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Abstract
We study the matroid intersection problem from the parallel complexity perspective. Given two
matroids over the same ground set, the problem asks to decide whether they have a common base
and its search version asks to find a common base, if one exists. Another widely studied variant is
the weighted decision version where with the two matroids, we are given small weights on the ground
set elements and a target weight W , and the question is to decide whether there is a common base
of weight at least W . From the perspective of parallel complexity, the relation between the search
and the decision versions is not well understood. We make a significant progress on this question
by giving a pseudo-deterministic parallel (NC) algorithm for the search version that uses an oracle
access to the weighted decision.

The notion of pseudo-deterministic NC was recently introduced by Goldwasser and Grossman [19],
which is a relaxation of NC. A pseudo-deterministic NC algorithm for a search problem is a randomized
NC algorithm that, for a given input, outputs a fixed solution with high probability. In case the given
matroids are linearly representable, our result implies a pseudo-deterministic NC algorithm (without
the weighted decision oracle). This resolves an open question posed by Anari and Vazirani [2].
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1 Introduction

Most often, a search problem can be efficiently solved using an oracle for a closely related
decision problem. For example, if you have access to a decision oracle that tells you whether
a given graph has a perfect matching, you can efficiently construct a perfect matching in a
given graph using the decision oracle. Such search-to-decision reductions usually involve self-
reducibility and make a linear number of oracle calls sequentially. However such reductions
do not fit into the framework of parallel complexity, where one can make multiple oracle
calls in parallel, but wants poly-logarithmic time complexity. For a more detailed discussion
on the difference in parallel complexity of search and decision problems, see [25].
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41:2 Pseudo-Deterministic NC Reduction from search-MI to weighted-decision-MI

Graph matching and related problems like linear matroid intersection and linear matroid
matching were one of the first problems to be studied from the parallel complexity per-
spective [26, 5]. The decision versions of these problems ask to decide the existence of the
respective combinatorial substructures:

Matching: Does a given graph contain a perfect matching – a set of disjoint edges that
cover all the vertices in the graph?
Linear Matroid Intersection: Given two sets of m vectors each, is there a set of indices
B ⊆ [m] that corresponds to a basis set in each of the two sets?
Linear Matroid Matching/Parity: Given a set of pairs of vectors, is there a subset of pairs
whose union will give a basis for the union of all pairs?

The search versions of these problems ask for constructing the respective combinatorial
substructures (if one exists). The matching problem in bipartite graphs is a special case of
all the three problems above (see Figure 1). A bipartite graph is a graph whose vertices can
be partitioned into two parts such that every edge connects a vertex from one part to one in
the other part. Even in the special case of bipartite matching, the questions of the exact
parallel complexity of decision and search and whether decision and search are equivalent in
a parallel sense still remain unresolved.

Bipartite Matching

General MatchingLinear Matroid Intersection

Linear Matroid Matching/Parity

Figure 1 Reductions among the four problems. A → B represents that problem A reduces to
problem B.

The first efficient randomized parallel algorithms for the three decision problems above
followed from the results of Lovász [26]. Lovász gave randomized algorithms for these
problems by first reducing these decision questions to testing whether the determinant
of a certain symbolic matrix is nonzero, as a polynomial. Then he used the fact that
the zeroness of a polynomial can be tested efficiently by just evaluating it at a random
point [32, 36, 12, 29]. Hence, the questions were basically reduced to computing determinant
of a randomly generated matrix. Interestingly, there are efficient parallel (NC) algorithms
for computing the determinant of a matrix [3, 7, 4]. An NC algorithm is one which uses
polynomially many parallel processors and takes only polylogarithmic time. Thus, the
algorithms of Lovász [26] can be viewed as randomized parallel (RNC) algorithms for the
three decision problems. However, this did not imply any parallel algorithms for the search
versions.

Randomized parallel (RNC) algorithms for the search versions of these problems were
obtained some years later [24, 27, 28]. However, these results did not go via a parallel
search-to-decision reduction. Instead, they gave randomized parallel (RNC) reductions from
the search version to a variant of the decision problem, namely weighted decision. For
example, the weighted decision version for perfect matchings asks: given a graph with small
weights on edges and a target weight W , is there a perfect matching of weight at most
W (or at least W ). Here the weight of a perfect matching is defined to be the sum of the
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weights of the edges in the perfect matching. It turns out that Lovász’s RNC algorithms can
be appropriately modified to solve the weighted decision versions as well, when the given
weights are small. The search-to-weighted-decision reductions together with the weighted
decision algorithms implied randomized parallel search algorithms for the three problems.
We elaborate a bit on the reductions.

Reductions from search to weighted-decision

Karp, Upfal and Wigderson [24] do not explicitly talk about weights, but their reduction
is from finding a perfect matching to a subroutine that can be viewed as weighted decision
with 0-1 weights on the edges. From the perspective of our current investigation, the result
of Mulmuley, Vazirani, and Vazirani [27] is much more interesting. They showed that using
the weighted decision oracle, one can compute a perfect matching with just two rounds
of parallel calls to the oracle. The crucial ingredient in their algorithm was the powerful
Isolation Lemma which states that if the edges of a graph are assigned random weights from
a polynomially bounded range uniformly and independently then with high probability, there
is a unique minimum weight perfect matching in the graph. Once we have such a weight
assignment, we can first find the minimum weight w∗ of a perfect matching by calling the
weighted decision oracle for each possible target value W in a polynomially bounded range.
Then for each edge e in parallel, delete e and ask the oracle if there is a perfect matching of
weight at most w∗. The answer will be no if and only if e is a part of the unique minimum
weight perfect matching. Thus, in two rounds of polynomially many parallel oracle calls, we
can compute the unique minimum weight perfect matching.

The amazing thing about the Isolation Lemma is that it applies to not just the family of
perfect matchings in a graph, but to arbitrary families of subsets. Thus, the above described
search-to-weighted-decision reduction of [27] can be made to work for any problem that
admits a similar self-reducibility property. Narayan, Saran, and Vazirani [28] used the same
Isolation Lemma based reduction to give RNC algorithms for the search versions of linear
matroid intersection and linear matroid matching.

Derandomization

Since the work of Lovász [26], it has been a big open question to derandomize these results
i.e., to find deterministic parallel (NC) algorithms for these problems. While derandomization
results have been obtained for the matching problem in many special classes of graphs [11,
35, 10, 20, 1], the question remains open even for bipartite graphs. Only recently, there was
a significant progress made when a quasi-NC algorithm was obtained for finding a perfect
matching in a bipartite graph [16, 15]. A quasi-NC algorithm runs in polylogarithmic time
but can use quasipolynomially (2logO(1) n) many parallel processors, so this result brought
the problem quite close to the class NC. Similar quasi-NC algorithms were later obtained for
linear matroid intersection [22] and matching in general graphs [34] as well.

In the quest of understanding the deterministic parallel complexity of these problems, an
interesting question one can ask is whether there is a deterministic parallel (NC) search-to-
decision reduction. An easier question would be to ask for an NC reduction from search to
weighted-decision, i.e., derandomizing the reductions of [27, 24, 28] described above. Soon
after the quasi-NC result for bipartite matching [16], Goldwasser and Grossman [19] started
quite an interesting line of enquiry, where they answered the above question positively for
bipartite matching. They observed that the quasi-NC algorithm can be modified to give
a deterministic parallel (NC) search-to-weighted-decision reduction for bipartite matching.
Their main result was, what they call, a pseudo-deterministic NC algorithm for bipartite
matching, which followed from this reduction.

APPROX/RANDOM 2021



41:4 Pseudo-Deterministic NC Reduction from search-MI to weighted-decision-MI

Pseudo-determinism

The notion of pseudo-deterministic algorithms was introduced by Gat and Goldwasser [17]
which is applicable only for search problems. For a given instance of a search problem, a
randomized algorithm can possibly give different outputs for different choices of the random
seed. Pseudo-deterministic algorithms are randomized algorithms which give a fixed output
for a given input with high probability. Note that the earlier described RNC algorithm of [27]
for matching is not pseudo-deterministic because for a given graph, it will output different
perfect matchings for different possibilities of the randomly chosen weight assignment.

It is not hard to see that if one gives a deterministic reduction from a search problem to
a decision problem that is known to have a randomized algorithm, then one immediately
gets a pseudo-deterministic algorithm for the search problem (see [18, Theorem 2.2]). That
is why the NC search-to-weighted-reduction for bipartite matching [19] implied a pseudo-
deterministic NC algorithm for bipartite matching, i.e., an RNC algorithm that, for a given
graph, outputs the same perfect matching with high probability. One interesting implication
of this result is that if one finds an NC algorithm for the weighted-decision of bipartite
matching, one will get an NC algorithm for the search version as well.

A natural question arises: can we similarly modify the quasi-NC algorithms for linear
matroid intersection [22] and matching in general graphs [34] into NC search-to-weighted-
decision reductions, and thus, get pseudo-deterministic NC algorithms for the search versions?
It looks quite possible because one can can extract out an abstract framework from [19] for
converting these quasi-NC algorithms into pseudo-deterministic NC algorithms. But as we
discuss below, a straightforward application of this framework does not work out for linear
matroid intersection or matching in general graphs. A key step in [19] is to compute a succinct
description of the set of all (possibly exponentially many) minimum weight perfect matchings
in a weighted bipartite graph in NC, given the weighted-decision oracle. However, it is not
immediately clear how to solve the analogous question in NC for linear matroid intersection
or matching in general graphs. Interestingly, in an earlier work in a different context, Cygan,
Gabow, and Sankowski [9] had already solved this question for matching in general graphs.
They had designed a procedure based on LP duality to compute a succinct description of the
set of all minimum weight perfect matchings, via the weighted-decision oracle. Moreover, as
observed in [30], this procedure can also be parallelized using standard techniques. Armed
with this heavy hammer, Anari and Vazirani [2] give an NC search-to-weighted-decision
reduction, and thus, get a pseudo-deterministic NC algorithm for perfect matching in general
graphs. Anari and Vazirani [2] put it as an open question to obtain similar results for linear
matroid intersection. In this work, we take up this challenge.

Our contributions

In the setting of linear matroid intersection, the analogue of a perfect matching is referred as
a common base – a set of indices that corresponds to a basis in both the sets of vectors. For
the weighted version, it is well understood how to succinctly describe the set of minimum or
maximum weight common bases, i.e., the minimizing/maximizing face of the common base
polytope; see e.g., [31, Chapter 41]. Any face of the common base polytope is characterized
by its tight sets. Suppose that M1 and M2 are two matroids over the same ground set
E. Then, a subset S of E is called a tight set for a maximizing face (of the common base
polytope), if for some matroid Mi the following holds: for every maximum weight common
base B, the set S ∩B spans the set S. Note that the number of tight sets of a maximizing
face can be exponentially large. However, they are known to have succinct representations.
We give a randomized NC algorithm to compute a succinct and unique representation for
the tights sets of a maximizing face.
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▶ Theorem 1 (Informal version of Theorem 5). There exists a randomized NC algorithm to
compute a succinct and unique description for the tight sets of a maximizing face of the
common base polytope, given the weighted-decision oracle.

For a maximizing face of the common base polytope, all the tight sets for some matroid
Mi forms a lattice family, and our description for tight sets is motivated by the succinct
representation of lattice families based on the partial order of its prime subsets (also known
as irreducible subsets). We construct a digraph in bottom-up fashion, using bases from the
maximizing face of the common base polytope, such that it contains the necessary information
regarding the tight sets of maximizing face. From this digraph we shall be able to compute
the succinct description. See Section 3.1 for more details. Here, we would like to mention
that the succinct representation of lattice families using the partial order of its prime subsets
is well known and has been used in multiple previous algorithms [31, Chapter 49], [23, 14, 6].
However, all these applications do not fall in the category of parallel computation.

Note that the uniqueness of the description is important because then this RNC algorithm
is by default pseudo-deterministic, as there is only one possible output. Once we have designed
this heavy hammer, it is relatively easier to combine the procedure of [22] with the abstract
framework provided by [19] and obtain a pseudo-deterministic NC search-to-weighted-decision
reduction. This leads to our first main result.

▶ Theorem 2. The search version of the linear matroid intersection problem has a pseudo-
deterministic NC algorithm.

General Matroid Intersection

Our main technical contributions are applicable to not just linear matroid intersection but
also to matroid intersection. In the general matroid intersection problem, instead of two sets
of vectors, we are given two matroids on the same ground set and the goal is to find a set of
elements that forms a base in each of the two matroids. In this problem, the matroids are
not given explicitly but only via a independence or rank oracle. Thus, it does not makes
sense to talk about NC or RNC algorithms for this problem. One can however consider a
parallel oracle model where we can make polynomially many queries to the oracle in parallel
(see [25]). To the best of our knowledge, there is no such parallel algorithm known for the
decision or the search version of matroid intersection, even with sub-linear number of rounds
of parallel oracle calls. This makes the question all the more interesting whether decision
and search are equivalent in a parallel sense.

Interestingly, the search-to-weighted-decision reduction of [28] applies to general matroid
intersection as well and can be said to be in RNC. Our results make a significant progress
on this question by giving a pseudo-deterministic NC reduction from search to weighted
decision. Formally, we can show the following.

▶ Theorem 3. There is a pseudo-deterministic NC algorithm for finding a common base
of two matroids M1 and M2 on the same ground set E, provided that the algorithm has an
oracle access to the following decision question: given two matroids with polynomially bound
(in |E|) weights on the ground set elements and a target weight W , is there a common base
of weight at least W? Furthermore, the oracle calls need to be made only for the following
pairs of matroids: ⟨M1, M2⟩, ⟨M1, M1⟩, and ⟨M2, M2⟩.

Note that in the above theorem, as there is no explicit input, the ground set size is taken as
the input size.

APPROX/RANDOM 2021
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Discussion

There are many natural open questions that are highlighted by our work. The big question
is whether there is an NC algorithm for linear matroid intersection. Going to the more
general setting, is there some kind of parallel algorithm for matroid intersection? Another
question which can generate some new ideas is whether there is an NC reduction from search
to decision for linear matroid intersection. For general matroid intersection, it would be
interesting to find a parallel search to decision reduction even with the use of randomization.

The third question mentioned in the beginning, that is, linear matroid matching is
completely open, in the sense that not even a quasi-NC algorithm is known for it. Given
the wide applicability of the Isolation Lemma, the randomized parallel search-to-weighted-
decision reduction of Mulmuley, Vazirani, and Vazirani [27] would work for any combinatorial
problem with an appropriate self-reducibility property, including NP-hard problems like
maximum independent set. An intriguing meta-question is – what is the most general setting
where we can find deterministic or pseudo-deterministic parallel search-to-weighted-decision
reductions.

2 Previous works

We start by briefly describing the techniques of previous works [28, 22, 19] that will be helpful
in both comprehending as well as describing our work. Wherever these works talk about a
minimization problem, we will describe it in terms of maximization, just for convenience. We
will be using the following notations for the two versions of the matroid intersection problem.

search-MI: Given two matroids on a common ground set, compute a common base.
weighted-decision-MI: Given two matroids on the same ground set, polynomially bounded
weights on the ground set elements, and a target weight W , is there a common base of
weight at least W?

Whenever we are in a setting where the matroids are not given explicitly, we will consider
the ground set size as the input size.

The result of Narayanan, Saran, and Vazirani [28] can be interpreted as an RNC reduction
from search-MI to weighted-decision-MI. The first step of this reduction is to assign weights to
the ground set elements, randomly and independently from a small range. Then from the
Isolation Lemma [27], one can say that there is a unique maximum weight common base of
the two matroids, with high probability. Here, the weight of a common base is defined to be
sum of the weights of the elements in the common base. We can first find the maximum
weight w∗ of a common base by calling the weighted-decision-MI oracle for each possible
target value W in a small range. Then for each ground set element e in parallel, increase its
weight by one and find out the new maximum weight. The maximum weight increases if and
only if e is a part of the unique maximum weight common base. This way we can find the
unique maximum weight common base.

Note that the uniqueness property is crucial for this construction and that is the only
place where randomness is needed. And this construction is not pseudo-deterministic because
for different choices of random weights, we will get a different maximum weight common
base. There has been several efforts to deterministically construct a weight assignment in
NC that isolates a common base, i.e., ensures unique maximum weight common base, but
this goal has not been achieved till now. A recent work [22] came quite close to this goal
and constructed an isolating weight assignment in quasi-NC. This work generalizes the ideas
used to do the same for bipartite matching in [16]. We build on their ideas to construct an
isolating weight assignment in pseudo-deterministic NC. We first give a brief description of
their result.
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Isolating a common base in quasi-NC

Suppose that M1 = (E, I1) and M2 = (E, I2) are two matroids over the same ground set E

where B1 and B2 are the family of bases of M1 and M2, respectively. Let m = |E| and r1 and
r2 be the rank functions of the matroids. The main idea of [22] is to isolate a common base
in log m rounds, where in each round they significantly reduce the set of maximum weight
common bases, and finally bring it down to just one maximum weight common base. In each
of these rounds, they deterministically propose a set of poly(m) weight assignments, one of
which will do the desired reduction in the set of maximum weight common bases. In a round,
they have no way of figuring out which one out of these poly(m) weight assignments will
do the job. So, they have to try all poly(m)log m combinations of these weight assignments.
Moreover, for any particular combination, they have to combine the log m weight assignments
on different scales, which means their weights become as large as poly(m)log m. Due to these
two factors, their construction is in quasi-NC and not in NC.

To measure the progress in each round, they need a succinct way to describe the current
set of maximum weight common bases. The most convenient way to understand the set of
maximum weight common bases is through the common base polytope. The common base
polytope P (B1 ∩ B2) is a polytope formed by taking convex hull of the 0-1 indicator vectors
of the sets in B1 ∩ B2. For any weight assignment w ∈ RE , the weight of a common base B

is defined as a linear function, and thus, one can obtain the maximum weight common bases
by maximizing the function

∑
e∈E wexe over P (B1 ∩ B2). In particular, the set of maximum

weight common bases will always be the set of corners of a face of P (B1 ∩ B2).
Edmonds [13] gave a nice description of P (B1 ∩ B2) using the rank functions r1 and r2.

He showed that a point x ∈ RE is in P (B1 ∩ B2) if and only if it satisfies the following
constraints:

xe ≥ 0 ∀e ∈ E, (1)
x(S) =

∑
e∈S

xe ≤ ri(S) ∀S ⊂ E, i = 1, 2, (2)

x(E) =
∑
e∈E

xe = r1(E) = r2(E). (3)

The construction in [22] crucially uses the description of the common base polytope P (B1∩B2).
In terms of the polytope, their construction of the weight assignment is such that in each
round, the maximum weight face of P (B1 ∩ B2) gets significantly smaller and after log m

rounds, the maximum weight face is simply a corner point. The key notions they introduced
to measure the improvement in each iteration are cycles with respect to a face and their
circulations with respect to a weight assignment.

Suppose that F is a face of P (B1 ∩ B2). A subset S of E is called a tight set of Mi

with respect to F if the corresponding inequality in (2) is tight for F i.e, for all x ∈ F ,
x(S) = ri(S). Then [22] showed that for every face F , we have two partitions of E, denoted
by partition1[F ] and partition2[F ], such that every tight set of Mi with respect to F is a union
of the sets from partitioni[F ]. The partitions of E naturally induce a bipartite graph, denoted
by G[F ], with the left vertex set partition1[F ], the right vertex set partition2[F ] and the edge
set E: the edge corresponding to an element e ∈ E is incident on the vertex corresponding
to a set v ∈ partitioni[F ] if and only if e ∈ v. A sequence of distinct elements (e1, . . . , ek)
from E is called a cycle with respect to F if it forms a cycle in the graph G[F ].

Let CF denotes the set of cycles with respect to a face F of P (B1 ∩B2). Then [22] showed
that for face F , if CF = ∅ then F is a corner point of the polytope P (B1 ∩ B2). Their idea
was to keep eliminating cycles via appropriate modification of the weight assignment and

APPROX/RANDOM 2021
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get smaller and smaller maximizing face of P (B1 ∩ B2) to eventually reach a corner point.
For a weight assignment w on E, define the circulation for a (even length) cycle as the
absolute value of the difference of weights in the two sets of alternating edges. Let C be a
cycle, say with respect to F = P (B1 ∩ B2), and let w be a weight assignment such that the
circulation of C is non-zero w.r.t. w. Then they showed that the cycle C does not appear
in the maximizing face with respect to w. Now if the weight assignment w gives non-zero
circulation to all the cycles in P (B1 ∩ B2), then all the cycles in the maximizing face F will
be eliminated, i.e. CF = ∅, and F will be a corner. However, with polynomially bounded
weights, one cannot expect to give nonzero circulation to all the cycles at once, since the
number of cycles can be exponentially large.

One of the key ideas in [22, 16] was to eliminate the cycles in rounds. In each round, they
double the length of the eliminated cycles and reach to face of a smaller dimension. Thus, in
log m rounds, one can eliminate all the cycles and reach a corner point of P (B1 ∩ B2). They
used the fact that if in a graph all the cycles have length greater than 2i, then there are
at most m4 many cycles of length at most 2i+1 [33]. This implies that, at each iteration,
we have to give nonzero circulation to at most m4 many cycles. Using a hashing technique
(for example see [16, Lemma 2.3]), one can give nonzero circulation for each of these m4

many cycles. Formally, Gurjar and Thierauf [21, Lemma 3.11 and 3.12] showed the following
property for faces F (of P (B1 ∩ B2)) having no cycle of length ≤ r.

▶ Lemma 4. Let F be a face of the polytope P (B1 ∩ B2) such that CF has no cycle of length
r. Then one can construct a set of O(m6) many weight assignments with weights bounded by
O(m6) in NC such that one of the weight assignment will give nonzero circulation to all the
cycles in CF of length at most 2r.

Now, as described earlier, we consider all possible combinations of weight assignments from
different rounds to get a family of poly(mlog m) many weight assignments with weights
bounded by poly(mlog m) such that for any two matroids on a ground set of size m, at least
one weight assignment isolates a common base.

In this paper, we give a pseudo-deterministic NC reduction from search-MI to weighted-
decision-MI. This line of work was started by Goldwasser and Grossman [19]. One can extract
an abstract framework from [19] with the following two steps to get a pseudo-deterministic
NC search-to-weighted-decision reduction: 1) Like [16, 22], an iterative approach of designing
an isolating weight assignment family, 2) Succinct representation of the maximum weight
faces of the underlying polytope with an RNC algorithm to compute it, assuming the oracle
access to the weighted decision. For example, a face of the bipartite matching polytope is
completely described by the set edges that participate in some perfect matching in that face,
and [19] gives an NC algorithm to compute it using the respective weighted decision oracle.

The faces of the perfect matching polytope for general graphs are more complicated than
their bipartite counterpart. Here, any face is described by a maximal laminar family of
tight odd cuts. The work of [8, 30] give an NC procedure, with the oracle access to the
weight decision problem, to compute a maximal laminar family of tight odd cuts. This result
supplies the second ingredient of the [19] framework, which helped [2] give an NC reduction
from search to weighted decision for general perfect matching.

Our reduction also follows the abstract framework of [19]. We use the iterative approach
developed by [22]. On top of that, we need an RNC algorithm (using the oracle access to
weighted-decision-MI) to compute a succinct representation for a maximum weight face of the
common base polytope P (B1 ∩ B2). However, none of the previous ideas help to answer this
question, and we need something completely new.
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3 Proof techniques

In this section, we briefly describe the proof ideas of our results. Our proofs strongly rely on
some structural properties of lattice families over finite sets. Therefore, we briefly discuss the
necessary notations and facts about lattice families. For a finite set E, a family of subsets
L of E is called a lattice family over E if it is closed under set union and intersection and
for every element a ∈ E there exists a set in L containing a. For every element a ∈ E there
exists a unique smallest set in L containing a. Such sets are called as prime sets of L. All
the sets in a lattice family can be written as a union of its prime sets. Every lattice family L
over E induces a unique partition P of E such that every set in L is a disjoint union of sets
in P. Moreover, the sets in P can be written as a sequence (S1, . . . , Sℓ) with the following
property: for all k ∈ [ℓ], ∪k

j=1Sj is in L. A family L′ ⊆ L is called a sublattice of L, if L′

is also a lattice family over E. The partition P is a refinement of the partition P ′ induced
by L′, that is for all S ∈ P ′, the sets in P having a nonempty intersection with S form a
partition of S. For proof of these properties, one can see Section 4.2 of the full version.

3.1 Proof Idea of Theorem 1

We discuss a succinct representation for the maximum weight face of the common base
polytope and an RNC algorithm to compute it. First, we define some notations. Supppose
that M1 = (E, I1) and M2 = (E, I2) are two matroids with B1 and B2 as their family of the
bases and r1 and r2 as the rank functions, respectively. Let m = |E|. Let P (B1 ∩ B2) be the
common base polytope of M1 and M2 defined by the equations (1), (2), (3), and F be a face
of P (B1 ∩ B2). Then a subset S of E is called a tight set for Mi (with respect to F ) if for all
x ∈ F , x(S) = ri(S). For all i ∈ [2], let tight-setsi[F ] denote the family of all tight sets for
Mi with respect to the face F . Edmonds [13] showed that for all i ∈ [2], tight-setsi[F ] forms
a lattice family over E.

Suppose that w is a weight assignment on E. Let Fw be the maximizing face of the
common base polytope P (B1 ∩ B2), with respect to w. The face Fw can be uniquely
represented by tight-sets1[Fw] and tight-sets2[Fw]. However, we can not compute them
explicitly with our limited computational resources since the size of each family can be
exponentially large. On the other hand, since tight-setsi[Fw] is a lattice family over E, each
tight-setsi[Fw] has a succinct representation using partial order defined on its prime sets.
More specifically, one can define a pre-order ⪯i (that is, reflexive and transitive) on E as
follows: for all a, b ∈ E, a ⪯i b if and only if in tight-setsi[Fw], the prime set containing b is
a subset of the prime set containing a. The pre-order ⪯i gives a succinct representation of
tight-setsi[Fw], that is for every S ⊆ E, S is in tight-setsi[Fw] if and only if S is transitively
closed under ⪯i. Such succinct representation for lattice familes is well known (see [31,
Chapter 49] 1). For any a ∈ E, the transitive closure of a in ⪯i is same as the prime set
in tight-setsi[Fw] containing a. Also, the collection of all maximal subsets of E which are
symmetric under ⪯i is same as the partition E induced by tight-setsi[Fw]. If one consider
the digraph representaion of ≺i, (that is (a, b) is an edge if and only if a ⪯i b) then in
tight-setsi[Fw], the prime set containing a is same the set of vertices reachable from a in
the digraph and the partition of E induced by tight-setsi[Fw] is same as the set of strongly
connected components. Thus, the prime sets of tight-setsi[Fw] contain all the information

1 Our definition of ⪯i is exactly opposite to the definition used [31, Chapter 49], that is according to
their definition, a ⪯i b if and only if the prime set containing a is a subset of the prime set containing b.
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regarding it. In our context, we compute the following succinct objects related to Fw:
prime-setsi[Fw] and partitioni[Fw] for all i ∈ [2], where prime-setsi[F ] be the set of all primes
sets of the lattice family tight-setsi[Fw] and partitioni[Fw] denote the partition of E induced
by tight-setsi[F ]. Recall from [22, Section 3.3] that the cycles of the bipartite graph induced
by partition1[Fw] and partition2[Fw] define the cycles with respect to the face Fw. And,
the tight constraints coming from sets in prime-setsi[Fw] serve as a basis for all the tight
constraints from tight-setsi[Fw]. Here, we would like to mention that basis forming families of
tight sets are well studied (see [31]). However, to best of our knowledge, no efficient parallel
algorithm is known to compute them. Also, the succinct representation of lattices using
the partial order of its prime sets has been widely used to design algorithms for different
optimization problems. For example, computing optimal stable matching [23], problems
in computational geometry [14, 6], submodular function minimization [31, Chapter 49].
However, the context of these applications are very different from parallel computation.

With the above two objects, we also need the following characterization: for all i ∈ [2],
there exists a function NFw

i from partitioni[Fw] to Z≥0 such that a base B ∈ B1 ∩ B2 is in
the face Fw if and only if for all i ∈ [2] and S ∈ partitioni[Fw], we have |S ∩B| = NFw

i (S).
Here, we would like to mention that both the notions of partition and the function NFw

i

and the criteria we just mentioned were already introduced in [22], but were a bit weaker in
the following ways: Our criteria is an exact characterization, however, they showed it for
one direction. Our partition has an additional “chain property” ensured by the structural
properties of the lattice families. All these additional points will be useful in our proofs. For
details see Section 4.5 of the full version and [22, Section 3.2].

Now we briefly discuss about our RNC algorithm to compute prime-setsi[Fw] and
partitioni[Fw] for all i ∈ [2]. One important point is that our algorithm is equipped with the
oracle access to weighted-decision-MI. Our idea is the following: We first compute a random
vertex, equivalently a random base, B in the face Fw. The base B can be computed in RNC
using the oracle access to weighted-decision-MI. Then iteratively construct a chain of subsets
of bases from Fw

{B} = B0 ⊆ B1 ⊆ · · · ⊆ Bℓ

such that the minimal face containing Bℓ is same as Fw and ℓ = ⌈log m⌉. Next we briefly
discuss how to construct the set Bj from Bj−1 and compute prime-setsi[Fw] and partitioni[Fw]
from the set of common bases Bℓ.

For all j ∈ {0, . . . , ℓ}, let Fj denotes the minimal face containing Bj . For all j ∈ [ℓ],
the set Bj contains the elements in Bj−1 with the following extra elements: For all i ∈ [2],
A ∈ partitioni[Fj−1], we add a common base B

(A)
ij (if it exists) from the face Fw with the

property

|A ∩B
(A)
ij | ≠ N

Fj−1
i (A). (4)

We know that for all i ∈ [2] A ∈ partitioni[Fj−1], every base in Fj−1 contains exactly N
Fj−1
i (A)

many elements from A. However, our property on B
(A)
ij says that we want a base from Fw

which violates that condition, and if exists, we can compute such a base in RNC using the
oracle access to weighted-decision-MI. Next, we discuss how to compute partitioni[Fj ] in NC.
Note that, after computing partitioni[Fj ], N

Fj

i can be computed in NC by computing |B ∩A|,
for some B ∈ Bj , in parallel for all A ∈ partitioni[Fj ].

The set families tight-setsi[Fj ] for all i ∈ [2] form lattice families over E, and given
Bj , we are interested to compute prime-setsi[Fj ] and partitioni[Fj ] in NC. As we mentioned
earlier, every lattice family has a digraph representation based on the partial order on primes
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sets of lattice family. Given this digraph representation of tight-setsi[Fj ], one can compute
prime-setsi[Fj ] and partitioni[Fj ] in NC. However, given Bj , it is not clear how to construct
the digraph representation of the lattice family tight-setsi[Fj ] in NC. We show that, instead
of this digraph, it would sufficient for us if we work with a subgraph Gi[Bj ] defined as follows:
the vertex set is same as the ground set E and for all a, b ∈ E, (a, b) is an edge of Gi[Bj ] if
and only if

there exists a base B ∈ Bj such that b ∈ B and (B \ {b}) ∪ {a} is also a base of Mi.

More specifically, we prove that for every a ∈ E the prime set in tight-setsi[Fj ] containing
a is same as the set of vertices reachable from a in Gi[Fj ] and partitioni[Fj ] is same as
the set of strongly connected components in Gi[Bj ]. Using this characterization, we can
compute prime-setsi[Fj ] and partitioni[Fj ] in NC, given the graph Gi[Bj ]. For more details
see Section 6 of the full version. Also, using the weighted decision oracle we can compute
Gi[Bj ] in NC. Thus, given Bj , prime-setsi[Fj ] and partitioni[Fj ] are computable in NC. Here,
we would like to mention that constructing directed graphs using base exchange property
is a well known technique in matroid literature and has been used in various contexts. For
example, one can see the augmenting path based algorithm for matroid intersection in [31,
Section 41.2], and some other context in [31, Section 40.3]. The definition of Gi[Bj ] is very
close to the definition used in the second example.

At very high level, this part of our algorithm is doing exactly the opposite of the idea
used to construct isolating weight assignment family in [16, 22, 34]. They start from a face
of the polytope and iteratively move to the subfaces of smaller dimensions until a corner
point is reached. On the other hand, we are starting from a corner point of the face and
iteratively reaching bigger faces until we cover the whole face.

Now we give a very brief overview of the correctness of our algorithm. For all j ∈
{0, 1, . . . , ℓ}, since Fj is a subface of Fw, tight-setsi[Fw] is a sublattice of tight-setsi[Fj ]
for all i ∈ [2]. Therefore partitioni[Fj ] is a refinement of partitioni[Fw], that is for all
S ∈ partitioni[Fw], the sets in partitioni[Fj ] having nonempty intersection with S create a
partition of S. Let W(S)

ij denote the family of sets in partitioni[Fj ] which have nonempty
intersection with S ∈ partitioni[Fw]. As we move from (j − 1)th iteration to jth iteration,
our algorithm satisfies the following property: either the size of the smallest sets in W(S)

ij

satisfying the equation 4 becomes double, or if no such set exists in W(S)
ij , it becomes equal

to {S}. Thus, after ℓth iteration, partitioni[Fℓ] becomes equal to partitioni[Fw] for all i ∈ [2].
This leads us to prove that Fℓ = Fw. Therefore, prime-setsi[Fℓ] is also same as prime-setsi[Fw].
In Algorithm 1, we describe all the steps to compute prime-setsi[Fw] and partitioni[Fw] for
all i ∈ [2]. For the detail analysis of the correctness and time complexity of our algorithm
see Section 7 of the full version. From the above discussion, we can conclude that

▶ Theorem 5. Let M1 = (E, I1) and M2 = (E, I2) be two matroids with B1 and B2 be the
family of bases, respectively. Let w be a weight assignment on E with polynomially bounded
weights, and Fw be the maximizing face of P (B1 ∩ B2) with respect to w. Then, given M1,
M2 and w as inputs, Algorithm 1 computes prime-setsi[Fw] and partitioni[Fw] for all i ∈ [2]
in randomized NC, provided that the algorithm has an oracle access to weighted-decision-MI.
Furthermore, for all positive integer c, the success probability of the algorithm can be made
at least 1− 1

mc , where m = |E|.
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Algorithm 1 Computing prime sets and partitions corresponding to a max-weight face.
Input: Two matroids M1 = (E, I1), M2(E, I2), and a weight assignment w : E → Z≥0.
Output: prime-setsi[Fw] and partitioni[Fw] for all i ∈ [2], where Fw denotes the max-weight
face.
Assumption: Oracle access to weighted-decision-MI.

1: Compute a base B in Fw.
2: B0 ← {B}.
3: for all i ∈ [2] do in parallel
4: Compute the graph Gi[B0].
5: Let F0 be the minimal face containing B0.
6: Compute prime-setsi[F0], partitioni[F0] and NF0

i .
7: end for
8: for j ← 1 to ⌈log m⌉ do
9: Bj ← Bj−1.

10: for all i ∈ [2] do in parallel
11: for all A ∈ partitioni[Fj−1] do in parallel
12: If exists, compute a base B

(A)
ij in Fw such that

|A ∩B
(A)
ij | ≠ N

Fj−1
i (A).

13: Bj ← Bj

⋃ {
B

(A)
ij

}
.

14: end for
15: end for
16: for all i ∈ [2] do in parallel
17: Let Fj be the minimal face containing Bj .
18: Compute the graph Gi[Bj ].
19: Compute prime-setsi[Fj ], partitioni[Fj ] and N

Fj

i .
20: end for
21: end for
22: return prime-setsi[Fℓ] and partitioni[Fℓ] for i ∈ [2] and ℓ = ⌈log m⌉.

3.2 Proof idea of Theorem 3
In this section, we give a proof overview of Theorem 3, which states that there is a pseudo-
deterministic NC algorithm for the matroid intersection search problem that uses the
weighted-decision oracle. Since the weighted-decision for linear matroid intersection can be
solved in RNC [28], we get a pseudo-deterministic NC algorithm for the search version of
linear matroid intersection, that is, Theorem 2.

Suppose that M1 = (E, I1) and M2 = (E, I2) are two matroids with B1 and B2 as the
family of bases, respectively. Let P (B1 ∩ B2) be the common base polytope of M1 and M2.
Let w0 be a weight assignment defined as w0(a) = 1 for all a ∈ E. Then the maximizing face
of P (B1 ∩ B2) with respect to w0 is the polytope itself. Let m = |E| and ℓ = ⌈log m⌉. Now
our idea is the following: We start from the weight assignment w0 and inductively construct
a sequence of weight assignments

w0, w1, . . . , wℓ

such that for all j ∈ {0, 1, . . . , ℓ}, the weights in wj are bounded by O(m) and the length
of the shortest cycle with respect to the face Fj is greater than 2j where Fj denotes the
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maximizing face with respect to wj . Therefore, the face Fℓ does not have any cycle, and
from [22], it has a unique base. Now using the oracle access to weighted-decision-MI the base
in Fℓ can be computed in NC. Next we discuss how to construct wj from wj−1.

For all j ∈ {0, 1, . . . , ℓ}, let CFj
denotes the set of all cycles with respect to the face Fj .

From the induction hypothesis, for some j, all the cycles in CFj have length greater than
2j . Then from [22], there are at most m4 many cycles of length at most 2j+1. Let W be a
polynomially large family of weight assignments with polynomially bounded weights such
that one of the weight assignments in W gives nonzero circulation to all the cycles in CFj of
length at most 2j+1. There are well known NC constructions of such a family W (see e.g.,
[16, Lemma 2.3]). For each w ∈ W we do the following in parallel: combine wj and w in
decreasing order of precedence. Let w′ be the combined weight and Fw′ is the maximizing
face with respect to it. Now using our RNC algorithm discussed in the previous section,
compute prime-setsi[Fw′ ] and partitioni[Fw′ ] for all i ∈ [2]. Now, construct the bipartite
graph G[Fw′ ] from partition1[Fw′ ] and partition2[Fw′ ] as defined in the description of [22].
The length of the shortest cycles in G[Fw′ ] can be computed in NC. Thus, in NC, we can
compute the lexicographically smallest weight assignment w ∈ W such that the length of the
shortest cycles in G[Fw′ ] is greater than 2j+1.

Algorithm 2 Pseudo-deterministic NC algorithm for computing a common base of two matroids.
Input: Two matroids M1 = (E, I1) and M2 = (E, I2).
Output: A common base of M1 and M2, if exists.
Assumption: Oracle access to weighted-decision-MI.

1: w0 ← 1.
2: for j ← 1 to ⌈log m⌉ do
3: Compute a family of weight assignments W as promised by Lemma 4.
4: for all w ∈ W do in parallel
5: Combine wj−1 and w with descending order in precedence.
6: For a w ∈ W, let w′ be the combined weight.
7: Let Fw′ be the maximizing face of P (B1 ∩ B2) with respect to w′.
8: For all i ∈ [2], compute prime-setsi[Fw′ ] and partitioni[Fw′ ] using Algorithm 1.
9: Let G[Fw′ ] be the bipartite graph induced by partition1[Fw′ ] and partition1[Fw′ ].

10: Compute the length of shortest cycle of G[Fw′ ].
11: end for
12: Take some fixed ordering on W, like lexicographic ordering.
13: Take the smallest w such that the length of the shortest cycle in G[Fw′ ] > 2j .

14: wj ←
∑2

i=1
∑

S∈prime-setsi[Fw′ ] 1S .
15: end for
16: Compute the unique common base maximizing w⌈log m⌉ and output.

Next we show how to compute wj+1 from w′ such that weights in wj+1 are bounded by
O(m). Define wj+1 as the following:

wj+1 =
2∑

i=1

∑
S∈prime-setsi[Fw′ ]

1S ,

where 1S ∈ RE denotes the indicator vector for the set S. From the defnition, it is clear
that weights are bounded by 2m, and can be computed in NC from prime-sets1[Fw′ ] and
prime-sets2[Fw′ ]. Using the description of P (B1 ∩ B2), we can show that every point x in
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the maximizing face Fj+1 must satisfy x(S) = ri(S) for all i ∈ [2], S ∈ prime-setsi[Fw′ ].
This implies that prime-setsi[Fw′ ] is a subset of tight-setsi[Fj+1]. Thus tight-setsi[Fw′ ] is a
subset of tight-setsi[Fj+1] since all the sets in a lattice family can be written as a union of
its prime sets. This helps us to show that Fw′ is same as Fj+1. Also, one can verify that
each step of our algorithm as has a unique answer, therefore it is pseudo-deterministic. In
Algorithm 2, we describe the steps of our pseudo-deterministic NC reduction from search-MI
to weighted-decision-MI. For the proof of correctness and time complexity analysis of our
algorithm, see Section 8 of the full version.
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