterpret DSP as a variant of GSP,
where the processing time and demand of each task correspond to the width and height of a
rectangle, resp. (this also motivated our notation). A critical difference w.r.t. GSP however
is that DSP does not require to pack such rectangles geometrically2.

Obviously, a feasible solution to GSP induces a feasible solution to DSP of no larger
peak. The converse is however not true (see Figure 1), and consequently it makes sense
to design algorithms specifically for DSP. We remark that there are applications that are
better formalized by GSP than by DSP. In particular, this happens when each task requires
a contiguous and fixed portion of the considered resource. For example, we might need to
allocate consecutive frequencies or memory locations to each task: changing this allocation
over time might be problematic. Another natural application of GSP is cutting rectangular
pieces from a roll of some raw material (e.g., paper, metal, or leather). However, for other
applications, the geometric constraint in GSP does not seem to be necessary, and hence it
makes sense to drop it (i.e., to rather consider DSP): this might lead to better solutions,
possibly via simpler and/or more efficient algorithms. Consider for example the minimization
of the peak energy consumption in smart-grids [31, 44, 39].

A straightforward reduction to the NP-complete Partition problem (similar to the one
known for GSP, see also [43]) shows that DSP is NP-hard to approximate below a factor
3/2. Constant approximation algorithms for DSP are given in [43, 45]. However, a better
2-approximation can be obtained by applying an algorithm by Steinberg [42] which was
developed for GSP: the reason is that Steinberg uses area-based lower bounds that extend
directly from GSP to DSP.

1.1 Our Results and Techniques
Our main result is as follows3.

▶ Theorem 1. For any constant ε > 0, there is a polynomial-time deterministic (5/3 + ε)-
approximation algorithm for DSP.

1 GSP is usually simply called Strip Packing in the literature. We added the word “geometric” to better
highlight the differences between the two problems.

2 Or, equivalently, we can split such rectangles into unit-width vertical slices, and then pack such slices
geometrically so that slices of the same rectangle appear consecutively in a horizontal sense.

3 The same result as in Theorem 1 was achieved independently in [15]; their approach is however
substantially different from ours.

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:3

0

1

2

3

4

5

0 1 2 3 4 5 6 7

3

1

2

4

6
7

8

5

5

(a) DSP solution of peak 4 whose correspond-
ing optimal GSP solution has peak 5.

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2

3 4

5

6

8

9

10

11

7

7

(b) Square-DSP solution of peak 11 whose corres-
ponding optimal GSP solution has peak at least 12.

Figure 1 Gap instances between DSP and GSP.

The above approximation ratio matches the best-known result for GSP from Harren
et al. [23], achieved using dynamic programming based techniques to place almost all
the rectangles except for a set of very small total area, followed by a careful and quite
involved case distinction to pack these remaining rectangles. However, we remark that our
algorithm is entirely different, and in particular it does not compute a geometric packing of
tasks/rectangles. Furthermore, our analysis is substantially simpler. Notice that the result
in [23] does not imply a (5/3 + ε)-approximation for DSP since some lower bounds used in
their proofs do not hold necessarily for DSP.

We also achieve improved approximation algorithms for relevant special cases of DSP.
We obtain a PTAS for the special case where the demand of each task is much lower than
the optimal peak OPT . This captures applications where each job consumes a relatively
small amount of the available resource (think about the electricity consumption of large-scale
systems such as cities or countries).

▶ Theorem 2. Given ε > 0 small enough, there exists δ > 0 and a polynomial time algorithm
such that, given an instance of DSP with optimal value OPT and consisting solely of tasks
having height at most δ · OPT , it computes a (1 + O(ε))-approximate solution.

Motivated by the special case of GSP and related problems where all rectangles are
squares, we also study the special case of DSP where h(j) = w(j) for all tasks (the Square-
DSP problem). The 3/2−ε hardness of approximation extends to this case (see Appendix A),
and we are still able to show that there is a gap between DSP and GSP (see Figure 1b and
Section 5). However, in this case, we are able to provide an optimal 3/2-approximation. We
defer the proof of the following theorem to the full version of the paper [17].

▶ Theorem 3. There is a deterministic polynomial-time 3/2-approximation for Square-
DSP.

At a high level, our approach is based on a classification of tasks into groups depending
on their heights and widths. We carefully schedule some groups first, so that their demand
profile has a convenient structure. Here, by demand profile we simply mean the total demand
of the already scheduled tasks over each edge. The structure of the demand profile allows us
to pack the remaining groups (intuitively, on top of such profile) in a convenient way. We
critically exploit the fact that, differently from GSP, we only care about the total demand on
each edge. This allows us to adapt techniques from Bin Packing or Makespan Minimization
(see Lemmas 6 and 12).

APPROX/RANDOM 2021

20:4 Approximation Algorithms for Demand Strip Packing

1.2 Related Work

GSP generalizes famous problems such as Makespan Minimization on identical machines [12]
(here all the rectangles have width 1 and W corresponds to the number of processors) or Bin
Packing [13] (here all the rectangles have height 1 and the height of the solution corresponds
to the number of bins). Consequently, it is known that for any ε > 0, there is no (3/2 − ε)-
approximation for the problem unless P=NP. The first non-trivial approximation algorithm
for GSP, with an approximation ratio of 3, was given by Baker, Coffman, and Rivest [5].
After a series of very technical and involved refinements [14, 41, 40, 42, 24], the current best
approximation factor for the problem is (5/3+ε) due to Harren et al. [23]. GSP has been also
studied in the pseudopolynomial setting, i.e., when W = nO(1) [30, 38, 1, 20, 25, 28, 27] and
in the asymptotic setting, i.e. when the optimal value is assumed to be large [32, 29]. In both
cases, approximation algorithms and almost matching lower bounds have been developed.

There is a very rich line of research on generalizations and variants of DSP such as online
versions [34, 35], tasks with availability constraints or time windows [45, 44, 31], a mixture
of preemptable and non-preemptable tasks [39] or generalized cost functions based on the
demand at each edge [10, 35]. The variant of DSP with the extra feature of interrupting the
tasks is known as Strip Packing with Slicing, for which there exists an FPTAS [3]; on
the other hand, the case of DSP is still hard to approximate by a factor better than 3/2 as
noted by Tang et al. [43].

Another problem closely related to DSP is Parallel Job Scheduling. Here we are
given a set of jobs and m machines, where each job is characterized by a processing time and
a number of machines where the job must be processed simultaneously (these machines do
not need to be contiguous), and the goal is to minimize the makespan. The same hardness of
approximation applies in this case, but interestingly an almost tight (3/2 + ε)-approximation
algorithm has been developed [26] and also a pseudopolynomial (1 + ε)-approximation is
known [30]. See [16] for a comprehensive survey on the problem and its many variants.

It is also worth mentioning another case where the distinction between geometric and
demand-based packing plays a substantial role: the Unsplittable Flow on a Path
problem (UFP) [4, 22, 7, 21] and the Storage Allocation problem (SAP) [36, 37]. In
both problems, we are given a path graph with edge capacities, and tasks specified by a
subpath, a demand (or height), and a profit. In both problems, the goal is to select a
maximum profit subset of tasks that can be packed while respecting edge capacities. For
UFP, analogously to DSP, we require that the total demand of the selected tasks on each
edge e is at most the capacity of e. For SAP, analogously to GSP, we interpret each task as
a rectangle (with the width given by its number of edges) and, intuitively, we need to pack
such rectangles non-overlappingly below the capacity profile. Notice that, differently from
DSP and GSP, here the path associated with each task is fixed in the input. Furthermore,
not all the tasks need to be packed.

Finally, in the Dynamic Storage Allocation problem (DSA) the setting is analogous
to SAP but, similarly to GSP, we are asked for an embedding of all the rectangles minimizing
the peak height, i.e. the maximum height reached by any rectangle (in particular, there are
no edge capacities). Notice that in DSA a lower bound is provided by the peak demand,
i.e. the maximum over the edges e of the sum of the heights of rectangles whose path uses
e. Buchsbaum et al. [9] studied in detail the relation between the optimal peak height and
the peak demand, providing examples where these values differ by a constant factor. The
authors also present a (2 + ε)-approximation for DSA that provides guarantees even when
compared with the peak demand.

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:5

1.3 Organization
We start by introducing in Section 2 some useful definitions and known results. As a warm-up,
in Section 3 we present a very simple 2-approximation for DSP that allows us to illustrate part
of our ideas. Then in Section 4 we present our main result, namely a (5/3 + ε)-approximation
for DSP. Finally, in Section 5 we provide details about the gap instances in Figure 1. The
results for special cases of DSP (Theorems 2 and 3) can be found in Appendix B and the full
version of this paper [17] respectively.

2 Preliminaries

Let e1, . . . , eW be the edges of G from left to right. Recall that a feasible solution or schedule
P (·) specifies a subpath P (i) of G of length w(i) for each task i. Sometimes it is convenient
to consider a partial schedule P (·) which specified the path of a subset I ′ of tasks only (it
is convenient to consider P (i) as an empty path for the remaining tasks). We call this a
schedule of I ′.

Let us define, for a given subset I ′ of tasks, hmax(I ′) := maxi∈I′ h(i) and h(I ′) :=∑
i∈I′ h(i). We define analogously wmax(I ′) and w(I ′) w.r.t. widths. Let also a(I ′) :=∑
i∈I′ a(i), where a(i) := h(i)·w(i) corresponds to the area of task i. We will start by showing

a couple of simple lower bounds for the optimal peak OPT that will be used extensively
along this work.

▶ Proposition 4. OPT ≥ max{hmax(I),
∑

i∈I:w(i)>W/2 h(i), a(I)/W}.

Proof. Since the total demand of any edge used by the task of largest height is at least
hmax(I), it holds that OPT ≥ hmax(I). Also notice that, in any scheduling, the tasks of
width larger than W/2 use the edge e⌈W/2⌉, being then the total demand of this edge (and
consequently OPT) at least

∑
i∈I:w(i)>W/2 h(i). Finally, the last bound follows from an

averaging argument and the fact that the sum over the edges of the total demand on each
edge is equal to a(I). ◀

2.1 Demand Profile and Left-Pushing
Consider a schedule P (·) of I ′ ⊆ I. We define the demand profile h(P) of P (·) as the
vector that stores for each edge e the total demand

∑
i∈I′:e∈P (i) h(i) of the tasks whose path

contains e (if the path of i is not specified, then i does not contribute to the demand profile).
Since W can be exponential in n, we need to store the demand profile in a more efficient
way. This can be done by noticing that the number of times the total demand changes from
an edge to the next one is at most 2n (when a task starts or finishes). Hence we just need
to store the edges where the demand profile changes value and the corresponding demand.
In particular, we can efficiently store the demand profile. Furthermore, we can efficiently
update it, e.g., when augmenting an existing schedule by specifying the path P (i) of one
more task i, or when we modify the value of some P (i) by shifting tasks as we will discuss
later.

Given a schedule P (·) of I ′ ⊆ I and i ∈ I ′, a left-shifting of i in P (·) is the operation
of replacing P (i) with the path P ′(i) of length w(i) that starts one edge to the left of
P (i). Clearly, this operation is allowed only if P (i) does not start at the leftmost edge
of G. Consider a schedule P (·) with peak π, and let π′ ≥ π. A π′-left-pushing of P (·) is
the operation of iteratively performing left-shiftings in any order until it is not possible
to continue while guaranteeing that the peak is always at most π′. We will critically use
left-pushings in our algorithms. Notice that a left-pushing can be computed in polynomial
time (see Appendix B for some more details).

APPROX/RANDOM 2021

20:6 Approximation Algorithms for Demand Strip Packing

Intuitively, left-pushing accumulates the demand over the first edges while inducing a
non-increasing demand profile to the right. For a node t∗ of the path and a value Q ≥ 0, we
will say that a (possibly partial) schedule P (·) is (Q, t∗)-sorted if the corresponding demand
on the edges to the left of t∗ is at least Q and on the edges to the right of t∗ the demand
profile is non-increasing (see Figure 2); if t∗ is the leftmost node we just say that the schedule
is sorted. Our algorithms will first schedule some tasks and then perform a left-pushing.
After that, it will be possible to schedule the remaining tasks in a convenient way thanks to
the properties of the resulting demand profile.

2.2 Container-based Scheduling
Similar to recent work on related rectangle packing problems (e.g., [18, 6]), we will exploit
a container-based scheduling approach. A container C can be interpreted as an artificial
task, with its own width w(C) (i.e. a number of edges) and height h(C). Furthermore, it is
classified as vertical or horizontal, with a meaning which is explained later. The containers
are scheduled as usual tasks in a DSP instance (in particular by defining a path P (C) for
each container C), with the goal of minimizing the peak π. We also define a packing of tasks
into containers C respecting the following constraints: if C is vertical, the tasks I(C) packed
into C must have height at most h(C) and total width at most w(C); if C is horizontal,
tasks I(C) must have width at most w(C) and total height at most h(C). Intuitively, the
tasks packed into a vertical (resp., horizontal) container induce a geometric packing of the
rectangles associated with each task into the rectangle corresponding to the container, where
the task rectangles are packed non-overlappingly one next to the other (resp., one on top of
the other). Any such packing and scheduling of containers naturally induces a schedule of
the tasks: if C is horizontal, tasks I(C) are all scheduled starting on the leftmost edge of
P (C). Otherwise, tasks I(C) are scheduled one after the other starting at the leftmost edge
of P (C). It is hopefully clear to the reader that the demand profile of such a schedule of the
tasks is dominated by the demand profile of the containers’ schedule. In particular, if the
latter has peak π, then the corresponding schedule of the tasks has a no larger peak.

The general strategy is then as follows: we first show that there exists a convenient
packing of tasks into a constant number of containers and that there exists a scheduling P ∗(·)
of these containers with a small peak π. We also require that these containers are guessable,
meaning that we can guess their sizes by exploring a polynomial number of options. Once
we guessed the correct set of containers, a π-left-pushing of P ∗(·) can be computed by brute
force (since they are constantly many tasks). Finally, we pack tasks into containers, inducing
a schedule of the tasks with peak π.

This final step can be performed (almost completely) via a reduction to the Generalized
Assignment problem (GAP). Recall that in GAP we are given a set of k bins, where each
bin j has an associated capacity Cj ≥ 0, and a set of n items. For each item i and bin j, the
input specifies a size sij ≥ 0 and a profit pij ≥ 0 of item i w.r.t. bin j. A feasible solution
assigns each item to some bin so that the total size of the items assigned to each bin j is at
most Cj . Our goal is to maximize the total profit associated with this assignment. GAP
admits a PTAS in the case of a constant number of bins (see Section E.2 in [19]).

▶ Lemma 5. For any constant ε′ > 0, given a set of tasks I ′ that can be packed into a given
set of containers of constant cardinality, there is a polynomial-time algorithm to pack I ′′ ⊆ I ′

with a(I ′′) ≥ (1 − ε′)a(I ′) into the mentioned containers.

Proof. We define a GAP instance as follows: we create one bin per container, where the
capacity of the bin is equal to the width of the container if it is vertical or the height of the
container if it is horizontal. For each task i we define an item that has uniform profit equal

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:7

to its area a(i) over all the bins. Given a task i and a vertical (resp., horizontal) container j,
the size sij of i into bin j is set to w(i) (resp., h(i)) if task i can be packed into container j

according to the mentioned rules. Otherwise we set sij = +∞. The claim follows by applying
the aforementioned PTAS for GAP with parameter ε′. ◀

Notice that the above lemma allows us to pack all the tasks but a subset of small total
area, hence we need to schedule somehow such leftover tasks. This is not necessarily a trivial
task; indeed, such tasks, though of small area, might have large height, and hence scheduling
them on top of the rest might substantially increase the peak. To circumvent this issue we
will identify special containers reserved for tasks of large height where we will be able to
pack all such tasks with no leftovers. We will then apply the PTAS from Lemma 5 only to
the remaining tasks and containers.

3 A Simple 2-Approximation for DSP

In order to introduce part of our ideas, in this section, we present a simple 2-approximation
for DSP. As mentioned before, a 2-approximation can also be achieved via Steinberg’s
algorithm [42], however, that algorithm is substantially more complex (not surprisingly since
it computes a geometric packing of tasks interpreted as rectangles like in GSP).

The following lemma exploits a modification of Next-Fit-Decreasing [13], the well-known
approximation algorithm for Bin Packing.

▶ Lemma 6. Let P (·) be a sorted schedule of I ′ ⊆ I with peak at most π. For I ′′ := I \ I ′,
assume that:

π ≥ hmax(I ′′) + max{a(I)/W, hmax(I ′′)},
wmax(I ′′) ≤ W/2, and
(W − wmax(I ′′))(π − hmax(I ′′)) + wmax(I ′′) · hmax(I ′′) ≥ a(I).

Then it is possible to compute in polynomial time a schedule of I having peak at most π.

Proof. By slightly abusing notation, we will next use an edge label e also to denote the
position i of e in the sequence e1, . . . , eW of edges from left to right. We do not modify the
schedule of I ′ and schedule the remaining tasks I ′′ as follows. Let us fix an arbitrary order
for tasks in I ′′, and let us initially define echeck to be the leftmost edge. We scan completely
the list of tasks I ′′ and, if the current task i can be scheduled starting on edge echeck while
maintaining a peak of at most π, we do that and remove i from I ′′; otherwise, we keep i in
I ′′ and try with the next task. Once we consider the final task, we update echeck to be the
leftmost edge to the right of the current echeck whose demand is different from the demand of
the current echeck. We iterate the procedure on the new echeck until all tasks are scheduled
or we identify a task i which cannot be scheduled.

First, notice that we update echeck at most |I ′| times, and after each time, we iterate
through at most |I ′′| tasks, so the running time is polynomial in the size of the input. It is
also not difficult to see that with this procedure, the demand profile from echeck to its right is
always non-increasing (restricted to these edges, scheduling a task is equivalent to summing
up two non-decreasing profiles), and none of the remaining tasks can fit in any one of the
edges to the left of echeck (as we actually tried to place them there but it was not possible).
Notice also that, if this procedure manages to schedule all the tasks, then the claimed peak
is automatically achieved. So we will assume by contradiction that this is not the case.

Let i be a task that could not be scheduled. This could only happen due to i being too
wide for the current edge echeck where it should be scheduled (and hence for any subsequent
edge). This implies that echeck > W − w(i) and hence there are more than W − w(i) edges

APPROX/RANDOM 2021

20:8 Approximation Algorithms for Demand Strip Packing

having demand larger than π − h(i). Thus the total area of the scheduled tasks plus task i is
strictly larger than

A(h(i), w(i)) := (W − w(i)) · (π − h(i)) + h(i) · w(i).

This expression is decreasing both as a function of h(i) and as a function of w(i). Indeed,

∂

∂h(i)A(h(i), w(i)) = 2w(i) − W ≤ 0, and ∂

∂w(i)A(h(i), w(i)) = 2h(i) − π ≤ 0,

where we used the fact that, by assumption, w(i) ≤ W
2 and π ≥ 2hmax(I ′′) ≥ 2h(i). We

conclude that
A(h(i), w(i)) ≥ A(hmax(I′′), wmax(I′′)) = (W −wmax(I′′))(π−hmax(I′′))+wmax(I′′)·hmax(I′′) ≥ a(I),

where in the last inequality we used the third assumption. This is a contradiction since a
subset of tasks would have area strictly larger than the total area a(I). ◀

We are now ready to provide a simple 2-approximation.

▶ Corollary 7. There exists a deterministic 2-approximation for DSP.

Proof. Let I be an instance of DSP. We will first schedule the tasks I ′ having width
larger than W/2 starting on the leftmost edge. Let I ′′ := I \ I ′. This partial schedule is
sorted and has peak

∑
i∈I′ h(i) ≤ M := max{hmax(I),

∑
i∈I′ h(i), a(I)/W}. Recall that, by

Proposition 4, M ≤ OPT . Define π = 2M , and observe that

(π−hmax(I ′′))(W−wmax(I ′′))+hmax(I ′′)·wmax(I ′′) ≥ M ·(W/2)+M ·(W/2) = M ·W ≥ a(I).

Thus we can apply Lemma 6 with parameter π = 2M . This provides a schedule with peak
at most 2M ≤ 2OPT . ◀

In the following sections, we will extend the approach in the above 2-approximation as
follows. We will first compute a feasible solution of some given peak that includes all the
tasks having height larger than some threshold and width larger than some threshold. Then
we will left-push this schedule to add some structure to the demand profile. Finally, we
schedule the remaining tasks by means of a generalization of Lemma 6 (Lemma 12) which
considers (Q, t∗)-sorted schedules (rather than just sorted ones).

4 A (5/3 + ε)-Approximation for DSP

In this section we will prove Theorem 1. In order to attain the claimed result, we will provide
first some useful definitions and preprocessing lemmas.

Let us assume that the optimal value OPT is known to the algorithm (this assumption
can be dropped by approximately guessing this value, introducing an extra (1 + ε) factor
in the approximation). We start by classifying the tasks in the instance according to their
widths and heights (see Figure 2). Let µ, δ, µ < δ ≤ ε, be two constant parameters to be
fixed later. We say that a task i is:

tall if h(i) > 2
3 OPT ,

large if h(i) ∈ (δOPT, 2
3 OPT] and w(i) > εW ,

horizontal if h(i) ≤ µOPT and w(i) > εW ,
narrow if h(i) ≤ 2

3 OPT and w(i) ≤ εW , or
medium if h(i) ∈ (µOPT, δOPT] and w(i) > εW .

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:9

0 εW W

0

µOPT

δOPT

2
3 OPT

OPT

Narrow

Narrow

Narrow

Tall

Horizontal

Medium

Large

Tall

h(i)

w(i)
0 t∗ W

0

Q

Demand

Edges

Figure 2 (Left) Classification of the tasks according to Section 4. (Right) Representation of a
(Q, t∗)-sorted demand profile.

We denote by T , L, H, N and M the sets of tall, large, horizontal, narrow and medium
tasks respectively. Recall that the general idea of our approach is to show that we can schedule
almost every task in a constant number of containers, which in turn can be enumerated in
polynomial time by brute force. In the rest of this section, we basically show the existence of
such a solution for most of the previously described classes. More precisely, we argue that
the optimal schedule can be rearranged so as to define constantly many containers to pack
all the tasks in T ∪ L while increasing the peak of the solution by at most an additive 2

3 OPT

term (see Lemma 9). We then show that a subset of the tasks in H can be scheduled in O (1)
containers such that the left-over from this class has a very small area compared W · OPT

(see Lemma 10). Then, it is not difficult to show that the left-over from H can be placed in
a single container with a very small height. We also prove that all the tasks in M can be
packed in a single container of small height by showing how to choose the parameters µ and
δ (see Lemma 8). This leads in conclusion to a container-based scheduling for I \ N of peak(5

3 + 7ε
)

OPT (see Lemma 11). Finally, we present a method to schedule every task in N
on top of the previous solution without increasing its peak by using a greedy approach (see
Lemma 12).

We first deal with the medium tasks. As the following lemma states, it is possible to
choose µ and δ in such a way that the two parameters differ by a large factor and the total
height of medium tasks is small.

▶ Lemma 8. Given a polynomial-time computable function f : (0, 1) → (0, 1), with f(x) < x,
and any constant ε ∈ (0, 1), we can compute in polynomial time a set ∆ of 2

ε2 many positive
real numbers upper bounded by ε, such that there is at least one number δ ∈ ∆ so that, by
choosing µ = f(δ), one has a(M) ≤ ε2 · OPT · W (hence h(M) ≤ εOPT).

Proof. Let y1 = ε and, for each j ∈ {1, . . . , |∆|}, define yj+1 = f(yj). For each j ≤ |∆|,
let Ij = {i ∈ I : h(i) ∈ [yj+1, yj)}. Note that yj ’s are decreasing since f(x) < x. Observe
that Ij′ is disjoint from Ij′′ for every j′ ̸= j′′, and the total area of tasks in

⋃
Ij is at most

W · OPT . Thus, there exists a value j such that the total area of the tasks in Ij is at most
2OP T ·W

|∆| = ε2 · OPT · W . Choosing δ = yj and µ = yj+1 verifies all the conditions of the
lemma as in that case M ⊆ Ij . Notice that, since every task in M has width at least εW ,
we have that h(M) ≤ εOPT . ◀

APPROX/RANDOM 2021

20:10 Approximation Algorithms for Demand Strip Packing

Function f will be given later. From now on, we will assume that µ and δ are chosen
according to Lemma 8. Notice that this implies that µ, δ = Oε(1). The rest of this section
is organized as follows. In Section 4.1 we define a container-based scheduling of T ∪ L.
In Section 4.2 we extend this in order to include also H. In Section 4.3 we schedule the
remaining tasks and prove Theorem 1.

4.1 Containers for Tall and Large Tasks
In this section, we define a packing of tall and large tasks into a constant number of guessable
containers. This packing can be computed exactly, i.e. with no leftovers (in particular, we
will not use Lemma 5 to compute such packing). To that aim, we will exploit the following
structural result.

▶ Lemma 9. Let P (·) be an optimal schedule of I (hence with peak OPT). There exists a
packing P ′(·) with peak at most 5

3 OPT satisfying that all the tall tasks are scheduled one
after the other starting on the leftmost edge in non-increasing order of height.

Proof. Let T be the tall tasks (having height larger than 2
3 OPT). Notice that the paths

of these tasks in P (·) need to be edge disjoint. Let us classify the edges into valley edges if
some task in T uses that edge in P (·) and mountain edges otherwise (see also Figure 3a).
We let Imnt be the (mountain) tasks whose path in P (·) consists solely of mountain edges,
Ivll be the (valley) tasks whose path in P (·) consists solely of valley edges (notice that this
set includes T), and Icrs := I \ (Ivll ∪ Imnt) the remaining (crossing) tasks.

We next define a modified partial schedule P ′(·) of Ivll ∪ Imnt as follows. Let us reorder
the edges of the path (and the tasks accordingly) so that valley edges appear to the left
and mountain edges appear to the right in the path (maintaining their relative order).
Furthermore, we rearrange the valley edges so that tasks in T are scheduled from left to
right in non-increasing order of height. Observe that by construction Imnt are scheduled on
W − w(T) edges (i.e. the total number of mountain edges). Since we temporarily removed
crossing tasks, this induces a feasible packing of Ivll ∪ Imnt. The resulting packing P ′(·)
clearly has a peak of at most OPT .

Consider next the schedule P (·) restricted to Icrs. We claim that this schedule has peak
at most 2

3 OPT . Indeed, notice first that the demand of valley edges is at most 1
3 OPT .

Consider next a mountain edge e. Let eℓ be the rightmost valley edge to the left of e (if any),
and define er symmetrically to the right of e. Any task in Icrs using e must also use eℓ or er

(or both). Hence the total demand on e is at most the total demand on eℓ plus the total
demand on er, thus at most 2

3 OPT . The claim follows by combining the schedule of Icrs

(taken from P (·)) with the above schedule P ′(·) of Ivll ∪ Imnt (see also Figure 3b). ◀

We will next assume that tall tasks are scheduled as in the above lemma. By increasing
the peak by εOPT (up to (5

3 + ε)OPT), one can define a set of Oε(1) (tall) containers where
such tasks can be packed (respecting the mentioned order and with no leftovers). Consider
the demand profile of tall tasks in the considered schedule, and round it to the next multiple
of εOPT . Consider the tasks Tk corresponding to the value k · εOPT in the rounded profile.
Notice that these tasks are scheduled consecutively along some path Pk. We create a vertical
container Ck of height k · εOPT and width |E(Pk)|, pack Tk into Ck, and schedule Ck on Pk.
Clearly, we need to create at most 1/ε containers. Notice also that the dimensions of these
containers can be guessed in polynomial time since there is a constant number of options for
the height, and the widths correspond to the total width of a subsequence of tall tasks in the
considered ordering by non-increasing height (breaking ties arbitrarily).

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:11

5
3 OPT

Mountain edges

Valley edges

OPT

(a) A scheduling of peak OP T . Light gray rect-
angles correspond to tasks in T , dark gray ones
represent mountain and valley tasks, and dashed
ones the crossing tasks.

Mountain edgesValley edges

OPT

4
3 OPT

5
3 OPT

(b) Structured solution having peak at most
5
3 OP T , where tasks in T are placed one next to
the other, starting at the leftmost edge and sorted
non-increasingly by height.

Figure 3 Depiction of the proof of Lemma 9.

It remains to consider large tasks. Since they are at most 1
εδ = Oε(1) many, it is sufficient

to define a distinct (large) container for each one of them and pack the large tasks accordingly.
We schedule the large containers exactly as in the solution guaranteed by Lemma 9. Clearly
tall and large containers can be scheduled together with a peak of at most (5

3 + ε)OPT by
the above construction.

4.2 Containers for Horizontal Tasks
In this section, we define a packing of horizontal tasks into a constant number of guessable
containers. These containers can be scheduled together with the tall and large containers
with small enough peaks. This will induce a convenient schedule of non-narrow tasks.

Let us focus on the schedule of tall and large containers with a peak of at most (5
3 +ε)OPT

from the previous section. Consider now the demand profile of such container schedule. Since
the demand profile of tall containers has at most 1/ε = Oε(1) jumps, and the demand profile
of large containers has at most 2/(εδ) = Oε(1) jumps, then the overall demand profile has
Oε(1) jumps.

Assume next that horizontal tasks are scheduled as in Lemma 9: notice that such tasks
can be scheduled with the tall and large containers without increasing the peak. This implies
that the demand profile of horizontal tasks is upper bounded (on each coordinate) by the
difference between (5/3 + ε)OPT and the demand profile of tall and large containers (see
Figure 4). Under these conditions, it is possible to build containers for horizontal tasks, using
the standard linear grouping technique, as the following lemma shows.

▶ Lemma 10. Suppose there exists a schedule of H such that its demand profile is upper
bounded (vectorially) by a demand profile D with Oε(1) jumps. Then there exists a container
packing for H into Oε(1) horizontal guessable containers with demand profile upper bounded
by D plus 4εOPT on each coordinate.

Proof. Let us assume by now that horizontal tasks are horizontally sliced, meaning that each
task i, having height h(i) and width w(i), is replaced by h(i) sibling slices, which are tasks of
width w(i) and height 1. The schedule of the slices is the same as for the corresponding task.

APPROX/RANDOM 2021

20:12 Approximation Algorithms for Demand Strip Packing

(
5
3 + ε

)
OPT

(
5
3 + ε

)
OPT

Horizontal

Tall

Large

Large

Figure 4 The demand profile of tall and large tasks in the schedule obtained from Lemma 9 has
Oε(1) jumps, bounding the profile of (sliced) horizontal tasks (on top).

In order to reduce the possible number of distinct slice widths to a constant, we will use the
technique of linear grouping while increasing the final peak by at most 2εOPT . We start
by considering all the slices in a pile, one on top of the other and sorted non-increasingly
by width from bottom to top (and putting sibling slices consecutively). Since these slices
have a width at least εW and total area at most OPT · W , the pile has total height at most
1
ε OPT . Starting from the bottom, we partition the pile into groups G1, . . . , Gq of height
exactly εOPT (except possibly for Gq which may have a smaller height). We remove from
the solution the slices in G1 and any slice in G2 which used to have a sibling slice in G1, and
temporarily remove the corresponding tasks. Observe that we are removing the tasks whose
slices are fully contained in G1 plus at most one extra task. In particular, the total height of
the removed tasks is at most (ε + µ)OPT ≤ 2εOPT (here we use µ ≤ ε).

Next, we round up the widths of the remaining slices as follows: for i = 2, . . . , q, the
width of slices (still) in Gi are rounded to the smallest width of any slice originally in Gi−1.
We call this set of slices the rounded slices, and next focus on packing them. Notice that
rounded slices have at most 1/ε2 distinct widths. This also induces a matching between each
rounded slice a and a distinct original slice b, so that w(b) ≥ w(a). In particular, we can
schedule each such a starting on the first edge of P (b) without increasing the overall peak.

Now we left-shift the horizontal slices in the solution as much as possible while still
obtaining a schedule whose demand profile is upper bounded by D. Let e be the starting
edge of some slice S at the end of the process. Notice that one of the following cases holds:
(1) D increases on edge e (including as a special case when e is the leftmost edge of G) or (2)
the edge f to the left of e is the ending edge of some other slice S′. Indeed otherwise it would
be possible to left-shift S while respecting all the constraints. This implies that the possible
positions for the starting edge of any slice can be obtained by considering the Oε(1) edges
where D increases and then adding the total width of a few slices. Notice that there are at
most 1/ε2 such widths, and we can sum up at most 1/ε of them (since horizontal slices have
widths at least εW). Altogether, the number of possible starting edges for the slices is Oε(1).

Consider the leftmost possible such edge e and all the rounded slices Se starting on e

in this left-shifted schedule. We partition Se by width w, and for each such width w and
corresponding set of slices Se,w, we construct a horizontal container of width w and height
h(Se,w) where we pack Se,w. We repeat this procedure for each possible starting edge e,

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:13

obtaining in the end K ≤ Oε(1) containers in total where we packed all the rounded slices.
Notice that the width of each container is the width of some rounded slice, which in turn is
the width of some task. Hence the widths of the containers are guessable in the usual sense.

We next turn the above packing of rounded slices into a feasible packing of tasks (into
the same containers). First of all, we repack the rounded slices as follows. We consider all
the slices Sw of a given width w in any order where sibling slices appear consecutively, and
all the containers Cw of that width in any order. We pack each slice s ∈ Sw in the first
container C ∈ Cw where s still fits. Notice that h(Sw) = h(Cw) by construction, hence we
repack all rounded slices this way. Next we consider the tasks i whose slices are all contained
in the same container C, and pack i into C. By construction this packing is feasible. We
add the tasks which are not packed this way to the set of removed tasks defined earlier. We
round up the heights of the containers to the next multiple of ε

K OPT , hence making such
heights guessable. This way the peak increases at most by εOPT .

Consider the set of removed tasks. Recall that the tasks removed in the initial rounding
phase have total height at most 2εOPT . In the following packing phase, we remove at most
one task per container, hence these removed tasks have height at most K · µ · OPT ≤ εOPT .
Here we assume that µ ≤ ε/K: this can be achieved by choosing f(x) = x/K in Lemma 8.
Hence the removed tasks altogether have total height at most 3εOPT : we pack these tasks
in one extra (guessable) horizontal container of width W and height 3εOPT . ◀

From the above construction it is possible to derive a schedule of non-narrow tasks of
small enough peak.

▶ Lemma 11. It is possible to compute in polynomial-time a feasible schedule of I \ N with
peak at most

(5
3 + 7ε

)
OPT .

Proof. Consider the guessable containers for tall, large, and horizontal tasks and the corres-
ponding schedule as described before. This schedule has a peak of at most (5

3 + ε)OPT +
4εOPT . By Lemma 8 the medium tasks fit into a horizontal container of width W and
height εOPT . Altogether this leads to a packing of L ∪ T ∪ H ∪ M = I \ N into Oε(1)
guessable containers that can be scheduled with peak at most (5

3 + 6ε)OPT .
It is easy to pack L ∪ T ∪ M into the corresponding containers. For H we apply Lemma 5

with ε′ = ε2 to assign the horizontal tasks to them, obtaining a set of horizontal unplaced
tasks of an area at most ε2 · W · OPT (hence of total height at most εOPT). The latter
tasks can be placed into an extra horizontal container of height εOPT and width W . The
resulting set of containers can be scheduled with a peak at most (5

3 + 7ε)OPT , and such a
schedule can be efficiently computed as already discussed. ◀

4.3 Scheduling Narrow Tasks
At this point it just remains to schedule the narrow tasks. For this goal we need the following
generalization of Lemma 6 that considers (Q, t∗)-sorted partial schedules. Recall that for a
node t∗ of the path and a value Q ≥ 0, a schedule is (Q, t∗)-sorted if the demand to the left
of t∗ is at least Q, and to the right of t∗ the demand profile is non-increasing.

▶ Lemma 12. Let I be an instance of DSP and α > 0. Suppose we are given a ((1 +
α)OPT, t∗)-sorted schedule of I ′ ⊆ I. Let I ′′ := I \ I ′ and assume that:

The peak of the schedule is at most π, with π ≥ (1 + α)OPT + hmax(I ′′), and
wmax(I ′′) ≤ α

2(α+1) W .
Then it is possible to compute in polynomial time a schedule of I with peak at most π.

APPROX/RANDOM 2021

20:14 Approximation Algorithms for Demand Strip Packing

Proof. By overloading notation, let t∗ also denote the number of edges to the left of t∗.
Notice first that W − t∗ ≥ 2wmax(I ′′). Indeed otherwise, since the input schedule is
((1 + α)OPT, t∗)-sorted, the total area of the tasks in I ′ would be at least

t∗ · (1 + α)OPT > (W − 2wmax(I ′′))(1 + α)OPT ≥ W · OPT

which is not possible. Roughly speaking, to prove the desired claim, we will apply Lemma 6
to the demand profile induced by the edges to the right of t∗. In more detail, we consider
a new instance defined by a path with W̃ = W − t∗ edges and a set of tasks Ĩ consisting
of Ĩ ′′ := I ′′ plus a set Ĩ ′ of W̃ tasks having width 1 and, for each edge e to the right of t∗,
height equal to the total demand on edge e in the original schedule for I ′. To see that the
required hypotheses are satisfied, notice that by scheduling the tasks in Ĩ ′ one next to the
other sorted non-increasingly by height we obtain a sorted partial schedule of a peak at most
π, where

π ≥ hmax(I ′′) + (1 + α)OPT ≥ hmax(Ĩ ′′) + max{a(Ĩ)/W̃ , hmax(Ĩ ′′)}.

The last inequality above holds since a(Ĩ) ≤ OPT · W − a(I ′) ≤ OPT (W − (1 + α)t∗).
Finally, we notice that wmax(Ĩ ′′) ≤ W̃/2, and

(W̃ − wmax(Ĩ ′′))(π − hmax(Ĩ ′′)) + wmax(Ĩ ′′) · hmax(Ĩ ′′)
≥ (W̃ − wmax(Ĩ ′′))(1 + α)OPT

= OPT (W − t∗(1 + α)) + αW · OPT − wmax(I ′′)(1 + α)OPT

≥ a(Ĩ) + αW · OPT − α

2 W · OPT ≥ a(Ĩ).

Hence all the conditions of Lemma 6 apply. Given that the demand profile of the partial
schedule for Ĩ ′ is the same as the demand profile induced by the edges to the right of t∗

in the original schedule for I ′, we can schedule I ′′ on top of the input schedule without
exceeding the peak π. ◀

We now have all the ingredients to prove Theorem 1.

Proof of Theorem 1. Consider the schedule of I \ N with peak at most π :=
(5

3 + 7ε
)

OPT

provided by Lemma 11. We perform a π-left-pushing of this schedule, however without
left-shifting any tall task. Let us prove that this partial schedule of I ′ := I \ N satisfies
all the required properties of Lemma 12 with parameter π. First of all, there exists a node
t∗ for which (1) every edge to the left of t∗ (if any) has demand larger than (1 + 7ε)OPT ,
and (2) the demand profile to the right of t∗ is non-increasing. Indeed, if (1) does not hold,
then there exists an edge having demand less than (1 + 7ε)OPT and the following edge has
demand larger than (1 + 7ε)OPT . But this means that some task which is not tall can be
left-shifted (as there can be only one tall task per edge); similarly, if (2) does not hold, there
is a pair of contiguous edges to the right of t∗ where the demand strictly increases from left
to right. But since the tall tasks are sorted non-increasingly by height, this implies that
there exists a task that is not tall that can be left-shifted. In conclusion, the solution is
((1 + 7ε)OPT, t∗)-sorted and also wmax(N) ≤ εW ≤ 7ε

2(1+7ε) W for ε small enough. Since
π ≥ (1 + 7ε)OPT + hmax(N), by Lemma 12 we obtain a feasible schedule of peak at most π.
The claim follows by scaling ε appropriately. ◀

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:15

0

1

2

3

4

5

0 1 2 3 4 5 6 7

1

2

For 3

For 5

For 4

Figure 5 If we assume by contradiction that some optimal solution of height 4 for the GSP
instance described in Lemma 13 exists, it must have this structure.

5 Comparison between DSP and GSP

In this Section we provide instances where a gap between the optimal values they achieve
interpreted as DSP and GSP instances can be observed. First we discuss the general case and
then the case of Square-DSP. It is worth noticing that, for the general case, an analogous
proof can be derived from the results in [8].

▶ Lemma 13. There exists an instance of DSP with optimal peak 4 such that the corresponding
GSP instance has optimal peak 5.

Proof. Consider the following DSP instance I, where W = 7 and the set of tasks consists of
the following eight elements (see Figure 1a for a depiction):

Two tasks of width 2 and height 3 (tasks 1 and 2 in the figure),
Two tasks of width 4 and height 1 (tasks 3 and 4 in the figure),
One task of width 3 and height 1 (task 5 in the figure),
One task of width 1 and height 1 (task 6 in the figure), and
Two tasks of width 1 and height 2 (tasks 7 and 8 in the figure).

As it is possible to see in Figure 1a, the optimal solution has peak 4 (since OPT ≥
a(I)/W = 4). We will show now that there is no solution for the corresponding GSP instance
of height 4, which would conclude the proof.

Suppose by contradiction that there exists a solution to the corresponding GSP instance
of height 4. Let us imagine for the sake of presentation that we draw a grid of unit-size cells
over the rectangular region [0, 7] × [0, 4], defining four rows of height 1 and seven columns of
width 1. First of all, notice that in any feasible packing of the rectangles into the region,
rectangles 1 and 2 cannot be touching the top (resp. bottom) boundary of the region at
the same time. If that is the case, then the rectangles 3 and 4 do not fit in the region as
they cannot be placed in the same row and none of them fits in the rows which are partially
occupied by rectangles 1 and 2. So let us assume w.l.o.g. that rectangle 1 touches the top
boundary and rectangle 2 touches the bottom boundary. Since they both partially occupy
the middle rows of the region, rectangles 3 and 4 must be placed one touching the bottom
boundary and the other touching the top boundary. This implies that rectangle 5 has to be
placed in one of the middle rows (in the other rows there is just one cell free), forcing us to
place rectangles 1 and 2 one touching the left boundary and the other touching the right
boundary (see Figure 5). Suppose rectangle 5 is assigned to the second row from bottom to
top (the other case being symmetric). Then in the two topmost rows we have to pack two
rectangles of height 2 plus a rectangle of width 4 which is not possible as their total width is
larger than the space left due to rectangle 1. This contradicts the fact that there is a feasible
solution for the GSP instance I of height 4. ◀

APPROX/RANDOM 2021

20:16 Approximation Algorithms for Demand Strip Packing

Now we will prove that even for the case of square tasks, the optimum packing for the
two problems of Square-DSP and Square-GSP can exhibit a gap.

▶ Lemma 14. There exists an instance of Square-DSP such that the optimal schedule has
peak 11 but every feasible solution for the corresponding Square-GSP instance has height at
least 12.

Proof. Consider a Square-DSP with W = 13 and containing the following set I of tasks
(see Figure 1b for a depiction):

Two tasks of height/width 6 (tasks 1 and 2 in the figure),
Two tasks of height/width 5 (tasks 3 and 4 in the figure),
One task of height/width 3 (task 5 in the figure),
Two tasks of height/width 2 (tasks 6 and 7 in the figure), and
Four tasks of height/width 1 (tasks 8, 9, 10 and 11 in the figure).

Since a(I) = 11 · 13, we have that OPT ≥ 11. Figure 1b shows that the optimal peak is
at most 11 and hence it is exactly 11.

Assume by contradiction that there exists a feasible packing for the corresponding
Square-GSP instance of height at most 11. Consider K to be the region [0, 0] × [13, 11] in
the plane, and let (xi, yi) be the coordinate of the bottom-left corner of task i in the solution.
Notice that K must be completely filled with tasks.

We can assume that x1 ≤ x2, and since tasks 1 and 2 have height 6 and the height of K
is 11, it must hold that x1 ≤ x2 + 6. Hence, w.l.o.g. there are two cases to consider:

x1 = 0 and x2 = 6:
In this case the region [12, y2] × [13, y2 + 6] can only contain squares of size 1, and they
cannot fill the region completely, so this case cannot happen.
x1 = 0 and x2 = 7:
We show that y1, y2 ∈ {0, 5}; Assume that y1 ̸∈ {0, 5}. Then tasks 2, 3 and 4 must be
packed inside the region [6, 0] × [13, 11] since they can not be packed above or below task
1. Since a(j2) + a(j3) + a(j4) > 77, this is not possible, hence proving the claim.
Note that if y1 = y2 then, similarly to the previous case, the area in [6, y1] × [7, y1 + 6]
can only contain tasks of size 1 and they cannot fill this region completely. So we can
assume that (x1, y1) = (0, 0) and (x2, y2) = (7, 5).
Now every remaining rectangle is either packed in [6, 0] × [13, 5] or in [0, 6] × [7, 11].
However, among tasks 3, 4 and 5, it is not possible to place two of them in one of the
previously mentioned rectangular region together, contradicting the existence of a feasible
solution of height 11. ◀

References
1 Anna Adamaszek, Tomasz Kociumaka, Marcin Pilipczuk, and Michal Pilipczuk. Hardness

of approximation for strip packing. ACM Trans. Comput. Theory, 9(3):14:1–14:7, 2017.
doi:10.1145/3092026.

2 Anna Adamaszek and Andreas Wiese. A quasi-ptas for the two-dimensional geometric knapsack
problem. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1491–1505. SIAM, 2015. doi:10.1137/1.9781611973730.98.

3 Soroush Alamdari, Therese C. Biedl, Timothy M. Chan, Elyot Grant, Krishnam Raju Jampani,
Srinivasan Keshav, Anna Lubiw, and Vinayak Pathak. Smart-grid electricity allocation via
strip packing with slicing. In 13th International Symposium on Algorithms and Data Structures
(WADS), volume 8037, pages 25–36. Springer, 2013. doi:10.1007/978-3-642-40104-6_3.

https://doi.org/10.1145/3092026
https://doi.org/10.1137/1.9781611973730.98
https://doi.org/10.1007/978-3-642-40104-6_3

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:17

4 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. A mazing
(2 + ε)-approximation for unsplittable flow on a path. ACM Transactions on Algorithms,
14(4):55:1–55:23, 2018. doi:10.1145/3242769.

5 Brenda S. Baker, Edward G. Coffman Jr., and Ronald L. Rivest. Orthogonal packings in two
dimensions. SIAM Journal on Computing, 9(4):846–855, 1980. doi:10.1137/0209064.

6 Nikhil Bansal, Alberto Caprara, Klaus Jansen, Lars Prädel, and Maxim Sviridenko. A
structural lemma in 2-dimensional packing, and its implications on approximability. In
Algorithms and Computation, 20th International Symposium (ISAAC), volume 5878, pages
77–86. Springer, 2009. doi:10.1007/978-3-642-10631-6_10.

7 Jatin Batra, Naveen Garg, Amit Kumar, Tobias Mömke, and Andreas Wiese. New ap-
proximation schemes for unsplittable flow on a path. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 47–58. SIAM, 2015.
doi:10.1137/1.9781611973730.5.

8 Iwo Bladek, Maciej Drozdowski, Frédéric Guinand, and Xavier Schepler. On contiguous
and non-contiguous parallel task scheduling. J. Sched., 18(5):487–495, 2015. doi:10.1007/
s10951-015-0427-z.

9 Adam L. Buchsbaum, Howard J. Karloff, Claire Kenyon, Nick Reingold, and Mikkel Thorup.
OPT versus LOAD in dynamic storage allocation. SIAM Journal on Computing, 33(3):632–646,
2004. doi:10.1137/S0097539703423941.

10 Mihai Burcea, Wing-Kai Hon, Hsiang-Hsuan Liu, Prudence W. H. Wong, and David K. Y.
Yau. Scheduling for electricity cost in a smart grid. Journal of Scheduling, 19(6):687–699,
2016. doi:10.1007/s10951-015-0447-8.

11 Gruia Călinescu, Amit Chakrabarti, Howard J. Karloff, and Yuval Rabani. An improved
approximation algorithm for resource allocation. ACM Transactions on Algorithms, 7(4):48:1–
48:7, 2011. doi:10.1145/2000807.2000816.

12 Edward Grady. Coffman and John L. Bruno. Computer and job-shop scheduling theory /
edited by E. G. Coffman, Jr. ; coauthors, J. L. Bruno ... [et al.]. Wiley New York, 1976.

13 Edward G. Coffman Jr., János Csirik, Gábor Galambos, Silvano Martello, and Daniele Vigo.
Bin Packing Approximation Algorithms: Survey and Classification, pages 455–531. Springer
New York, 2013. doi:10.1007/978-1-4419-7997-1_35.

14 Edward G. Coffman Jr., M. R. Garey, David S. Johnson, and Robert Endre Tarjan. Performance
bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing,
9(4):808–826, 1980. doi:10.1137/0209062.

15 Max A. Deppert, Klaus Jansen, Arindam Khan, Malin Rau, and Malte Tutas. Peak demand
minimization via sliced strip packing. CoRR, abs/2105.07219, 2021. URL: https://arxiv.
org/abs/2105.07219.

16 Pierre-François Dutot, Grégory Mounié, and Denis Trystram. Scheduling parallel tasks
approximation algorithms. In Joseph Y.-T. Leung, editor, Handbook of Scheduling - Algorithms,
Models, and Performance Analysis. Chapman and Hall/CRC, 2004.

17 Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Kamyar Khodamoradi. Approxim-
ation algorithms for demand strip packing. CoRR, abs/2105.08577, 2021. arXiv:2105.08577.

18 Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via L-packings. In 58th IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pages 260–271. IEEE Computer
Society, 2017. doi:10.1109/FOCS.2017.32.

19 Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via L-packings. CoRR, abs/1711.07710,
2017. URL: http://arxiv.org/abs/1711.07710.

20 Waldo Gálvez, Fabrizio Grandoni, Salvatore Ingala, and Arindam Khan. Improved pseudo-
polynomial-time approximation for strip packing. In 36th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), volume 65,

APPROX/RANDOM 2021

https://doi.org/10.1145/3242769
https://doi.org/10.1137/0209064
https://doi.org/10.1007/978-3-642-10631-6_10
https://doi.org/10.1137/1.9781611973730.5
https://doi.org/10.1007/s10951-015-0427-z
https://doi.org/10.1007/s10951-015-0427-z
https://doi.org/10.1137/S0097539703423941
https://doi.org/10.1007/s10951-015-0447-8
https://doi.org/10.1145/2000807.2000816
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1137/0209062
https://arxiv.org/abs/2105.07219
https://arxiv.org/abs/2105.07219
http://arxiv.org/abs/2105.08577
https://doi.org/10.1109/FOCS.2017.32
http://arxiv.org/abs/1711.07710

20:18 Approximation Algorithms for Demand Strip Packing

pages 9:1–9:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
FSTTCS.2016.9.

21 Fabrizio Grandoni, Salvatore Ingala, and Sumedha Uniyal. Improved approximation algorithms
for unsplittable flow on a path with time windows. In Approximation and Online Algorithms
- 13th International Workshop, (WAOA), volume 9499, pages 13–24. Springer, 2015. doi:
10.1007/978-3-319-28684-6_2.

22 Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. A (5/3 + ϵ)-approximation
for unsplittable flow on a path: placing small tasks into boxes. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 607–619. ACM,
2018. doi:10.1145/3188745.3188894.

23 Rolf Harren, Klaus Jansen, Lars Prädel, and Rob van Stee. A (5/3 + ϵ)-approximation for
strip packing. Computational Geometry, 47(2):248–267, 2014. doi:10.1016/j.comgeo.2013.
08.008.

24 Rolf Harren and Rob van Stee. Improved absolute approximation ratios for two-dimensional
packing problems. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, 12th International Workshop (APPROX), volume 5687, pages
177–189. Springer, 2009. doi:10.1007/978-3-642-03685-9_14.

25 Sören Henning, Klaus Jansen, Malin Rau, and Lars Schmarje. Complexity and inapproxim-
ability results for parallel task scheduling and strip packing. Theory of Computing Systems,
64(1):120–140, 2020. doi:10.1007/s00224-019-09910-6.

26 Klaus Jansen. A (3/2 + ε) approximation algorithm for scheduling moldable and non-moldable
parallel tasks. In 24th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 224–235. ACM, 2012. doi:10.1145/2312005.2312048.

27 Klaus Jansen and Malin Rau. Closing the gap for pseudo-polynomial strip packing. In 27th
Annual European Symposium on Algorithms (ESA), volume 144, pages 62:1–62:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.62.

28 Klaus Jansen and Malin Rau. Improved approximation for two dimensional strip packing
with polynomial bounded width. Theoretical Computer Science, 789:34–49, 2019. doi:
10.1016/j.tcs.2019.04.002.

29 Klaus Jansen and Roberto Solis-Oba. Rectangle packing with one-dimensional resource
augmentation. Discrete Optimization, 6(3):310–323, 2009. doi:10.1016/j.disopt.2009.04.
001.

30 Klaus Jansen and Ralf Thöle. Approximation algorithms for scheduling parallel jobs. SIAM
Journal on Computing, 39(8):3571–3615, 2010. doi:10.1137/080736491.

31 Mohammad M. Karbasioun, Gennady Shaikhet, Evangelos Kranakis, and Ioannis Lambadaris.
Power strip packing of malleable demands in smart grid. In Proceedings of IEEE International
Conference on Communications, (ICC), pages 4261–4265. IEEE, 2013. doi:10.1109/ICC.
2013.6655233.

32 Claire Kenyon and Eric Rémila. A near-optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research, 25(4):645–656, 2000. doi:10.1287/moor.25.4.
645.12118.

33 Joseph Y.-T. Leung, Tommy W. Tam, C. S. Wong, Gilbert H. Young, and Francis Y. L. Chin.
Packing squares into a square. Journal of Parallel and Distributed Computing, 10(3):271–275,
1990. doi:10.1016/0743-7315(90)90019-L.

34 Fu-Hong Liu, Hsiang-Hsuan Liu, and Prudence W. H. Wong. Greedy is optimal for online
restricted assignment and smart grid scheduling for unit size jobs. In Approximation and
Online Algorithms - 17th International Workshop (WAOA), volume 11926, pages 217–231.
Springer, 2019. doi:10.1007/978-3-030-39479-0_15.

35 Fu-Hong Liu, Hsiang-Hsuan Liu, and Prudence W. H. Wong. Non-preemptive scheduling in a
smart grid model and its implications on machine minimization. Algorithmica, 82(12):3415–
3457, 2020. doi:10.1007/s00453-020-00733-3.

https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9
https://doi.org/10.1007/978-3-319-28684-6_2
https://doi.org/10.1007/978-3-319-28684-6_2
https://doi.org/10.1145/3188745.3188894
https://doi.org/10.1016/j.comgeo.2013.08.008
https://doi.org/10.1016/j.comgeo.2013.08.008
https://doi.org/10.1007/978-3-642-03685-9_14
https://doi.org/10.1007/s00224-019-09910-6
https://doi.org/10.1145/2312005.2312048
https://doi.org/10.4230/LIPIcs.ESA.2019.62
https://doi.org/10.1016/j.tcs.2019.04.002
https://doi.org/10.1016/j.tcs.2019.04.002
https://doi.org/10.1016/j.disopt.2009.04.001
https://doi.org/10.1016/j.disopt.2009.04.001
https://doi.org/10.1137/080736491
https://doi.org/10.1109/ICC.2013.6655233
https://doi.org/10.1109/ICC.2013.6655233
https://doi.org/10.1287/moor.25.4.645.12118
https://doi.org/10.1287/moor.25.4.645.12118
https://doi.org/10.1016/0743-7315(90)90019-L
https://doi.org/10.1007/978-3-030-39479-0_15
https://doi.org/10.1007/s00453-020-00733-3

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:19

36 Tobias Mömke and Andreas Wiese. A (2 + ε)-approximation algorithm for the storage alloca-
tion problem. In Automata, Languages, and Programming - 42nd International Colloquium
(ICALP), volume 9134, pages 973–984. Springer, 2015. doi:10.1007/978-3-662-47672-7_79.

37 Tobias Mömke and Andreas Wiese. Breaking the barrier of 2 for the storage allocation
problem. In 47th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 168, pages 86:1–86:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.ICALP.2020.86.

38 Giorgi Nadiradze and Andreas Wiese. On approximating strip packing with a better ratio
than 3/2. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1491–1510. SIAM, 2016. doi:
10.1137/1.9781611974331.ch102.

39 Anshu Ranjan, Pramod P. Khargonekar, and Sartaj Sahni. Offline first fit scheduling in smart
grids. In 2015 IEEE Symposium on Computers and Communication (ISCC), pages 758–763.
IEEE Computer Society, 2015. doi:10.1109/ISCC.2015.7405605.

40 Ingo Schiermeyer. Reverse-fit: A 2-optimal algorithm for packing rectangles. In Jan van
Leeuwen, editor, Algorithms (ESA) - Second Annual European Symposium, volume 855, pages
290–299. Springer, 1994. doi:10.1007/BFb0049416.

41 Daniel Dominic Sleator. A 2.5 times optimal algorithm for packing in two dimensions.
Information Processing Letters, 10(1):37–40, 1980. doi:10.1016/0020-0190(80)90121-0.

42 A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM Journal
on Computing, 26(2):401–409, 1997. doi:10.1137/S0097539793255801.

43 Shaojie Tang, Qiuyuan Huang, Xiang-Yang Li, and Dapeng Wu. Smoothing the energy
consumption: Peak demand reduction in smart grid. In Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), pages 1133–1141. IEEE, 2013. doi:
10.1109/INFCOM.2013.6566904.

44 Sean Yaw and Brendan Mumey. Scheduling non-preemptible jobs to minimize peak demand.
Algorithms, 10(4):122, 2017. doi:10.3390/a10040122.

45 Sean Yaw, Brendan Mumey, Erin McDonald, and Jennifer Lemke. Peak demand scheduling
in the smart grid. In 2014 IEEE International Conference on Smart Grid Communications
(SmartGridComm), pages 770–775. IEEE, 2014. doi:10.1109/SmartGridComm.2014.7007741.

A Hardness of Approximation for Square-DSP

For several rectangle packing problems it is usually the case that they are NP-hard (or
APX-hard) even when restricted to instances consisting solely of squares [33]. This holds
also for DSP, as the following theorem shows.

▶ Theorem 15. For any ε > 0, there exists no polynomial-time (3/2 − ε)-approximation
algorithm for Square-DSP unless NP = P.

In order to prove this result, we show a gap-producing reduction from the NP-complete
Balanced Partition problem, formally defined as follows.

▶ Definition 16 (Balanced Partition). In an instance of the Balanced Partition
problem, we are given a set of 2n positive integers A = {a1, a2, . . . , a2n}. The goal is to
decide whether there exists a partitioning of A into A1 and A2 such that |A1| = |A2| = n, and
the sum of the numbers in each of the two sets is equal to a target value B =

(∑2n
j=1 aj

)
/2.

We start first by proving that the Balanced Partition problem is NP-complete. This
result is folklore by now but, for the sake of completeness, we bring a complete proof.

▶ Theorem 17. Balanced Partition is NP-complete.

APPROX/RANDOM 2021

https://doi.org/10.1007/978-3-662-47672-7_79
https://doi.org/10.4230/LIPIcs.ICALP.2020.86
https://doi.org/10.1137/1.9781611974331.ch102
https://doi.org/10.1137/1.9781611974331.ch102
https://doi.org/10.1109/ISCC.2015.7405605
https://doi.org/10.1007/BFb0049416
https://doi.org/10.1016/0020-0190(80)90121-0
https://doi.org/10.1137/S0097539793255801
https://doi.org/10.1109/INFCOM.2013.6566904
https://doi.org/10.1109/INFCOM.2013.6566904
https://doi.org/10.3390/a10040122
https://doi.org/10.1109/SmartGridComm.2014.7007741

20:20 Approximation Algorithms for Demand Strip Packing

Proof. We will reduce the Partition problem to the balanced variant in polynomial time.
Given an instance I of the Partition problem with n numbers a1, a2, . . . , an, we construct
an instance I ′

k of the Balanced Partition problem for each k ∈ {1, 2, . . . , ⌊n/2⌋}. Let
C be (

∑n
j=1 aj) + 1. For each k, the instance I ′

k is defined as follows. Let I ′
k have

all the initial numbers, a1, a2, . . . , an. Add the set dummy of n − 2k + 2 extra numbers
where dummy = {α, β1, β2, . . . , βn−2k+1} in which α = (n − 2k + 1)C and βi = C for each
i ∈ [n − k + 1]. We claim that I is a Yes instance of the Partition problem if and only if at
least one I ′

k is a Yes instance of the Balanced Partition problem.

Completeness. Assume that I is a Yes instance of the Partition problem. Let S1 and S2
be the two sets of equal sum, say B. These sets may not necessarily have the same cardinality.
With sum renumbering, assume that S1 = {a1, a2, . . . , ak} and S2 = {ak+1, ak+2, . . . , an} for
some k ∈ [⌊n/2⌋]. It is easy to see that the instance I ′

k of the Balanced Partition problem
is a Yes instance, since we can make the sets S′

1 = {a1, a2, . . . , ak, β1, β2, . . . , βn−2k+1} and
S′

2 = {ak+1, ak+2, . . . , an, α} both with the sum B + (n − 2k + 1)C and cardinality n − k + 1.

Soundness. Now assume that I is a No instance of the Partition problem. We claim that
no I ′

k can be a Yes instance of the Balanced Partition problem either. For the sake of
contradiction, assume I ′

k is a Yes instance with two partitions S′
1 and S′

2 of the same sum and
cardinality. Note that if no βi is placed in the same set as α, we reach a contradiction since we
then can find two sets S1 = {a1, a2, . . . , ak} and S2 = {ak+1, ak+2, . . . , an} of the same sum of
the original Partition instance I. So with some renumbering, we can assume we have S′

1 =
{a1, a2, . . . , ak′ , α, β1, β2, . . . , βℓ} and S′

2 = {ak′+1 + ak′+2, . . . , an, βℓ+1, βℓ+2, . . . , βn−2k+1}
for some k′ and ℓ in which:

k′∑
j=1

aj + (n − 2k + 1)C + ℓ · C =
n∑

j′=k′+1
a′

j + (n − 2k + 1 − ℓ)C.

This implies that

2ℓ · C =
n∑

j′=k′+1
a′

j −
k′∑

j=1
aj ≤

n∑
j′=k′+1

a′
j < C,

which is a contradiction. ◀

Proof of Theorem 15. Assume an instance I of the Balanced Partition problem is
given. Based in this instance, we define an instance I ′ of Square-DSP. Let amax denote
the maximum value among the integers in A. Define C as 1/ε ·

∑2n
j=1 aj , where ε is chosen

such that 1/ε is a large but constant integer. Note that C > 1/ε · amax. Let I ′ have 2n tasks,
where each task i has width and height C + ai for i ∈ [2n]. Our goal is to schedule the 2n

tasks into a path of W = n · C + B edges while minimizing the peak. Based on the hardness
of the Balanced Partition problem, we show that it is hard to distinguish between the
case where an schedule with peak 2C(1 + ε) exists and the case where the minimum peak is
larger than 3(C + 1) − ε.

Completeness. Assume that I is a Yes instance, meaning that a partitioning A = A1∪̇A2
exists that satisfies the cardinality and sum constraints. Define two shelves of squares,
Si = {j|aj ∈ Ai} for i = 1, 2, and schedule them starting at the leftmost edge. The width of
each shelf is equal to n · C + B and the peak is at most 2 · (C + amax) < 2C(1 + ε).

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:21

Soundness. Now, consider a No instance I. We claim that, for the corresponding Square-
DSP instance, no schedule with peak smaller than or equal to 3(C + 1) − ε exists. For the
sake of contradiction, assume that it is the case. Since the size of each task is at least C + 1,
it means that in the optimal solution for I ′, no three tasks use the same edge. Also, the total
width of the tasks is 2W = 2(nC + b), so no edge can have less than two tasks. This allows
us to split the tasks S into two sets S1 and S2. We start at the leftmost edge and pick one
of the two tasks placed on this edge arbitrarily and put in S1. Since every edge has exactly
two tasks, immediately to the right of this task at least one another task must start. We put
it in S1 as well and proceed until we reach the rightmost edge, breaking ties arbitrarily along
the way. We set S2 = S\S1. It remains to show that each set has exactly n tasks. Assume
otherwise; let S1 be composed of tasks s1, . . . , sn+k, and S2 be the tasks sn+k+1, . . . , s2n for
some k, 1 ≤ k ≤ n. Since the tasks are placed one next to the other in each shelf, we have
that (n + k)C +

∑n+k
j=1 aj = (n − k)C +

∑2n
j′=n+k+1 aj′ . Therefore

∑2n
j′=n+k+1 aj′ ≥ 2k · C,

which is a contradiction for any value of k > 0 by our choice of C.
As a result, assuming that NP ̸= P, no polynomial-time algorithm can approximate the

Square-DSP problem within a factor of 3(C+1)−ε
2C(1+ε) = 3/2 − ε′, for some ε′ = O(ε). ◀

B A PTAS for DSP with short tasks

In this section we will prove Theorem 2 restated below.

▶ Theorem 2. Given ε > 0 small enough, there exists δ > 0 and a polynomial time algorithm
such that, given an instance of DSP with optimal value OPT and consisting solely of tasks
having height at most δ · OPT , it computes a (1 + O(ε))-approximate solution.

Before proving the result in detail we provide a couple of required technical lemmas
regarding the computation of π-left-pushing of a given schedule P (·). First of all, we prove
that such a solution can be indeed computed efficiently.

▶ Lemma 18. Given a feasible schedule P (·) with peak π for an instance I, one can compute
a π′-left-pushing of P (·), with π′ ≥ π, in polynomial time.

Proof. Let 1, ..., n be the tasks sorted according to their starting edge in P (·) from left to
right. Let Si be the starting edge of task i. First, inductively, we compute a π′-left-pushing
of I \ {n} and do not left-shift task n. Since we only left-shifted the tasks, the demand on
the edges from Sn to eW cannot increase. Thus, we reach a feasible solution such that its
peak does not exceed π′. Now we compute the starting time of task n, s∗, if we left-shift
this task as much as possible. Note that s∗ can only be either the leftmost edge or some
edge e such that some previous task finishes next to the left of e, as otherwise at least one
more unit of left-shifting is possible for task n. Now, using this fact, we have at most n

possibilities for s∗ and we can compute this value in polynomial time. Note that if we call
the obtained schedule as P ′(·), then P ′(·) is indeed a π′-left-pushing of P (·). ◀

The following lemma summarizes the useful properties we can get when computing a
left-pushing.

▶ Lemma 19. Given a feasible schedule P (·) with peak π for an instance I, the π′-left-pushing
of P (·) for π′ ≥ π, let us say P ′(·), satisfies the following properties:
1. There exists a node t∗ such that P ′(·) is (π′ − hmax(I), t∗)-sorted, and
2. every i ∈ I has a starting edge in E ′ of the form

∑
j∈I′ w(j) for some I ′ ⊆ I \ {i} (0 if

I ′ is empty).

Proof. We now show a proof of the two properties:

APPROX/RANDOM 2021

20:22 Approximation Algorithms for Demand Strip Packing

1. Suppose that there exists a node k such that the demand on the edge to the left of k

is smaller than π′ − hmax(I) and the demand on the edge to the right of k is larger than
π′ − hmax(I). This implies that some task starts at the edge to the right of k, but then it is
possible to left-shift this task without surpassing the threshold of π′ which is a contradiction.
At this point we know that there exists k′ such that every edge to the left of k′ has demand
larger than π′ − hmax(I), and let k∗ be the rightmost such node. Similarly to the previous
case, if after k∗ there exists a node k such that the load to the left of k is smaller than the
demand to the right of k, then again there must exist a task starting to the right of k and,
since their demands are at most π′ − hmax(I), left-shifting such task does not violate the
threshold of π′ which is a contradiction.

2. Suppose there exists a task not satisfying the claim, and let i be the leftmost such task
in P ′(·). It is easy to see that i cannot start at the leftmost edge and also that the demand
on the edge just to the left of P ′(i) is larger than π′ − h(i) as otherwise a left-shifting of i is
possible. Due to i being the leftmost task, no task i′ can finish just to the left of P ′(i′), as
otherwise the number of edges before P ′(i) would be the sum of some widths in I plus w(i′),
thus fulfilling the claim for i. This implies that every task using the edge just to the left of
P ′(i) must also use edge P ′(i). But then the total demand just to the left of P ′(i) would be
at most the total demand on P ′(i) minus h(i), which is at most π′ − h(i). ◀

We can now proceed with the proof of Lemma 2, where at some point in the proof we
will make use of the following concentration bound which was proved in [11].

▶ Lemma 20 (Calinescu et al. [11]). Let X1, X2, . . . , Xn be independent random variables
and let 0 ≤ β1, β2, . . . , βn ≤ 1 be real numbers, where for each i = 1, 2, . . . , n, Xi = βi with
probability pi and Xi = 0 otherwise. Let X =

∑n
i=1 Xi and µ = E[X]. Then

1. The variance of X, σ2(X), is at most µ, and
2. For any 0 < λ <

√
µ, P[X > µ + λ

√
µ] < e− λ2

2 (1−λ/
√

µ).

Proof of Theorem 2. Let δ > 0 be a constant that we will specify later. We will partition
the tasks into two sets according to their widths: we will say that a task i is horizontal if
w(i) > δ · W and otherwise we will say it is narrow. Consider by now only the horizontal
tasks in I, and assume that the value OPT is known. Thanks to Lemma 19, by computing
an OPT -left-pushing of the optimal solution, we know there exists a set EH ⊆ E that can
be computed in polynomial time such that the starting edge of every task belongs to EH .
Indeed, edges in EH correspond to the sum of widths of some horizontal tasks, implying that
the number of widths in the sum must be at most 1

δ . Hence, all the possible starting edges
are of the form

∑
i∈I′

w(i) where |I ′| ≤ 1
δ . The set EH consisting of these edges has size at

most n1/ε−1 and can clearly be computed in polynomial time.
With the following integer program we can compute a feasible solution corresponding to

a OPT -left-pushing of some scheduling for these tasks. We define a variable xi,k for each
task i and starting edge k in the previously computed set EH (if task i cannot be scheduled
starting at edge k this variable is not considered):

min λ

s.t.
∑

k∈EH

xi,k = 1 ∀i horizontal∑
i hor.

∑
k′∈EH (i,q)

h(i) · xi,k′ ≤ OPT ∀q ∈ EH

xi,k ∈ {0, 1} ∀i horizontal, k ∈ EH ,

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:23

where, given i ∈ I and q ∈ {1, . . . , W}, EH(i, e) is the set of edges k ∈ EH such that, if i has
k as starting edge, then it uses edge e. In other words, the second family of constraints is
ensuring that the total demand of the constructed solution is at most OPT in every edge
(which can be done with polynomially many constraints thanks to the size of EH).

We will consider the canonical linear relaxation of the formulation, and let x⃗ be an optimal
solution to this LP (which can be computed in polynomial time). In order to derive a feasible
solution we will use Randomized Rounding with Alterations, a technique previously used in
similar settings for Packing and Scheduling problems [11, 36, 2]. In a first stage, for each
task i, we will sample one starting edge k according to the probability distribution induced
by {xi,k}k∈EH

. Now, in a second stage, we scan the starting edges k from left to right, and
the sampled tasks i starting at node k according to the sample in any order, and we add i

to the current solution as long as the obtained peak is no more than (1 + ε)OPT . Observe
that this is a dependent rounding where each task i is finally scheduled in the solution with
marginal probability at most xi,k.

Suppose we are applying the previous procedure, and let k be a fixed edge in that order.
Let X̃i,k ∈ {0, 1} be equal to 1 if and only if i is scheduled starting at edge k in the first
stage, and similarly we define Ỹi,k to be 1 if and only i is scheduled starting at edge k in the
second stage. Notice that Ỹi,k ≤ X̃i,k deterministically. By stochastic domination, we have
that

P

 ∑
i hor.

∑
k∈EH (i,q)

Ỹi,k · h(i) > (1 + ε)OPT

 ≤ P

 ∑
i hor.

∑
k∈EH (i,q)

X̃i,k · h(i) > (1 + ε)OPT

 .

To upper bound the latter quantity we will consider two cases:

If µ ≤ 3
4δ , then we can use Chebyshev’s inequality for the variable Z :=

∑
i hor.

X̃i,k · h(i)
δOPT

(notice that thanks to Lemma 20 it holds that σ(Z) ≤ √
µ), from where we obtain that

P

 ∑
i hor.

∑
k∈EH (i,q)

X̃i,k · h(i) > (1 + ε)OPT

 = P
[
Z >

1 + ε

δ

]

≤ P
[
|Z − µ| >

(
1 + ε

δ
− 3

4δ

)
· σ(Z)

√
µ

]
≤ 16µδ2

(1 + 4ε)2 ≤ ε

for δ ≤ ε
4 .

If µ > 3
4δ , we first set λ = 1+ε−µδ

δ
√

µ so that µ + λ
√

µ = 1+ε
δ . Notice that µ =∑

i hor.

xi,k · h(i)
δOPT

≤ 1
δ

due to the constraints in the LP.

Now, it is not difficult to see that λ is decreasing as a function of µ, implying that
λ ≥ 1+4ε√

12δ
. Furthermore, we have that 1 − λ√

µ = 2 − 1+ε
δµ ≥ 2

3 , and thus also λ <
√

µ. Now
we can use Lemma 20 applied to the variables {Xi,kh(i)/(δOPT)}i hor. and their sum Z

and obtain

P

 ∑
i hor.

∑
k∈EH (i,q)

X̃i,k · h(i) > (1 + ε)OPT

 = P [Z > µ + λ
√

µ]

< e− λ2
2 (1−λ/

√
µ)

< e− 2
9

(1+4ε)2
12δ ≤ ε

for δ ≤ (1+4ε)2

54 ln 1
ε .

APPROX/RANDOM 2021

20:24 Approximation Algorithms for Demand Strip Packing

This implies that we get a solution with peak at most (1 + ε)OPT and the probability
that a task is not scheduled is at most ε. As a consequence, in expectation the total area
of tasks that were not placed is at most εW · OPT , and hence using Markov’s inequality
we get that the probability that these tasks have area larger than 2εW · OPT is at most 1

2 .
Thus, if the area of these tasks is at most 2εW · OPT and since their heights are at most
δ · OPT , we can place them into a rectangular region of height 4εOPT and width W using
Corollary 7. If the area guarantee is not satisfied then we repeat the whole process to ensure
it as, in expectation, a constant number of times only is required.

Now we will include the set N of narrow tasks into the solution by applying Lemma 12 with
parameter π = (1+5ε)OPT . Consider a π-left-pushing of the solution. Thanks to Lemma 19,
there exists a node t∗ such that the obtained schedule is (π, t∗)-sorted. Furthermore, it is not
difficult to see that π ≥ (1 + 4ε) a(I)

W + hmax(I ′′) and wmax(N) ≤ εW ≤ 4ε
2(4ε+1) for ε ≤ 1/4,

hence satisfying the requirements of the lemma. This way, we obtain a feasible scheduling
with peak at most (1 + 5ε)OPT .

Finally, in order to avoid knowing the value of OPT , we can approximately guess it
using any constant approximation (such as Corollary 7) and define a constant number of
candidates. ◀

	1 Introduction
	1.1 Our Results and Techniques
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Demand Profile and Left-Pushing
	2.2 Container-based Scheduling

	3 A Simple 2-Approximation for DSP
	4 A (5/3+epsilon)-Approximation for DSP
	4.1 Containers for Tall and Large Tasks
	4.2 Containers for Horizontal Tasks
	4.3 Scheduling Narrow Tasks

	5 Comparison between DSP and GSP
	A Hardness of Approximation for Square-DSP
	B A PTAS for DSP with short tasks

