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Abstract
Let M be an arbitrary n by n matrix of rank n − k. We study the condition number of M plus a
low-rank perturbation UV T where U, V are n by k random Gaussian matrices. Under some necessary
assumptions, it is shown that M + UV T is unlikely to have a large condition number. The main
advantages of this kind of perturbation over the well-studied dense Gaussian perturbation, where
every entry is independently perturbed, is the O(nk) cost to store U, V and the O(nk) increase in
time complexity for performing the matrix-vector multiplication (M + UV T )x. This improves the
Ω(n2) space and time complexity increase required by a dense perturbation, which is especially
burdensome if M is originally sparse. Our results also extend to the case where U and V have rank
larger than k and to symmetric and complex settings. We also give an application to linear systems
solving and perform some numerical experiments. Lastly, barriers in applying low-rank noise to
other problems studied in the smoothed analysis framework are discussed.
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1 Introduction

The smoothed analysis framework as introduced by Spielman and Teng aims to explain the
performance of algorithms on real world inputs through a hybrid of worse-case and average
case analysis [25]. In this framework, we are given an arbitrary input that is then perturbed
randomly according to some some specified noise model. We apply this framework to study
the condition number of a matrix perturbed with low-rank Gaussian noise. The condition
number is of interest since it influences the behavior of many algorithms in numerical linear
algebra, both in theory and in practice.

To give context to our result, recall that the condition number of a n × n matrix M with
singular values s1(M) ≥ · · · ≥ sn(M) is defined as the ratio s1(M)/sn(M). Generally, a
condition number is “well behaved” if s1(M)/sn(M) = nO(1). It can be shown that under
very mild and natural conditions, we have s1(M) ≤ nO(1). For instance, this readily follows
from Proposition 6 if the entries are not too large compared to the size of M or if the
entries have sufficient tail concentration far from the origin. Since our random variables are
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Gaussians, this easily holds. Therefore, the bulk of the work lies in controlling the smallest
singular value sn(M). Extending a result of Edelman [11], Sankar, Spielman and Teng
showed the following result in [22]:

▶ Theorem 1. There is a constant C > 0 such that the following holds. Let M be an arbitrary
matrix and let Nn be a random matrix whose entries are iid Gaussian. Let Mn = M + Nn.
Then for any t > 0,

P(sn(Mn) ≤ t) ≤ Cn1/2t.

Later, Tao and Vu generalized the above result where the entries of Nn are independent
copies of a general class of random variables that have mean zero and bounded variance
[32, 27].

1.1 Motivation for low-rank noise
The main drawback of these results is that every entry of M must be perturbed by independent
noise. This means that if such a perturbation was carried out in practice, we would need to
first draw n2 random numbers and store them. This is more problematic if M is sparse to
begin with and stored in a data structure utilized for sparse matrices. These observations
lead us to ask if we can achieve well-conditioned matrices with less randomness and less
space. Our results demonstrate the answer is yes by replacing the dense Gaussian ensemble
Nn with a low-rank matrix.

To further motivate our work, we note that in the context of smoothed analysis, Theorem
1 is used to explain the phenomenon that matrices encountered in practice frequently have
“well behaved” condition number. For instance, many matrices can arise out of empirical
observations or measurements which can be subject to some inherent noise.

Similarly, low-rank noise is also natural and arises in many scenarios. Low-rank noise
has been studied as a noise model in least squares [33], compressed sensing [8, 18, 10], and
imaging [15, 26] to name a few applications. In addition, low-rank noise also arises in many
applied sciences model, for instance, see the examples in [1] and references therein where
examples are given for the eigenvalue problem Mx = x+Ex, for a low rank matrix E, arising
in scientific modelling. Furthermore, one of the most frequent properties that matrices in
data science posses is having low rank (see [6, 7, 30, 19] and references within). Thus for
these matrices, the traditional smoothed analysis viewpoint of having a dense perturbation
cannot apply due to their low rank requirement.

Hence, an additional motivation of our work is that studying low-rank noise is a natural
step in smoothed analysis which we initiate.

1.2 Our results
As stated before, we replace the dense Gaussian perturbation Nn with a low-rank perturbation.
Our main result is the following.

▶ Theorem 2 (Theorem 13 simplified). Let 1 ≤ k ≤ n/2 and M be a matrix of rank n − k.
Let U, V be n × k matrices with i.i.d. N (0, 1) entries. Then

P
(

sn(M + UV T ) ≤ ε

n k
sn−k(M)

)
≤ C

√
ε + exp(−c n)

so long as sn−k(M) < n for absolute constants C, c > 0.
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Theorem 2 roughly states that if we add a rank k random perturbation to a rank n − k

matrix, then the smallest k singular values of the matrix improve. The advantage of our
approach is that the matrices U, V can be stored separately from M using O(nk) space. This
is especially useful in the case that M is sparse to begin with and is stored using a data
structure optimized for sparse matrices. Furthermore, a matrix vector product operation
(M + UV T )x can be computed in Time(Mx) + O(nk) time where Time(Mx) is the time
required to compute Mx. For instance, when k = O(1), the extra increase in space and time
complexity is only O(n). This is a significant improvement in both the space required to
store a dense Gaussian random matrix G and computing (M + G)x which are both Ω(n2).
We prove Theorem 2 in Section 3 and discuss the dependence on the terms sn−k(M) and

√
ε

which we show is unavoidable (see remarks 17, 18).
Theorem 2 can be generalized in a variety of ways. First, our result carries over to the

case where we pick the columns of U, V to be from a rotationally invariant distribution, such
as uniform vectors on the unit sphere. We show that our result also carries over to the case
where M is symmetric and we pick U = V to preserve symmetry.

It is natural to ask if a broader family of random variables can be used in Theorem
2. In Section 3.1 we show that our result cannot hold if we pick the entries of U, V to be
from the Rademacher distribution. This is in contrast to the dense perturbation case where
Gaussian random variables can be replaced with a wide variety of other distributions such as
sub-Gaussian random variables (which include Rademachers). On the other hand, we can
get an analogous statement to Theorem 13 if we allow for complex Gaussian perturbations.

▶ Theorem 3 (Theorem 15 simplified). Let 1 ≤ k ≤ n/2 and M be a matrix of rank n − k.
Let U, V be n × k complex matrices with real and imaginary parts in each entry drawn
independently from N (0, 1/2). Then

P
(

sn(M + UV T ) ≤ ε

n k
sn−k(M)

)
≤ Cε + exp(−c n)

so long as sn−k(M) < n for absolute constants C, c > 0.

A further natural question to consider is if the low-rank noise model can be studied in
other problems in smoothed analysis. In Section B, we highlight the challenges that arise
when applying low-rank random perturbations to other well studied problems in smoothed
analysis such as the simplex method and k-means clustering. We show that current analysis
methods that work for dense random perturbations for these problems do not carry over to
the low-rank case due to the lack of independence.

Lastly, we note that Theorem 2 requires that if the input matrix M has rank n − k, then
perturbation has rank exactly k. This condition can be relaxed in a couple of ways; first, if
we add a perturbation of rank less than k then the matrix will be singular so there is nothing
to study in this case. On the other hand, adding a rank k′ > k perturbation to a rank n − k

matrix can be thought of as adding a rank (k′ − k) perturbation to a full rank matrix since
the original matrix plus a rank k perturbation will be full rank with probability 1. Then as
explained further in Section 4, we can obtain the following result in this case.

▶ Theorem 4 (Theorem 20 simplified). Let M be a n × n real matrix with rank(M) = n,
smallest singular value sn, and U, V ∈ Rn×k have independent N (0, 1) coordinates. Then for
all ε ∈ (0, 1),

P
(

sn(M + UV T ) ≤ ε√
n

)
≤ C

(√
ε

(
1 + 2nk

sn

)
+ 1

(2nk)9/4 + exp(−cnk)
)

.
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The second way to circumvent Theorem 2 is with the use of Weyl’s perturbation inequality.
To see how it applies, consider the case of k = 1. Decompose M = sn(M)ℓnrT

n +M ′ where ℓn,
rn are the left and right singular vectors associated with sn(M). Then we can view M + uvT

as a random perturbation of M ′ (which has rank n − 1), plus matrix sn(M)ℓnrT
n whose

operator norm is at most sn. We can then apply Theorem 2 to M ′ to bound sn(M ′ + UV T )
in terms of sn−1(M ′) = sn−1(M), and then incur an additional additive sn(M) error by
Weyl’s inequality. Since our ideal use case is when sn(M) is already negligible, the final
bound that we get is comparable to the bound from Theorem 2.

Finally in Section 3.2, we discuss an application of low-rank perturbations to solving
large sparse linear systems and in Section A, we present numerical evidence for our low-rank
error model.

▶ Remark 5. Note that Theorem 1 and the works of Tao and Vu in [32, 27] both prove a
statement of the form P(sn(M +E) ≤ n−A) ≤ n−B where E is the perturbation and A, B are
parameters that depend on the random variables comprising the perturbation. Our statements
in Theorem 2 is also of similar flavor since it shows that P(sn(M +E) ≤ sn−k(M) n−A) ≤ n−B .
Since the theorems of Sankar, Spielman, and Teng and Tao and Vu have found other
applications in smoothed analysis, such as in the analysis of the simplex method and beyond,
we envision that our theorem could also find similar applications. We discuss barriers in
applying the low-rank noise model to other smoothed analysis problems in Section B.

1.3 Previous techniques and our approach
In summary, it is difficult to apply previous techniques in our case since we have shared
randomness across different rows/columns of the matrix. In more detail, all of the previous
techniques used to bound the singular values of a random matrix rely on the controlling the
distance between a row to the span of the other rows. To see why this is relevant, imagine a
singular matrix. In such a case, it is clear that there must exist a row that lies in the span of
the other rows. Therefore, controlling the distance from a row to the span of the other rows
gives control over the smallest singular value.

Controlling this geometric quantity boils down to understanding the dot product between
a row and the normal vector of the hyperplane spanned by the other rows. Crucially if the
rows are independent, we can treat the normal vector of the hyperplane as fixed so this
question reduces to the well known Erdos-Littlewood-Offord anti-concentration inequality
and its variants which are used in previous works such as [28, 32, 27].

To be more precise, lets consider a high level overview of the proof of Sankar, Spielman,
and Teng’s Theorem 1. Fix a vector x and note that from the identity sn(Mn) = ∥M−1

n ∥, it
suffices to give a tail bound on ∥M−1

n x∥. By applying an orthogonal rotation and using the
rotational invariance of the Gaussian, we can say that

∥M−1
n x∥ = ∥M−1

n e1∥ = ∥c1∥

where e1 is the first basis vector and c1 is the first column of M−1
n . From the equation

Mn · M−1
n = I, it follows that ∥c1∥ = 1/|wT r1| where r1 is the first row of Mn and wT

is the normal vector of the span of the rows r2, · · · , rn. Therefore, the proof reduces to
understanding the dot product between a random vector r1, and another independent vector
w. In the more general case of Tao and Vu [32, 27], more elaborate dot product estimates
using the Erdos-Littlewood-Offord inequality are needed.

In our case, if we add a rank 1 perturbation to a matrix, randomness is shared across all
rows. Therefore, we cannot reduce our problem to understanding the dot product between a
random vector and another independent vector since fixing a normal hyperplane of a span
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of a subset of rows automatically gives information about the rows not considered in the
span due to the shared randomness. Hence, it is tricky to apply the spectrum of existing
techniques in our case.

To overcome these barriers, we use a completely different method to prove Theorem
13. We first reduce our problem to adding noise to a diagonal matrix by using rotational
invariance. Then we employ linear algebraic tools (rather than probabilistic tools), to get an
“explicit” representation of the inverse of a matrix after adding rank k noise. After arriving
at an explicit representation of the inverse, we are able to compute a probabilistic bound on
the smallest singular value. Our proof crucially uses the fact that our low-rank perturbations
have Gaussian entries whereas the proofs of the dense perturbations carry over in other
distributional settings as well. This is not a flaw of our method since it is simply not possible
to prove an analogue of our theorems even if the entries of the low-rank perturbations come
from sub-Gaussian distributions. We elaborate this point further in Section 3.1.

For Theorem 20 where we add a rank k random noise to a rank n matrix, we carefully
adapt the geometric ideas utilized in previous approaches as explained above. However to get
around the shared randomness between rows, we have to perform some careful conditioning
which allows us better control the behavior of the random normal vector w.

1.4 Why would the perturbed matrix even be full rank?

We briefly address the question of why we even expect low-rank perturbations to improve
the condition number. Consider the case where D is a diagonal matrix of rank n − 1 and
we add a random rank 1 Gaussian perturbation uvT . Recall the matrix determinant lemma
which states that

det(D + uvT ) = det(D) + vT adj(D)u

where adj(D) is the adjugate matrix of D. In our case, we can assume that the first n − 1
entries on the diagonal of D are given by s1(D), · · · , sn−1(D) while the last entry is 0. Then,
the adjugate matrix is the all zeros matrix except the bottom rightmost entry which is
s1(D) · · · sn−1(D). Therefore,

det(D) + vT adj(D)u = (unvn)(s1(D) · · · sn−1(D))

which is non-zero with probability 1 since unvn ≠ 0 with probability 1. Thus, adding a
random rank 1 perturbation results in D not being singular which motivates the question of
studying the smallest singular value after a random rank 1 (and more generally low-rank)
perturbation.

1.5 Related works

The smoothed analysis framework has been applied to a variety of problems, most notably
in analyzing optimization problems such as k-means [2, 3], the perceptron algorithm [5], and
the simplex method [25, 9]. In all of these results, the goal is to show that after an input
instance of the problem is suitably perturbed, the algorithm or heuristic runs in polynomial
time (the time may depend on the properties of the noise). For a survey of results, see
[29, 24, 16] and references within. The analysis used tends to be very problem specific and
also heavily dependent on the type of noise added which for a vast majority of cases are
dense Gaussian noise.

APPROX/RANDOM 2021
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Zero preserving noise

The work that is closest in spirit to our work is the zero preserving noise model studied by
Spielman, and Teng. It was shown in [22] that if M is a symmetric matrix, then adding an
independent Gaussian random variable xij to each entry Mij such that i ̸= j, Mij ̸= 0, and
satisfying xij = xji along with a Gaussian perturbation along the diagonal results in a “well
behaved” condition number. However, the main drawback of this result is that it only holds
for symmetric matrices and even in this case, a dense perturbation is required if M is dense
to begin with.

Other works

There are works that use sparse Gaussian perturbations, i.e, their perturbation model is a
Gaussian times a Bernoulli random variable with a small parameter. If the Bernoulli random
variable has sufficiently small parameter, then with high probability, most of the entries
in the perturbation will be zero. The downsides of these methods are that many random
variables still need to be drawn and it is not clear if they can show the resulting matrix is
well conditioned. For example, Theorem 3.6 in [20] only shows that the singular values of
the resulting matrix are separated from each other, not that the matrix is well conditioned.
In fact, the study of these types of random matrices where entries are sub-Gaussian random
variables multiplied by independent Bernoulli variables is still lacking. For instance, the
smallest singular value of such family of random matrices was only recently resolved in the
highly technical paper of Basak and Rudelson [4].

1.6 Notation
We use capital letters as A, M to denote matrices and lower case letters such as x for vectors.
For a vector x, the norm ∥x∥ is always the Euclidean norm whereas for a matrix A, the
norm ∥A∥ always refers to the operator norm (the largest singular value). For a matrix A,
let AS denote the sub-matrix of A which includes the ith row of A if and only if i ∈ S. The
relation a ≲ b denotes that a is less than or equal to b up to some fixed positive constant and
similarly, a ≃ b denotes that a and b are equal up to some fixed positive constant. Unless
otherwise indicated, variables C, c, C1, C2, · · · denote positive constants.

2 Preliminaries

In this section we enumerate some useful results. First, we recall a classical estimate of the
operator norm of a random matrix of Seginer [23]. The following proposition essentially
shows that the top singular value of a random matrix is well behaved under mild assumptions.
Alternatively, one can also bound the top singular value by the frobenius norm if the random
variables populating the matrix have sufficient tail concentration.

▶ Proposition 6. Let M be a random n × n matrix with entries mij. Then,

E∥M∥ = O

E max
1≤i≤n

√√√√ n∑
j=1

m2
ij + E max

1≤j≤n

√√√√ n∑
i=1

m2
ij

 .

Next we establish tail bounds for the smallest and largest singular values of real and
complex Gaussian matrices.
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▶ Lemma 7 (Theorem 1 reformulated.). Let G ∈ Rk×k with all entries chosen i.i.d. from
N (0, 1). Then

P
(

sk(G) ≤ t1/
√

k
)

< Ct1.

for some absolute constant C.

▶ Lemma 8 (Theorem 1.1 in [28]). Let G ∈ Ck×k with all entries chosen with i.i.d. real and
imaginary parts from N (0, 1/2). Then

P
(

sk(G) ≤ t1/
√

k
)

< t2
1.

▶ Lemma 9 (Proposition 2.3 in [21]). Let G ∈ R(n−k)×k for k ≤ n/2 with all entries chosen
i.i.d. from N (0, 1). Then

P
(

s1(G) ≥ t2
√

n − k
)

< C1e−C2 t2
2 n.

for t2 larger than some absolute constant, and C1, C2 absolute constants.

▶ Lemma 10. Let G ∈ C(n−k)×k for k ≤ n/2 with all entries chosen with i.i.d. real and
imaginary parts from N (0, 1/2). Then

P
(

s1(G) ≥ t2
√

n − k
)

< 2C1e−C2 t2
2 n.

for t2, C1, C2 as in Lemma 9.

Proof. Decompose G = A + iB and bound s1(G) ≤ s1(A) + s1(B). Then

P
(

s1(G) ≥ t2
√

2(n − k)
)

≤ P
(

s1(A) + s1(B) ≥ t2
√

2(n − k)
)

≤ P

(
s1(A) ≥

t2
√

2(n − k)
2

)
+ P

(
s1(B) ≥

t2
√

2(n − k)
2

)
≤ P

(
s1(

√
2A) ≥ t2

√
n − k

)
+ P

(
s1(

√
2B) ≥ t2

√
n − k

)
≤ 2C1e−C2 t2

2 n

where the last inequality follows by Lemma 9 since
√

2A and
√

2B have real i.i.d. N (0, 1)
entries. ◀

The following lemma bounds the smallest singular value of a block matrix.

▶ Lemma 11. Let

M =
[
A B

C D

]
be an n × n matrix. Then

sn(M)−1 ≤ ∥A−1∥ + ∥(M/A)−1∥
(
1 + ∥A−1B∥

) (
1 + ∥CA−1∥

)
where (M/A) = D − CA−1B is the Schur complement of A.

APPROX/RANDOM 2021
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Proof. We first use the Schur formula for the inverse of a block matrix:

M−1 =
[
A−1 + A−1B(M/A)−1CA−1 A−1B(M/A)−1

(M/A)−1CA−1 (M/A)−1

]
.

The norm of M−1 is upper bounded by the sum of the norms of each of its blocks.

sn(M)−1 = ∥M−1∥ ≤ ∥A−1∥ + ∥A−1B∥∥(M/A)−1∥∥CA−1∥
+ ∥A−1B∥∥(M/A)−1∥
+ ∥(M/A)−1∥∥CA−1∥
+ ∥(M/A)−1∥
= ∥A−1∥ + ∥(M/A)−1∥

(
1 + ∥A−1B∥

) (
1 + ∥CA−1∥

)
. ◀

Lastly, we recall that Gaussians are sufficiently anti-concentrated.

▶ Proposition 12. Let x ∼ N (0, 1). Then, P(|x| ≤ ε) = Θ(ε) for ε sufficiently small.

3 Proof of main theorems

The goal of this section is to prove the following theorem and its complex and symmetric
analogs.

▶ Theorem 13. Let M be an arbitrary matrix of rank n − k ≥ n/2. Let U, V be n × k

matrices with i.i.d. N (0, 1) entries. Then

P
(

sn(M + UV T ) ≤ t2
1
k

min
(

1
2 ,

sn−k(M)
4 t2

2 (n − k)

))
≤ C1 t1 + C2 exp(−C3 t2

2 n) (1)

for t1 ≤ C4 and t2 ≥ C5 for some absolute constants Ci, 1 ≤ i ≤ 5.

Our strategy to prove Theorem 13 will reduce general M to the case of M nonnegative
and diagonal, then express sn(M + UV T ) in terms of the singular values of M and certain
sub-matrices of U and V , and finally apply tail bounds to said singular values. We start
by proving a lemma that allows us to reduce to the case of M nonnegative and diagonal.
As stated in Section 1.3, this is a compltely different proof strategy than the one used in
previous works.

▶ Lemma 14. Let D = diag(sn(M), · · · , s1(M)). Let U, V be as in Theorem 13. Then the
distributions of sn(M + UV T ) and of sn(D + UV T ) are identical.

Proof. Let LDRT = M be the singular value decomposition of M . Then

M + UV T = LDRT + UV T = L(D + LT UV T R)RT .

Left- and right- multiplication by unitary matrices preserves singular values so

sn(M + UV T ) = sn(D + LT UV T R).

Finally, U and V are rotationally invariant, so LT U and RT V are distributed just as U and
V are. ◀

Now we proceed to the main proof.
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Proof of Theorem 13. For any matrix T , recall that TS denotes the sub-matrix of T which
includes the ith row of T if and only if i ∈ S. Lemma 14 shows that we may assume M is
nonnegative and diagonal without loss of generality. We may write M and M + UV T in
block form as

M =
[
0 0
0 M ′

]
and M + UV T =

 U[k]V
T

[k] U[k]V
T

[n]\[k]

U[n]\[k]V
T

[k] M ′ + U[n]\[k]V
T

[n]\[k]


where M ′ has no zeros on the diagonal. We can use Lemma 11 to upper bound sn(M +UV T ).
The factor corresponding to the Schur complement is∥∥∥∥(M ′ − U[n]\[k]

(
I − V T

[k](U[k]V
T

[k])−1U[k]

)
V T

[n]\[k]

)−1
∥∥∥∥ = ∥M ′−1∥ = sn−k(M)−1

since I − V T
[k](U[k]V

T
[k])−1U[k] = 0. This is one of the key insights of our proof. Then the

resulting bound is
sn(M + UV T )−1

≤ 1
sk(U[k])sk(V T

[k])
+ 1

sn−k(M)
(
1 + ∥(U[k]V

T
[k])−1U[k]V

T
[n]\[k]∥

) (
1 + ∥U[n]\[k]V

T
[k](U[k]V

T
[k])−1∥

)
= 1

sk(U[k])sk(V T
[k])

+ 1
sn−k(M)

(
1 + ∥V −1

[k] V T
[n]\[k]∥

) (
1 + ∥U−1

[k] U[n]\[k]∥
)

≤ 1
sk(U[k])sk(V T

[k])
+ 1

sn−k(M)
(
1 + ∥V −1

[k] ∥∥V T
[n]\[k]∥

) (
1 + ∥U−1

[k] ∥∥U[n]\[k]∥
)

= 1
sk(U[k])sk(V T

[k])
+ 1

sn−k(M)

(
1 +

s1(V[n]\[k])
sk(V[k])

)(
1 +

s1(U[n]\[k])
sk(U[k])

)
.

Denote events

E1 =
(

s1(U[n]\[k]) ≤ t2
√

n − k and s1(V[n]\[k]) ≤ t2
√

n − k
)

,

E2 =
(

sk(Uk) ≥ t1/
√

k and sk(Vk) ≥ t1/
√

k
)

.

Conditioning on E1 and E2, the above bound becomes

sn(M + UV T )−1 ≤ 1
sn−k(M)

(
1 + t2

t1

√
(n − k) k

)2
+ k

t2
1

.

For sufficiently large n (specifically n ≥ 6 t2
1

k t2
2
), this becomes

sn(M + UV T )−1 ≤ k

t2
1

(
2 t2

2 (n − k)
sn−k(M) + 1

)
≤ 2k

t2
1

max
(

2 t2
2 (n − k)

sn−k(M) , 1
)

Taking the reciprocal of both sides yields

sn(M + UV T ) ≥ t2
1

2k
min

(
sn−k(M)

2 t2
2 (n − k) , 1

)
The probability that this bound is violated is upper bounded by the probability that at

least one of E1 or E2 fail. We may upper bound this quantity using the union bound:

P(¬E1 ∨ ¬E2) ≤ P(¬E1) + P(¬E2)

≤ P(s1(U[n]\[k]) ≥ t2
√

n − k) + P(s1(V[n]\[k]) ≥ t2
√

n − k)

+ P(sk(U[k]) ≤ t1/
√

k) + P(sk(V[k]) ≤ t1/
√

k)

≤ 2 C1t1 + 2 C2e−C3 t2
2 n.

where the last step follows by applying Lemmas 7 and 9 twice each. The factors of 2 can be
subsumed into the constants C1 and C2 giving the final result. ◀
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▶ Theorem 15. Let M, t1, t2, C2, C3 be as in theorem 13. Let U, V be n × k complex matrices
with real and imaginary parts drawn independently from N (0, 1/2). Then

P
(

sn(M + UV T ) ≤ t2
1
k

min
(

1
2 ,

sn−k(M)
4 t2

2 (n − k)

))
≤ 2 t2

1 + C2 exp(−C3 t2
2 n).

Note that the first term on the righthand side is 2t2
1 rather than C1t1 as it was in Theorem

13.

Proof. The only place the proof differs from the proof of Theorem 13 is in the upper bound
on P(¬E1). Instead of C1t1, it is simply t2

1 by Lemma 8. ◀

▶ Remark 16. Theorems 13 and 15 hold when instead of sampling U and V independently,
simply set U = V .

Proof. The proof follows almost exactly as before with only a single modification: In Lemma
14, the left- and right- singular vectors of symmetric matrices are the same so L = R (so
LT U = RT V ). Optionally, one may note that events E1 and E2 are redundant, so one reduces
the bound on P(¬E1 ∨ ¬E2) by a factor of 2. ◀

▶ Remark 17. Let us briefly mention why the term sn−k(M) is unavoidable in the statement
of Theorem 13. For simplicity, consider k = 1 and suppose that M is of rank n − 1 and
suppose its smallest nonzero singular value is equal to δ. After adding a rank 1 term uvT to
M , its rank is n with probability 1. However, if we consider the limit δ → 0, then M + uvT

approaches a rank n − 1 matrix meaning sn(M + uvT ) → 0. Hence, any concentration bound
such as (1) must depend on the term sn−1.

▶ Remark 18. The term t1 on the right hand size of (1) is also unavoidable. For simplicity,
consider the case that M ∈ Rn×n is a diagonal matrix and all the entries are non zero except
the last diagonal entry and consider a rank 1 symmetric update. Now after a symmetric
rank 1 update, the perturbed matrix is M + ggT where g ∈ Rn. The smallest singular value
of a symmetric matrix is equivalent to the smallest absolute eigenvalue. From the Raleigh
quotient characterization of eigenvalues, we have that

P(sn(M + ggT ) ≤ t2) ≥ P(|eT
n (M + ggT )en| ≤ t2).

Using the fact that Men = 0, we have

P(|eT
n (M + ggT )en| ≤ t2) = P(z2 ≤ t2)

where z ∈ R is a standard normal. Finally, P(z2 ≤ t2) = P(|z| ≤ t) = Θ(t) from Proposition
12 for t sufficiently small.

3.1 Sub-Gaussian perturbations
Just as Tao and Vu generalized Theorem 1 to the case where more general types of random
perturbations beyond Gaussian are used, it is of interest to generalize Theorem 13 to the
case where U, V are from a general family of distributions. A standard choice are mean
zero sub-Gaussian distributions since they encompass well known distributions such as the
standard Gaussian and ±1 (Rademacher) random variables. Surprisingly, we show in this
case that we cannot state a general statement like Theorem 13 unless extra assumptions
about the fixed matrix M is made.
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▶ Lemma 19. Let u, v ∈ Rn be vectors with i.i.d. entries that are ±1 (Rademacher) with
equal probability. There exists a rank n − 1 matrix M such that with constant probability,
M + uvT is singular.

Proof. As in the proof of Theorem 13, let M = LDR and we can say sn(M + uvT ) =
sn(D + (LT u)(vT R)). In the case that u and v are Gaussian, rotational invariance implies
that LT u and vT R are distributed as u, v respectively. However, this is no longer the case
if u, v have entries coming from general sub-Gaussian distributions, such as ±1. Here, the
properties of L, R can have substantial impact on sn(M + uvT ).

Suppose that the top left entry of D is 0. Then, if the first row of L is sparse, i.e. has
O(1) non zero entries, then it is possible that the first coordinate of LT u, (LT u)1, is 0 with
constant probability and hence the first row of D + (LT u)(vT R) is all 0 which implies that
M + uvT is still rank n − 1 with constant probability. ◀

Therefore, a general statement such as Theorem 13 in the case of sub-Gaussian distribu-
tions is impossible unless extra assumptions are made about the input matrix M . However,
we note that in the k = 1 case, if we assume every row of L, R are dense (say have at least a
constant fraction of non-zero entries), then the proof of Theorem 13 carries through in the
±1 case since the two estimates we need (corresponding to the events E1 and E2 respectively)
are the concentration of the norms of LT u, vT R and each entry being anti-concentrated from
0 which follows from Erdos-Littlewood-Offord type results. It is not clear when such an
assumption is natural.

3.2 Application to linear systems
We briefly highlight the importance of the condition number in solving systems of linear
equations. If we are interested in solving the system Ax = b where A ∈ Rn×n then the
condition number of A influences both the stability and runtime of linear systems solving.
Much of this material is standard and can be found in [31].
Stability: If x̃ denotes the result computed by numerical algorithms to the equation Ax = b

then it is known that the relative error quantity ∥x − x̃∥/∥x∥ satisfies

∥x − x̃∥
∥x∥

= O

(
εmachine · s1(A)

sn(A)

)
where εmachine is the machine precision.
Runtime: One of the most widely used algorithms for solving systems of linear equations,
especially large sparse ones that arise often in practice, is the conjugate gradient descent
method. If the conjugate gradient descent method is run for k steps, then its convergence
scales roughly as(√

s1(A)/sn(A) − 1√
s1(A)/sn(A) + 1

)k

≈

(
1 − 2√

s1(A)/sn(A)

)k

.

Therefore, a larger the condition number means more steps of the conjugate gradient descent
method are required.

The usefulness of our low-rank error model is further supported by the conjugate gradient
descent method. As mentioned previously, this iterative method is mainly used for large
sparse systems. Thus, a low-rank perturbation that only requires additional linear space
and incurs an additive linear increase in cost per iteration is desirable compared to a dense
perturbation which makes the original problem infeasible for large systems.
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4 Perturbation beyond rank k

In this section, we deal with the case that we add a rank k′ perturbation to a rank n − k

matrix for k′ > k. In such a case, we simply ignore a rank k portion of the noise and imagine
that we are adding a rank (k′ − k) perturbation to a general full-rank matrix. This is valid
since the original rank k matrix plus the rank k part of the noise will be full rank with
probability 1. Our result then is the following.

▶ Theorem 20. Let M be a n × n real matrix with rank(M) = n > 10 with smallest singular
value sn. Let U, V ∈ Rn×k have independent N (0, 1) coordinates. Then,

P(sn(M+UV T ) ≤ 1/t) ≤ C

( √
n

x2 · t

(
1 +

x1 · x
1/2
3 ·

√
nk

sn(M)

)
+ exp

(
−x2

1/4
)

+ (2/π)k/2xk
2 + exp(−c x3)

)
(2)

for all t > 0, x1 ≥ 3
√

2 log(2nk), x3 ≥ nk, and x2 ≤ 1.

We obtain the following corollary under some natural parameter settings.

▶ Corollary 21. Let M be a n × n real matrix with rank(M) = n, and U, V ∈ Rn×k have
independent N (0, 1) coordinates. Then for all ε ∈ (0, 1),

P(sn(M +UV T ) ≤ ε/
√

n) ≤ C

(
√

ε

(
1 +

3nk
√

log(2nk)
sn(M)

)
+ 1

(2nk)9/4 + exp(−cnk)
)

. (3)

Proof. Set t =
√

n/ε, x1 = 3
√

log(2nk), x2 =
√

ε, x3 = nk. ◀

By setting ε appropriately, we recover the common “theme” of P(sn(M + UV T ) ≤ n−A) ≤
n−B as in the case of Theorem 1 and the works of Tao and Vu [32, 27].

We now proceed to prove Theorem 20. Denote A = M +UV T and note that rank(A) = n

with probability 1 so A−1 exists. We observe that (2) reduces to bounding P(∥A−1∥ ≥ t).
Our proof is adapted from the proof of Theorem 1. However, we need to perform a careful
conditioning argument to prove the most important part of the argument which is presented
in Lemma 23.

We begin by handing the case of a single vector.

▶ Lemma 22. For any unit vector y, we have

P(∥A−1y∥2 ≥ t) ≤ C

(
1

x2 · t

(
1 + x1 · x

1/2
3 ·

√
nk

sn(M)

)
+ exp

(
−x2

1/4
)

+ (2/π)k/2xk
2 + exp(−c x3)

)
for all t > 0, x1 ≥ 2

√
log n, x3 ≥ nk, and x2 ≤ 1.

Proof. Let Q be a rotation that takes y to en and denote QA as A′. Then,

∥A−1y∥2 = ∥A−1QT en∥2 = ∥(QA)−1en∥2 = ∥cn∥2.

where cn be the last column of (QA)−1. From the identity A′A′−1 = I, we have that cn is
orthogonal to the first n − 1 rows of A′ and has dot product 1 with the last row of A′. Hence,

∥cn∥2 = 1
|⟨w, rn⟩|

where ri is the ith row of A′ and w is the unique unit vector orthogonal to the span of
{r1, · · · , rn−1} (up to to sign). This means that

P(∥A−1y∥2 ≥ t) = P(∥cn∥2 ≥ t) = P(|⟨w, rn⟩| ≤ 1/t).
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The last row rn of A′ is the sum of the last rows of QM and QUV T . Note that the inner
product of w with the last row of QM is some fixed parameter; denote it r. Then QU is
distributed as U by the rotational invariance of the normal distribution, so the last row of
QUV T is distributed as V un where un ∈ Rk is a vector of independent Gaussians. Therefore,
⟨w, rn⟩ is distributed as ⟨w, V un⟩ + r, so it suffices to bound the Levy concentration of
⟨w, V un⟩. Specifically, we want to show that

sup
r∈R

P(|⟨w, V u
n⟩ + r| < 1/t) ≤ C

(
1

x2 · t

(
1 +

x1 · x
1/2
3 ·

√
nk

sn(M)

)
+ exp

(
−x

2
1/4
)

+ (2/π)k/2
x

k
2 + exp(−c x3)

)
where the probability is over the realization of un and V . This readily follows from Lemma

23. ◀

Proof of Theorem 20. Let s be a unit vector chosen uniformly at random from Sn−1. By
Lemma 22, we have

PA,s

(
∥A

−1
s∥2 ≥ t/

√
n
)

≤ C

(
1

x2 · t/
√

n

(
1 +

x1 · x
1/2
3 ·

√
nk

sn(M)

)
+ exp

(
−x

2
1/4
)

+ (2/π)k/2
x

k
2 + exp(−c x3)

)
.

Now with probability 1, there exits a unique y such that ∥A−1y∥2 = ∥A−1∥. From Lemma
24, we see that

∥A−1s∥2 ≥ ∥A−1(yT s)y∥2 = |yT s|∥A−1∥.

Therefore we have

PA,s

(
∥A−1s∥2 ≥ t/

√
n
)

≥ PA,s

(
∥A−1∥ ≥ t and |sT y| ≥ 1/

√
n
)

= P(∥A−1∥ ≥ t) · PA,s

(
|sT y| ≥ 1/

√
n
∣∣ ∥A−1∥ ≥ t

)
.

By the rotational invariance of s, we have that

P(∥A−1∥ ≥ t) · PA,s

(
|sT y| ≥ 1/

√
n
∣∣ ∥A−1∥ ≥ t

)
= P(∥A−1∥ ≥ t) · P

(
|sT e1| ≥ 1/

√
n
)

.

From Lemma 25, we have that

P
(
|sT e1| ≥ 1/

√
n
)

≥ P(|Z| ≥ 1) − 1/n

where Z ∼ N (0, 1). Altogether, it follows that

P(∥A−1∥ ≥ t) ≤
PA,s

(
∥A−1s∥2 ≥ t/

√
n
)

P(|Z| ≥ 1) − 1/n

≤ C

(
1

x2 · t/
√

n

(
1 +

x1 · x
1/2
3 ·

√
nk

sn(M)

)
+ exp

(
−x2

1/4
)

+ (2/π)k/2xk
2 + exp(−c x3)

)
for n > 10 as desired. ◀

▶ Lemma 23. Let U, V ∈ Rn×k have independent N (0, 1) coordinates. Let M ∈ Rn×n be
a matrix with singular values s1 ≥ · · · ≥ sn and let w be a vector perpendicular to the first
n − 1 rows of M + UV T . Then for x1 ≥ 3

√
log(2nk), x3 ≥ nk, and x2 ≤ 1, and all t > 0,

sup
r∈R

P(|⟨w, V u
n⟩ − r| < 1/t) ≤ C

(
1

x2 · t

(
1 +

x1 · x
1/2
3 ·

√
nk

sn(M)

)
+ exp

(
−x

2
1/4
)

+ (2/π)k/2
x

k
2 + exp(−c x3)

)
for some C, c > 0 where un is the last row of U .
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Proof. Let m1, · · · , mn be the rows of M and let u1, · · · , un be the rows of U . Then the
rows of A = M + UV T are given by mi + V ui. Let y be the unit vector orthogonal to the
span of {m1, · · · , mn−1}. Consider the following three events:

E1 = event that every entry of U is at most x1 in absolute value,

E2 = event that ∥V T y∥ is at least x2,

E3 = event that ∥V ∥2 is at most x3,

for x1 ≥ 3
√

log(2nk), x3 ≥ nk, and x2 ≤ 1. Denote E = E1 ∪ E2 ∪ E3. We now show each
of these occurs with high probability. By a standard concentration bound, the maximum
of nk i.i.d. standard Gaussians is strongly concentrated around

√
2 log(2nk). In particular,

E1 happens with probability at least 1 − 2 exp(−x2
1/4). Next, each coordinate of V T y is

distributed as N (0, 1), and ∥V T y∥ ≥ ∥V T y∥∞, so we may upper bound P(Ec
2) by P(|g| < x2)k

where g is N (0, 1). This means E2 occurs with probability at least 1 − (2/π)k/2xk
2 . Lastly,

the event E3 happens with probability at least 1 − exp(−Ω(x3)) by Lemma 9.
Now fix some realization of V and U such that E occurs. Suppose for some parameter

z <
√

3
2

sn

x1·
√

nk
that we have ∥V T w∥ < z. We will find a statement which this assumption

implies, then take the contrapositive to obtain a lower bound on ∥V T w∥. From definition of
w, we know

⟨w, mi⟩ + ⟨w, V ui⟩ = 0

for 1 ≤ i ≤ n − 1. We may apply Cauchy-Schwarz to ⟨w, V ui⟩ = ⟨V T w, ui⟩ and use event E1
to bound ∥ui∥ and obtain

|⟨w, mi⟩| ≤ ∥V T w∥ · ∥ui∥ ≤ z · x1 ·
√

k.

Decompose w = w∥ + w⊥ where w∥ is in the span of m1, · · · , mn−1 and w⊥ is in the
orthogonal complement. Write w∥ =

∑n−1
i=1 αim

i for some coefficients αi. Then we have

∥w∥∥2 = |⟨w∥, w⟩| ≤
n−1∑
i=1

|αi| · |⟨mi, w⟩|

≤ ∥α∥1 · z · x1 ·
√

k

≤ ∥α∥ · z · x1 ·
√

nk

≤ ∥w∥∥ z · x1 ·
√

nk

sn

where α is the vector of αi’s, and the last step follows since M is non-singular, making α the
unique solution to MT α = w∥. Now, note that y and w⊥ are parallel, so

∥w⊥∥∥V T y∥ = ∥V T w⊥∥ ≤ ∥V T w∥ + ∥V T w∥∥ ≤ z + ∥V ∥∥w∥∥ ≤ z

(
1 + x1 · x

1/2
3 ·

√
nk

sn

)

where the last step follows from E3. From z <
√

3
2

sn

x1·
√

nk
, we have

∥w⊥∥ =
√

1 − ∥w∥∥2 =

√√√√1 −

(
z · x1 ·

√
nk

sn

)2

>
1
2 .

Moving ∥w⊥∥ to the right hand side and using E2 and the above bound, we arrive at

x2 ≤ ∥V T y∥ < 2z
(

1 + x1 · x
1/2
3 ·

√
nk/sn

)
.
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We have thus established the syllogism

∥V T w∥ ≤ z ≤
√

3
2

sn

x1 ·
√

nk
=⇒ 1

2
x2sn

sn + x1 · x
1/2
3 ·

√
nk

< z.

By taking the contrapositive and setting z = 1
2

x2sn

sn+x1·x1/2
3 ·

√
nk

, we see that one of the

inequalities on the left must fail. It isn’t the second one since x2 <
√

3, x
1/2
3 > 1, and sn > 0.

We therefore conclude our selection of z lower bounds ∥V T w∥.
This leads to sufficient anti-concentration. For any fixed vector x, the distribution of

⟨x, un⟩ is the same as N (0, ∥x∥2). So, ⟨V T w, un⟩ for random V is a mixture of Gaussians,
each of which have variance at least z2 when we condition on E . The Levy concentration is
thus easily bounded by

sup
r∈R

P
(

|⟨w, V un⟩ + r| ≤ 1
t

| E
)

≤
√

2/π

z · t
.

The desired bound then follows by incorporating a probability bound on the complement
of E . ◀

The following lemmas follow easily from basic properties of the SVD and Gaussian random
variables so we omit their proof.

▶ Lemma 24. Consider a n × n matrix Mand u ∈ Sn−1 such that ∥M∥ = ∥Mu∥2. Then
for every v ∈ Rn, we have

∥Mv∥2 ≥ |uT v|∥M∥.

▶ Lemma 25. Let x be a uniformly random vector in Sn−1 and Z ∼ N (0, 1). Then for
every c > 0,

P
(

|xT e1| ≥
√

c

n

)
≥ P(|Z| ≥

√
c) − 1

n
.
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A Numerical experiments

In this section, we numerically demonstrate our theoretical results by giving an example of a
sparse family of n by n matrices that are “poorly” conditioned and whose condition number
improves significantly after adding a random Gaussian rank 1 perturbation. We show that
this perturbation results in an improvement comparable to what is achieved after adding a
dense Gaussian matrix while maintaining a low time complexity for matrix vector product
operations.

Our family of n by n matrices will be constructed as follows: Mn will have ones on the
anti-diagonal and the first and third off-diagonals above the anti-diagonal. For example, M7
is displayed below.

0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 0 1 1 0 0
1 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0


It is shown in [13] that Mn is ill-conditioned by showing that the magnitude of the

smallest eigenvalue of Mn is of the order O(n/Cn) where C ≈ 1.47 which implies that the
smallest singular value of Mn is also at most O(n/Cn). The second smallest eigenvalue on
the other hand is a constant.
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(a) (b)

Figure 1 (a) Smallest singular values of the original matrix compared against dense and rank 1
perturbations. (b) Time taken to perform a matrix vector product after a dense perturbation and a
rank 1 perturbation. The cost for the dense perturbation has a quadratic scaling (slope = 2).

In Figure 1 (a), we show the smallest singular value of Mn for a range of n along with
the smallest singular values after a dense and rank 1 perturbation. As we can see in the
log-log plot, the original values are decaying exponentially while the smallest singular value
after the rank 1 perturbation is within a few orders of magnitude of the corresponding value
after a dense perturbation. In Figure 1 (b), we show the time taken to perform a matrix
vector product after a dense and a rank 1 perturbation. For this task, we used the popular
numerical libraries NumPy and SciPy. Since Mn is sparse, it can be represented in a special
sparse format to speed up computations. In the case of a rank 1 perturbation, we only need
to store two additional vectors and a matrix vector product (M + uvT )x can be performed as

(Mn + uvT )x = Mnx + (vT x) · u.

However, in the case of a dense perturbation, we need to store a dense matrix G and perform
the matrix vector product operation with a vector and a dense matrix resulting in a much
slower operation than in the rank 1 case. Indeed, note that the slope of the “Dense” curve in
Figure 1 (b) is close to 2 signifying a quadratic increase in time. Overall, we see that in this
case, a rank 1 update results in a comparable improvement of the condition number of Mn

while greatly improving the cost to perform a fundamental matrix operation.

B Low-rank noise model for other problems in smoothed analysis

In this section, we outline some of the challenges that arise when applying the rank 1 noise
model in other popular problems studied in smoothed analysis. While not a comprehensive
survey of all problems, we focus on two of the most studied applications of this framework
outside of the condition number. These are the simplex method and k-means. For these
problems, the standard noise model is the dense one where every entry of the input matrix
or input set of points respectively, is independently perturbed by a random Gaussian. We
highlight some of the challenges that arise when trying to carry out existing proof techniques
for these problems using rank 1 noise. This ultimately shows that new ideas are required to
bypass the lack of independence as we did for the condition number.
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B.1 Simplex method
The simplex method is one of the most famous applications of the smoothed analysis
framework. The goal is to solve a linear program of the form max cT x subject to Ax ≤ b

using the simplex method where the entries of A ∈ Rm×n have been perturbed by random
noise. Recall that the simplex method operates by moving among the vertices of the polytopes
defined by the constrained matrix A. The geometric operation of moving from one vertex to
another is called a pivot operation and the most commonly analyzed pivot operation with
respect to smoothed analysis is the shadow vertex pivot method.

Without getting into technical details that will lead us too far afield, we note that the
shadow vertex pivoting method requires us to calculate the following bound: let ai for
1 ≤ i ≤ m denote the rows of the matrix A and let W be a fixed two dimensional subspace.
We wish to bound

E[|edges(conv(a1, · · · , am) ∩ W )|]

where conv(a1, · · · , am) is the convex hull of the rows (see [9] for more information).
To calculate the above bound, we essentially need to understand the probability that

aT
j θ ≤ t for a range of values of j and some t ∈ R (here θ represents the normal vector of the

line connecting some two points ai, ak. For the pair ai, ak to be on the convex hull, we need
the rest of the points to be on one side of the line). In the case that we add independent noise
across the rows, this bound is possible to compute due to independence across aj . However,
in the case that we add rank 1 noise uT v (here u ∈ Rm, v ∈ Rn) to A, these probabilities
become intractable using existing methods since aj satisfying aT

j θ ≤ t gives us information
about all other a′

j for j′ ̸= j since randomness is shared across the rows.
Nevertheless, it is possible to get a weak result for the smoothed analysis of the simplex

method in our low-rank noise model by using a different pivoting operation. It is shown in
[12] that if the rows satisfy a certain geometric property, then using a random pivoting rule
results in an expected polynomial number of steps for the simplex method to converge.

The geometric property is the following: For any I ⊆ [m], and j ∈ [m], if aj is not in the
span generated by ai, i ∈ I, then the distance from aj to this span is at least δ. We note
that the bound on the expected number of steps depends polynomially on 1/δ and other
parameters. This geometric property reduces to a singular value estimate as follows. For
simplicity, lets focus on j = 1 and I = {2, · · · , n − 1}. As in Section 1.3, it follows that
∥A−1

[n] e1∥ is equal to 1/|wT a1| where w is the normal vector of the span of the rows a2, · · · , an.
Thus, if sn(A[n]) is “not too small” then ∥A−1

[n] e1∥ cannot be “too large” and consequently,
the distance from a1 to the span of a2, · · · , an is “not too small” (we are intentionally leaving
our specific relations for a high level overview). The caveat is that we need the geometric
property to hold between a1 and every set of n − 1 other vectors. However, since the bound
of Theorem 13 only gives us an inverse polynomial probability, we cannot afford the union
bound of

(
m
n

)
unless m = n + C for some constant C, which is not a realistic scenario.

Lastly, empirical evidence shows that rank 1 perturbation may not be a suitable if the
original simplex method (the Dantzig simplex method) is used. In Figure 2, we use the
Klee-Minty lower bound [14] for the Dantzig simplex method and add either a dense Gaussian
or a rank 1 perturbation to the constraint matrix. We then plot the average number of pivot
steps taken over twenty independent trials. It can be seen that a rank 1 perturbation only
slightly improves over the exponential number of pivot steps required by the Dantzig simplex
method whereas dense perturbations help greatly.

We conclude our discussion with a major open problem.
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Figure 2 The Dantzig simplex method applied to the Klee-Minty lower bound and its random
perturbations.

▶ Open Problem 26. Is there a pivoting rule for the simplex method that runs in expected
polynomial time if we add random rank 1 noise to the constraint matrix?

B.2 k-means clustering
Recall that in the k-means problem, we are given a set X of n points in Rd and our goal is
to partition the points into k sets Si to minimize the objective

k∑
i=1

∑
x∈Si

∥x − µi∥2

where µi is the mean of the points in Si. A common heuristic for this problem, also confusingly
known as the k-means algorithm, or Lloyd’s method, is to randomly pick an initial set of k

centers, assign each point in X to its closest center, update the means accordingly, and repeat
until convergence. In the smoothed analysis framework, it was shown that if each point in X

is perturbed by an independent Gaussian vector then convergence happens in polynomially
many steps [3]. The existing analysis all crucially rely on the following geometric lemma.

▶ Lemma 27. Let x ∈ Rd be drawn according to a d-dimensional Gaussian distribution of
standard deviation σ, and let B be the d-dimensional ball of radius ε centered at the origin.
Then P(x ∈ B) ≤ (ε/σ)d.

This lemma roughly states that the probability of a random Gaussian being in any ball of
radius ε is at most εd, and is used to union bound over exponentially many events in the
smoothed analysis of k-means.

Surprisingly, this lemma does not hold in our “rank 1” setting. More precisely, we can
prove the following probabilistic bound which is a major impediment to understanding the
smoothed complexity of the k-means problem with rank 1 noise.

▶ Lemma 28. Let x ∈ Rd be drawn according to a standard d-dimensional Gaussian
distribution and let y ∈ R be a scalar standard Gaussian random variable. If B is the
d-dimensional ball of radius ε centered at the origin then P(yx ∈ B) = O(ε/

√
d).
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Note that yx ∈ Rd. We are considering random variables of this form because if a rank 1
perturbation was added to X, then each row is perturbed by a random vector of the form
yx ∈ Rd. Lemma 28 roughly states that the probability that the random vector yx is in any
ball of radius ε only weakly depends on the dimension d. In particular, we do not get an
exponentially small probability afforded by Lemma 27 that enables us to union bound over
exponentially many events as in the arguments for the smoothed analysis of k-means under
the standard noise model.

The intuition for Lemma 28 is as follows. First, note that from standard Gaussian
concentration, we have ∥x∥ ≈

√
d. Treating this as fixed for now, this means that y∥x∥ is

approximately distributed as a scalar Gaussian distribution with variance d. Therefore, from
Proposition 12, it follows that P(|y|∥x∥ ≤ ε) = Θ(ε/

√
d). We now formalize this argument.

Proof. Note that ∥x∥2
2 is a chi-squared variable with d degrees of freedom. From [34], we

know that the density of the product Z = ∥yx∥2
2 = y2∥x∥2

2 is given by

fZ(z) ≃ 1
2d/2Γ(d/2)

∫ ∞

0

(
xd/2−2e−x/2

)( 1√
z/x

e−z/(2x)

)
dx.

Therefore,

P(∥yx∥2
2 ≤ ε2) ≃ 1

2d/2Γ(d/2)

∫ ε2

0

∫ ∞

0

(
xd/2−2e−x/2

)( 1√
z/x

e−z/(2x)

)
dx dz.

We now switch the order of summation which is valid since the integrand is positive. From
the definition of the error function, we can check that∫ ε2

0

1√
z/x

e−z/(2x) dz ≃ x · erf(ε/
√

x).

We now use the estimate erf(t) ≤ 2t which holds for all t ≥ 0. This gives us∫ ∞

0
xd/2−1e−x/2erf(ε/

√
x) dx ≲ ε

∫ ∞

0
xd/2−3/2e−x/2 dx = ε2d/2−1/2Γ(d/2 − 1/2).

Finally, noting that Γ(d/2 − 1/2)/Γ(d/2) ≲ 1/
√

d gives us our desired probability bound. ◀

Note that the above bound is the best that we can hope for. Indeed, we can say that
∥x∥2

2 = Ω(d) with probability 1/2 so conditioning on this event, we have that Pr(|y|∥x∥2 ≤
ε) = Ω(ε/

√
d). We note that Lemma 27 is also required for the smoothed analysis of other

Euclidean problems such as a local search heuristic for Euclidean TSP [17].
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