
Distance Estimation Between Unknown Matrices
Using Sublinear Projections on Hamming Cube
Arijit Bishnu #Ñ

Indian Statistical Institute, Kolkata, India

Arijit Ghosh # Ñ

Indian Statistical Institute, Kolkata, India

Gopinath Mishra #Ñ

Indian Statistical Institute, Kolkata, India

Abstract
Using geometric techniques like projection and dimensionality reduction, we show that there exists
a randomized sub-linear time algorithm that can estimate the Hamming distance between two
matrices. Consider two matrices A and B of size n×n whose dimensions are known to the algorithm
but the entries are not. The entries of the matrix are real numbers. The access to any matrix is
through an oracle that computes the projection of a row (or a column) of the matrix on a vector
in {0, 1}n. We call this query oracle to be an Inner Product oracle (shortened as IP). We show
that our algorithm returns a (1 ± ϵ) approximation to DM(A, B) with high probability by making
O
(

n√
DM(A,B)

poly
(
log n, 1

ϵ

))
oracle queries, where DM(A, B) denotes the Hamming distance (the

number of corresponding entries in which A and B differ) between two matrices A and B of size
n × n. We also show a matching lower bound on the number of such IP queries needed. Though
our main result is on estimating DM(A, B) using IP, we also compare our results with other query
models.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Distance estimation, Property testing, Dimensionality reduction, Sub-linear
algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.44

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2107.02666

Acknowledgements The authors wish to thank their colleague Ansuman Banerjee for helpful
discussions on GPU architecture and CUDA.

1 Introduction

Measuring similarity between entities using a distance function has been a major area of focus
in computer science in general and computational geometry in particular [9, 8, 20, 19, 7].
Distance computations require access to the entire data and thus can not escape computations
that are linear in time complexity. In this era of big data, seeing the entire data may be
too much of an ask and trading precision for a time efficient algorithm is a vibrant area
of study in property testing [22]. Testing properties of binary images with sub-linear time
algorithms has been a focus of property testing algorithms [27, 26, 11, 24, 10]. Matrices
are ubiquitous in the sense that they represent or abstract a whole gamut of structures like
adjacency matrices of geometric graphs and visibility graphs, images, experimental data
involving 0-1 outcomes, etc. Pairwise distance computations between such matrices is a
much-needed programming primitive in image processing and computer vision applications

© Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 44; pp. 44:1–44:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arijit@isical.ac.in
https://www.isical.ac.in/~arijit/
mailto:arijitiitkgpster@gmail.com
https://sites.google.com/site/homepagearijitghosh/
mailto:gopianjan117@gmail.com
https://sites.google.com/view/gopinathmishra/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.44
https://arxiv.org/abs/2107.02666
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Distance Between Matrices Using Sublinear Projections on Hamming Cube

so much so that the widely used commercial toolbox MATLAB of MathWorks® [1] has
an inbuilt function call named pdist2(·, ·, ·) [2] for it. Other open source based software
packages also have similar primitives [3]. For all these primitives, the matrices need to be
known. But in all situations where access to the matrices are restricted (say, because of
security, privacy or communication issues) except for an oracle access, we want to know
how much the two matrices differ in their entries. Keeping in line with the above, we focus
on distance estimation problem between two matrices whose dimensions are known to the
algorithm but the entries are unknown; the access to the matrices will be through an oracle.
This oracle, though linear algebraic in flavor, has a geometric connotation to it. We hold
back the discussion on the motivation of the oracle till Section 1.1.

Notations

In this paper, we denote the set {1, . . . , t} by [t] and {0, . . . , t} by [[t]]. For a matrix A,
A(i, j) denotes the element in the i-th row and j-th column of A. Unless stated otherwise,
A will be a matrix with real entries. A(i, ∗) and A(∗, j) denote the i-th row vector and j-th
column vector of the matrix A, respectively. Throughout this paper, the number of rows
or columns of a square matrix A will be n. Vectors are matrices of order n × 1 and will
be represented using bold face letters. Without loss of generality, we consider n to be a
power of 2. The i-th coordinate of a vector x will be denoted by xi. We will denote by 1
the vector with all coordinates 1. Let {0, 1}n denote the set of n-dimensional vectors with
entries either 0 or 1. By ⟨x, y⟩, we denote the standard inner product of x and y, that is,
⟨x, y⟩ =

∑n
i=1 xiyi. P is a (1 ± ε)-approximation to Q means |P − Q| ≤ ε · Q. The statement

with high probability means that the probability of success is at least 1 − 1
nc , where c is a

positive constant. Θ̃(·) and Õ(·) hides a poly
(
log n, 1

ε

)
term in the upper bound. || · ||p

denotes the usual ℓp distance.

1.1 Query oracle definition and motivation, problem statements and our
results

▶ Definition 1.1 (Matrix distance). The matrix-distance between two matrices A and B of
size n × n is the number of pairwise mismatches and is denoted and defined as

DM(A, B) = |{(i, j) : i, j ∈ [n], A(i, j) ̸= B(i, j)}| .

As alluded to earlier, the matrices cannot be accessed directly, the sizes of the matrices are
known but the entries are unknown. We will refer to the problem as the matrix distance
problem. We consider the following query models to solve the matrix distance problem in
this paper.

Query oracles for unknown matrix A ∈ Rn×n

The main query oracle access used in this work is based on the inner product of two vectors
and is defined as follows:
Inner Product (IP): Given a row index i ∈ [n] (or, a column index j ∈ [n]) and a vector

v ∈ {0, 1}n, the IP query to A reports the value of ⟨A(i, ∗), v⟩ (⟨A(∗, j), v⟩). If the input
index is for row (column), we refer the corresponding query as row (column) IP query.

This linear algebraic oracle access has a geometric connotation to it in terms of projection
onto Hamming vectors – we exploit this understanding in our work. This oracle access is also
motivated from a practical angle. A dot product operation is a fit case for parallelization

A. Bishnu, A. Ghosh, and G. Mishra 44:3

using a Single Instruction Multiple Data (SIMD) architecture [23]. Modern day GPU
processors provide instruction level parallelism. In effect, NVIDIA GPUs that are built on
CUDA architecture, provide dot product between two vectors as a single API call [28, 4].
Thus, there exists practical implementation of the query oracle access that we use. There
are also examples of programming languages supporting SIMD intrinsics that can compute
dot product [5]. There is a caveat though – in terms of resource, more processors are used.
For us, in this work, the query complexity is the number of calls to the IP. As mentioned,
modern day architectures allow us to convert each IP query to a one cycle computation with
more processors used in parallel.

In the power hierarchy of matrix based query oracles, IP surely wields some power
vis-a-vis solving certain problems [14] 1. An obvious question that confronts an algorithm
designer is whether a weaker oracle can do the same job at hand (here, computing matrix
distance). With that in mind, we define the following two oracles and show that their query
complexity lower bounds on the matrix distance problem match the trivial upper bounds.
That shows the justification for use of IP.
Matrix Element (ME): Given two indices i, j ∈ [n], the ME query to A returns the

value of A(i, j).
Decision Inner Product (Dec-IP): Given a row index i ∈ [n] (or, a column index

j ∈ [n]) and a vector v ∈ {0, 1}n, the Dec-IP query to A reports whether ⟨A(i, ∗), v⟩
(⟨A(∗, j), v⟩) = 0. If the input index is for row (column), we refer the corresponding
query as row (column) Dec-IP query.

The following remark highlights the relative power of the query oracles.

▶ Remark 1. Each ME query can be simulated by using one Dec-IP oracle, and each
Dec-IP oracle can be simulated by using one IP query.

Our results

Our main result is an algorithm for estimating the distances between two unknown matrices
using IP, and the result is formally stated as follows. Unless otherwise mentioned, all our
algorithms are randomized.

▶ Theorem 1.2 (Main result: Estimating the distance between two arbitrary matrices). There
exists an algorithm that has IP query oracle access to unknown matrices A and B, takes an
ε ∈ (0, 1) as an input, and returns a (1±ε) approximation to DM(A, B) with high probability,
and makes O

((
n/
√

DM(A, B)
)

poly
(
log n, 1

ε

))
IP queries.

We also show that our algorithm (corresponding to the above theorem) is optimal, if
we ignore the poly

(
log n, 1

ε

)
term, by showing (in Theorem 4.1) that any algorithm that

estimates DM(A, B) requires Ω
(

n/
√

DM(A, B)
)

IP queries. For the sake of completeness
in understanding the power of IP, we study the matrix distance problem also using two
weaker oracle access – ME and Dec-IP. Our results are summarized in Table 1 and they
involve both upper and almost matching lower bounds in terms of the number of queries
needed. Note that all of our lower bounds hold even if one matrix (say A) is known and
both matrices (A and B) are symmetric binary matrices.

1 But the IP defined in this paper is weaker than that defined in [14] – in their case, one is allowed to
query for inner product of rows/columns of matrices with vectors in Rn.

APPROX/RANDOM 2021

44:4 Distance Between Matrices Using Sublinear Projections on Hamming Cube

Table 1 Our results. In this table, D = DM(A, B).

Query Oracle ME Dec-IP IP

Upper Bound Õ
(

n2

D

)
Õ
(

n2

D

)
Õ
(

n√
D

)
(Trivial) (Trivial) (Theorem 1.2)

Lower Bound Ω
(

n2

D

)
Ω
(

n2

D

)
Ω
(

n√
D

)
(Corollary 4.3) (Theorem 4.1) (Theorem 4.2)

▶ Remark 2. Note that an IP query to a matrix A answers inner product of a specified
row (column) with a given binary vector. However, we will describe subroutines (of the
algorithm for estimating the distance between two matrices) that ask for inner product of a
specified row (column) with a given vector r ∈ {−1, 1}n. This is not a problem as ⟨A(i, ∗), r⟩
(⟨A(∗, j), r⟩) can be computed by using two IP queries (with binary vectors) 2. For simplicity,
we refer ⟨A(i, ∗), r⟩ (⟨A(∗, j), r⟩) also as IP query in our algorithm.

1.2 Related work
There are works in property testing and sub-linear geometric algorithms [15, 18, 17, 16].
In the specific problem that we deal with in this paper, to the best of our knowledge,
Raskhodnikova [26] started the study of property testing of binary images in the dense image
model, where the number of 1-pixels is Ω(n2). The notion of distance between matrices of
the same size is defined as the number of pixels (matrix entries) on which they differ. The
relative distance is the ratio of the distance and the number of pixels in the image. In this
model, Raskhodnikova studies three properties of binary images – connectivity, convexity,
and being a half-plane – in the property testing framework. Ron and Tsur [27] studied
property testing algorithms in the sparse binary image model (the number of 1-pixels is O(n))
for connectivity, convexity, monotonicity, and being a line. The distance measure in this
model is defined by the fraction of differing entries taken with respect to the actual number
of 1’s in the matrix. As opposed to treating binary images as discrete images represented
using pixels as in [27, 26], Berman et al. in [10] and [12] treated them as continuous images
and studied the problem of property testing for convexity of 2-dimensional figures with only
uniform and independent samples from the input. To the best of our knowledge, computing
distances between binary images has not been dealt with in the sub-linear time framework.

Organization of the paper

We prove Theorem 1.2 (in Section 1.1) through a sequence of results. To prove Theorem 1.2
that estimates the distance between two arbitrary matrices, we need a result that estimates
the distance between two symmetric matrices (Lemma 2.1 in Section 2) that in turn needs
a result on the estimation of the distance between two symmetric matrices with respect to
a parameter T (Lemma 2.2 in Section 2). Lemma 2.2 is the main technical lemma that
uses dimensionality reduction via Johnson Lindenstrauss lemma crucially. The technical
overview including the proof idea of Lemma 2.2 is in Section 2.1. The detailed proof idea is in
Section 2.2. Using communication complexity, we prove our lower bound results in Section 4.
The proof of lemma marked with ⋆ can be found in the full version of the paper [13].

2 For r ∈ {−1, 1}n, consider v1, v−1 ∈ {0, 1}n indicator vectors for +1 and −1 coordinates in r ∈ {−1, 1}n,
respectively. Then ⟨A(i, ∗), r⟩ = ⟨A(i, ∗), v1⟩ − ⟨A(i, ∗), v−1⟩. So, ⟨A(i, ∗), r⟩ can be computed with
two IP queries ⟨A(i, ∗), v1⟩ and ⟨A(i, ∗), v−1⟩. Similar argument also holds for ⟨A(∗, j), r⟩.

A. Bishnu, A. Ghosh, and G. Mishra 44:5

2 Matrix-Distance between two symmetric matrices

This section builds up towards a proof of Theorem 1.2 by first giving an algorithm that
estimates the matrix-distance between two unknown symmetric matrices (instead of arbitrary
matrices as in Theorem 1.2) with high probability. The result is formally stated in Lemma 2.1.
In Section 3, we will discuss how this result (stated in Lemma 2.1) can be used to prove
Theorem 1.2.

▶ Lemma 2.1 (Estimating the distance between two symmetric matrices). There exists an
algorithm Dist-Symm-Matrix(A, B, ε), that has IP query access to unknown symmetric
matrices A and B, takes an ε ∈

(
0, 1

2
)

as an input, and returns a (1 ± ε)-approximation to
DM(A, B) with high probability, making Õ

(
n/
√

DM(A, B)
)

IP queries.

First, we prove a parameterized version of the above lemma in Lemma 2.2 where we are
given a parameter T along with an ε ∈

(
0, 1

2
)

and we can obtain an approximation guarantee
on DM (A, B) as a function of both T and ε. One can think of T as a guess for DM(A, B).

▶ Lemma 2.2 ((⋆) Estimating the distance between two symmetric matrices w.r.t. a parameter
T). There exists an algorithm Dist-Symm-Matrix-Guess(A, B, ε, T), that has IP query
access to unknown symmetric matrices A and B, takes parameters T and ε ∈

(
0, 1

2
)

as inputs,
and returns d̂ satisfying

(
1 − ε

10
)

DM (A, B) − ε
1600 T ≤ d̂ ≤

(
1 + ε

10
)

DM (A, B) with high
probability, and makes Õ

(
n/

√
T
)

queries. Note that here T is at least a suitable polynomial
in log n and 1/ε.

In Section 2.1, we discuss some preliminary results to prove Lemma 2.2. The proof of
Lemma 2.2 is given in Section 2.2. If the guess T ≤ DM(A, B), Dist-Symm-Matrix-Guess
(A, B, ε, T) (as stated in Lemma 2.2) returns a (1 ± ε)-approximation to DM(A, B) with
high probability. However, this dependence on T can be overcome to prove Lemma 2.1 by
using a standard technique in property testing.

2.1 Technical preliminaries to prove Lemma 2.2
The matrix distance DM (A, B) can be expressed in terms of the notion of a distance between
a row (column) of matrix A and a row (column) of matrix B as follows:

▶ Definition 2.3 (Distance between two rows (columns)). Let A and B be two matrices of
order n × n. The distance between the i-th row of A and the j-th row of B is denoted and
defined as

dH (A(i, ∗), B(j, ∗)) = |{k ∈ [n] : A(i, k) ̸= B(j, k)}| ,

Similarly, dH (A(∗, i), B(∗, j)) is the distance between the i-th column of A and the j-th
column of B.

▶ Observation 2.4 (Expressing DM (A, B) as the sum of distance between rows (columns)).
Let A and B be two n × n matrices. The matrix distance between A and B is given by

DM(A, B) =
n∑

i=1
dH (A(i, ∗), B(i, ∗)) =

n∑
i=1

dH (A(∗, i), B(∗, i)) .

For a given i ∈ [n], we can approximate dH (A(i, ∗), B(i, ∗)) and dH (A(∗, i), B(∗, i))
using IP queries as stated in Lemma 2.5. This can be shown by an application of the
well-known Johnson-Lindenstrauss Lemma [6].

APPROX/RANDOM 2021

44:6 Distance Between Matrices Using Sublinear Projections on Hamming Cube

▶ Lemma 2.5 (Estimating the distance between rows of A and B). Consider IP access to
two n × n (unknown) matrices A and B. There is an algorithm Dist-Bet-Rows(i, α, δ),
that takes i ∈ [n] and α, δ ∈ (0, 1) as inputs, and reports a (1 ± α)-approximation to
dH (A(i, ∗), B(i, ∗)) with probability at least 1 − δ, and makes O

(
log n
α2 log 1

δ

)
IP queries to

both A and B.

As it is sufficient for our purpose, in the above lemma, we discussed about estimating the
distance between rows of A and B with the same index. However, we note that, a simple
modification to the algorithm corresponding to Lemma 2.5 also works for estimating the
distance between any row and/or column pair.

▶ Proposition 2.6 (Johnson-Lindenstrauss Lemma). Let us consider any pair of points
u, v ∈ RN . For a given ε ∈ (0, 1) and δ ∈ (0, 1), there is a map f : RN → Rd such that
d = Θ

(1
ε2 log 1

δ

)
satisfying the following bound with probability at least 1 − δ.

(1 − ε)||u − v||22 ≤ ||f(u) − f(v)||22 ≤ (1 + ε)||u − v||22. (1)

▶ Remark 3 (An explicit mapping in Johnson-Lindenstrauss Lemma). An explicit mapping
f : Rn → Rd satisfying Equation 1 is as follows. Consider r1, . . . , rd ∈ {−1, 1}n such that
each coordinate of every ri is taken from {−1, 1} uniformly at random. Then for each
u ∈ {0, 1}n,

f(u) = 1√
d

(⟨u, r1⟩, ⟨u, r2⟩, . . . , ⟨u, rd⟩) .

Identity testing between two rows

Now, let us discuss an algorithm where the objective is to decide whether the i-th row vectors
of matrices A and B are identical. Observe that ||A(i, ∗) − B(j, ∗)||2 = 0 if and only if
dH (A(i, ∗), B(j, ∗)) = 0. Also notice that, for a function f : Rn → Rd satisfying Equation 1,
||u − v||2 = 0 if and only if ||f(u) − f(v)||2 = 0. This discussion along with Proposition 2.6
and Remark 3 imply an algorithm (described inside Observation 2.9) that can decide whether
corresponding rows of A and B are identical. Observation 2.9 is stated in a more general
form than discussed here. Note that the general form will be needed to show Lemma 2.5.
For this purpose, we define the notion of projecting a vector in {−1, 1}n onto a set S ⊆ [n]
as defined below and an observation (Observation 2.8) about evaluating the projection using
an IP query.

▶ Definition 2.7 (Vector projected onto a set). Let A be an n × n matrix and i ∈ [n]. For
a subset S ⊆ [n], A(i, ∗) |S ∈ Rn is defined as the vector having ℓ-th coordinate equals to
A(i, ℓ) if ℓ ∈ S, and 0, otherwise. Also consider r ∈ {−1, 1}n and a set S ⊆ [n]. Then the
vector r projected onto S is denoted by r|S ∈ {−1, 0, 1}n and defined as follows: For ℓ ∈ [n],
the ℓ-th coordinate of r|S is same as that of r if ℓ ∈ S, and 0, otherwise.

▶ Observation 2.8. Let A be a n × n matrix, i ∈ [n], r ∈ {−1, 1}n and S ⊆ [n]. Then
⟨A(i, ∗)|S , r⟩ = ⟨A(i, ∗), r|S⟩. That is, ⟨A(i, ∗), r|S⟩ can be evaluated by using a IP query
⟨A(i, ∗), r|S⟩ to matrix A.

▶ Observation 2.9 (Identity testing between rows of A and B). Consider IP access to two
n × n (unknown) matrices A and B. There is an algorithm Identity (S, i, δ) that takes
i ∈ [n], S ⊆ [n] and δ ∈ (0, 1) as inputs, and decides whether dH (A(i, ∗) |S , B(i, ∗) |S) = 0
with probability at least 1 − δ, and makes O

(
log 1

δ

)
IP queries to both A and B.

A. Bishnu, A. Ghosh, and G. Mishra 44:7

Proof. Let the vectors r1, . . . , rd ∈ {−1, 1}n be such that each coordinate of every rj ,
j = 1, . . . , d, is taken from {−1, 1} uniformly at random where d = Θ

(
log 1

δ

)
. Then the

algorithm finds aj = ⟨A(i, ∗)|S , rj⟩ and bj = ⟨B(i, ∗)|S , rj⟩ by making one IP query to each
of A and B. This is possible by Observation 2.8. The algorithm makes d IP queries to each
of the matrices A and B. Take a = 1√

d
(a1, . . . , ad) ∈ Rd and b = 1√

d
(b1, . . . , bd) ∈ Rd. By

Proposition 2.6 and Remark 3, ||a−b||2 = 0 if and only if ||A(i, ∗) |S , B(i, ∗) |S ||2 = 0. By the
definition of distance between a row of one matrix and a row of another matrix (Definition 2.3),
note that, ||A(i, ∗) |S − B(j, ∗) |S ||2 = 0 if and only if dH (A(i, ∗) |S , B(j, ∗) |S) = 0. So, the
algorithm finds ||a−b||2 and, reports ||a−b||2 = 0 if and only if dH (A(i, ∗) |S , B(i, ∗) |S) = 0.
The correctness and query complexity of the algorithm follows from the description itself. ◀

Estimating the distance between rows induced by a set

Now, consider the algorithm corresponding to Lemma 2.5 (Dist-Bet-Rows(·, ·, ·)) that
can estimate the distance between a row of A and a row of B. It makes repeated calls
to Identity(·, ·, ·) in a non-trivial way. Also, algorithm Dist-Bet-Rows(·, ·, ·)) can be
generalized to estimate the distance between a row of A and the corresponding row of B
projected onto the same set S ⊆ [n], as stated in the following Lemma.

▶ Lemma 2.10 ((⋆) Estimating the distance between rows of A and B induced by
a set S ⊆ [n]). Consider IP access to two n × n (unknown) matrices A and B.
Restrict-Dist-Bet-Rows(S, i, α, δ) algorithm, takes S ⊆ [n], i ∈ [n] and α, δ ∈ (0, 1)
as inputs, and reports a (1 ± α)-approximation to dH (A(i, ∗) |S , B(i, ∗) |S) with probability
at least 1 − δ, and makes O

(
log n
α2 log 1

δ

)
IP queries to both A and B.

Observe that Lemma 2.5 is a special case of Lemma 2.10 when S = [n]. Algorithm
Dist-Bet-Rows(i, α, δ) (corresponding to Lemma 2.5) is directly called as a subroutine
from Dist-Symm-Matrix-Guess(A, B, ε, T). Restrict-Dist-Bet-Rows(S, i, α, δ) is in-
directly called from a subroutine to sample mismatched element almost uniformly as explained
below.

Sampling a mismatched element almost uniformly

For a row i ∈ [n], let NEQ(A, B, i) = {j : A(i, j) ̸= B(i, j)} denote the set of mismatches.
Apart from estimating the distance between a row (column) of A and the corresponding row
(column) of B, we can also sample element from NEQ(A, B, i) almost uniformly for any
given i ∈ [n].

▶ Definition 2.11 (Almost uniform sample). Let X be a set and α ∈ (0, 1). A (1 ± α)-
uniform sample from X is defined as the sample obtained from a distribution p satisfying
(1 − α) 1

|X| ≤ p(x) ≤ (1 + α) 1
|X| for each x ∈ X, where p(x) denotes the probability of getting

x as a sample.

▶ Lemma 2.12 ((⋆) Sampling a mismatched element almost uniformly). Consider IP access to
two n×n (unknown) matrices A and B. There exists an algorithm Approx-Sample(i, α, δ),
that takes i ∈ [n] and α, δ ∈ (0, 1) as input, and reports a (1 ± α)-uniform sample from the
set NEQ(A, B, i) with probability at least 1 − δ, and makes O

(
log5 n

α2 log 1
δ

)
IP queries to

both A and B.

Note that algorithm Approx-Sample(·, ·, ·) calls repeatedly Restrict-Dist-Bet-Rows
(·, ·, ·, ·). We now have all the ingredients – Dist-Bet-Rows(i, α, δ), Dist-Symm-Matrix-
Guess(A, B, ε, T), Approx-Sample(i, α, δ) – to design the final algorithm Dist-Symm-
Matrix(A, B, ε).

APPROX/RANDOM 2021

44:8 Distance Between Matrices Using Sublinear Projections on Hamming Cube

Overview of the algorithm

Algorithm Dist-Symm-Matrix(·, ·, ·) calls Dist-Symm-Matrix-Guess(·, ·, ·, ·) with re-
duced value of guesses O(log n) times to bring down the approximation error of matrix
distance within limits. Algorithm Dist-Symm-Matrix-Guess(A, B, ε, T) discussed in
Lemma 2.2 mainly uses subroutines Dist-Bet-Rows(·, ·, ·) and Approx-Sample(·, ·, ·) in
a nontrivial way. Both of these subroutines use Johnson-Lindenstrauss lemma.

Observe that Dist-Symm-Matrix-Guess(A, B, ε, T) estimates DM(A, B) where the
approximation guarantee is parameterized by T . By Observation 2.4, we have DM(A, B) =∑n

i=1 dH(A(i, ∗), B(i, ∗)), the sum of the distances among corresponding rows. To estimate∑n
i=1 dH(A(i, ∗), B(i, ∗)), our algorithm Dist-Symm-Matrix-Guess(A, B, ε, T) considers

a partition of the row indices [n] into buckets such that the row indices i’s in the same
bucket have roughly the same dH(A(i, ∗), B(i, ∗)) values. Now the problem boils down to
estimating the sizes of the buckets. To do so, Dist-Symm-Matrix-Guess(A, B, ε, T) finds
a random sample Γ having Õ

(
n/

√
T
)

indices from [n], calls Dist-Bet-Rows(i, ·, ·) for
each of the sample in Γ and partitions Γ into buckets such that i’s in the same bucket have
roughly the same dH(A(i, ∗), B(i, ∗)) values. A large bucket is one that contains more than
a fixed number of row indices. These steps ensure that the sizes of the large buckets are
approximated well. Recall that Approx-Sample(i, α, δ) takes i ∈ [n] and α, δ ∈ (0, 1) as
input, and reports a (1 ± α)-uniform sample from the set NEQ(A, B, i) with probability at
least 1 − δ. To take care of the small buckets, Dist-Symm-Matrix-Guess(A, B, ε, T) calls
Approx-Sample(i, ·, ·) for suitable number of i’s chosen uniformly from each large bucket
and decides whether the output indices of Approx-Sample(i, ·, ·) belong to large or small
buckets. See the the following section for the technical description of our algorithm.

2.2 Proof of Lemma 2.2
Let us consider the following oracle that gives a probabilistic approximate estimate to the
distance between the two corresponding rows of A and B; A and B are two unknown n × n

matrices.

▶ Definition 2.13 (Oracle function on the approximate distance between rows). Let β, η ∈ (0, 1).
Oracle Oβ,η is a function Oβ,η : [n] → N, which when queried with an i ∈ [n], reports Oβ,η(i).
Moreover,

P (for every i ∈ [n], Oβ,η(i) is a (1 ± β)-approximation to dH (A(i, ∗), B(i, ∗))) ≥ 1 − η.

Take β = ε/50 and η = 1/poly (n) and consider an oracle Oβ,η as defined above. Also,
consider a partitioning of the indices in [n] into t = Θ

(
logε/50 n

)
many buckets with

respect to Oβ,η such that the i’s in the same bucket have roughly the same Oβ,η(i) values.
Let Y1, . . . , Yt ⊆ [n] be the resulting buckets with respect to Oβ,η. Formally, for k ∈ [t],
Yk = {i ∈ [n] :

(
1 + ε

50
)k−1 ≤ Oβ,η(i) <

(
1 + ε

50
)k}. From the definition of Oβ,η and the way

we are bucketing the elements of [n], the following observation follows.

▶ Observation 2.14 (Bucketing according to an oracle function). Let β = ε/50 and η ∈ (0, 1).
Consider any oracle Oβ,η : [n] → R as defined in Definition 2.13. Let Y1, . . . , Yt be the
buckets with respect to Oβ,η. Then(

1 − ε

50

)
DM(A, B) ≤

t∑
k=1

|Yk|
(

1 + ε

50

)k

≤
(

1 + ε

50

)2
DM(A, B)

holds with probability at least 1 − η.

A. Bishnu, A. Ghosh, and G. Mishra 44:9

Proof. From Observation 2.4, DM(A, B) =
∑n

i=1 dH (A(i, ∗), B(i, ∗)) . So, by the definition
of Oβ,η along with β = ε/50, we have

P

((
1 − ε

50

)
DM(A, B) ≤

n∑
i=1

Oβ,η(i) ≤
(

1 + ε

50

)
DM(A, B)

)
≥ 1 − η. (2)

As Y1, . . . , Yt are the buckets with respect to Oβ,η, for k ∈ [t], Yk = {i ∈ [n] :
(
1 + ε

50
)k−1 ≤

Oβ,η(i) <
(
1 + ε

50
)k}. So,

n∑
i=1

Oβ,η(i) ≤
t∑

k=1
|Yk|

(
1 + ε

50

)k

≤
(

1 + ε

50

) n∑
i=1

Oβ,η(i) (3)

From Equations 2 and 3, the following holds with probability at least 1 − η.(
1 − ε

50

)
DM(A, B) ≤

t∑
k=1

|Yk|
(

1 + ε

50

)k

≤
(

1 + ε

50

)2
DM(A, B). ◀

The above observation roughly says that DM(A, B) can be estimated if we can approximate
|Yk|’s.

The existence of the oracle

Before the description of the algorithm, we note that our algorithm does not need to know
the specific oracle Oβ,η : [n] → R. The existence of some oracle function Oβ,η : [n] → R
with respect to which [n] can be partitioned into buckets Y1, . . . , Yt suffices. Our algorithm
calls Dist-Bet-Rows(i, β, η) for some i’s but at most once for each i ∈ [n]. Note that
Dist-Bet-Rows(i, β, η) is the algorithm (as stated in Lemma 2.5) that returns a (1 ± β)-
approximation to dH(A(i, ∗), B(i, ∗)) with probability at least 1−η. So, we can think of Oβ,η :
[n] → R such that Oβ,η(i) = âi, where âi is the value returned by Dist-Bet-Rows(i, β, η),
if the algorithm Dist-Bet-Rows(i, β, η) is called (once). Otherwise, Oβ,η(i) is set to some
(1 ± β)-approximation to dH (A(i, ∗), B(i, ∗)) 3.

Random sample and bucketing

As has been mentioned in the overview of algorithm in Section 2.1, the problem of estimating
matrix distance boils down to estimating the sizes of the buckets Yk, k = 1, . . . , t and our
subsequent action depends on whether the bucket is of large or small size. But as |Yk|’s are
unknown, we define a bucket Yk to be large or small depending on the estimate

∣∣∣Ŷk

∣∣∣ obtained
from a random sample. So, our algorithm starts by taking a random sample Γ ⊆ [n] with
replacement, where |Γ| = Õ

(
n/

√
T
)

, where T is a guess for DM(A, B). Now, Ŷk = Yk ∩ Γ,
the projection of Yk on Γ.

For each i in the random sample Γ, we call Dist-Bet-Rows(i, β, η) (as stated in
Lemma 2.5) and let âi be the output. By Lemma 2.5, for each i ∈ Γ, âi is a

(
1 ± ε

50
)
-

approximation to DM (A(i, ∗), B(i, ∗)) with high probability. Based on the values of âi
′s, we

partition the indices in Γ into t many buckets Ŷ1, . . . , Ŷt such that i ∈ Γ is put into Ŷk if and
only if

(
1 + ε

50
)k−1 ≤ âi <

(
1 + ε

50
)k. We define a bucket Yk to be large or small depending

on
∣∣∣Ŷk

∣∣∣ ≥ τ or not, where τ = |Γ|
n

√
εT

50t .

3 This instantiation, for Oβ,η(i)’s for which Dist-Bet-Rows(i, β, η)’s are never called is to complete the
description of function Oβ,η. This has no bearing on our algorithm as well as its analysis.

APPROX/RANDOM 2021

44:10 Distance Between Matrices Using Sublinear Projections on Hamming Cube

So, if |Yk| is large (roughly say at least
√

εT/t), then it can be well approximated from∣∣∣Ŷk

∣∣∣. However, it will not be possible to estimate |Yk| from
∣∣∣Ŷk

∣∣∣ if |Yk| is small. We explain
how to take care of Yk’s with small |Yk|.

Let L ⊆ [t] and S ⊆ [t] denote the set of indices for large and small buckets, that is,
L = {k : Yk is large} and S = [t] \ L. Also, let IL ⊆ [n] and IS ⊆ [n] denote the set
of indices of rows present in large and small buckets, respectively. From Observation 2.4,
DM(A, B) =

n∑
i=1

dH (A(i, ∗), B(i, ∗)) . Let us divide the sum
n∑

i=1
dH (A(i, ∗), B(i, ∗)) into

two parts, based on IL and IS , dL

dL =
∑
i∈IL

dH (A(i, ∗), B(i, ∗)) =
∑
k∈L

∑
i∈Yk

dH (A(i, ∗), B(i, ∗))

and dS =
∑
i∈IS

dH (A(i, ∗), B(i, ∗)) =
∑
k∈S

∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) .

That is, DM(A, B) = dL + dS . In what follows, we describe how our algorithm approximates
dL and dS separately. A pseudocode for algorithm Dist-Symm-Matrix-Guess(A, B, ε, T)
can be found in the full version of this paper [13].

Approximating dL, the contribution from large buckets

We can show in Lemma A.1 (i) and (ii), for each k ∈ L, n
|Γ|

∣∣∣Ŷk

∣∣∣ is a
(
1 ± ε

50
)
-approximation

to |Yk| with high probability. Recall that dL =
∑

k∈L

∑
i∈Yk

dH (A(i, ∗), B(i, ∗)), where L de-
notes the set of indices present in large buckets. Our algorithm Dist-Symm-Matrix-Guess
(A, B, ε, T) sets d̂L = n

|Γ|
∑

k∈L

∣∣∣Ŷk

∣∣∣ (1 + ε
50
)k as an estimate for dL. Putting everything

together, we show in Lemma A.2 that the following holds with high probability.(
1 − ε

50

)
dL ≤ d̂L ≤

(
1 + ε

50

)
dL. (4)

Approximating dS, the contribution from small buckets

dS =
∑

i∈IS
dH (A(i, ∗), B(i, ∗)) can not be approximated directly as in the case of dL.

To get around the problem of estimating the contribution of small buckets, we partition∑
i∈IS

dH (A(i, ∗), B(i, ∗)) into two parts by projecting row vectors A(i, ∗)’s and B(i, ∗)’s
onto IL and IS :

dSL =
∑
i∈IS

dH (A(i, ∗)|IL
, B(i, ∗)|IL

) and dSS =
∑
i∈IS

dH (A(i, ∗)|IS
, B(i, ∗)|IS

) .

So, dS = dSL + dSS .

As A and B are symmetric, dSL = dLS =
∑

i∈IL
dH (A(i, ∗)|IS

, B(i, ∗)|IS
) . Hence,

dS = dLS + dSS . We approximate dS by arguing that (i) dSS is small, and (ii) dLS can be
approximated well. Informally speaking, the quantity dSL is all about looking at the large
buckets from the small buckets. But as handling small buckets is problematic as opposed to
large buckets, we look at the small buckets from the large buckets. Now, as the matrix is
symmetric, these two quantities are the same.
(i) dSS is small: Observe that dSS can be upper bounded, in terms of |IS |, as follows:

dSS =
∑
i∈IS

dH (A(i, ∗)|IS
, B(i, ∗)|IS

) = |{(i, j) ∈ IS × IS : A(i, j) ̸= B(i, j)}| ≤ |IS |2 .

A. Bishnu, A. Ghosh, and G. Mishra 44:11

By the definition of IS , it is the set of indices present in small buckets (Yk’s with
∣∣∣Ŷk

∣∣∣ ≤ τ).
With high probability, for any small bucket Yk, we can show that |Yk| ≤

√
εT/40t. As

there are t many buckets, with high probability, |IS | =
∑

k∈S |Yk| ≤ n
|Γ| τt ≤

√
εT

40 . So,
with high probability,

dSS ≤ εT

1600 . (5)

The formal proof of the above equation will be given in Claim A.5.
(ii) Approximating dLS: For k ∈ L, the set of indices corresponding to large buckets, let dk

LS

be the contribution of bucket Yk to dLS , that is, dk
LS =

∑
i∈Yk

dH (A(i, ∗)|IS
, B(i, ∗)|IS

).
So, dLS =

∑
k∈L dk

LS , and dLS can be approximated by approximating dk
LS

for each k ∈ L. To approximate dk
LS , for each k ∈ L, we define ζk =

dk
LS/

(∑
i∈Yk

dH (A(i, ∗), B(i, ∗))
)
. We have already argued that dLS =

∑
k∈L dk

LS and
recall that

∑
k∈L

∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) = dL. So, intuitively, ζk denotes the ratio
of the contribution of bucket Yk to dLS and the contribution of bucket Yk to dL. By
our bucketing scheme, for each i ∈ Yk,

(
1 − ε

50
)k−1 ≤ dH (A(i, ∗), B(i, ∗)) ≤

(
1 + ε

50
)k,

that is, dH (A(i, ∗), B(i, ∗))’s are roughly the same for each i ∈ Yk. So, any dk
LS can

be approximated by approximating its corresponding ζk. To do so, we express dk
LS

combinatorially as follows:

dk
LS = |{(i, j) : A(i, j) ̸= B(i, j) such that i ∈ Yk and j ∈ IS}| .

For each k ∈ L, our algorithm finds a sample Zk of size
∣∣∣Ŷk

∣∣∣ many indices from Ŷk with
replacement. Then for each i ∈ Zk, our algorithm calls Approx-Sample(i, β, η). Recall
that Approx-Sample(i, β, η) (as stated in Lemma 2.12) takes i ∈ [n] and β, η ∈ (0, 1) as
inputs and returns a (1 ± β)-uniform sample from the set NEQ(A, B, i) with probability
at least 1 − η. Let j ∈ [n] be the output of NEQ(A, B, i). Then we check whether
j ∈ IS

4 . Let Ck be the number of elements i ∈ Zk whose corresponding call to
Approx-Sample(i, β, η) returns a j with j ∈ IS . Our algorithm takes ζ̂k = Ck

|Yk| as an

estimate for ζk. We can show that, (in Lemma A.1 (i) and (ii)), for each k ∈ L, n
|Γ|

∣∣∣Ŷk

∣∣∣ is
a
(
1 ± ε

50
)
-approximation to Yk. Also, when T is at least a suitable polynomial in log n

and 1
ε , we show in Lemma A.1 (iii) and (iv) the followings, respectively:

ζk ≥ ε
50 , then ζ̂k is a

(
1 ± ε

40
)
-approximation to ζk with high probability,

we show that if ζk ≤ ε
50 , then ζ̂k ≤ ε

30 holds with high probability.

Hence, d̂LS = n
|Γ|
∑

k∈L

ζk

∣∣∣Ŷk

∣∣∣ (1 + ε
50
)k satisfies

(
1 − ε

15
)

dLS − ε
25 dL ≤ d̂LS ≤(

1 + ε
15
)

dLS + ε
25 dL with high probability. Note that the additive factor in terms

of dL is due to the way ζk’s are defined.

In fact our algorithm Dist-Symm-Matrix-Guess(A, B, ε, T) sets d̂S = d̂LS . The intuition
behind setting d̂S = d̂LS is that dS = dLS + dSS and dSS is small. So, with high probability,(

1 − ε

15

)
dLS − ε

25dL ≤ d̂S ≤
(

1 + ε

15

)
dLS + ε

25dL. (6)

4 The reason for checking j ∈ IS can be observed from the definition of dk
LS =

|{(i, j) : A(i, j) ̸= B(i, j) such that i ∈ Yk and j ∈ IS}|.

APPROX/RANDOM 2021

44:12 Distance Between Matrices Using Sublinear Projections on Hamming Cube

The above will be formally proved in Claim A.6. By Equations 6 and 5, we get d̂S is an
estimate for dS that satisfies the following with high probability.(

1 − ε

15

)
dS − εT

1600 − ε

25dL ≤ d̂S ≤
(

1 + ε

15

)
dS + ε

25dL (7)

We will formally show the above equation in Lemma A.3.

Final output returned by our algorithm Dist-Symm-Matrix-Guess(A, B, ε, T)

Finally, our algorithm returns d̂ = d̂L + d̂S as an estimation for DM (A, B). Recall that
DM (A, B) = dS + dL. From Equations 4 and 7, d̂ satisfies, with high probability,(

1 − ε

10

)
DM (A, B) − ε

1600T ≤ d̂ ≤
(

1 + ε

10

)
DM (A, B) .

The query complexity analysis of algorithm Dist-Symm-Matrix-Guess(A, B, ε, T)

Note that the discussed algorithm works when T is at least a suitable polynomial
in log n and 1/ε. Moreover, the algorithm calls each of Dist-Bet-Rows (i, β, η) and
Approx-Sample (i, β, η) for Õ

(
n/

√
T
)

times. Note that β = ε/50 and η = 1/poly (n).
So, the number of IP queries, made by each call to Dist-Bet-Rows (i, β, η) as well as
Approx-Sample (i, β, η), is Õ(1) by Lemma 2.5 and 2.12. Hence, the number of IP
queries made by our algorithm is Õ

(
n/

√
T
)

. The formal proof of the correctness of
Dist-Symm-Matrix-Guess(A, B, ε, T) is in Appendix A.

3 Distance between two arbitrary matrices

In this Section, we prove our main result (stated as Theorem 1.2 in Section 1).

▶ Theorem 3.1 (Theorem 1.2 restated). There exists an algorithm that has IP query access
to unknown matrices A and B, takes an ε ∈ (0, 1) as an input, and returns a (1 ± ε)

approximation to DM(A, B) with high probability, and makes O
(

n√
DM(A,B)

poly
(
log n, 1

ε

))
queries.

To prove the above theorem, we use Lemma 2.1 for estimating DM(A, B) when both A
and B are symmetric. Let ∆A be a matrix defined as ∆A(i, j) = A(i, j) if i ≤ j, and
∆A(i, j) = A(j, i), otherwise. Also, let ∆A be a matrix defined as ∆A(i, j) = A(i, j) if
i ≥ j, and ∆A(i, j) = A(j, i), otherwise. Similarly, we can also define ∆B and ∆B similarly.
Observe that ∆A, ∆A, ∆B and ∆B are symmetric matrices, and

DM(A, B) = 1
2
[
DM (∆A, ∆B) + DM

(
∆A, ∆B)] .

So, we can report a (1±ε)-approximation to DM(A, B) by finding a
(
1 ± ε

2
)
-approximation

to both DM (∆A, ∆B) and DM
(
∆A, ∆B) with high probability. This is possible, by

Lemma 2.1, if we have IP query access to matrices ∆A, ∆B, ∆A and ∆B. But we do not
have IP query access to ∆A, ∆B, ∆A and ∆B explicitly. However, we can simulate IP
query access to matrices ∆A and ∆A (∆B and ∆B) with IP query access to matrix A (B),
respectively as stated and proved in the observation below. Hence, we are done with the
proof of Theorem 3.1

A. Bishnu, A. Ghosh, and G. Mishra 44:13

▶ Observation 3.2. An IP query to matrix ∆A (∆A) can be answered by using two IP
queries to matrix A. Also, an IP query to ∆B (∆B) can be answered by using two IP
queries to matrix B.

Proof. We prove how an IP query to matrix ∆A can be answered by using two IP queries
to matrix A. Other parts of the statement can be proved similarly.

Consider an IP query ⟨∆A(i, ∗), r⟩ to ∆A, where i ∈ [n] and r = (r1, . . . , rn) ∈ Rn. Let
r≤i and r>i in Rn be two vectors defined as follows: r≤i

j = rj if j ≤ i, and r≤i
j = 0, otherwise.

r>i
j = rj if j > i, and r>i

j = 0, otherwise. Now, we can deduce that

⟨∆A(i, ∗), r⟩ =
i∑

j=1
∆A(i, j)rj +

n∑
j=i+1

∆A(i, j)rj

=
i∑

j=1
A(i, j)rj +

n∑
j=i+1

A(j, i)rj

=
n∑

j=1
A(i, j)r≤i

j +
n∑

j=1
A(j, i)r>i

j

= ⟨A(i, ∗), r≤i⟩ + ⟨A(∗, i), r>i⟩

From the above expression, it is clear that an IP query of the form ⟨∆A(i, ∗), r⟩ to matrix
∆A can be answered by making two IP queries of the form ⟨A(i, ∗), r≤i⟩ and ⟨A(∗, i), r>i⟩
to matrix A. ◀

4 Lower bound results

In this Section, if we ignore polylogarithmic term, we show that (in Theorem 4.1) our
algorithm to estimate DM(A, B) using IP query is tight. Apart from Theorem 4.1, we also
prove that (in Theorem 4.2) the query complexity of estimating DM(A, B) using Dec-IP is
quadratically larger than that of using IP. The results are formally stated as follows. The
lower bounds hold even if the matrices A and B are symmetric matrices, and one matrix
(say A) is known and one matrix (say B) is unknown.

▶ Theorem 4.1. Let A and B denote the known and unknown (symmetric) matrices,
respectively. Also let T ∈ N. Any algorithm having IP query access to matrix B, that
distinguishes between DM(A, B) = 0 or DM(A, B) ≥ T with probability 2/3, makes Ω

(
n√
T

)
queries to B.

▶ Theorem 4.2. Let A and B denote the known and unknown matrices, respectively. Also let
T ∈ N. Any algorithm having Dec-IP query access to matrix B, that distinguishes between
DM(A, B) = 0 or DM(A, B) ≥ T with probability 2/3, makes Ω

(
n2

T

)
queries to B.

Recall that every ME query to a matrix can be simulated by using a Dec-IP. Hence, the
following corollary follows.

▶ Corollary 4.3. Let A and B denote the known and unknown matrices, respectively. Also
let T ∈ N. Any algorithm having ME query access to matrix B, that distinguishes between
DM(A, B) = 0 or DM(A, B) ≥ T with probability 2/3, makes Ω

(
n2

T

)
queries to B.

We prove Theorems 4.1 and 4.2 by using a reduction from a problem known as
Disjointness in two party communication complexity (See Appendix B).

APPROX/RANDOM 2021

44:14 Distance Between Matrices Using Sublinear Projections on Hamming Cube

4.1 Proof of Theorem 4.1
Without loss of generality, assume that

√
T is an integer that divides N . We prove the

(stated lower bound) by a reduction from DisjointnessN where N = n/
√

T . Let x and y in
{0, 1}N be the inputs of Alice and Bob, respectively. Now consider matrix B, that depends
on both x and y, described as follows.

B11

B22

B33

B12 B13

B21 B23

B31 B32

Figure 1 A pictorial illustration of a block matrix B considered in the proof of Theorem 4.2,
where N = 3.

Description of matrices A and B

(i) matrix A is the null matrix;
(ii) matrix B is a block diagonal matrix where B1, . . . , BN are diagonal blocks of order√

T ×
√

T (See Figure 2 for an illustration);
(iii) Consider k ∈ [N]. If xk = yk = 1, then Bk(i, j) = 1 for each i, j ∈ [

√
T], that is, Bk is

an all-one matrix. Otherwise, Bk is a null matrix.
From the description, matrices A and B are symmetric matrices. Moreover, if x and y are
disjoint, then all of the N block matrices are null matrices, that is, B is also a null matrix.
If x and y are not disjoint, then there is a k ∈ [N] such that Bk is an all-one matrix, that is,
matrix B has at least T many 1s. Recall that here A is a null matrix. Hence, DM(A, B) = 0
if x and y are disjoint, and DM(A, B) ≥ T if x and y are not disjoint.

Observe that we will be done with the proof for the stated lower bound by arguing
that Alice and Bob can generate the answer to any IP query, to matrix B, with 2 bits of
communication. Consider a row IP query ⟨B(i, ∗), r⟩ to B for some i ∈ [n] and r ∈ {0, 1}n 5.
From the construction of the matrix B, there exists a matrix Bj , for some j ∈ [N], that
completely determines B(i, ∗). Also, observe that, Bj depends on xj and yj only. So, Alice
and Bob can determine Bj (hence B(i, ∗)) with 2 bits of communication. As B is a symmetric
matrix, there is no need to consider column IP queries as such queries can be answered by
using row IP queries.

4.2 Proof of Theorem 4.2
Here also, we assume that

√
T is an integer and

√
T divides N , and prove the stated lower

bound by a reduction from DisjointnessN where N = n2/T . Let x and y in {0, 1}N be
the inputs of Alice and Bob, respectively. Now consider matrix B, that depends on both
x and y, described as follows. In the following description, consider a cannonical mapping
ϕ : [N] →

[
n√
T

]
×
[

n√
T

]
. Note that ϕ is known to both Alice and Bob apriori.

5 The proof goes through even if r ∈ Rn.

A. Bishnu, A. Ghosh, and G. Mishra 44:15

B1

B2

B3

0 0

0 0

0 0

Figure 2 A pictorial illustration of a block diagonal matrix B considered in the proof of
Theorem 4.1, where N = 3.

Description of matrices A and B

(i) matrix A is an all 1 matrix;

(ii) matrix B is a block matrix where Bij ’s
(

i, j ∈
[

n√
T

])
are blocks of order

√
T ×

√
T

(See Figure 1 for an illustration);

(iii) Consider k ∈ [N]. If xk = yk = 1, then Bϕ(k) = 0 6 for each i, j ∈ [
√

T], that is, Bϕ(k)
is an all 0 matrix. Otherwise, Bϕ(k) is an all 1 matrix.

From the description, matrices A and B are symmetric matrices. Moreover, if x and y
are disjoint, then all of the N block matrices are all 1 matrices, that is, B is also an all 1
matrix. If x and y are not disjoint, then there is (exactly) one k ∈ [N] such that Bk is a null
matrix, that is, matrix B has exactly T many 0s. Recall that here A is a null matrix. Hence,
DM(A, B) = 0 if x and y are disjoint, and, DM(A, B) = T if x and y are not disjoint.

Observe that we will be done with the proof for the stated lower bound by arguing that
Alice and Bob can generate the answer to any Dec-IP query, to matrix B, with 2 bits
of communication. Consider a row Dec-IP query ⟨B(i, ∗), r⟩ to B for some i ∈ [n] and
r ∈ {0, 1}n. Without loss of generality, assume that r is not a null matrix, as in this case
Alice and Bob can decide ⟨B(i, ∗), r⟩ = 0 trivially without any communication. Consider
a partition of r into N/

√
T subvectors r1, . . . , rn/

√
T ∈ {0, 1}

√
T in the natural way (See

Figure 1 for an illustration). Now we analyze by making two cases. If two of the rjs are
not null vectors, from the construction of the matrix B, then ⟨B(i, ∗), r⟩ > 0. So, in this
case, Alice and Bob report ⟨B(i, ∗), r⟩ ̸= 0 without any communication between them. Now
consider the case when exactly one of the rj is not a null vector. Once again, from the
construction of B, deciding whether ⟨B(i, ∗), r⟩ = 0 is equivalent to deciding whether a
particular block (say Bxy) is a null matrix. It is because r is not a null vector, and each
block in B is either a null matrix or an all 1 matrix. Let k ∈

[
n√
T

]
be such that ϕ(k) = (x, y).

Note that Bxy is a null matrix if and only if xk = yk = 1. So, Alice and Bob can determine
whether ⟨B(i, ∗), r⟩ = 0 with 2 bits of communication. As B is a symmetric matrix, there is
no need to consider column Dec-IP queries as such queries can be answered by using row
IP queries.

6 Here we abuse the notation slightly. If ϕ(k) = (i, j), we denote Bij by Bϕ(k).

APPROX/RANDOM 2021

44:16 Distance Between Matrices Using Sublinear Projections on Hamming Cube

5 Conclusion

Recall that in an IP as well as in Dec-IP queries, a vector v ∈ {0, 1}n is given as input
along with an index for row or column of an unknown matrix. Let IPR and Dec-IPR be the
extension of IP and Dec-IP when v is a vector in Rn. Now let us have a look into Table 1.
The lower bound of Ω(n/

√
D), on the number of IP queries to estimate D = DM(A, B),

also holds even when we have an access to IPR oracle. This also implies a lower bound of
Ω(n/

√
D) on the number of Dec-IP queries to solve the problem at hand. But our lower

bound proof of Ω(n2/D) on the number of Dec-IP queries does not work when we have
access to IPR oracle. So, we leave the following problem as open.

Open problem

What is the query complexity of estimating DM(A, B) when we have Dec-IPR access to
matrices A and B?

References
1 https://www.mathworks.com/products/matlab.html.
2 https://www.mathworks.com/help/stats/pdist.html.
3 https://docs.scipy.org/doc/scipy-0.7.x/scipy-ref.pdf.
4 https://developer.download.nvidia.com/cg/dot.html.
5 https://software.intel.com/content/www/us/en/develop/documentation/cpp-

compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/
intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-
compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html.

6 Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary
coins. J. Comput. Syst. Sci., 66(4):671–687, 2003. doi:10.1016/S0022-0000(03)00025-4.

7 Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing
the discrete fréchet distance in subquadratic time. SIAM J. Comput., 43(2):429–449, 2014.
doi:10.1137/130920526.

8 Pankaj K. Agarwal, Kyle Fox, Abhinandan Nath, Anastasios Sidiropoulos, and Yusu Wang.
Computing the gromov-hausdorff distance for metric trees. ACM Trans. Algorithms, 14(2),
2018. doi:10.1145/3185466.

9 Pankaj K. Agarwal, Sariel Har-Peled, Micha Sharir, and Yusu Wang. Hausdorff distance under
translation for points and balls. 6(4), 2010. doi:10.1145/1824777.1824791.

10 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Testing convexity of figures
under the uniform distribution. In Sándor P. Fekete and Anna Lubiw, editors, 32nd Inter-
national Symposium on Computational Geometry, SoCG 2016, June 14-18, 2016, Boston,
MA, USA, volume 51 of LIPIcs, pages 17:1–17:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.SoCG.2016.17.

11 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Tolerant testers of image
properties. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 90:1–90:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.90.

12 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Testing convexity of figures
under the uniform distribution. Random Struct. Algorithms, 54(3):413–443, 2019. doi:
10.1002/rsa.20797.

13 Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Distance estimation between unknown
matrices using sublinear projections on hamming cube. CoRR, abs/2107.02666, 2021. arXiv:
2107.02666.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/help/stats/pdist.html
https://docs.scipy.org/doc/scipy-0.7.x/scipy-ref.pdf
https://developer.download.nvidia.com/cg/dot.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://doi.org/10.1016/S0022-0000(03)00025-4
https://doi.org/10.1137/130920526
https://doi.org/10.1145/3185466
https://doi.org/10.1145/1824777.1824791
https://doi.org/10.4230/LIPIcs.SoCG.2016.17
https://doi.org/10.4230/LIPIcs.ICALP.2016.90
https://doi.org/10.1002/rsa.20797
https://doi.org/10.1002/rsa.20797
http://arxiv.org/abs/2107.02666
http://arxiv.org/abs/2107.02666

A. Bishnu, A. Ghosh, and G. Mishra 44:17

14 Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar. Inner product oracle
can estimate and sample. CoRR, abs/1906.07398, 2019. arXiv:1906.07398.

15 Bernard Chazelle, Ding Liu, and Avner Magen. Sublinear geometric algorithms. SIAM J.
Comput., 35(3):627–646, 2005. doi:10.1137/S009753970444572X.

16 Artur Czumaj, Funda Ergün, Lance Fortnow, Avner Magen, Ilan Newman, Ronitt Rubinfeld,
and Christian Sohler. Sublinear-time approximation of euclidean minimum spanning tree.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
January 12-14, 2003, Baltimore, Maryland, USA, pages 813–822. ACM/SIAM, 2003. URL:
http://dl.acm.org/citation.cfm?id=644108.644242.

17 Artur Czumaj and Christian Sohler. Property testing with geometric queries. In Fried-
helm Meyer auf der Heide, editor, Algorithms - ESA 2001, 9th Annual European Symposium,
Aarhus, Denmark, August 28-31, 2001, Proceedings, volume 2161 of Lecture Notes in Computer
Science, pages 266–277. Springer, 2001. doi:10.1007/3-540-44676-1_22.

18 Artur Czumaj, Christian Sohler, and Martin Ziegler. Property testing in computational
geometry. In Mike Paterson, editor, Algorithms - ESA 2000, 8th Annual European Symposium,
Saarbrücken, Germany, September 5-8, 2000, Proceedings, volume 1879 of Lecture Notes in
Computer Science, pages 155–166. Springer, 2000. doi:10.1007/3-540-45253-2_15.

19 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the fréchet distance
with shortcuts. SIAM J. Comput., 42(5):1830–1866, 2013. doi:10.1137/120865112.

20 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the fréchet distance
for realistic curves in near linear time. Discret. Comput. Geom., 48(1):94–127, 2012. doi:
10.1007/s00454-012-9402-z.

21 D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 1st edition, 2009.

22 Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017. doi:
10.1017/9781108135252.

23 John L. Hennessy and David A. Patterson. Computer Architecture - A Quantitative Approach
(5. ed.). Morgan Kaufmann, 2012.

24 Igor Kleiner, Daniel Keren, Ilan Newman, and Oren Ben-Zwi. Applying property testing to
an image partitioning problem. IEEE Trans. Pattern Anal. Mach. Intell., 33(2):256–265, 2011.
doi:10.1109/TPAMI.2010.165.

25 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

26 Sofya Raskhodnikova. Approximate testing of visual properties. In Sanjeev Arora, Klaus Jansen,
José D. P. Rolim, and Amit Sahai, editors, Approximation, Randomization, and Combinatorial
Optimization: Algorithms and Techniques, 6th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, APPROX 2003 and 7th International
Workshop on Randomization and Approximation Techniques in Computer Science, RANDOM
2003, Princeton, NJ, USA, August 24-26, 2003, Proceedings, volume 2764 of Lecture Notes in
Computer Science, pages 370–381. Springer, 2003. doi:10.1007/978-3-540-45198-3_31.

27 Dana Ron and Gilad Tsur. Testing properties of sparse images. ACM Trans. Algorithms,
10(4):17:1–17:52, 2014. doi:10.1145/2635806.

28 Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley, Upper Saddle River, NJ, 2010.

APPROX/RANDOM 2021

http://arxiv.org/abs/1906.07398
https://doi.org/10.1137/S009753970444572X
http://dl.acm.org/citation.cfm?id=644108.644242
https://doi.org/10.1007/3-540-44676-1_22
https://doi.org/10.1007/3-540-45253-2_15
https://doi.org/10.1137/120865112
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1017/9781108135252
https://doi.org/10.1017/9781108135252
https://doi.org/10.1109/TPAMI.2010.165
https://doi.org/10.1007/978-3-540-45198-3_31
https://doi.org/10.1145/2635806

44:18 Distance Between Matrices Using Sublinear Projections on Hamming Cube

A Formal correctness proof of Dist-Symm-Matrix-Guess(A, B, ε, T)

From the above discussion, we need to only prove for the case when T is at least a suitable
polynomial in log n and 1

ε . The proof (of correctness) is based on the following lemma that
can be proved by mainly using Chernoff bound (See Appendix C) and some specific details
of the algorithm.

▶ Lemma A.1 (Intermediate Lemma needed to prove the correcness). Let ε ∈
(
0, 1

2
)
, β = ε

50
and η = 1

poly(n) . Consider an oracle Oβ,η : [n] → R, as defined in Definition 2.13, with
respect to which algorithm Dist-Symm-Matrix-Guess(A, B, ε, T) found Ŷ1, . . . , Ŷt ⊆ Γ.
Let Y1, . . . , Yt be the buckets into which [n] is partitioned w.r.t. Oβ,η. Then, for k ∈ [t],

(i) if |Yk| ≥
√

εT
50t , then P

(∣∣∣ n
|Γ|

∣∣∣Ŷk

∣∣∣− |Yk|
∣∣∣ ≥ ε

50 |Yk|
)

≤ 1
poly(n) ;

(ii) if |Yk| ≤
√

εT
50t , then P

(
n

|Γ|

∣∣∣Ŷk

∣∣∣ ≥
√

εT
40t

)
≤ 1

poly(n) ;

(iii) if ζk ≥ ε
50 , then P

(∣∣∣ζ̂k − ζk

∣∣∣ ≥ ε
40 ζk

)
≤ 1

poly(n) ;

(iv) if ζk ≤ ε
50 , then P

(
ζ̂k ≥ ε

30

)
≤ 1

poly(n) .
The proof of the above lemma is presented in the full version of this paper [13]. Here, we
prove the correctness of algorithm Dist-Symm-Matrix(A, B, ε, T) via two claims stated
below.

▶ Lemma A.2 (Approximating dL).
(
1 − ε

50
)

dL ≤ d̂L ≤
(
1 + ε

50
)

dL with high probability.

▶ Lemma A.3 (Approximating dS).
(
1 − ε

15
)

dS − εT
1600 − ε

25 dL ≤ d̂S ≤
(
1 + ε

15
)

dS + ε
25 dL.

holds with high probability.

Recall that DM (A, B) = dL + dS . Assuming that the above two claims hold, d̂ = d̂L + d̂S

satisfies
(
1 − ε

10
)

DM (A, B) − ε
1600 T ≤ d̂ ≤

(
1 + ε

10
)

DM (A, B) with high probability. Note
that d̂ satisfies the requirement for an estimate of DM(A, B) as stated in Lemma 2.2. Now,
it remains to show Lemma A.2 and A.3. We first prove the following claim that follows from
our bucketing scheme and will be used in the proofs of Lemma A.2 and A.3. The following
claim establishes the connection between the size of a bucket with the sum of the distances
between rows (with indices in the same bucket) of matrices A and B.

▶ Claim A.4. ∀k ∈ [t],∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) ≤ |Yk|
(

1 + ε

50

)k

≤
(

1 + ε

50

) ∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) ,

holds with probability at least 1 − 1
poly(n) .

Proof. Y1, . . . , Yt ⊆ [n] be the buckets into which [n] is partitioned, where

Yk = {i ∈ [n] :
(

1 + ε

50

)k−1
≤ Oβ,η(i) <

(
1 + ε

50

)k

}.

So,

For each k ∈ [t],
∑
i∈Yk

Oβ,η(i) ≤ |Yk|
(

1 + ε

50

)k

≤
(

1 + ε

50

) ∑
i∈Yk

Oβ,η(i) (8)

Here β = ε
50 and η = 1

poly(n) .
Oracle Oβ,η : [n] → R is a function, as defined in Definition 2.13, such that

Oβ,η(i) equals to âi, the value returned by Dist-Bet-Rows(i, β, η), if the algorithm

A. Bishnu, A. Ghosh, and G. Mishra 44:19

Dist-Bet-Rows(i, β, η) is called (once). Otherwise, Oβ,η(i) is set to some (1 ± β)-
approximation to dH (A(i, ∗), B(i, ∗)). So, Equation 8 implies that the following holds
with probability at least 1 − 1

poly(n) .

∀k ∈ [t],
∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) ≤ |Yk|
(

1 + ε

50

)k

≤
(

1 + ε

50

) ∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) .◀

Now we will show Lemma A.2.

Proof of Lemma A.2. Note that dL =
∑

i∈IL

dH (A(i, ∗), B(i, ∗)) and d̂L =

n
|Γ|
∑

k∈L

∣∣∣Ŷk

∣∣∣ (1 + ε
50
)k.

By the definition of dL as well as Claim A.4, we get

P

(
dL ≤

∑
k∈L

|Yk|
(

1 + ε

50

)k

≤
(

1 + ε

50

)
dL

)
≥ 1 − 1

poly (n) . (9)

Recall that, for k ∈ [t] in the set L of large buckets, Ŷk ≥ τ . Here τ = |Γ|
n

√
εT

40t . By
Lemma A.1 (ii) and (i), for each k ∈ L, n

|Γ|

∣∣∣Ŷk

∣∣∣ is an
(
1 ± ε

50
)
-approximation to |Yk| with

probability at least 1 − 1
poly(n) . So, the following holds with probability at least 1 − 1

poly(n) .(
1 − ε

50

)
dL ≤ n

|Γ|
∑
k∈L

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

≤
(

1 + ε

50

)2
dL (10)

By the definition of d̂L along with taking ε ∈
(
0, 1

2
)
, we conclude that

P
((

1 − ε

20

)
dL ≤ d̂L ≤

(
1 + ε

20

)
dL

)
≥ 1 − 1

poly (n) . ◀

Proof of Lemma A.3. Recall that dS =
∑

i∈IS

dH (A(i, ∗), B(i, ∗)) and d̂S =

n
|Γ|
∑

k∈L

ζ̂k

(
1 + ε

50
)k. Moreover, dS = dSL + dSS , where

dSL =
∑

i∈IS

dH (A(i, ∗)|IL
, B(i, ∗)|IL

) and dSS =
∑

i∈IS

dH (A(i, ∗)|IS
, B(i, ∗)|IS

) .

Also, as A and B are symmetric matrices, dSL = dLS =
∑

i∈IL

dH (A(i, ∗)|IS
, B(i, ∗)|IS

).

First we show that

▶ Claim A.5. P
(
dSS ≤ εT

1600
)

≥ 1 − 1
poly(n) .

Then we show that

▶ Claim A.6. P
((

1 − ε
15
)

dLS − ε
25 dL ≤ d̂S ≤

(
1 + ε

15
)

dLS + ε
25 dL

)
≥ 1 − 1

poly(n) .

As dS = dSS + dLS , the above two claims imply the Lemma, that is, the following holds with
probability at least 1 − 1

poly(n) .

(
1 − ε

15

)
dS − εT

1600 − ε

25dL ≤ d̂S ≤
(

1 + ε

15

)
dS + ε

25dL.

So, it remains to show Claims A.5 and A.6.

APPROX/RANDOM 2021

44:20 Distance Between Matrices Using Sublinear Projections on Hamming Cube

Proof of Claim A.5. Note that

dSS =
∑
i∈IS

dH (A(i, ∗)|IS
, B(i, ∗)|IS

) = |{(i, j) ∈ IS × IS : A(i, j) ̸= B(i, j)}| ,

where IS denotes the set of indices in the Yk’s with k ∈ S and S is the set of small buckets.
So, |IS | =

∑
k∈S

|Yk|. By the definition of S, for every k ∈ S, Ŷk < τ = |Γ|
n

√
εT

50t . By Lemma A.1

(i), we have |Yk| ≤
(
1 + ε

50
)

n
|Γ|

∣∣∣Ŷk

∣∣∣ ≤
√

εT
40t with probability at least 1 − 1

poly(n) . This implies

that |IS | =
∑

k∈S

|Yk| ≤
√

εT
40 with probability at least 1 − 1

poly(n) . Hence, by the definition of

dSS , we have the following with probability at least 1 − 1
poly(n) .

dSS =
∑
i∈IS

dH (A(i, ∗), B(i, ∗)) ≤ |IS |2 ≤ εT

1600 . ◀

Proof of Claim A.6. Note that dLS =
∑

i∈IL

dH (A(i, ∗)|IS
, B(i, ∗)|IS

). Recall that dLS =∑
k∈L

= dk
LS , where dk

LS =
∑

i∈Yk

dH (A(i, ∗)|IS
, B(i, ∗)|IS

) . Also, recall that ζk =

dk
LS∑

k∈L

dH(A(i,∗),B(i,∗))
. So, dk

SL = ζk

∑
i∈Yk

dH (A(i, ∗), B(i, ∗)). Hence,

dLS =
∑
k∈L

ζk

∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) . (11)

By Claim A.4, the following holds with probability at least 1 − 1
poly(n) .

∀k ∈ [t], ζk

∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) ≤ ζk |Yk|
(

1 + ε

50

)k

≤ ζk

(
1 + ε

50

)∑
i∈Yk

dH (A(i, ∗), B(i, ∗))).

Taking sum over all k ∈ L and then applying Equation 11, the following holds with probability
at least 1 − 1

poly(n) .

P

(
dLS ≤

∑
k∈L

ζk |Yk|
(

1 + ε

50

)k

≤
(

1 + ε

50

)
dLS

)
≥ 1 − 1

poly (n) .

Recall that, for k ∈ [t] in the set L of large buckets, Ŷk ≥ τ . Here τ = |Γ|
n

√
εT

40t . By Lemma A.1
(ii) and (i), for each k ∈ L, n

|Γ|

∣∣∣Ŷk

∣∣∣ is a
(
1 ± ε

50
)
-approximation to |Yk| with probability at

least 1 − 1
poly(n) . So,

P

((
1 − ε

50

)
dLS ≤ n

|Γ|
∑
k∈L

ζk

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

≤
(

1 + ε

50

)2
dLS

)
≥ 1 − 1

poly (n) . (12)

Having the above equation, consider d̂S = n
|Γ|
∑

k∈L

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε
50
)k whose upper and lower

bound is to be proved as stated in Claim A.6. Breaking the sum into two parts depending
the values of ζ̂k’s, we have

d̂S = n

|Γ|
∑

k∈L:ζk≥ ε
50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

+ n

|Γ|
∑

k∈L:ζk< ε
50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

. (13)

We prove the desired upper and lower bound on d̂S separately by using the following
observation about upper and lower bounds of the two terms in Equation 13.

A. Bishnu, A. Ghosh, and G. Mishra 44:21

▶ Observation A.7.
(i) n

|Γ|
∑

k∈L:ζk≥ ε
50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε
50
)k ≤

(
1 + ε

15
)

dLS with probability 1 − 1
poly(n) .

(ii) n
|Γ|

∑
k∈L:ζk< ε

50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε
25
)k ≤ ε

35 dL with probability at least 1 − 1
poly(n) .

(iii) n
|Γ|

∑
k∈L:ζk≥ ε

50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε
50
)k ≥

(
1 − ε

15
)

dLS − ε
25 dL with probability 1 − 1

poly(n) .

Proof.
(i) By Lemma A.1 (iii), for each k ∈ [t] with ζk ≥ ε

50 , ζ̂k is a
(
1 ± ε

40
)
-approximation to ζk

with probability at least 1 − 1
poly(n) . So, with probability at least 1 − 1

poly(n) , we can
derive the following.

n

|Γ|
∑

k∈L:ζk≥ ε
50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε

40

)k

≤
(

1 + ε

40

) n

|Γ|
∑

k∈L:ζk≥ ε
50

ζk

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

.

≤
(

1 + ε

40

)(
1 + ε

50

)2
dLS (∵ By Equation 12)

≤
(

1 + ε

15

)
dLS .

(ii) By Lemma A.1 (iv), for each k ∈ [t] with ζk < ε
50 , ζ̂k is at most ε

30 with probability at
least 1 − 1

poly(n) . Hence, the following derivations hold with probability 1 − 1
poly(n) .

n

|Γ|
∑

k∈L:ζk≥ ε
50

ζk

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

≤ ε

30 · n

|Γ|
∑

k∈L:ζk< ε
50

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

≤ ε

30 · n

|Γ|
∑
k∈L

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

≤ ε

30

(
1 + ε

50

)2
dL (By Equation 10)

≤ ε

25dL

(iii) Note that
n

|Γ|
∑

k∈L:ζk≥ ε
50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

≥ n

|Γ|
∑
k∈L

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

− n

|Γ|
∑

k∈L:ζk≤ ε
50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

.

By Lemma A.1 (iii), for each k ∈ [t] with ζk ≥ ε
50 , ζ̂k is a

(
1 ± ε

40
)
-approximation

to ζk with probability at least 1 − 1
poly(n) . Also, by Observation A.7 (iii),

n
|Γ|

∑
k∈L:ζk≤ ε

50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε
50
)k ≤ ε

25 dL with probability at least 1 − 1
poly(n) . So, we

can derive the following with probability at least 1 − 1
poly(n) .

n

|Γ|
∑

k∈L:ζk≥ ε
50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

≥
(

1 − ε

40

) n

|Γ|
∑
k∈L

ζk

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

− ε

25dL

≥
(

1 − ε

40

)2
dLS − ε

25dL (By Equation 12)

≥
(

1 − ε

15

)
dLS − ε

25dL. ◀

Considering the expression for d̂S in Equation 13 along with Observation A.7 (i) and (ii), we
can derive the desired upper bound on d̂S (as follows) that holds with probability at least
1 − 1

poly(n) .

d̂S ≤
(

1 + ε

15

)
dLS + ε

25dL.

APPROX/RANDOM 2021

44:22 Distance Between Matrices Using Sublinear Projections on Hamming Cube

For the lower bound part of d̂S , again consider the expression for d̂S in Equation 13 along
with Observation A.7 (iii). We have the following with probability at least 1 − 1

poly(n) .

d̂S ≥
(

1 − ε

15

)
dLS − ε

25dL. ◁

◀

B Communication complexity

In two-party communication complexity there are two parties, Alice and Bob, that wish
to compute a function Π : {0, 1}N × {0, 1}N → {0, 1}. Alice is given x ∈ {0, 1}N and Bob
is given y ∈ {0, 1}N . Let xi (yi) denote the i-th bit of x (y). While the parties know
the function Π, Alice does not know y, and similarly, Bob does not know x. Thus they
communicate bits following a pre-decided protocol P in order to compute Π(x, y). We
say a randomized protocol P computes Π if for all (x, y) ∈ {0, 1}N × {0, 1}N we have
P[P(x, y) = Π(x, y)] ≥ 2/3. The model provides the parties access to common random string
of arbitrary length. The cost of the protocol P is the maximum number of bits communicated,
where maximum is over all inputs (x, y) ∈ {0, 1}N × {0, 1}N . The communication complexity
of the function is the cost of the most efficient protocol computing Π. For more details on
communication complexity, see [25]. We now define Disjointness function on N bits and
state its two-way randomized communication complexity.

▶ Definition B.1. Let N ∈ N. The DisjointnessN on N bits is a function DisjointnessN :
{0, 1}N × {0, 1}N → {0, 1} such that DisjointnessN (x, y) = 0 if there exists an i ∈ [N]
such that xi = yi = 1, and 1, otherwise.

▶ Proposition B.2. [25] The randomized communication complexity of DisjointnessN is
Ω(N) even if it is promised that there exists at most one i ∈ [n] such that xi = yi = 1.

C Probability Results

▶ Lemma C.1 (See [21]). Let X =
∑

i∈[n] Xi where Xi, i ∈ [n], are independent ran-
dom variables, Xi ∈ [0, 1] and E[X] is the expected value of X. Then for ϵ ∈ (0, 1),
Pr [|X − E[X]| > ϵE [X]] ≤ exp

(
− ϵ2

3 E[X]
)

.

▶ Lemma C.2 (See [21]). Let X =
∑

i∈[n] Xi where Xi, i ∈ [n], are independent random
variables, Xi ∈ [0, 1] and E[X] is the expected value of X. Suppose µL ≤ E[X] ≤ µH , then
for 0 < ϵ < 1,

(i) Pr[X > (1 + ϵ)µH] ≤ exp
(

− ϵ2

3 µH

)
.

(ii) Pr[X < (1 − ϵ)µL] ≤ exp
(

− ϵ2

2 µL

)
.

	1 Introduction
	1.1 Query oracle definition and motivation, problem statements and our results
	1.2 Related work

	2 Matrix-Distance between two symmetric matrices
	2.1 Technical preliminaries to prove Lemma 2.2
	2.2 Proof of Lemma 2.2

	3 Distance between two arbitrary matrices
	4 Lower bound results
	4.1 Proof of Theorem 4.1
	4.2 Proof of Theorem 4.2

	5 Conclusion
	A Formal correctness proof of Dist-Symm-Matrix-Guess(A, B,epsilon,T)
	B Communication complexity
	C Probability Results

