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Abstract
The random-cluster model is a unifying framework for studying random graphs, spin systems and
electrical networks that plays a fundamental role in designing efficient Markov Chain Monte Carlo
(MCMC) sampling algorithms for the classical ferromagnetic Ising and Potts models. In this paper,
we study a natural non-local Markov chain known as the Chayes-Machta dynamics for the mean-field
case of the random-cluster model, where the underlying graph is the complete graph on n vertices.
The random-cluster model is parametrized by an edge probability p and a cluster weight q. Our focus
is on the critical regime: p = pc(q) and q ∈ (1, 2), where pc(q) is the threshold corresponding to the
order-disorder phase transition of the model. We show that the mixing time of the Chayes-Machta
dynamics is O(log n · log log n) in this parameter regime, which reveals that the dynamics does not
undergo an exponential slowdown at criticality, a surprising fact that had been predicted (but not
proved) by statistical physicists. This also provides a nearly optimal bound (up to the log log n factor)
for the mixing time of the mean-field Chayes-Machta dynamics in the only regime of parameters
where no non-trivial bound was previously known. Our proof consists of a multi-phased coupling
argument that combines several key ingredients, including a new local limit theorem, a precise
bound on the maximum of symmetric random walks with varying step sizes, and tailored estimates
for critical random graphs. In addition, we derive an improved comparison inequality between the
mixing time of the Chayes-Machta dynamics and that of the local Glauber dynamics on general
graphs; this results in better mixing time bounds for the local dynamics in the mean-field setting.
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1 Introduction

The random-cluster model generalizes classical random graph and spin system models,
providing a unifying framework for their study [12]. It plays an indispensable role in
the design of efficient Markov Chain Monte Carlo (MCMC) sampling algorithms for the
ferromagnetic Ising/Potts model [23, 6, 17] and has become a fundamental tool in the study
of phase transitions [1, 11, 10].
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47:2 The Critical Mean-Field Chayes-Machta Dynamics

The random-cluster model is defined on a finite graph G = (V, E) with an edge probability
parameter p ∈ (0, 1) and a cluster weight q > 0. The set of configurations of the model is the
set of all subsets of edges A ⊆ E. The probability of each configuration A is given by the
Gibbs distribution:

µG,p,q(A) = 1
Z

· p|A|(1 − p)|E|−|A|qc(A); (1)

where c(A) is the number of connected components in (V, A) and Z := Z(G, p, q) is the
normalizing factor called the partition function.

The special case when q = 1 corresponds to the independent bond percolation model,
where each edge of the graph G appears independently with probability p. Independent bond
percolation is also known as the Erdős-Rényi random graph model when G is the complete
graph.

For integer q ≥ 2, the random-cluster model is closely related to the ferromagnetic
q-state Potts model. Configurations in the q-state Potts model are the assignments of spin
values {1, . . . , q} to the vertices of G; the q = 2 case corresponds to the Ising model. A
sample A ⊆ E from the random-cluster distribution can be easily transformed into one for
the Ising/Potts model by independently assigning a random spin from {1, . . . , q} to each
connected component of (V, A). Random-cluster based sampling algorithms, which include
the widely-studied Swendsen-Wang dynamics [22], are an attractive alternative to Ising/Potts
Markov chains since they are often efficient at “low-temperatures” (large p). In this parameter
regime, several standard Ising/Potts Markov chains are known to converge slowly.

In this paper we investigate the Chayes-Machta (CM) dynamics [9], a natural Markov
chain on random-cluster configurations that converges to the random-cluster measure. The
CM dynamics is a generalization to non-integer values of q of the widely studied Swendsen-
Wang dynamics [22]. As with all applications of the MCMC method, the primary object of
study is the mixing time, i.e., the number of steps until the dynamics is close to its stationary
distribution, starting from the worst possible initial configuration. We are interested in
understanding how the mixing time of the CM dynamics grows as the size of the graph G

increases, and in particular how it relates to the phase transition of the model.
Given a random-cluster configuration (V, A), one step of the CM dynamics is defined as

follows:
(i) activate each connected component of (V, A) independently with probability 1/q;
(ii) remove all edges connecting active vertices;
(iii) add each edge between active vertices independently with probability p, leaving the

rest of the configuration unchanged.
We call (i) the activation sub-step, and (ii) and (iii) combined the percolation sub-step. It is
easy to check that this dynamics is reversible with respect to the Gibbs distribution (1) and
thus converges to it [9]. For integer q, the CM dynamics may be viewed as a variant of the
Swendsen-Wang dynamics. In the Swendsen-Wang dynamics, each connected component of
(V, A) receives a random color from {1, . . . , q}, and the edges are updated within each color
class as in (ii) and (iii) above; in contrast, the CM dynamics updates the edges of exactly
one color class. However, note that the Swendsen-Wang dynamics is only well-defined for
integer q, while the CM dynamics is feasible for any real q > 1. Indeed, the CM dynamics
was introduced precisely to allow this generalization.

The study of the interplay between phase transitions and the mixing time of Markov chains
goes back to pioneering work in mathematical physics in the late 1980s. This connection for
the specific case of the CM dynamics on the complete n-vertex graph, known as the mean-field
model, has received some attention in recent years (see [5, 13, 16]) and is the focus of this
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paper. As we shall see, the mean-field case is already quite non-trivial, and has historically
proven to be a useful starting point in understanding various types of dynamics on more
general graphs. We note that, so far, the mean-field is the only setting in which there are tight
mixing time bounds for the CM dynamics; all other known bounds are deduced indirectly via
comparison with other Markov chains, thus incurring significant overhead [6, 4, 15, 3, 23, 5].

The phase transition for the mean-field random-cluster model is fairly well-understood [8,
20]. In this setting, it is natural to re-parameterize by setting p = ζ/n; the phase transition
then occurs at the critical value ζ = ζcr(q), where ζcr(q) = q when q ∈ (0, 2] and ζcr(q) =
2( q−1

q−2 ) log(q − 1) for q > 2. For ζ < ζcr(q) all components are of size O(log n) with high
probability (w.h.p.); that is, with probability tending to 1 as n → ∞. On the other hand,
for ζ > ζcr(q) there is a unique giant component of size ≈ θn, where θ = θ(ζ, q). The phase
transition is thus analogous to that in G(n, p) corresponding to the emergence of a giant
component.

The phase structure of the mean-field random-cluster model, however, is more subtle and
depends crucially on the second parameter q. In particular, when q > 2 the model exhibits
phase coexistence at the critical threshold ζ = ζcr(q). Roughly speaking, this means that
when ζ = ζcr(q), the set of configurations with all connected components of size O(log n),
and set of configurations with a unique giant component, contribute each a constant fraction
of the probability mass. For q ≤ 2, on the other hand, there is no phase coexistence.

Phase coexistence at ζ = ζcr(q) when q > 2 has significant implications for the speed of
convergence of Markov chains, including the CM dynamics. The following detailed connection
between the phase structure of the model and the mixing time τCM

mix of the CM dynamics was
recently established in [5, 2, 16]. When q > 2, we have:

τCM
mix =


Θ(log n) if ζ ̸∈ [ζl, ζr);
Θ(n1/3) if ζ = ζl;
eΩ(n) if ζ ∈ (ζl, ζr),

(2)

where (ζl, ζr) is the so-called metastability window. It is known that ζr = q, but ζl does not
have a closed form; see [5, 20]; we note that ζcr(q) ∈ (ζl, ζr) for q > 2.

When q ∈ (1, 2], there is no metastability window, and the mixing time of the mean-field
CM dynamics is Θ(log n) for all ζ ̸= ζcr(q). In view of these results, the only case remaining
open is when q ∈ (1, 2] and ζ = ζcr(q). Our main result shown below concerns precisely
this regime, which is particularly delicate and had resisted analysis until now for reasons we
explain in our proof overview.

▶ Theorem 1. The mixing time of the CM dynamics on the complete n-vertex graph when
ζ = ζcr(q) = q and q ∈ (1, 2) is O(log n · log log n).

A Ω(log n) lower bound is known for the mixing time of the mean-field CM dynamics
that holds for all p ∈ (0, 1) and q > 1 [5]. Therefore, our result is tight up to the lower order
O(log log n) factor, and in fact even better as we explain in Remark 16. The conjectured tight
bound when ζ = ζcr(q) and q ∈ (1, 2) is Θ(log n). We mention that the ζ = ζcr(q) and q = 2
case, which is quite different and not covered by Theorem 1, was considered earlier in [19]
for the closely related Swendsen-Wang dynamics, and a tight Θ(n1/4) bound was established
for its mixing time. The same mixing time bound is expected for the CM dynamics in this
regime; see Remark 7 for further comments about the ζ = ζcr(q), q = 2 case.

Our result establishes a striking behavior for random-cluster dynamics when q ∈ (1, 2).
Namely, there is no slowdown (exponential or power law) in this regime at the critical
threshold ζ = ζcr(q). Note that for q > 2, as described in (2) above, the mixing time of the
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47:4 The Critical Mean-Field Chayes-Machta Dynamics

dynamics undergoes an exponential slowdown, transitioning from Θ(log n) when ζ < ζl, to a
power law at ζ = ζl, and to exponential in n when ζ ∈ (ζl, ζr). The absence of a critical
slowdown for q ∈ (1, 2) was in fact predicted by the statistical physics community [14], and
our result provides the first rigorous proof of this phenomenon.

Our second result concerns the local Glauber dynamics for the random-cluster model. In
each step, the Glauber dynamics updates a single edge of the current configuration chosen
uniformly at random; a precise definition of this Markov chain is given in the full version of
the present paper [7]. In [5], it was established that any upper bound on the mixing time
τCM

mix of the CM dynamics can be translated to one for the mixing time τGD
mix of the Glauber

dynamics, at the expense of a Õ(n4) factor; the Õ notation hides polylogarithmic factors. In
particular, it was proved in [5] that τGD

mix ≤ τCM
mix · Õ(n4). We provide here an improvement of

this comparison inequality.

▶ Theorem 2. For all q > 1 and all ζ = O(1), τGD
mix ≤ τCM

mix · O(n3(log n)2).

To prove this theorem, we establish a general comparison inequality that holds for any graph,
any q ≥ 1 and any p ∈ (0, 1); see the full version of this paper [7] for a precise statement.
When combined with the known mixing time bounds for the CM dynamics on the complete
graph, Theorem 2 yields that the random-cluster Glauber dynamics mixes in Õ(n3) steps
when q > 2 and ζ ̸∈ (ζl, ζr), or when q ∈ (1, 2) and ζ = O(1). In these regimes, the mixing
time of the Glauber dynamics was previously known to be Õ(n4) and is conjectured to be
Õ(n2); the improved comparison inequality in Theorem 2 gets us closer to this conjectured
tight bound. We note, however, that even if one showed the conjectured optimal bound for
the mixing time of the Glauber dynamics, the CM is faster, even if we take into account the
computational cost associated to implementing its steps.

We conclude this introduction with some brief remarks about our analysis techniques,
which combine several key ingredients in a non-trivial way. Our bound on the mixing
time uses the well-known technique of coupling: in order to show that the mixing time is
O(log n · log log n), it suffices to couple the evolutions of two copies of the dynamics, starting
from two arbitrary configurations, in such a way that they arrive at the same configuration
after O(log n) steps with probability Ω(1/ log log n). (The moves of the two copies can
be correlated any way we choose, provided that each copy, viewed in isolation, is a valid
realization of the dynamics.) Because of the delicate nature of the phase transition in the
random-cluster model, combined with the fact that the percolation sub-step of the CM
dynamics is critical when ζ = q, our coupling is somewhat elaborate and proceeds in multiple
phases. The first phase consists of a burn-in period, where the two copies of the chain are
run independently and the evolution of their largest components is observed until they have
shrunk to their “typical” sizes. This part of the analysis is inspired by similar arguments in
earlier work [5, 19, 13].

In the second phase, we design a coupling of the activation of the connected components
of the two copies which uses: (i) a local limit theorem, which can be thought of as a
stronger version of a central limit theorem; (ii) a precise understanding of the distribution
of the maximum of symmetric random walks on Z with varying step sizes; and (iii) precise
estimates for the component structure of random graphs. We develop tailored versions of
these probabilistic tools for our setting and combine them to guarantee that the same number
of vertices from each copy are activated in each step w.h.p. for sufficiently many steps. This
phase of the coupling is the main novelty in our analysis, and allows us to quickly converge
to the same configuration.

The rest of the paper is organized as follows. In Section 2, we give a detailed overview of
our proof. The proof of the key step in our coupling construction is provided in Section 3;
all others proofs are deferred to the full version of this paper [7].
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2 Proof sketch and techniques

We now give a detailed sketch of the multi-phased coupling argument for proving Theorem
1. We start by formally defining the notions of mixing and coupling times. Let ΩRC be
the set of random-cluster configurations of a graph G; let M be the transition matrix of a
random-cluster Markov chain with stationary distribution µ = µG,p,q, and let Mt(X0, ·) be
the distribution of the chain after t steps starting from X0 ∈ ΩRC. The ε-mixing time of M
is given by

τM
mix(ε) := max

X0∈ΩRC
min
t≥0

{
||Mt(X0, ·) − µ(·)||TV ≤ ε

}
,

where || · ||TV denotes total variation distance. In particular, the mixing time of M is
τM

mix := τM
mix(1/4).

A (one step) coupling of the Markov chain M specifies, for every pair of states (Xt, Yt) ∈
ΩRC × ΩRC, a probability distribution over (Xt+1, Yt+1) such that the processes {Xt} and
{Yt} are valid realizations of M, and if Xt = Yt then Xt+1 = Yt+1. The coupling time,
denoted Tcoup, is the minimum T such that Pr[XT ̸= YT ] ≤ 1/4, starting from the worst
possible pair of configurations in ΩRC. It is a standard fact that τM

mix ≤ Tcoup; moreover,
when Pr[XT = YT ] ≥ δ for some coupling, then τM

mix = O(Tδ−1) (see, e.g., [18]).
We provide first a high level description of our coupling for the CM dynamics. For this,

we require the following notation. For a random cluster configuration X, let Li(X) denote
the size of the i-th largest connected component in (V, X), and let Ri(X) :=

∑
j≥i Lj(X)2;

in particular, R1(X) is the sum of the squares of the sizes of all the components of (V, X).
Our coupling has three main phases:
1. Burn-in period: run two copies {Xt}, {Yt} independently, starting from a pair of arbitrary

initial configurations, until R1(XT ) = O(n4/3) and R1(YT ) = O(n4/3).
2. Coupling to the same component structure: starting from XT and YT such that R1(XT ) =

O(n4/3) and R1(YT ) = O(n4/3), we design a two-phased coupling that reaches two
configurations with the same component structure as follows:

2a. A two-step coupling after which the two configurations agree on all “large components”;
2b. A coupling that after O(log n) additional steps reaches two configurations that will

also have the same “small component” structure.
3. Coupling to the same configuration: starting from two configurations with the same com-

ponent structure, there is a straightforward coupling that couples the two configurations
in O(log n) steps w.h.p.

We proceed to describe each of these phases in detail.

2.1 The burn-in period
During the initial phase, two copies of the dynamics evolve independently. This is called a
burn-in period and in our case consists of three sub-phases.

In the first sub-phase of the burn-in period the goal is to reach a configuration X such that
R2(X) = O(n4/3). For this, we use a lemma from [2], which shows that after T = O(log n)
steps of the CM dynamics R2(XT ) = O(n4/3) with at least constant probability; this holds
when ζ = q for any initial configuration X0 and any q > 1.

▶ Lemma 3 ([2], Lemma 3.42). Let q > 1 and ζ = q, and let X0 be an arbitrary random-cluster
configuration. Then, for any constant C ≥ 0, after T = O(log n) steps R2(XT ) = O(n4/3)
and L1(XT ) > Cn2/3 with probability Ω(1).

APPROX/RANDOM 2021



47:6 The Critical Mean-Field Chayes-Machta Dynamics

In the second and third sub-phases of the burn-in period, we use the fact that when
R2(Xt) = O(n4/3), the number of activated vertices is well concentrated around n/q (its
expectation). This is used to show that the size of the largest component contracts at
a constant rate for T = O(log n) steps until a configuration XT is reached such that
R1(XT ) = O(n4/3). This part of the analysis is split into two sub-phases because the
contraction for L1(Xt) requires a more delicate analysis when L1(Xt) = o(n); this is captured
in the following two lemmas.

▶ Lemma 4. Let ζ = q and q ∈ (1, 2). Suppose R2(X0) = O(n4/3). Then, for any constant
δ > 0, there exists T = T (δ) = O(1) such that R2(XT ) = O(n4/3) and L1(XT ) ≤ δn with
probability Ω(1).

▶ Lemma 5. Let ζ = q and q ∈ (1, 2). Suppose R2(X0) = O(n4/3) and that L1(X0) ≤ δn

for a sufficiently small constant δ. Then, with probability Ω(1), after T = O(log n) steps
R1(XT ) = O(n4/3).

Lemmas 4 and 5 are proved in the full paper [7]. Combining them with Lemma 3
immediately yields the following theorem.

▶ Theorem 6. Let ζ = q, q ∈ (1, 2) and let X0 be an arbitrary random-cluster configuration
of the complete n-vertex graph. Then, with probability Ω(1), after T = O(log n) steps
R1(XT ) = O(n4/3).

▶ Remark 7. The contraction of L1(Xt) established by Lemmas 4 and 5 only occurs when
q ∈ (1, 2); when q > 2 the quantity L1(Xt) may increase in expectation, whereas for q = 2
we have E[L1(Xt+1) | Xt] ≈ L1(Xt), and the contraction of the size of the largest component
is due instead to fluctuations caused by a large second moment. (This is what causes the
power law slowdown when ζ = q = 2.)
▶ Remark 8. Sub-steps (ii) and (iii) of the CM dynamics are equivalent to replacing the
active portion of the configuration by a G(m, q/n) random graph, where m is the number
of active vertices. Since E[m] = n/q, one key challenge in the proofs of Lemmas 4 and 5,
and in fact in the entirety of our analysis, is that the random graph G(m, q/n) is critical or
almost critical w.h.p. since m · q/n ≈ 1; consequently its structural properties are not well
concentrated and cannot be maintained for the required O(log n) steps of the coupling. This
is one of the key reasons why the ζ = ζcr(q) = q regime is quite delicate.

2.2 Coupling to the same component structure
For the second phase of the coupling, we assume that we start from a pair of configurations
X0, Y0 such that R1(X0) = O(n4/3), R1(Y0) = O(n4/3). The goal is to show that after
T = O(log n) steps, with probability Ω(1/ log log n), we reach two configurations XT and YT

with the same component structure; i.e., Lj(XT ) = Lj(YT ) for all j ≥ 1. In particular, we
prove the following.

▶ Theorem 9. Let ζ = q, q ∈ (1, 2) and suppose X0, Y0 are random-cluster configurations
such that R1(X0) = O(n4/3) and R1(Y0) = O(n4/3). Then, there exists a coupling of the
CM steps such that after T = O(log n) steps XT and YT have the same component structure
with probability Ω

(
(log log n)−1)

.

Our coupling construction for proving Theorem 9 has two main sub-phases. The first is
a two-step coupling after which the two configurations agree on all the components of size
above a certain threshold Bω = n2/3/ω(n), where ω(n) is a slowly increasing function. For
convenience and definiteness we set ω(n) = log log log log n. In the second sub-phase we take
care of matching the small component structures.
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We note that when the same number of vertices are activated from each copy of the
chain, we can easily couple the percolation sub-step (with an arbitrary bijection between
the activated vertices) and replace the configuration on the active vertices in both chains
with the same random sub-graph; consequently, the component structure in the updated
sub-graph would be identical. Our goal is thus to design a coupling of the activation of the
components that activates the same number of vertices in both copies in every step.

In order for the initial two-step coupling to succeed, certain (additional) properties of the
configurations are required. These properties are achieved with a continuation of the initial
burn-in phase for a small number of O(log ω(n)) steps. For a random-cluster configuration
X, let R̃ω(X) =

∑
j:Lj(X)≤Bω

Lj(X)2 and let I(X) denote the number of isolated vertices
of X. Our extension of the burn-in period is captured by the following lemma.

▶ Lemma 10. Let ζ = q, q ∈ (1, 2) and suppose X0 is such that R1(X0) = O(n4/3). Then,
there exists T = O(log ω(n)) and a constant β > 0 such that R̃ω(XT ) = O(n4/3ω(n)−1/2),
R1(XT ) = O(n4/3) and I(XT ) = Ω(n) with probability Ω(ω(n)−β).

With these bounds on R̃ω(XT ), R̃ω(YT ), I(XT ) and I(YT ), we construct the two-step
coupling for matching the large component structure. The construction crucially relies on
a new local limit theorem (Theorem 17). In particular, under our assumptions, when ω(n)
is small enough, there are few components with sizes above Bω. Hence, we can condition
on the event that all of them are activated simultaneously. The difference in the number of
active vertices generated by the activation of these large components can then be “corrected”
by a coupling of the activation of the smaller components; for this we use our new local limit
theorem.

Specifically, our local limit theorem applies to the random variables corresponding to the
number of activated vertices from the small components of each copy. We prove it using a
result of Mukhin [21] and the fact that, among the small components, there are (roughly
speaking) many components of many different sizes. To establish the latter we require a
refinement of known random graph estimates (see Lemma 23).

To formally state our result we introduce some additional notation. Let Sω(X) be the
set of connected components of X with sizes greater than Bω. At step t, the activation of
the components of two random-cluster configurations Xt and Yt is done using a maximal
matching Wt between the components of Xt and Yt, with the restriction that only components
of equal size are matched to each other. For an increasing positive function g and each
integer k ≥ 0, define N̂k(t, g) := N̂k(Xt, Yt, g) as the number of matched pairs in Wt whose
component sizes are in the interval

Ik(g) =
[ ϑn2/3

2g(n)2k ,
ϑn2/3

g(n)2k

]
,

where ϑ > 0 is a fixed large constant (independent of n).

▶ Lemma 11. Let ζ = q, q ∈ (1, 2) and suppose X0, Y0 are random-cluster configurations
such that R1(X0) = O(n4/3), R̃ω(X0) = O(n4/3ω(n)−1/2), I(X0) = Ω(n) and similarly for
Y0. Then, there exists a two-step coupling of the CM dynamics such that Sω(X2) = Sω(Y2)
with probability exp

(
−O(ω(n)9)

)
.

Moreover, L1(X2) = O(n2/3ω(n)), R2(X2) = O(n4/3), R̃ω(X2) = O(n4/3ω(n)−1/2),
I(X2) = Ω(n), N̂k(2, ω(n)) = Ω(ω(n)3·2k−1

) for all k ≥ 1 such that n2/3ω(n)−2k−1 → ∞,
and similarly for Y2.

APPROX/RANDOM 2021
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From the first part of the lemma we obtain two configurations that agree on all of
their large components, as desired, while the second part guarantees additional structural
properties for the resulting configurations so that the next sub-phase of the coupling can
also succeed with the required probability.

In the second sub-phase, after the large component are matched, we can design a coupling
that activates exactly the same number of vertices from each copy of the chain. To analyze
this coupling we use a precise estimate on the distribution of the maximum of symmetric
random walks over integers (with steps of different sizes). We are first required to run the
chains coupled for T = O(log ω(n)) steps, so that certain additional structural properties
appear. Let M(Xt) and M(Yt) be the components in the matching Wt that belong to Xt

and Yt, respectively, and let D(Xt) and D(Yt) be the complements of M(Xt) and M(Yt).
Let Zt =

∑
C∈D(Xt)∪D(Yt) |C|2.

▶ Lemma 12. Let ζ = q, q ∈ (1, 2). Suppose X0 and Y0 are random-cluster configura-
tions such that Sω(X0) = Sω(Y0), and N̂k(0, ω(n)) = Ω(ω(n)3·2k−1

) for all k ≥ 1 such
that n2/3ω(n)−2k−1 → ∞. Suppose also that L1(X0) = O(n2/3ω(n)), R2(X0) = O(n4/3),
R̃ω(X0) = O(n4/3ω(n)−1/2), I(X0) = Ω(n), and similarly for Y0.

Then, there exists a coupling of the CM steps such that with probability e−O((log ω(n))2)

after T = O(log ω(n)) steps: Sω(XT ) = Sω(YT ), ZT = O(n4/3ω(n)−1/2), N̂k(T, ω(n)1/2) =
Ω(ω(n)3·2k−2

) for all k ≥ 1 such that n2/3ω(n)−2k−1 → ∞, R1(XT ) = O(n4/3), I(XT ) =
Ω(n), and similarly for YT .

The proof of Lemma 12 also uses our local limit theorem (Theorem 17).
The final step of our construction is a coupling of the activation of the components of

size less than Bω, so that exactly the same number of vertices are activated from each copy
in each step w.h.p.

▶ Lemma 13. Let ζ = q, q ∈ (1, 2) and suppose X0 and Y0 are random-cluster configurations
such that Sω(X0) = Sω(Y0), Z0 = O(n4/3ω(n)−1/2), and N̂k

(
0, ω(n)1/2)

= Ω(ω(n)3·2k−2
) for

all k ≥ 1 such that n2/3ω(n)−2k−1 → ∞. Suppose also that R1(X0) = O(n4/3), I(X0) = Ω(n)
and similarly for Y0. Then, there exist a coupling of the CM steps and a constant β > 0 such
that after T = O(log n) steps, XT and YT have the same component structure with probability
Ω

(
(log log log n)−β

)
.

We comment briefly on how we prove this lemma. Our starting point is two configurations
with the same “large” component structure; i.e., Sω(X0) = Sω(Y0). We use the maximal
matching W0 to couple the activation of the large components in X0 and Y0. The small
components not matched by W0, i.e., those counted in Z0, are then activated independently.
This creates a discrepancy D0 between the number of active vertices from each copy. Since
E[D0] = 0 and Var(D0) = Θ(Z0) = Θ(n4/3ω(n)−1/2), it follows from Hoeffding’s inequality
that D0 ≤ n2/3ω(n)−1/4 w.h.p. To fix this discrepancy, we use the small components matched
by W0. Specifically, under the assumptions in Lemma 13, we can construct a coupling of the
activation of the small components so that the difference in the number of activated vertices
from the small components from each copy is exactly D0 with probability Ω(1). This part of
the construction utilizes random walks over the integers; in particular, we use a lower bound
for the maximum of such a random walk.

We need to repeat this process until Zt = 0; this takes O(log n) steps since Zt ≈
(1 − 1/q)tZ0. However, there are a few complications. First, the initial assumptions on the
component structure of the configurations are not preserved for this many steps w.h.p., so
we need to relax the requirements as the process evolves. This is in turn possible because
the discrepancy Dt decreases with each step, which implies that the probability of success of
the coupling increases at each step.
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Proof of Lemma 10, 12 and 13 is provided in the full version of the present paper [7]. We
now indicate how these lemmas lead to a proof of Theorem 9 stated earlier.

Proof of Theorem 9. Suppose R1(X0) = O(n4/3) and R1(Y0) = O(n4/3). It follows from
Lemma 10, 11, 12 and 13 that there exists a coupling of the CM steps such that after
T = O(log n) steps, XT and YT could have the same component structure. This coupling
succeeds with probability at least

ρ = Ω(ω(n)−β1) · exp
(

− O(ω(n)9)
)

· exp
(

− O
(
(log ω(n))2))

· Ω
(
(log log log n)−β2

)
,

where β1, β2 > 0 are constants. Thus, ρ = Ω
(
(log log n)−1)

, since ω(n) = log log log log n. ◀

▶ Remark 14. We pause to mention that this delicate coupling for the activation of the
components is not required when ζ = q and q > 2. In that regime, the random-cluster model
is super-critical, so after the first O(log n) steps, the component structure is much simpler,
with exactly one large component. On the other hand, when ζ = q and q ∈ (1, 2] the model
is critical, which, combined with the fact mentioned earlier that the percolation sub-step
of the dynamics is also critical when ζ = q, makes the analysis of the CM dynamics in this
regime quite subtle.

2.3 Coupling to the same configuration
In the last phase of the coupling, suppose we start with two configurations X0, Y0 with the
same component structure. We are still required to bound the number of steps until the
same configuration is reached. The following lemma from [5] supplies the desired bound.

▶ Lemma 15 ([5], Lemma 24). Let q > 1, ζ > 0 and let X0, Y0 be two random-cluster
configurations with the same component structure. Then, there exists a coupling of the CM
steps such that after T = O(log n) steps, XT = YT w.h.p.

Combining the results for each of the phases of the coupling, we now prove Theorem 1.

Proof of Theorem 1. By Theorem 6, after t0 = O(log n) steps, with probability Ω(1), we
have R1(Xt0) = O(n4/3) and R1(Yt0) = O(n4/3). If this is the case, Theorem 9 and
Lemma 15 imply that there exists a coupling of the CM steps such that with probability
Ω

(
(log log n)−1)

after an additional t1 = O(log n) steps, Xt0+t1 = Yt0+t1 . Consequently, we
obtain that τCM

mix = O(log n · log log n) as claimed. ◀

▶ Remark 16. The probability of success in Theorem 9, which governs the lower order term
O(log log n) in our mixing time bound, is controlled by our choice of the function ω(n) for
the definition of “large components”. By choosing ω(n) that goes to ∞ more slowly, we could
improve our mixing time bound to O(log n · g(n)) where g(n) is any function that tends to
infinity arbitrarily slowly. However, it seems that new ideas are required to obtain a bound
of O(log n) (matching the known lower bound). In particular, the fact that ω(n) → ∞ is
crucially used in some of our proofs. Our specific choice of ω(n) yields the O(log n · log log n)
bound and makes our analysis cleaner.

3 Coupling to the same component structure: proof of Lemma 11

To prove Lemma 11, we use a local limit theorem to construct a two-step coupling of the CM
dynamics that reaches two configurations with the same large component structure. The
construction of Markov chain couplings using local limit theorems is not common (see [19] for
another example), but it appears to be a powerful technique that may have other interesting
applications. We provide next a brief introduction to local limit theorems.
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3.1 Local limit theorem
Let c1 ≤ · · · ≤ cm be integers and for i = 1, . . . , m let Xi be the random variable that is equal
to ci with probability r ∈ (0, 1), and it is zero otherwise. Let us assume that X1, . . . , Xm are
independent random variables. Let Sm =

∑m
i=1 Xi, µm = E[Sm] and σ2

m = Var(Sm). We
say that a local limit theorem holds for Sm if for every integer a ∈ Z:

Pr[Sm = a] = 1√
2πσm

exp
(

− (a − µm)2

2σ2
m

)
+ o(σ−1

m ). (3)

We prove, under some conditions, a local limit theorem that applies to the random
variables corresponding to the number of active vertices from small components. Recall that
for an increasing positive function g and each integer k ≥ 0, we defined the intervals

Ik(g) =
[

ϑn2/3

2g(n)2k ,
ϑn2/3

g(n)2k

]
,

where ϑ > 0 is a fixed large constant.

▶ Theorem 17. Let c1 ≤ · · · ≤ cm be integers, and suppose X1, ..., Xm are independent
random variables such that Xi is equal to ci with probability r ∈ (0, 1), and Xi is zero
otherwise. Let g : N → R be an increasing positive function such that g(m) → ∞ and
g(m) = o(log m). Suppose cm = O

(
m2/3g(m)−1)

,
∑m

i=1 c2
i = O

(
m4/3g(m)−1/2)

and ci = 1
for all i ≤ ρm, where ρ ∈ (0, 1) is independent of m. Let ℓ > 0 be the smallest integer such
that m2/3g(m)−2ℓ = o(m1/4). If for all 1 ≤ k ≤ ℓ, we have |{i : ci ∈ Ik(g)}| = Ω(g(m)3·2k−1),
then a local limit theorem holds for Sm =

∑m
i=1 Xi.

Theorem 17 follows from a general local limit theorem proved in [21]; a proof is given in
the full paper [7]. We next compile a number of (mostly standard) facts about the G(n, p)
random graph model which will be used in our proof of Lemma 11.

3.2 Random graphs estimates
We use G ∼ G(n, p) to denote a random graph G sampled from the standard G(n, p) model,
in which every edge appears independently with probability p. For a graph G, with a slight
abuse of notation, let Li(G) denote the size of the i-th largest connected component in G,
and let Ri(G) :=

∑
j≥i Lj(G)2; note that the same notation is used for the components of a

random-cluster configuration, but it will always be clear from context which case is meant.

▶ Lemma 18 ([19], Lemma 5.7). Let I(G) denote the number of isolated vertices in G. If
np = O(1), then there exists a constant C > 0 such that Pr[I(G) > Cn] = 1 − O(n−1).

▶ Lemma 19 ([2], Lemma 2.16). If np > 0, we have E [R2(G)] = O
(
n4/3)

.

▶ Lemma 20. Let G ∼ G
(
n, 1+ε

n

)
with ε = o(1). For any positive constant ρ ≤ 1/10, there

exist constants C ≥ 1 and c > 0 such that if ε3n ≥ C, then

Pr [|L1(G) − 2εn| > ρεn] = O(exp(−cε3n)).

For the next results, suppose that G ∼ G(n, 1+λn−1/3

n ), where λ = λ(n) may depend on n.

▶ Lemma 21. If |λ| = O(1), then E [R1(G)] = O
(
n4/3)

.

All the random graph facts stated so far can be either found in the literature, or follow
directly from well-known results. The following lemmas are slightly more refined versions of
similar results in the literature.
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▶ Lemma 22. Suppose |λ| = O(h(n)) and let Bh = n2/3h(n)−1, where h : N → R is a
positive increasing function such that h(n) = o(log n). Then, for any α ∈ (0, 1) there exists a
constant C = C(α) > 0 such that, with probability at least α,∑

j:Lj(G)≤Bh

Lj(G)2 ≤ Cn4/3h(n)−1/2.

▶ Lemma 23. Let SB = {j : B ≤ Lj(G) ≤ 2B} and suppose there exists a positive increasing
function g such that g(n) → ∞, g(n) = o(n1/3), |λ| ≤ g(n) and B ≤ n2/3g(n)−2. If B → ∞,
then there exists constants δ1, δ2 > 0 independent of n such that

Pr
[
|SB | ≤ δ1n

B3/2

]
≤ δ2B3/2

n
.

Finally, the following corollary of Lemma 23 will also be useful. For a graph H, let
Nk(H, g) be the number of components of H whose sizes are in the interval Ik(g). We
note that with a slight abuse of notation, for a random-cluster configuration X, we also use
Nk(X, g) for the number of connected components of X in Ik(g).

▶ Lemma 24. Let m ∈ (n/2q, n] and let g be an increasing positive function that such that
g(n) = o(m1/3), g(n) → ∞ and |λ| ≤ g(m). If H ∼ G

(
m, 1+λm−1/3

m

)
, there exists a constant

b > 0 such that, with probability at least 1 − O
(
g(n)−3)

, Nk(H, g) ≥ bg(n)3·2k−1 for all k ≥ 1
such that n2/3g(n)−2k → ∞.

The proofs of Lemmas 20-24 are given in the full version of the paper [7].

3.3 Proof of Lemma 11
For a random-cluster configuration X, let A(X) denote the random variable corresponding
to the number of vertices activated by step (i) of the CM dynamics from X. We provide
next the proof of Lemma 11.

Proof of Lemma 11. First, both {Xt}, {Yt} perform one independent CM step from the
initial configurations X0, Y0. We start by establishing that X1 and Y1 preserve the structural
properties assumed for X0 and Y0.

By assumption R1(X0) = O(n4/3), so Hoeffding’s inequality implies that the number of
activated vertices from X0 is such that

A(X0) ∈ I :=
[
n/q − O(n2/3), n/q + O(n2/3)

]
with probability Ω(1). Then, the percolation step is distributed as a

G

(
A(X0), 1 + λA(X0)−1/3

A(X0)

)
random graph, with |λ| = O(1) with probability Ω(1). Conditioning on this event, from
Lemma 18 we obtain that I(X1) = Ω(n) w.h.p. Moreover, from Lemma 21 and Markov’s
inequality we obtain that R1(X1) = O(n4/3) with probability at least 99/100 and from
Lemma 22 that R̃ω(X1) = O(n4/3ω(n)−1/2) also with probability at least 99/100.

We show next that X1 and Y1, in addition to preserving the structural properties of
X0 and Y0, also have many connected components with sizes in certain carefully chosen
intervals. This fact will be crucial in the design of our coupling. When A(X0) ∈ I, by
Lemmas 23 and 24 and a union bound, for all integer k ≥ 0 such that n2/3ω(n)−2k → ∞,
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Nk(X1, ω) = Ω(ω(n)3·2k−1) w.h.p. (Recall, that Nk(X1, ω) denotes the number of connected
components of X1 with sizes in the interval Ik(ω).) We will also require a bound for the
number of components with sizes in the interval

J =
[

cn2/3

ω(n)6 ,
2cn2/3

ω(n)6

]
,

where c > 0 is a constant such that J does not intersect any of the Ik(ω)’s intervals. Let WX

(resp., WY ) be the set of components of X1 (resp., Y1) with sizes in the interval J . Lemma
23 then implies that for some positive constants δ1, δ2 independent of n,

Pr
[
|WX | ≥ δ1n

(ω(n)6

cn2/3

)3/2
]

≥ 1 − δ2

n

( cn2/3

ω(n)6

)3/2
= 1 − O(ω(n)−9).

All the bounds above apply also to the analogous quantities for Y1 with the same respective
probabilities. Therefore, by a union bound, all these properties hold simultaneously for
both X1 and Y1 with probability Ω(1). We assume that this is indeed the case and proceed
to describe the second step of the coupling, in which we shall use each of the established
properties for X1 and Y1.

Let CX and CY be the set of components in X1 and Y1, respectively, with sizes larger
than Bω. (Recall that Bω = n2/3ω(n)−1, where ω(n) = log log log log n.) Since R1(X1) =
O(n4/3), the total number of components in CX is O(ω(n)2); moreover, it follows from the
Cauchy–Schwarz inequality that the total number of vertices in the components in CX ,
denoted ∥CX∥, is O(n2/3ω(n)); the same holds for CY .

Without loss of generality, let us assume that ∥CX∥ ≥ ∥CY ∥. Let

Γ = {C ⊂ WY : ∥CY ∪ C∥ ≥ ∥CX∥},

and let Cmin = arg minC∈Γ ∥CY ∪C∥. In words, Cmin is the smallest subset C of components
of WY so that ∥CY ∪C∥ ≥ ∥CX∥. Since every component in WY has size at least cn2/3ω(n)−6

and |WY | = Ω(ω(n)9), the number of vertices in WY is Ω(n2/3ω(n)3) and so Γ ̸= ∅. In
addition, the number components in Cmin is O(ω(n)9). Let C ′

Y = CY ∪ Cmin and observe
that the number of components in C ′

Y is also O(ω(n)9) and that

0 ≤ ∥C ′
Y ∥ − ∥CX∥ ≤ 2cn2/3ω(n)−6.

Note that ∥CX∥ − ∥CY ∥ may be Ω(n2/3ω(n)) (i.e., much larger than ∥C ′
Y ∥ − ∥CX∥). Hence,

if all the components from CY and CX were activated, the difference in the number of active
vertices could be Ω(n2/3ω(n)). This difference cannot be corrected by our coupling for the
activation of the small components. We shall require instead that all the components from
C ′

Y and CX are activated so that the difference is O(n2/3ω(n)−6) instead.
We now describe a coupling of the activation sub-step for the second step of the CM

dynamics. As mentioned, our goal is to design a coupling in which the same number of
vertices are activated from each copy. If indeed A(X1) = A(Y1), then we can choose an
arbitrary bijective map φ between the activated vertices of X1 and the activated vertices of
Y1 and use φ to couple the percolation sub-step. Specifically, if u and v were activated in X1,
the state of the edges {u, v} in X2 and {φ(u), φ(v)} in Y2 would be the same. This yields a
coupling of the percolation sub-step such that X2 and Y2 agree on the subgraph update at
time 1.

Suppose then that in the second CM step all the components in CX and C ′
Y are activated

simultaneously. If this is the case, then the difference in the number of activated vertices
is d ≤ 2cn2/3ω(n)−6. We will use a local limit theorem (i.e., Theorem 17) to argue that
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there is a coupling of the activation of the remaining components in X1 and Y1 such that the
total number of active vertices in both copies is the same with probability Ω(1). Since all
the components in CX and C ′

Y are activated with probability exp(−O(ω(n)9)), the overall
success probability of the coupling will be exp(−O(ω(n)9)).

Now, let x1, x2, . . . , xm be the sizes of the components of X1 that are not in CX (in
increasing order). Let Â(X1) be the random variable corresponding to the number of active
vertices from these components. Observe that Â(X1) is the sum of m independent random
variables, where the j-th variable in the sum is equal to xj with probability 1/q, and it is 0
otherwise. We claim that sequence x1, x2, . . . , xm satisfies all the conditions in Theorem 17.

First, note that since the number of isolated vertices in X1 is Ω(n), m = Θ(n) and so
xm = O(m2/3ω(m)−1),

∑m
i=1 x2

i = R̃ω(X1) = O(m4/3ω(m)−1/2) and xi = 1 for all i ≤ ρm,
where ρ ∈ (0, 1) is independent of m. Moreover, since Nk(X1, ω) ≥ Ω(ω(n)3·2k−1) for all
k ≥ 1 such that n2/3ω(n)−2k → ∞,

|{i : xi ∈ Ik(ω)}| = Ω(ω(m)3·2k−1
).

Since N0(X1, ω) = Ω(ω(n)3/2), we also have∑m

i=1
x2

i ≥ N0(X1, ω) · ϑ2n4/3

4ω(n)2 = Ω(m4/3ω(m)−1/2).

Let µX = E[Â(X1)] = q−1 ∑m
i=1 xi and let

σ2
X = Var(Â(X1)) = q−1(1 − q−1)

m∑
i=1

x2
i = Θ(m4/3ω(m)−1/2).

Hence, Theorem 17 implies that Pr[Â(X1) = a] = Ω
(
σ−1

X

)
for any a ∈ [µX − σX , µX + σX ].

Similarly, we get Pr[Â(Y1) = a] = Ω(σ−1
Y ) for any a ∈ [µY − σY , µY + σY ], with Â(Y1),

µY and σY defined analogously for Y1 \ C ′
Y . Note that µX − µY = O(n2/3ω(n)−6) and

σX , σY = Θ(n2/3ω(n)−1/4). Without loss of generality, suppose σX < σY . Then for any
a ∈ [µX − σX/2, µY + σX/2] and d = O(n2/3ω(n)−6), we have

min
{

Pr[Â(X1) = a], Pr[Â(Y1) = a − d]
}

= min
{

Ω(σ−1
X ), Ω(σ−1

Y )
}

= Ω(σ−1
Y ).

Hence, there exists a coupling P of Â(X1) and Â(Y1) so that P[Â(X1) = a, Â(Y1) = a − d] =
Ω(σ−1

Y ) for all a ∈ [µX − σX/2, µY + σX/2]. Therefore, there is a coupling of Â(X1) and
Â(Y1) such that

Pr[Â(X1) − Â(Y1) = d] = Ω (σX/σY ) = Ω(1).

Putting all these together, we deduce that A(X1) = A(Y1) with probability e−O(ω(n)9).
If this is the case, the edge re-sampling step is coupled bijectively (as described above) so
that Sω(X2) = Sω(Y2).

It remains for us to guarantee the additional desired structural properties of X2 and Y2,
which follow straightforwardly from the random graph estimates we stated at the beginning
of the section. First note that by Hoeffding’s inequality, with probability Ω(1),∣∣∣A(X1) − n

q
− (q − 1)|CX |

q

∣∣∣ = O(n2/3).

Hence, in the percolation sub-step the active subgraph is replaced by

F ∼ G

(
A(X1), 1 + λA(X1)−1/3

A(X1)

)
,
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where |λ| = O(ω(n)) with probability Ω(1) since |CX | = O(n2/3ω(n)). Conditioning on this
event, since the components of F contribute to both X2 and Y2, Lemma 24 implies that w.h.p.
N̂k(2, ω(n)) = Ω(ω(n)3·2k−1) for all k ≥ 1 such that n2/3ω(n)−2k → ∞. Moreover, from
Lemma 18 we obtain that I(X2) = Ω(n) w.h.p. From Lemma 19 and Markov’s inequality,
we obtain that R2(X2) = O(n4/3) with probability at least 99/100 and from Lemma 22 that
R̃ω(X2) = O(n4/3ω(n)−1/2) also with probability at least 99/100. All these bounds apply
also to the analogous quantities for Y2 with the same respective probabilities.

Finally, we derive the bound for L1(X2) and L1(Y2). First, notice L1(F ) is stochastically
dominated by L1(F ′), where

F ′ ∼ G
(

A(X1), 1 + |λ|A(X1)−1/3

A(X1)

)
.

Under the assumption that |λ| = O(ω(n)), if |λ| → ∞, then Lemma 20 implies that L1(F ′) =
O(|λ|A(X1)2/3) = O(n2/3ω(n)) w.h.p.; otherwise, |λ| = O(1) and by Lemma 21 and Markov’s
inequality, L1(F ′) = O(n2/3) with probability at least 99/100. Thus, L1(F ) = O(n2/3ω(n))
with probability at least 99/100. We also know that the largest inactivated component in X1
has size less than n2/3ω(n)−1, so L1(X2) = O(n2/3ω(n)) with probability at least 99/100.
The same holds for Y2. Therefore, by a union bound, all these properties hold simultaneously
for both X2 and Y2 with probability Ω(1), as claimed. ◀
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