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Abstract
The polymer model framework is a classical tool from statistical mechanics that has recently been
used to obtain approximation algorithms for spin systems on classes of bounded-degree graphs;
examples include the ferromagnetic Potts model on expanders and on the grid. One of the key
ingredients in the analysis of polymer models is controlling the growth rate of the number of
polymers, which has been typically achieved so far by invoking the bounded-degree assumption.
Nevertheless, this assumption is often restrictive and obstructs the applicability of the method to
more general graphs. For example, sparse random graphs typically have bounded average degree
and good expansion properties, but they include vertices with unbounded degree, and therefore are
excluded from the current polymer-model framework.

We develop a less restrictive framework for polymer models that relaxes the standard bounded-
degree assumption, by reworking the relevant polymer models from the edge perspective. The edge
perspective allows us to bound the growth rate of the number of polymers in terms of the total
degree of polymers, which in turn can be related more easily to the expansion properties of the
underlying graph. To apply our methods, we consider random graphs with unbounded degrees from
a fixed degree sequence (with minimum degree at least 3) and obtain approximation algorithms for
the ferromagnetic Potts model, which is a standard benchmark for polymer models. Our techniques
also extend to more general spin systems.
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1 Introduction

The polymer model framework [21, 14] is a classical tool from statistical mechanics which has
recently been used to obtain efficient approximation algorithms for analysing spin systems
(such as the Potts model) in parameter regimes where standard algorithmic approaches are
provably inefficient/inaccurate on general graphs. These algorithms apply to certain classes
of graphs that typically have sufficiently strong expansion properties relative to their local
growth rates. Typically, the local growth rate is restricted by a bounded-degree assumption.
Examples of such classes include bounded-degree expanders [20, 22, 7, 5, 6, 2, 10, 15] and
the d-dimensional grid [16, 4, 20, 17]. The purpose of this work is to expand the current
framework for applying polymer models by relaxing the bounded-degree assumption and
using alternative methods to capture the growth of the graph.
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36:2 Fast Mixing via Polymers for Random Graphs with Unbounded Degree

To briefly review the current framework, we use as a running example the q-state
ferromagnetic Potts model with parameter β > 0. For a graph G = (VG, EG), the set ΩG,q of
configurations of the model is the set of all (not necessarily proper) q-colourings σ of VG using
the set of colours [q] = {1, . . . , q} where q ≥ 3. The weight of a colouring σ is w(σ) = eβmG(σ)

where mG(σ) is the number of monochromatic edges under σ. The so-called partition function
Z = ZG,q,β is the aggregate weight of all σ and the Gibbs distribution µ = µG,q,β is the
probability distribution on the set of all σ, in which each σ has mass proportional to its
weight, i.e., µ(σ) = w(σ)/Z. We will study the computational problems of approximating
the partition function and approximately sampling from the Gibbs distribution. In general,
these problems are computationally hard (#BIS-hard) when the parameter β is sufficiently
large [13, 12].

The recent works [16, 20] introduced a framework based on polymer models that bypasses
the worst-case hardness, on classes of bounded-degree graphs with expansion properties. The
rough intuition for the Potts model is that, for large β, due to the expansion properties, the
colourings with non-negligible weight are close to the so-called ground-states of the model,
i.e., the q configurations in which all vertices get the same colour. Polymer models capture
the deviation of configurations from these ground states. Given a ground state with colour r,
a polymer is a connected set of vertices, none of which is coloured with r, and a polymer
configuration (with respect to the ground state r) corresponds to the set of all polymers
(see Example 4 for more details). The Potts model can then be decomposed into q polymer
models, each of which can be studied using relatively streamlined algorithmic methods
(based on interpolation [1] and Markov chains). This framework has already found multiple
algorithmic applications in far more general settings [16, 4, 17, 20, 19, 22, 7, 9, 5, 6, 10, 15].

Despite these advances, the current applications of polymer models rely crucially on the
fact that the maximum degree of the underlying graph is bounded. This fact is used to
control the number of polymers of a given size (which is crucially needed for the algorithmic
analysis). As a result of this limitation, applications to several other interesting classes of
graphs are ruled out, excluding for example sparse random graphs, which have bounded
average degree and good expansion properties, but include vertices with unbounded degree.

1.1 Main Results
In this paper, we propose a framework for polymer models that overcomes the bounded-
degree limitations of previous algorithms, by revisiting the Markov chain approach of [7]. We
introduce a new condition which requires that the weight of each polymer decays exponentially
in its total degree (the sum of the degrees of the vertices in the polymer) instead of decaying
exponentially in the polymer’s size. This new condition allows us to prove rapid mixing for
a Markov chain which is an adapted edge-version of the so-called polymer dynamics of [7].
Crucially, the fact that the new condition is formulated in terms of the total degree of a
polymer allows us to relax the assumption that the instance has bounded degree.

As an application of our method, we consider the q-state ferromagnetic Potts model on
sparse random graphs of unbounded degree with a given degree sequence, as detailed below.

▶ Definition 1. Let d be a positive real number and n be a positive integer. We define Dn,d

to be the set of all degree sequences {x1, x2, ..., xn} that satisfy
1. For all i ∈ [n], 3 ≤ xi ≤ nρ where ρ = 1

50 , and
2.

∑
i∈[n] x2

i ≤ dn.
We write G ∼ G(n, x⃗) to indicate that G is a graph chosen uniformly at random from the
set of all simple n-vertex graphs with degree sequence x⃗. G satisfies a property with high
probability (whp) if the probability that G satisfies the property is 1 − o(1), as a function of n

(uniformly over x⃗).
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Note that Dn,d is empty unless d ≥ 9. The assumption that all degrees are greater than
or equal to 3 (rather than 2) guarantees that the random graph G is connected and has
good expansion properties. The degree lower bound also means that our results do not apply
to Erdős-Rényi random graphs. The upper bound on the degrees is mild and can in fact
be relaxed somewhat further (but in general cannot be made to be linear in n due to the
sparsity assumption in Item 2).

We give an efficient algorithm for approximately sampling1 from and approximating the
partition function2 of the ferromagnetic Potts model on random graphs with a given degree
sequence for all sufficiently large β.

▶ Theorem 2. Let d be a real number and q ≥ 3 be an integer. For the ferromagnetic
Potts model, there is β0 such that for all β ≥ β0 there is a poly-time approximate sampling
algorithm for µG,q,β and an FPRAS for ZG,q,β that work with high probability on random
graphs G ∼ G(n, x⃗) for any degree sequence x⃗ ∈ Dn,d.

▶ Remark 3. Note that β0 depends on d and q, and our arguments later (see Remark 17)
show that β0 = Cd log d log q for some C > 0 (independent of d or q). If the desired accuracy
ε is at least e−n then the running time of the sampling algorithm is O

(
n log n

ε log 1
ε

)
and the

running time of the FPRAS is O
(
n2(log n

ε )3)
.

We further remark that the bounded-degree assumption has also been relaxed in [17] for
the ferromagnetic Potts model on lattice graphs; the approach therein however is tailored to a
certain flow representation of the Potts model, which is used as a basis for the corresponding
polymer models and therefore does not extend to general spin systems. Our approach applies
to general polymer models as detailed in the next section and our focus on the ferromagnetic
Potts model is mainly to illustrate the method without further technical overhead; the
approach for example can be adapted to general spin systems on bipartite random graphs
with a given degree sequence (analogously to [10]).

2 Polymers

The main technique that we use to prove Theorem 2 is to refine the polymer framework
by introducing a new polymer sampling condition which requires that the weight of each
polymer decays exponentially in its total degree. In order to state the new condition we first
give some relevant definitions.

Let G = (VG, EG) be a graph – we refer to G as the “host graph” of the polymer
model. Let [q] = {1, . . . , q} be a set of spins and g = {gv}v∈VG

specify a set of ground-state
spins for the vertices, i.e., gv ⊆ [q] for each v ∈ VG. A polymer is a pair γ = (Vγ , σγ)
consisting of a connected set of vertices Vγ and an assignment σγ : Vγ → [q] such that
σγ(v) ∈ [q]\gv. Let PG be the set of all polymers. A polymer model for the host graph G is
specified by a subset of allowed polymers CG ⊆ PG, and a weight function wG : CG → R≥0.
For polymers γ, γ′ ∈ PG, we write γ ∼ γ′ to denote that γ, γ′ are compatible, i.e., that

1 A polynomial-time approximate sampling algorithm for µG,q,β is an algorithm that, given an accuracy
parameter ε > 0 and a graph G = (VG, EG) as input, outputs a sample from a probability distribution
that is within total variation distance ε of µG,q,β , in time poly(|VG|, 1/ε).

2 Given an accuracy parameter ε > 0, we say that Ẑ is an ε-approximation to the quantity Z if
e−εZ ≤ Ẑ ≤ eεZ. A fully polynomial randomised approximation scheme (FPRAS) for ZG,q,β is a
randomised algorithm that, given an accuracy parameter ε > 0 and a graph G = (VG, EG) as input,
outputs a random variable that is an ε-approximation to ZG,q,β with probability at least 3/4, in time
poly(|VG|, 1/ε).

APPROX/RANDOM 2021



36:4 Fast Mixing via Polymers for Random Graphs with Unbounded Degree

for every u ∈ γ and u′ ∈ γ the graph distance in G between u and u′ is at least 2.
We define ΩG = {Γ ⊆ CG | ∀γ, γ′ ∈ Γ, γ ∼ γ′} to be the set of all sets of mutually
compatible polymers of CG; elements of ΩG are called polymer configurations. We define the
partition function as ZG =

∑
Γ∈ΩG

∏
γ∈Γ wG(γ), and the Gibbs distribution on Γ ∈ ΩG as

µG(Γ) =
∏

γ∈Γ wG(γ)/ZG. We use (CG, wG) to denote the polymer model.

▶ Example 4 (The polymer model (Cr
G,q, wG,β), [20]). Consider the q-state ferromagnetic

Potts model with parameter β, and let r ∈ [q] be a colour. Let G be a graph and set gv = {r}
for every v ∈ VG. The weight of a polymer γ = (Vγ , σγ) is defined as wG,β(γ) = e−βBγ ,
where Bγ denotes the number of edges from Vγ to VG\Vγ plus the number of edges of G

with both endpoints in Vγ that are bichromatic under σγ . We let Pr
G,q denote the set of all

polymers and the set of allowed polymers Cr
G,q to be the set of polymers γ ∈ Pr

G,q such that
|Vγ | < |VG|/2. Note that a polymer configuration Γ consisting of the polymers γ1, . . . , γk

corresponds to a colouring σ, where a vertex v takes the colour σγi
(v) if v ∈ Vγi

for some
i ∈ [k], and the colour r otherwise; moreover, eβ|EG| ∏

i∈[k] wG(γi) = wG(σ).

Polymer models have been used to approximate the partition function of spin systems on
bounded-degree host graphs. There are several existing algorithmic frameworks which can be
used to sample from these resulting polymer models. One such deterministic algorithm uses
the polynomial interpolation method of Barvinok [1] combined with the cluster expansion to
approximate the partition function of the polymer model (see [16] for more details). Typical
running times for these deterministic algorithms are of the form nO(log(∆)), where ∆ is the
maximum degree of the host graph, though for polymer models these have been improved to
give a running time of n1+o∆(1), see [20]. Another approach, described in Section 4 of the
full version [11], uses a Markov chain called the polymer dynamics to sample from µG (see
also [7] for more details). The running times of algorithms obtained using the Markov chain
approach are usually faster and of the form O(n log n). Both of these approaches work for
roughly the same range of parameters, and the essential condition required is that the weight
of each polymer decays exponentially in the number of vertices it contains. To obtain our
results, we give a simple generic way to modify this condition, as detailed below.

For a vertex v ∈ VG we write degG(v) to denote the degree of v in G, and for a vertex
subset S ⊆ VG we write degG(S) to denote

∑
v∈S degG(v).

▶ Definition 5. Let q ≥ 2 be an integer, G be a class of graphs, and FG = {(CG, wG) | G ∈ G}
be a family of q-spin polymer models. We say that FG satisfies the polymer sampling condition
with constant τ ≥ 3 log(8e3(q − 1)) if wG(γ) ≤ e−τ degG(Vγ ) for all G ∈ G and all γ ∈ CG.3

Using Definition 5, we will show (Lemma 8, below) that if a “computationally feasible”
family of polymer models on a class of graphs G satisfies this new condition, then there is
an efficient algorithm which, given a graph G ∈ G, approximately samples from the Gibbs
distribution of the polymer model corresponding to G.

The new polymer sampling condition in Definition 5 is analogous to the original one in [7]
except that the original condition requires the weight of a polymer to decay exponentially in
its size, and in particular that the constant τ is sufficiently big relative to the maximum degree
of G. The new condition relaxes this, allowing us to choose the constant τ in Definition 5 so
that it does not depend on the maximum degree of the host graph, which is how we overcome
the limitations of previous work. Technically, the improvement comes from the fact that
previous work relies on bounding the number of connected vertex subsets of a given size

3 Unless we specify otherwise, the base of all logarithms in this paper is assumed to be e.
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(with bounds that depend on the maximum degree of the graph), but here we are able to
instead rely on the following lemma which bounds the number of connected vertex subsets
with a given total degree and this enables us to avoid restricting the maximum degree of the
graph. The new condition, which replaces the notion of “size” with total degree, fits well
with the original abstract polymer model framework of [21], where the notion of the “size” of
a polymer is an abstract function.

▶ Lemma 6. Let G = (VG, EG) be a graph, v ∈ VG, and ℓ ≥ 1 be an integer. The number of
connected vertex subsets S ⊆ VG such that v ∈ S and degG(S) = ℓ is at most (2e)2ℓ−1.

In addition to the bound on the number of connected vertex subsets in Lemma 6, we will
use the fact that these connected vertex subsets can be enumerated in time exponential in
the total degree ℓ (see Lemma 21 of the full version). Although the bound in Lemma 6 is
exponential in ℓ, this will be mitigated by the fact that the new polymer sampling condition
ensures that the weight of each polymer is exponentially small in its total degree. The new
polymer sampling condition therefore allows us to prove that the following condition holds –
this condition is analogous to the polymer mixing condition of [7], except that we consider
edges instead of vertices. For a polymer γ ∈ PG, let Eγ denote the set of edges of G with at
least one endpoint in Vγ .

▶ Definition 7. Let q ≥ 2 be an integer, G be a class of graphs, and FG = {(CG, wG) | G ∈ G}
be a family of q-spin polymer models. We say that FG satisfies the polymer mixing condition
with constant θ ∈ (0, 1) if

∑
γ′≁γ |Eγ′ | · wG(γ′) ≤ θ|Eγ | for all G ∈ G and all γ ∈ CG.

In contrast to the conditions in [7], the two new conditions consider edges since we
modify the polymer dynamics algorithm to sample edges instead of vertices. Subject to these
new conditions, the techniques of [7] can be adapted to show that the modified polymer
dynamics mixes rapidly, therefore giving the efficient algorithm for sampling from the Gibbs
distribution of a polymer model. We give the details of the modified dynamics in Section 4
of the full version [11].

Finally, in order to use the modified polymer dynamics as an efficient algorithm for
computing an approximate sample from µG, we will need a mild computational condition
for polymers. More precisely, we say that a family of polymer models {(CG, wG) | G ∈ G}
is computationally feasible if for all G ∈ G and all γ ∈ PG, it is possible to decide whether
γ ∈ CG and to compute wG(γ), if it is, in O(edegG(Vγ )) time. Computational feasibility
serves exactly the same purpose as it did in Definition 3 of [7], which requires that the same
operations are able to be carried out in time depending on |Vγ | (instead of degG(Vγ) that we
use here).

In Section 4 of the full version [11], we prove the following lemma which gives an
efficient algorithm for sampling4 from the Gibbs distribution of a polymer model and for
approximating its partition function. In order to prove the lemma, we extend the polymer
dynamics algorithm of [7] to the unbounded degree setting. The proof of the lemma uses
the fact (see Lemma 18 of the full version) that the polymer sampling condition implies the
polymer mixing condition.

4 Given an accuracy parameter ε > 0, we say that a random variable X is an ε-sample from the probability
distribution µ if the total variation distance between the distribution of X and µ is at most ε.

APPROX/RANDOM 2021
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▶ Lemma 8. Let q ≥ 2 be an integer, G be a class of graphs, and FG be a family of
computationally feasible q-spin polymer models satisfying the polymer sampling condition.

There are randomised algorithms which, given as input a graph G ∈ G with m edges and
an accuracy parameter ε > 0, output an ε-sample from µG in O

(
m log m

ε log 1
ε

)
time, and an

ε-approximation to ZG, with probability at least 3/4, in O
(
m2 log( m

ε )3)
time.

We next give the proof of Lemma 6 which is one of the key technical ingredients allowing
us to relax the bounded-degree restriction and to remove the dependence of the constant τ

in Definition 5 on the maximum degree of the host graph, as noted earlier.

Proof of Lemma 6. Let N(G, v, ℓ) be the set of subtrees T = (VT , ET ) of G such that
v ∈ VT , degG(VT ) = ℓ. We will show that |N(G, v, ℓ)| ≤ (2e)2ℓ−1, which gives us the desired
result for the following reason. Let S ⊆ VG be a connected vertex subset such that v ∈ S

and degG(S) = ℓ. Since S is connected, it has at least one spanning tree T = (VT = S, ET )
such that v ∈ VT and degG(VT ) = ℓ. Since S is the unique connected vertex subset that T

spans, this gives us an injective map from the set of all connected vertex subsets containing
v with total degree ℓ, to N(G, v, ℓ).

We now give an injective map from N(G, v, ℓ) to T ∗(2ℓ, 3) – the set of subtrees of size
2ℓ that contain the root, of the infinite rooted 3-regular tree. By a result of Bollobás [3,
p. 129], we know that |T ∗(2ℓ, 3)| is at most (2e)2ℓ−1. Let T = (VT , ET ) be a subtree from
N(G, v, ℓ). We will map T to a rooted subtree T ′ = (VT ′ , ET ′) from T ∗(2ℓ, 3). For each
vertex of VG, fix an ordering of its neighbours. In the infinite rooted 3-regular tree, label the
edges incident to the root with {1, 2, 3}, and for each other vertex label the edges connecting
it to its two children with {1, 2}. As we construct T ′, we will label its edges so that it is
clear which subtree from T ∗(2ℓ, 3) we are constructing, we will also label some of its vertices.
We construct T ′ as follows (see Figure 1 for an example of the following construction).
1. Add the root to VT ′ and label it v.
2. While there is a labelled vertex of T ′ (call its label u) such that u has a child w in T

but no vertex of T ′ is labelled w, then we do the following. First, we create a path P of
length degG(u) where each edge is labelled 1. We then connect the vertex of T ′ labelled
u to P via an edge labelled 1. Finally, for 1 ≤ i ≤ degG(u), we connect a vertex labelled
w to the ith vertex of P via an edge labelled 2, if w is the ith neighbour of u in G and w

is a child of u in T .

u

u1 u2 u3 u4 u5 u6

(a) Neighbourhood of u in G.

u

u1 u3 u5 u6

(b) Neighbourhood of u in T .

u

u1

u3

u5

u6

1

1

1

1

1

1

2

2

2

2

(c) Neighbourhood of u in T ′.

Figure 1 Constructing T ′.
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Each T ∈ N(G, v, ℓ) maps to a different T ′ ∈ T ∗(2ℓ, 3). When constructing T ′, we used
edge labels from {1, 2, 3}, therefore the maximum degree of T ′ is 3. For each v ∈ VT , we added
at most 2 degG(v) vertices to T ′, therefore the size of T ′ is at most 2 degG(VT ) = 2ℓ. ◀

3 Application to unbounded-degree graphs

Let α > 0 be a real number. We say that a graph G is an α-total-degree expander if, for all
connected vertex subsets S ⊆ VG with |S| ≤ |VG|/2, we have eG(S, Sc) ≥ α degG(S), where
eG(S, Sc) denotes the number of edges with one endpoint in S and the other in Sc := VG \ S.
Let Gα denote the set of all α-total-degree expanders. Note, every connected G ∈ Gα is also
an α-expander (i.e., eG(S, Sc) ≥ α|S|).

When β is sufficiently large, the polymer model from Example 4 satisfies the polymer
sampling condition (Definition 5) with constant τ = αβ. To see this, consider γ ∈ Cr

G,q and
observe that since Bγ ≥ eG(Vγ , V c

γ ) and |Vγ | < |VG|/2, it follows that

wG,β(γ) ≤ exp {−αβ degG(Vγ)} = e−τ degG(Vγ ), (1)

where τ ≥ 3 log(8e3(q − 1)) if β ≥ 3
α log(8e3(q − 1)).

We may therefore apply Lemma 8 in order to efficiently sample from the ferromagnetic
Potts model and to estimate ZG for G ∈ Gα, provided that β is sufficiently large. The proof
of the following theorem is in Section 5 of the full version [11].

▶ Theorem 9. Let α > 0 be a real number. Let q ≥ 3 be an integer and β ≥ 3
α log(8e3(q − 1))

be a real. For the Potts model on G ∈ Gα, there is a poly-time approximate sampling algorithm
for µG,q,β and an FPRAS for ZG,q,β.

In fact, for n = |VG| and m = |EG|, if the desired accuracy ε satisfies ε ≥ e−n then
the running time of the sampler is O(m log m

ε log 1
ε ) and the running time of the FPRAS is

O
(
m2(log m

ε )3)
.

3.1 Expansion of random graphs with specified degree sequences
Let d be a real number. In this section, we will show that a graph G ∼ G(n, x⃗) for a degree
sequence x⃗ ∈ Dn,d is whp an α-total-degree-expander for some constant α > 0, i.e., that
G ∈ Gα.

To work with G ∼ G(n, x⃗), we consider the standard configuration model, where a random
multigraph H = (VH , EH) with the given degree sequence x⃗ is sampled by the following
process. For each i ∈ [n], we attach xi half-edges to the vertex i. We then sample a uniformly
random perfect matching on the half-edges to give EH . This uniformly random perfect
matching can be sampled by performing the following until no half-edges remain: choose
any remaining half-edge, choose another remaining half-edge uniformly at random, then
pair these two half-edges and remove them from the set of remaining half-edges. We write
H ∼ CM(n, x⃗). Note, for two vertices i, j ∈ VH such that i ̸= j, the probability that a half
edge attached to i and a half edge attached to j are paired is

p{i,j} = xixj

2m − 1 , where m = 1
2

∑n
k=1 xk, (2)

and similarly the probability that two half-edges of i are connected is p{i,i} = xi(xi−1)
2m(2m−1) .

We first prove results about CM(n, x⃗), since asymptotic properties of CM(n, x⃗) can easily
be transferred back to G(n, x⃗) using the following straightforward consequence of [18, Theorem
1.1]. A proof is included in the full version [11] for completeness.

APPROX/RANDOM 2021



36:8 Fast Mixing via Polymers for Random Graphs with Unbounded Degree

▶ Lemma 10. Let d be a positive real number. For every positive integer n, let En be a set
of n-vertex multigraphs. If, for some x⃗ ∈ Dn,d, G ∼ G(n, x⃗) and H ∼ CM(n, x⃗) then the
following is true. If H ∈ En with high probability, then G ∈ En with high probability.

For a (multi)graph H = (VH , EH) we define the tree-excess to be tH = |EH | − (|VH | − 1);
that is, the number of edges more than a tree that H has. First, we show that multigraphs
drawn from the configuration model have locally bounded tree excess.

▶ Lemma 11. Let d be a positive real number. The following is true with high probability
when H = (VH , EH) is drawn from CM(n, x⃗) uniformly over all degree sequences x⃗ ∈ Dn,d.
For all connected vertex sets S ⊆ VH with |S| ≤ (log n)2 and degH(S) ≥ 36, we have that
tH[S] ≤ 1

6 degH(S).

Proof. For positive integers k and ℓ, and a non-negative integer t, let the random variable
Xk,ℓ,t denote the number of connected vertex subsets S ⊆ VH such that |S| = k, degH(S) = ℓ,
and tH[S] = t. To prove the lemma, we will show that whp∑

k≤⌊(log n)2⌋

∑
ℓ≥36

∑
t≥⌊ℓ/6⌋+1

Xk,ℓ,t = 0.

In fact, we can further restrict the range of summation. From the lower bound in Item 1
of Definition 1, we have that xi ≥ 3 for all i, and therefore ℓ ≥ 3k. Item 2 shows that∑

i xi ≤ dn, and therefore ℓ ≤ dn and t ≤ ℓ/2 ≤ dn/2. So, consider any integer ℓ in the
range 36 ≤ ℓ ≤ dn, any integer k in the range 1 ≤ k ≤ min{(log n)2, ℓ/3}, and any integer
t > ℓ/6. There are at most

(
n
k

)
vertex subsets S ⊆ VH with |S| = k and degG(S) = ℓ. Let

j = k − 1 + t be the number of edges with both endpoints in S. Given such a set S, there
are at most

(
ℓ

2j

)
possibilities for the set of half-edges in these j edges. On a given set of

2j half-edges, there are (2j − 1)!! = (2j)!
2jj! perfect matchings. Using the upper bound on the

degrees from Item 1 of Definition 1, the probability that a set of j edges is present in H is at
most

n2ρ

2m − 1
n2ρ

2m − 3 · · · n2ρ

2m − 2j + 1 ≤
(

n2ρ

2m − 2j

)j

≤
(

n2ρ

n

)j

,

where the final inequality follows from the fact that k ≤ (log n)2 and therefore that 2m−2j ≥
degG(Sc) ≥ 3|Sc| = 3(n − k) > n (as long as n is sufficiently big). We also have that(

ℓ

2j

)
· (2j)!

2jj! <
ℓ!

(ℓ − 2j)!j! <
ℓ2jej

jj
≤

(
eℓ2

t

)j

.

Putting everything together, it follows that

E[Xk,ℓ,t] ≤
(

n

k

) (
eℓ2

t

)k−1+t (
n2ρ

n

)k−1+t

<

(
e2ℓ2

t

)k−1+t
n2ρ(k−1+t)

nt−1 .

Furthermore, since t > ℓ/6, k < 2t, and (by the upper bound in Item 1 of Definition 1)
ℓ ≤ knρ ≤ n2ρ, we have that

E[Xk,ℓ,t] <
(6e2n4ρ)3t−1

nt−1 . (3)

Let

X =
dn∑

ℓ=36

⌊min{(log n)2,ℓ/3}⌋∑
k=1

⌊dn/2⌋∑
t=⌊ℓ/6⌋+1

Xk,ℓ,t.
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Since t > ℓ/6 ≥ 6, it follows that t ≥ 7. For big enough n, (3) shows that E[Xk,ℓ,t] ≤
n13ρt/nt−1. Since ρ ≤ 2/91 and t ≥ 7, 1 − 13ρ ≥ 5/7 ≥ 5/t so 13ρt ≤ t − 5 and E[Xk,ℓ,t] is
at most n−4. Taking a union bound over all permissible values for ℓ, k, and t, we find that
E[X] = o(1). Applying Markov’s inequality, we have that Pr(X > 0) = Pr(X ≥ 1) ≤ E[X] =
o(1), and the result follows. ◀

To obtain the expansion bounds in Lemmas 13 and 14, we require the following result
from [8, Proposition 4.5]. Although this result is stated in [8] in terms of the random
graph model, it is first proved for the configuration model, so this is how we state it. Also,
Fountoulakis and Reed require that the vector x⃗ be in Dn,d but this is only important for
lifting their result to the random graph model, so it is not relevant for us.

▶ Lemma 12. (Fountoulakis, Reed) Let H = (VH , EH) be drawn from CM(n, x⃗) for some
length-n degree sequence x⃗. For any set S ⊆ VH we have Pr(eH(S, Sc) = 0) ≤

(
m

degH (S)/2
)−1,

where m = 1
2

∑
i xi.

Note that Fountoulakis and Reed’s lemma was stated for S such that degH(S) is even,
but if degH(S) is odd, it is not possible to have eH(S, Sc) = 0. Next, we show that in
a multigraph H drawn from the configuration model, small vertex subsets satisfy certain
expansion properties.

▶ Lemma 13. Let d be a positive real number. The following is true with high probability
when H = (VH , EH) is drawn from CM(n, x⃗) uniformly over all degree sequences x⃗ ∈ Dn,d.
For all connected vertex sets S ⊆ VH with |S| ≤ (log n)2, we have that eH(S, Sc) ≥ |S|/4.

Proof. For positive integers k and ℓ, and a non-negative integer j, let the random variable
Xk,j,ℓ denote the number of connected vertex subsets S ⊆ VH with |S| = k, eH(S, Sc) = j,
and degH(S) = ℓ. By Item 1 of Definition 1, we need only consider ℓ satisfying 3k ≤ ℓ ≤ knρ.
Let

X =
⌊(log n)2⌋∑

k=1

⌊k/4⌋∑
j=0

⌊knρ⌋∑
ℓ=3k

Xk,j,ℓ.

To prove the lemma we will show that X = 0, whp. Consider any integer k in the range
1 ≤ k ≤ (log n)2, any integer j in the range 0 ≤ j < k/4, and any integer ℓ in the range
3k ≤ ℓ ≤ knρ. There are at most

(
n
k

)
candidates for vertex sets S with |S| = k and

degH(S) = ℓ. There are then at most
(

ℓ
j

)
choices for the j half-edges emanating from vertices

of S that will be matched with half-edges emanating from vertices of Sc, once H is drawn.
Applying Lemma 12 to the degree sequence derived from x⃗ by removing the j half-edges (and
their partners), the probability that the remaining ℓ − j half-edges are matched amongst
themselves is at most

(
m′

(ℓ − j)/2

)−1
≤

(
(ℓ − j)

2m′

) (ℓ−j)
2

≤
(

knρ

n

) 11k
8

,

where 2m′ = (
∑n

i=1 xi) − 2j and the last inequality follows (for big enough n) since 11k/4 ≤
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ℓ − j ≤ knρ and 2m′ ≥ 3n − 2j > n. We therefore have that

E[X] ≤
⌊(log n)2⌋∑

k=1

⌊k/4⌋∑
j=0

⌊knρ⌋∑
ℓ=3k

(
n

k

)(
ℓ

j

) (
knρ

n

) 11k
8

≤
⌊(log n)2⌋∑

k=1

⌊k/4⌋∑
j=0

⌊knρ⌋∑
ℓ=3k

(ne
k

)k
(

eℓ

j

)j (
knρ

n

) 11k
8

≤
⌊(log n)2⌋∑

k=1

(
(log n)O(1)nρ(2+11/8)

n3/8

)k

.

This is o(1) since ρ < 1/9. Applying Markov’s inequality, we have that Pr(X > 0) = Pr(X ≥
1) = o(1), and the result follows. ◀

The next lemma handles the expansion of sets S with relative big size.

▶ Lemma 14. Let d be a positive real number. There is a positive real number α (depending
on d) such that the following is true with high probability when H = (VH , EH) is drawn from
CM(n, x⃗) uniformly over all degree sequences x⃗ ∈ Dn,d. For all connected vertex sets S ⊆ VH

with (log n)2 ≤ |S| ≤ n/2, we have that eH(S, Sc) ≥ α degH(S).

Proof. We will give the proof for vertex sets S ⊆ VH with (log n)2 ≤ |S| ≤ n/2 and
degH(S) > max{100d|S|, n/2}, the cases where degH(S) ≤ max{100d|S|, n/2} follow by
arguments that are close to those in [8], and are given in the full version [11].

Let C = 104d. By the Cauchy-Schwarz inequality, we have that |S|
∑

i∈S x2
i ≥

(degH(S))2 ≥ 104d2|S|2, so using Item 2 of Definition 1 which ensures that
∑

i∈S x2
i ≤ dn,

we find that |S| ≤ n/C.
Let f = (eC)1/C . The number of sets S satisfying |S| ≤ n/C is at most n

(
n

n/C

)
≤ nfn

since there are at most n possibilities for |S| to consider, and for each of them
(

n
|S|

)
≤

(
n

n/C

)
.

Fix any set S ⊆ VH with |S| ≤ n/C and consider the random construction of H, starting
from half-edges in Sc (and choosing their mates in the pairing). Let

j =
⌊

degH(Sc)
2

⌋
≥

⌊
3|Sc|

2

⌋
≥

⌊
3n

(
1 − 1

C

)
2

⌋
≥

3n
(
1 − 2

C

)
2 ,

where the first inequality uses the fact that each xi is at least 3 (from Item 1 of Definition 1)
and the final inequality uses the fact that n is sufficiently large.

Note that the process initiates a pairing from at least j half-edges in Sc. For each i ∈ [j],
let Yi be the indicator random variable for the event that the i’th half-edge from which
pairing is initiated connects to an endpoint in S (conditioned on the pairings of the first i − 1
half-edges initiated from Sc).

Let ε = 3(1 − 2/C)/(8d) ≤ 1/2. Recall from Item 2 in Definition 1 that
∑n

i=1 xi ≤ dn.
For any t ∈ [j] satisfying

∑t−1
i=1 Yt < εn/2 we have

Pr(Yt = 1) ≥ degH(S) − εn/2
dn

>
1 − ε

2d
≥ 1

4d
.

Now let X1, . . . , Xj be i.i.d. Bernoulli random variables which are 1 with probability 1/(4d).
We can couple the evolution of these variables so that, for any t ∈ [j] satisfying

∑t−1
i=1 Yi <

εn/2, we have
∑t

i=1 Yi ≥
∑t

i=1 Xi. We conclude that Pr(
∑j

i=1 Yi < εn/2) ≤ Pr(
∑j

i=1 Xi <

εn/2).
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To conclude we will show that nfn Pr(
∑j

i=1 Xi < εn/2) = o(1), implying that we can
take α = ε/(2d) since εn/2 = αdn ≥ α degH(S).

Let X =
∑j

i=1 Xi and δ = 1/2. Note that E[X] = j/(4d) and that

(1 − δ)j
4d

≥
(1 − δ)3n

(
1 − 2

C

)
8d

= εn

2 .

By a Chernoff bound, Pr(X ≤ εn/2) ≤ Pr(X ≤ (1 − δ)j/(4d)) ≤ exp(−jδ2/(8d)).
To conclude that nfn exp(−jδ2/(8d)) = o(1) we observe that f < exp(3(1−2/C)δ2/(16d)).

Taking α = ε/(2d), we conclude the proof. ◀

We can now prove the following result, which establishes the desired expansion properties
of the multigraphs generated by the configuration model.

▶ Lemma 15. Let d be a positive real number. There is a positive real number α (depending
on d) such that the following is true with high probability when H = (VH , EH) is drawn from
CM(n, x⃗) uniformly over all degree sequences x⃗ ∈ Dn,d. For all connected vertex sets S ⊆ VH

with |S| ≤ n/2, we have that eH(S, Sc) ≥ α degH(S).

Proof. We consider three cases.
Case 1. Consider all connected subsets S ⊆ VH with (log n)2 ≤ |S| ≤ n/2. By Lemma 14

there is a positive real number α′ such that, whp, every such subset S has eH(S, Sc) ≥
α′ degH(S).

Case 2. Consider all connected subsets S ⊆ VH with |S| ≤ (log n)2 and degH(S) ≥ 36.
Consider first those subsets S with |S| ≤ 1

6 degH(S). We have that

eH(S, Sc) = degH(S) − 2(tH[S] + |S| − 1) ≥ 2
3 degH(S) − 2|S| ≥ 1

3 degH(S),

by Lemma 11 and our assumption on the size of S.
Now consider those subsets S with |S| > 1

6 degH(S), then by Lemma 13, we have that
eH(S, Sc) ≥ |S|/4 ≥ degH(S)/24.

Case 3. Finally, consider connected subsets S ⊆ VH with |S| ≤ (log n)2 and degH(S) < 36.
By Lemma 13, we have that eH(S, Sc) ≥ |S|/4 ≥ 1/4 = 36/144 > degH(S)/144.

The result follows from the three cases by taking α = min{1/144, α′} = α′. ◀

Using the definition of Gα and Lemma 10, we have the following corollary of Lemma 15.

▶ Corollary 16. Let d be a real number. There is a positive real number α (depending on d)
such that the following holds. With high probability, when G ∼ G(n, x⃗) for some x⃗ ∈ Dn,d, it
holds that G ∈ Gα.

Combining Corollary 16 with Theorem 9 implies our main theorem.

▶ Theorem 2. Let d be a real number and q ≥ 3 be an integer. For the ferromagnetic
Potts model, there is β0 such that for all β ≥ β0 there is a poly-time approximate sampling
algorithm for µG,q,β and an FPRAS for ZG,q,β that work with high probability on random
graphs G ∼ G(n, x⃗) for any degree sequence x⃗ ∈ Dn,d.

Proof. Let d be a real number and let q ≥ 2 be an integer. Let α be the positive real number
from Corollary 16. Let β0 = 3

α log(8e3(q − 1)).
Consider x⃗ ∈ Dn,d and let G be drawn from G(n, x⃗). By Corollary 16, G ∈ Gα whp. The

result then follows by using the algorithms from Theorem 9. ◀
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▶ Remark 17. The bounds on β in Remark 3 follow from the choice of β0 in the proof of
Theorem 2 and from the fact that α = O( 1

d log d ) which follows from the proofs of Lemmas 14
and 15. The running time bounds in Remark 3 come from those in Theorem 9 using the fact
that |EG| = O(n) which follows from Item 2 of Definition 1.
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