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Abstract
We study the robust – à la Chakrabarti, Cormode, and McGregor [STOC’08] – communication
complexity of the maximum bipartite matching problem. The edges of an adversarially chosen
n-vertex bipartite graph G are partitioned randomly between Alice and Bob. Alice has to send a
single message to Bob, using which Bob has to output an approximate maximum matching of G.
We are particularly interested in understanding the best approximation ratio possible by protocols
that use a near-optimal message size of n · polylog (n).

The communication complexity of bipartite matching in this setting under an adversarial
partitioning is well-understood. In their beautiful paper, Goel, Kapralov, and Khanna [SODA’12]
gave a 2/3-approximate protocol with O(n) communication and showed that this approximation
is tight unless we allow more than a near-linear communication. The complexity of the robust
version, i.e., with a random partitioning of the edges, however remains wide open. The best known
protocol, implied by a very recent random-order streaming algorithm of the authors [ICALP’21],
uses O(n log n) communication to obtain a (2/3 + ε0)-approximation for a constant ε0 ∼ 10−14. The
best known lower bound, on the other hand, leaves open the possibility of all the way up to even a
(1 − ε)-approximation using near-linear communication for constant ε > 0.

In this work, we give a new protocol with a significantly better approximation. Particularly,
our protocol achieves a 0.716 expected approximation using O(n) communication. This protocol is
based on a new notion of distribution-dependent sparsifiers which give a natural way of sparsifying
graphs sampled from a known distribution. We then show how to lift the assumption on knowing
the graph’s distribution via minimax theorems. We believe this is a particularly powerful method of
designing communication protocols and might find further applications.
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1 Introduction

Consider the following communication game. We have an n-vertex bipartite graph G =
(L, R, E) whose edges are partitioned into EA and EB given to Alice and Bob, respectively
(both players know L and R). The goal is to compute an approximate maximum matching
of G by Alice sending a single message to Bob and Bob outputting the solution. What is
the tradeoff between the size of Alice’s message and the approximation ratio of the output
matching, or in other words, the one-way communication complexity of bipartite matching?
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48:2 On the Robust Communication Complexity of Bipartite Matching

It is known that Ω(n2) communication is necessary for finding a maximum matching [23]
and this is clearly sufficient by Alice sending her entire input. But the situation is more
interesting for approximate protocols. A 1/2-approximation with O(n) communication
can be obtained by Alice sending a maximum matching of her input to Bob and Ω(n)
communication is clearly needed for any constant factor approximation. More interestingly,
Goel, Kapralov, and Khanna [25] showed that O(n) communication even suffices to obtain a
2/3-approximation and that this is the “right” answer: any better approximation requires
n1+Ω(1/log log n) ≫ n · polylog(n) communication.

In this paper, we study a robust variant of this problem – à la Chakrabarti, Cormode,
and McGregor [18] – wherein the graph G is still chosen adversarially, but now its edges are
instead randomly partitioned between the two players, i.e., each edge is independently given
to one of the players chosen uniformly at random. This model of random partitioning was
introduced in [18] to go beyond the “doubly worst case” analysis of communication games,
namely, adversarial inputs and adversarial partitions, and sheds more light into the source
of hardness: whether it is due to a pathological partitioning of inputs or rather it holds for
most input partitions.

Our main result is a substantial improvement over the 2/3-approximations for adversarial
partitions [25] under this random partition model.

▶ Result 1 (Formalized in Theorem 17). There is a randomized one-way protocol with
O(n) communication that achieves an expected 0.716-approximation for the bipartite
matching problem under a random partitioning of the input edges between Alice and Bob.

Prior to our work, the best known approximation ratio achievable for this problem was
(2/3+ε0) for some ε0 ∼ 10−14, obtained via the very recent random-order streaming algorithm
of the same authors of this paper in [2].

We note that our protocol in this result can be considered non-explicit: we show the
existence of the protocol rather than explicitly designing the protocol itself (see Section 1.1
for details). Alternatively, the protocol can be found also via a brute-force search in doubly
exponential time.

1.1 Our Techniques
The 2/3-approximation protocol of [25] (and follow-ups in [3] that simplified it or [37] that
extended it to the online batch-arrival model) are all based on finding a suitable subgraph of
Alice’s input that preserves large matchings approximately, namely, a matching sparsifier
(similar-in-spirit to cut sparsifiers [13,14]). These subgraphs are defined through a series of
graph-theoretic constraints: a novel decomposition into expanding sets (matching skeleton)
in [25,37] (see also [33]), and edge-degree bounded subgraphs in [3] (defined first in [16,17]
for dynamic graph algorithms). We take an entirely different approach in this paper.

The first step of our approach is a way of introducing distributional assumptions about
the input, while still solving the problem in its full generality. In particular, in this step, we
reduce the general problem to the case that the input graph G is sampled from some arbitrary
but known distribution G of graphs. We achieve this via combining several relatively standard
ideas specific to the matching problem with an application of Yao’s minimax principle [41]
(the so-called “hard direction” of this principle; see Section 5). This is the main conceptual
step of our approach.

The second step is to design a protocol for the problem assuming that it is additionally
given an input distribution G of the input graph. We achieve this through a new notion of
“distribution-dependent sparsifiers” described below. This is our main technical step.
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Distribution-dependent sparsifiers. Distribution-dependent sparsifiers can be used whenever
we know a distribution G for inputs of Alice and Bob. In particular, the knowledge of G allows
us to determine the “importance” of each edge in Alice’s input EA: this is the probability that
this particular edge belongs to a fixed maximum matching (say, the lexicographically-first
maximum matching) of a graph sampled from G | EA, i.e., input graphs after conditioning
on Alice’s input. The main part of our argument is to show that these importances can be
used to sparsify the Alice’s graph to O(n) edges, while allowing Bob to find a large matching
of the entire graph in expectation.

For our analysis of these sparsifiers, we need to show that the edges T communicated
by Alice and the edges EB given to Bob combined, include a large matching. We do so by
constructing a large fractional matching x on the edges in T ∪ EB . Our construction of x is
online, in the sense that we decide on the value of x induced on T before sampling Bob’s
subgraph EB from G | EA. Thanks to the fact that Alice picks the edges of T according to
their importance, we can construct x on T such that the fractional value around each vertex
v is equal to the probability that v is matched in the optimum solution via an edge given to
Alice. This is particularly useful because it implies that (i) the size of x induced on T equals
the expected number of edges of Alice in an optimum matching, and that (ii) if a vertex
is unlikely to be matched via an edge of Alice in the optimum solution, then the fractional
matching x induced on T does not occupy this vertex by much, leaving room for the rest of
the edges in EB to use it.

As a warm-up in Section 3, we show how the ideas above lead to a very simple 0.656-
approximate protocol under an adversarial partitioning of the input. This is only slightly
worse than the optimal 2/3-approximation for this problem, but more importantly, this
warm-up conveys the key intuitions behind distribution-dependent sparsifiers and how they
are extremely useful for matching in the communication setting. The protocol for our
0.716-approximation in Section 4 for the robust communication model is very similar, but
its analysis is more involved and in particular is based on a careful examination of edge
importance distributions under a random partitioning.

1.2 Further Aspects of Our Results
Random-order streams. The one-way communication model in general is strongly motivated
by applications to graph streaming algorithms [23]. The robust communication model, in the
same vain, is closely related to random-order streaming algorithms wherein the edges of the
graph arrive in a random order. In particular, lower bounds in the (robust) communication
model directly imply space lower bounds in the (random-order) streaming model [18] and
upper bounds are sources of inspiration and stepping stones for designing streaming algorithms
(see, e.g., [1,25,31] for instances of communication protocols that were turned into streaming
algorithms in the context of the matching problem).

Maximum matchings have been studied extensively in random-order streams [1, 2, 15, 22,
24, 34, 35], leading to a 2/3-approximation algorithm of [15] that hit a natural barrier for this
problem, and the recent algorithm of [2] that improved this approximation to strictly more
than 2/3 (for a tiny constant improvement). We hope our ideas in this paper can lead to a
significantly-better-than-2/3 approximation in random-order streams.

We remark that [2] proves the following robust communication lower bound (and thus a
random-order streaming lower bound also): any (1 − Θ(1/log n))-approximation to maximum
matching in the robust communication model requires n1+Ω(1/log log n) ≫ n · polylog(n) com-
munication. Closing the gap between our upper bound and the lower bound of [2] remains a
fascinating open question. Finally, we note that our improved protocol also has the following

APPROX/RANDOM 2021
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message: either one should be able to achieve a significantly-better-than-2/3 approximation
(say, a 0.716-approximation) in random-order streams, or any lower bound technique for prov-
ing impossibility of such a result should deviate from the standard two-party communication
complexity lower bound approach.

Non-explicit protocols. As remarked earlier, the protocol in our main result can be con-
sidered non-explicit. Alternatively, the players may need to first spend a doubly-exponential
time to find the protocol, and only then they can use it to solve the problem (this is due
to the arguments in the first step of our approach and in particular using Yao’s minimax
principle). From an algorithmic perspective, this is a weakness of our particular method of
protocol design. On the other hand, we find our method particularly strong and insightful
from a communication complexity point of view as we shall elaborate below.

Firstly, communication complexity is a non-uniform model of computation with players
of unbounded computational power, and the only resource of interest is the communication
cost of protocols. In this regard, our protocol uses the “full power” of this model to achieve
its approximation ratio using the optimal O(n) communication.

Secondly, and more importantly, there is a general gap in the study of communication
complexity of graph problems: almost all protocols designed in the literature are based on
algorithmic tools that are tailored to time-efficient protocols, while all known lower bounds are
information-theoretic and hold even for protocols with computationally unbounded players.
Can this inconsistent treatment be a contributing factor to the substantial gaps between known
upper and lower bounds for various problems, including the robust communication complexity
of bipartite matching? If so, then our approach in this paper allows us to explore a wider set
of natural protocols for the problems at hand and move toward achieving tight(er) bounds
on communication complexity. This will in turn suggest that purely information-theoretic
complexity lower bounds cannot prove “strong enough” lower bounds for computationally-
efficient algorithms as well. We leave the question of proving communication lower bounds
for computationally-efficient protocols, which is the dual approach to our work in this paper,
as a very interesting research direction for future work.

1.3 Further Related Work
The communication complexity of bipartite matching has been extensively studied from
various angles including exact protocols [21,27,30], non-deterministic protocols [40], protocols
with limited rounds of communication [3,5,23,25,26], or multi-party protocols [6,26,29,32,33]
to name a few (this is by no means a comprehensive summary of previous results).

The one-way communication complexity of matching, in particular, is directly related
to streaming algorithms. In fact, a key motivation in the work of Goel, Kapralov, and
Khanna [25] was to determine whether there is a better-than-1/2-approximation algorithm
for the matching problem in the streaming model that uses Õ(n) space, a longstanding open
problem in this area. The lower bound in [25] implies that there is no semi-streaming algorithm
with approximation ratio better than 2/3; this lower bound was later improved by Kapralov
to a 1 − 1/e ≈ 0.63 in [31] and to 1

1+ln 2 ≈ 0.59 in [32]. Additionally, the communication
protocols in [25] were also generalized in the same paper to achieve a (1 − 1/e)-approximation
in vertex-arrival streams.

Finally, we should point out that the work of [25] on the one-way communication
complexity of bipartite matching has been quite instrumental and paved the path for various
follow-ups including optimal algorithms for vertex-arrival streaming model [25, 31], state-
of-the-art lower bounds for streaming matching in both insertion-only streams [31,32] and
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dynamic streams [6, 20], online batch-arrival algorithms [37] and fault-tolerant algorithms [3]
for maximum matching, stochastic matching problem [3, 4, 10, 11], and using RS graphs
for proving communication lower bounds for other problems such as matrix rank [5, 9],
independent sets [7, 19], and reachability [8].

2 Preliminaries

Notation. For any graph G, we use n to denote the number of vertices and µ(G) to denote
the maximum matching size. A fractional matching x on a graph G is an assignment
of values xe to the edges e of G such that xe ≥ 0 for all edges e and for each vertex v,
xv :=

∑
e∋v xe ≤ 1. We use |x| as a shorthand for

∑
e xe which is the size of fractional

matching x.
The following standard fact implies that to show a bipartite graph has an integral matching

of size µ, it suffices to construct a fractional matching of size µ on it.

▶ Fact 1. Let x be a fractional matching of a bipartite graph G. Then G has an integral
matching of size at least |x|.

Communication model. We study the standard two-party communication model of Yao [42]
and in particular in the one-way model (see the excellent textbook by Kushilevitz and
Nisan [36]). The only slight derivation is that we focus on randomly partitioned inputs,
wherein the input graph is still chosen adversarially, but every edge in the graph is sent to
one of the players chosen independently and uniformly at random. To our knowledge, this
model was first introduced by Chakrabarti, Cormode, and McGregor in [18].

Unless specified otherwise, we assume that protocols are randomized and both players
have access to the same shared source of randomness, referred to as public coins; however,
one can always use Newman’s theorem [39] to turn public coins into private coins with a
negligible overhead. The communication cost of any protocol in this model is the worst-case
length of the communicated messages; to be consistent with prior work on this problem
in [3, 25,31, 33], we measure the length of messages in Θ(log n)-bit words as opposed to the
more standard convention of bits. Finally, we note that the main resource of interest in this
model is the communication and the players are assumed to be computationally unbounded.

3 Warm-up: A 0.656-Approximation Under Adversarial Partitions

In this section, we describe a one-way protocol for the bipartite matching problem and prove
that it achieves an approximation factor of (4

√
2−5) ≈ 0.656 under an adversarial partitioning

of the edges. While this protocol is slightly worse than the optimal 2/3-approximate protocols
in [3, 25] and its analysis shares some similarity with [12], we believe it is still instructive as
it acts as a gentle introduction to the ideas used in our main protocol of Section 4.

A key technique introduced in this work is the notion of distribution-dependent
sparsifiers. For now, let us assume that there is a known distribution G from which the
inputs EA and EB of Alice and Bob are sampled. Now, suppose Alice has received EA as
input and plans to send a message to Bob. In order to do this, Alice considers the distribution
of inputs conditioned on her input, i.e., G | EA. The message sent by Alice is then a subgraph
of her input (the sparsifier), wherein each edge is included depending on the probability that
this edge belongs to a fixed maximum matching of a graph sampled from G | EA.

Finally, we can lift the assumption on the knowledge of G using minimax theorems:
distribution-dependent sparsifiers give us a deterministic protocol for each distribution of

APPROX/RANDOM 2021



48:6 On the Robust Communication Complexity of Bipartite Matching

inputs with approximation ratio at least α for every distribution; thus, there should also
exist a single randomized protocol that achieves the same α-approximation for all inputs.
See Section 5 for this argument1.

3.1 The Protocol
We now describe our new distribution-dependent protocol. For the rest of this proof, we
assume that Alice and Bob are given the distribution of inputs G. For each edge e ∈ EA, we
define:

ae := Pr
G∼G

[e ∈ MM(G) | EA], (1)

where function MM(·) deterministically returns a fixed maximum matching of its input
(for instance, the lexicographically-first one, or the one returned by the Hopcroft-Karp
algorithm [28]). In words, ae is the probability that e belongs to a fixed maximum matching
of a graph G sampled from G conditioned on the input EA given to Alice. We are going to
treat ae as the “importance” of edge e in EA. Observe that since Alice is aware of G, she
can compute ae for each edge e ∈ EA.

Fractional matching interpretation. Consider the vector a := {ae}e∈EA . We claim that a
is a feasible fractional matching of EA: (i) for every edge e ∈ EA, we have ae ≥ 0 as ae is a
probability, and (ii) for all vertices v, av :=

∑
e∋v ae ≤ 1 as it can be confirmed that:

av = Pr
G∼G

[v matched in MM(G) by edges of EA | EA]. (2)

This view of a presents a natural way of sparsifying Alice’s input. Basically, we can sparsify
the support of a via the standard cycle-canceling method (see Lemma 2 below) so that
instead of (possibly up to) Ω(n2) edges, it will only have O(n) edges while still preserving
the fractional matching of each vertex (but not necessarily the edges). This allows us to
obtain another fractional matching a′ that preserves key properties of a but is much sparser
and thus Alice can simply send this fractional matching directly to Bob.

▶ Lemma 2 (Cycle-Canceling Lemma – Folklore). Let f be any fractional matching of EA.
There is another fractional matching f ′ on EA such that:

Sparsification property: There are at most n − 1 edges e in EA with f ′
e > 0.

Preserving marginals and size: For every vertex v, f ′
v = fv, also implying |f ′| = |f |.

Proof. Iteratively take a cycle in the support of f , then alternately decrease and increase
the value of edges in a way that the minimum value edge gets value zero. Since all cycles are
even-length, the fractional matching around each vertices remains unchanged throughout the
process. Once there are no more cycles, the remaining fractional matching is a forest with at
most n − 1 edges. ◀

We can now formalize the protocol as follows.
By Lemma 2 this protocol requires O(n) communication (in fact, only n − 1 edges). Thus,

it only remains to analyze the approximation ratio of Algorithm 1 in the following.

1 There is an important subtlety here: distribution-dependent sparsifiers approximate the matching in
expectation over the choice of graphs in the distribution; in other words, the output matching is close
to the optimal matching in expectation. To apply Yao’s minimax principle however, one needs an
instance-wise approximation for the input graph. Thus, the argument in this part is not a black-box
application of minimax theorems.
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Algorithm 1 A simple distribution-dependent sparsifier protocol.

(i) Given edges EA as input to Alice, she computes the vector a = {ae}e∈EA using
Eq (1); as discussed above, a is a valid fractional matching of EA.

(ii) Alice obtains fractional matching a′ by running cycle canceling on a (Lemma 2)
and then sends the edges T in the support of a′ to Bob.

(iii) Bob, given message T from Alice and input EB , returns a maximum matching of
EB ∪ T .

▶ Proposition 3. For any input distribution G on adversarial partitions, Algorithm 1 achieves
a 4

√
2 − 5 ≈ 0.6568 approximation in expectation and uses O(n) communication.

We prove this proposition in the next section.

3.2 The Analysis: Proof of Proposition 3
Recall that T is the support of the fractional matching a′ that Alice sends to Bob. For the
analysis, we only need to show that T ∪ EB includes a large fractional matching (by Fact 1).
To do so, we construct a fractional matching x supported on T ∪ EB in the following way:

xe =
{

a′
e if e ∈ T ,

1 − max{a′
u, a′

v} if e = (u, v) ∈ MM(G) ∩ EB
. (3)

Intuitively, once the subgraph EA is given to Alice, we immediately commit her fractional
matching a′ to the final fractional matching x. Then, after the subgraph EB of Bob is
revealed, on any edge e = (u, v) ∈ MM(G) ∩ EB, we set xe = 1 − max{a′

u, a′
v} which is

the largest possible fractional value that does not violate its endpoints’ fractional matching
constraints due to a′.

In what follows, for any choice of EA, we lower-bound the ratio E[|x| | EA] to E[µ(G) |
EA] which implies the approximation ratio of our protocol. We emphasize that x is only
constructed for the analysis and in the protocol, Bob simply returns a maximum matching
of T ∪ EB .

Consider a maximum matching edge uv which belongs to the input of Bob, i.e. uv ∈
MM(G) ∩ EB and suppose that a′

v > a′
u. Observe that in x, we set xuv = 1 − max{a′

u, a′
v} =

1 − a′
v. In this case, we say that vertex v is responsible for edge uv. Based on this, we define2:

bv := Pr[∃uv ∈ MM(G) ∩ EB such that a′
v > a′

u | EA], (4)

i.e., bv is the probability that v is responsible for some edge. We first bound the size of
MM(G) based on the values av and bv.

▷ Claim 4. E[µ(G) | EA] =
∑

v
1
2 av + bv.

Proof. We claim that,
(i) E[|MM(G) ∩ EA| | EA] = 1

2
∑

v av: by the definition of av in Eq (2) and the fact that
the number of vertices matched in any matching is twice the size of the matching;

(ii) E[|MM(G) ∩ EB | | EA] =
∑

v bv: since each responsible vertex has an edge in MM(G) ∩
EB and for each such edge, exactly one of its neighbors is responsible.

The claim now follows by adding up the two equations above. ◁

2 In case of ties, we break ties arbitrarily so that only one vertex is responsible for an edge.

APPROX/RANDOM 2021
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We now also bound the size of x based on av and bv values.

▷ Claim 5. For any vertex v, define gv := 1
2 av + (1 − av)bv. Then, E[|x| | EA] =

∑
v gv.

Proof. By definition,∑
v

gv =
∑

v

( 1
2 av + (1 − av)bv) = |a| +

∑
v

(1 − av)bv.

The first term |a| in the sum corresponds to the part of fractional matching x constructed
on the edges T sent by Alice, using the fractional matching a′, where we have |a′| = |a|
by Lemma 2.

It thus remains to prove that contribution of x on the remaining edges (i.e. those given
to Bob in MM(G) ∩ EB), has expected size

∑
v(1 − av)bv. This follows from the fact that

each vertex v is responsible for some edge uv ∈ MM(G) ∩ EB with probability bv by Eq (4),
and that when this happens, we set xuv = 1 − a′

v = 1 − av (as a′
v = av for all v by Lemma 2).

Noting that exactly one of the endpoints of each edge e ∈ MM(G) ∩ EB is responsible for
it, we get that x on the set of edges given to Bob has expected size exactly

∑
v(1 − av)bv,

completing the proof. ◁

Claims 4 and 5 imply that the approximation factor of Algorithm 1 is

E[|x| | EA]
E[µ(G) | EA] =

∑
v gv∑

v
1
2 av + bv

. (5)

To lower bound this ratio, we use Fact 6 below.3

▶ Fact 6. For all a, b ≥ 0 satisfying a + b ≤ 1, it holds that 0.5a+(1−a)b
0.5a+b ≥ 4

√
2 − 5.

Now to use Fact 6 to lower bound the approximation factor, first recall that for each
vertex v, by the definition of av and bv in Eq (2) and (4), we have,

av + bv ≤ Pr[v is matched in MM(G) ∩ EA | EA] + Pr[v is matched in MM(G) ∩ EB | EA]

= Pr[v is matched in MM(G) | EA] ≤ 1.

Thus, we can apply Fact 6 and get that for each vertex v, gv

0.5av+bv
= 0.5av+(1−av)bv

0.5av+bv
≥ 4

√
2−5.

This implies that

E[|x| | EA]
E[µ(G) | EA]

(5)=
∑

v gv∑
v

1
2 av + bv

≥
∑

v(4
√

2 − 5)( 1
2 av + bv)∑

v
1
2 av + bv

= 4
√

2 − 5,

which proves Proposition 3 that Algorithm 1 achieves a (4
√

2 − 5)-approximation.

▶ Remark 7. There are distributions for which the inequality above is actually equality.
That is, we have E[|x| | EA] = (4

√
2 − 5)E[µ(G) | EA]. Therefore, this analysis based on

the construction of fractional matching x cannot show an approximation factor better than
(4

√
2 − 5) for this protocol.
That being said, by “scaling” the fractional matching a of Alice before sparsifying it, one

can in fact achieve a (2/3)-approximation which is optimal for adversarial partitions with
O(n) communication [25]. We use this scaling idea in our protocol in Section 4.

3 Mathematica can verify Fact 6; see e.g., this page on WolframAlpha.

https://www.wolframalpha.com/input/?i=Minimize%5B%7B%280.5a+%2B+%281-a%29*b%29%2F%280.5a+%2B+b%29%2C+0+%3C%3D+a%2C+0+%3C%3D+b%2C++a%2Bb+%3C%3D+1%7D%2C+%7Ba%2C+b%7D%5D
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4 A 0.7167-Approximation Under Random Partitions

In this section, we show that a properly “scaled” variant of our distribution-dependent sparsi-
fier of Section 3 – formalized as Algorithm 2 – achieves a significantly better approximation
factor of 0.7167 in expectation, under a random partitioning of the edges between the players.

▶ Theorem 8. There is a deterministic one-way protocol that given any arbitrary but known
distribution G of input graphs, and a graph G sampled from G partitioned randomly between
Alice and Bob, outputs a matching M(G) in G such that E |M(G)| ≥ 0.7167 · E[µ(G)]. The
protocol requires communicating at most n − 1 edges from Alice to Bob.

4.1 The Protocol
Recall from our Algorithm 1 in Section 3 that Alice, given her subgraph EA, first defines a
fractional matching a on EA where for each edge e ∈ EA, ae = PrG∼G [e ∈ MM(G) | EA],
and then applies cycle canceling on a and sends the support of the resulting fractional
matching a′ to Bob. Our protocol in this section is very similar, except that instead of
applying cycle-canceling on a, we first “scale” a to obtain another fractional matching z and
then send the support of cycle-canceled version z′ of z to Bob. To be more precise about
what we mean by scaling a, let us define:

h(x, y) := min
{

3
2 ,

1
x

,
1
y

}
. (6)

Now for each edge e = (u, v) ∈ EA we define

ze := h(av, au) · ae. (7)

Noting that a is a fractional matching, we get that av ≤ 1, au ≤ 1, which implies h(au, av) ≥ 1
and thus ze ≥ ae. This means that indeed z = {ze}e∈EA is entry-wise larger than a. But
can this scaling violate fractional matching constraints, i.e., for some v, zv :=

∑
e∋v ze > 1?

As a simple consequence of our definition of function h, it turns out that indeed z is still a
fractional matching.

▶ Observation 9. Let z be obtained as above, then z is a fractional matching of EA.

Proof. It is clear that z ≥ 0 since ze ≥ ae ≥ 0 for each edge e. To see why zv ≤ 1 for all
v, observe that for each edge e = (u, v), ze = h(au, av)ae ≤ 1

av
ae; hence zv ≤ 1

av

∑
e∋v ae =

av/av = 1. ◀

Note that the proof of Observation 9 only uses h(x, y) ≤ min{ 1
x , 1

y }. The reason that we
defined h to be min{ 3

2 , 1
x , 1

y } will be apparent later when analyzing the approximation.
Our scaled protocol can thus be formalized as follows.
Since the support of z′ has n − 1 edges, Algorithm 2 only requires communicating n − 1

edges. It thus only remains to analyze its approximation ratio.

4.2 The Analysis of Algorithm 2
As in Section 3, to analyze the size of matching MM(T ∪ EB) reported by Bob, we construct
a large fractional matching x on T ∪ EB and then use the fact that the maximum matching
of this graph is at least as large as any fractional matching on it. Our construction of this
fractional matching x is also in fact the same as our construction in Section 3 with the
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48:10 On the Robust Communication Complexity of Bipartite Matching

Algorithm 2 A scaled distribution-dependent sparsifier protocol.

(i) Given edges EA as input to Alice, she computes the vector a = {ae}e∈EA

using Eq (1).
(ii) Alice then constructs z = {ze}e∈EA using Eq (7); by Observation 9 z is a valid

fractional matching of EA.
(iii) Alice obtains a fractional matching z′ by running cycle canceling on z (Lemma 2)

and then sends the edges T in the support of z′ to Bob.
(iv) Bob, given message T from Alice and input EB , returns a maximum matching of

T ∪ EB .

difference that we first commit the sparsified version z′ of the scaled fractional matching z to
x. More formally, we have:

xe :=
{

z′
e if e ∈ T ,

1 − max{z′
u, z′

v} if e = (u, v) ∈ MM(G) ∩ EB
.

To analyze the size of x, we need a few definitions. Definition 11 below for bv is equivalent
to the definition of bv in Section 3, but instead of vector a, for each edge e ∈ MM(G) ∩ EB

the vertex with higher z is made responsible. To be more formal and to avoid ties (for pairs
of vertices with zu = zv) we first define an ordering over the vertices in Definition 10 below
and then define bv.

▶ Definition 10. Based on fractional matching z, we define a total ordering over the vertex
set V as follows. For any pair of vertices u and v with zu ≠ zv, we say v ≻ u if zv > zu. For
pairs u, v with zv = zu we break the tie arbitrarily; say v ≻ u if the ID of v is larger than u.

▶ Definition 11. For each vertex v, define bv := Pr[∃u : uv ∈ MM(G)∩EB and v ≻ u | EA].

Based on this definition of bv and similar to Claim 4 of Section 3, we get that:

▷ Claim 12. E[µ(G) | EA] =
∑

v
1
2 av + bv.

Proof. Follows from the same argument in the proof of Claim 4. ◁

The next step is where we start to substantially deviate from the analysis of Section 3.
We first give an informal explanation of why a different approach might be needed to analyze
Algorithm 2 (the reader may choose to skip this informal explanation and jump to the new
analysis after). After that, we formally describe our actual analysis which is based on a
notion of “contribution sharing”.

Informal explanation: why a different analysis is needed. In Claim 5 of Section 3 we
showed E[|x| | EA] =

∑
v

1
2 av +(1−av)bv, implying intuitively that each vertex v contributes

an expected size of gv = 1
2 av + (1 − av)bv to x. We then proved the claimed approximation

ratio by comparing this contribution gv of each vertex v with 1
2 av + bv, which can be thought

of as the portion of the benchmark E[µ(G) | EA] =
∑

v
1
2 av + bv charged to vertex v.

A straightforward generalization of this framework for analyzing Algorithm 2 would
be as follows: It is not hard to see that E[|x| | EA] =

∑
v

1
2 zv + (1 − zv)bv (the proof

follows from a similar argument to Claim 5); thus it suffices to show that the contribution
gv = 1

2 zv +(1−zv)bv of each vertex is large compared to the portion 1
2 av + bv of the optimum

charged to this vertex. The problem with this type of argument, however, is that it is hard
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to measure exactly how the scaling part of Algorithm 2 is useful. In particular, take a vertex
v and suppose that for every neighbor u of v in EA, it holds that au = 1. This way, for each
edge e = (v, u) ∈ EA we would have h(av, au) = 1 and thus ze = h(av, au)ae = ae. That is,
the edges of vertex v are in fact not scaled at all. This would mean that zv = av and thus
gv = 1

2 zv + (1 − zv)bv = 1
2 av + (1 − av)bv, which is not any different from the guarantee we

would get for vertex v without any scaling.
The issue discussed above intuitively implies that in defining the contribution gv of each

vertex, not only we should take into account the values of zv and bv, but that in fact the
values of au for neighbors u of v are also important. Motivated by this, we define gv such
that intuitively we share the contribution of each vertex with its neighbors. That is, each
vertex passes a portion of its contribution to its neighbors, and as a result also receives
a portion of the contribution of them. This dynamic allows us to argue that scaling does
indeed help our protocol.

The formal analysis via “contribution sharing”. Consider function ℓ(x) defined as

ℓ(x) := max
{

x − 2/3

6 , 0
}

. (8)

This function ℓ is the sharing function and the reason that is defined this way will be apparent
later in the analysis. For each vertex v, define

gv := 1
2zv + (1 − zv)bv − ℓ(av)av +

∑
u

ℓ(au)auv. (9)

The following lemma whose proof is deferred to the full version, states that the expected
size of fractional matching x conditioned on EA, is equal to

∑
gv. Therefore, intuitively, we

can think of gv as the amount that vertex v contributes to the size of x in expectation.4

▶ Lemma 13. E
[
|x| | EA

]
=

∑
v gv.

To show that x tends to be large, Lemma 13 above implies that it suffices to show gv is
large. The next definition and the lemma that follows it are used for this purpose.

▶ Definition 14. Let a, b ∈ [0, 1]. We define:

f(a, b, x) := b +
(( 1

2 − b
)
h(a, x) + ℓ(x) − ℓ(a)

)
· a and f(a, b) := min

x∈[0,1]
f(a, b, x),

▶ Lemma 15. For any vertex v, it holds that gv ≥ f(av, bv).

The proof of Lemma 15 is also deferred to the full version due to space constraints. This
lower bound is particularly useful since f(av, bv) only depends on the values of av and bv,
whereas gv also depends on au of neighbors u of v. Having this, if we in fact prove that
f(av, bv) ≥ α( 1

2 av + bv) for all v, then we get that Algorithm 2 achieves an approximation
ratio of at least α since

E[|x| | EA]
E[µ(G) | EA]

Claim 12, Lemma 13=
∑

v
gv∑

v
1
2 av + bv

Lemma 15
≥

∑
v

f(av, bv)∑
v

1
2 av + bv

≥
∑

v
α( 1

2 av + bv)∑
v

1
2 av + bv

≥ α.

4 We note that in fact Lemma 13 holds for any possible definition of function ℓ. That is, in the proof of
Lemma 13, we do not use the value of ℓ(x) defined in Eq (8).
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Note that up to this point of the analysis, we have not used the fact that the edges
are partitioned randomly between Alice and Bob. Therefore, in light of the lower bound
of [25] which proves achieving a better-than-(2/3)-approximation for requires n1+Ω(1/log log n)

communication, we get that Algorithm 2 cannot achieve a better-than-(2/3)-approximation
under an adversarial partitioning of the input graph. As a result, there should be a choice of
av, bv such that f(av, bv) ≤ 2

3 ( 1
2 av + bv). Indeed one can confirm that for av = 1

2 and bv = 1
2 ,

f( 1
2 , 1

2 ) = f( 1
2 , 1

2 , 0) = 0.5 = 2
3 ( 1

2 av + bv).

How random partitioning helps. Our main insight in bypassing the 2/3-barrier highlighted
above is that for an average vertex v, it cannot always occur that av = bv = 1

2 under a
random partitioning. Formally, for a vertex u chosen uniformly at random from V ,

Eu∼V [au] = 1
n

∑
v

E[av] = 2
n

E|a| = 2
n

E|MM(G) ∩ EA| (⋆)= 2
n

· E[µ(G)]
2 = 1

n
E[µ(G)],

Eu∼V [bu] = 1
n

∑
v

E[bv] Definition 11= 1
n

E|MM(G) ∩ EB | (⋆)= 1
n

· E[µ(G)]
2 = 1

2n
E[µ(G)],

where the equalities marked with (⋆) use the fact that each edge is given to Alice/Bob with
probability 1/2. This implies that E[au] = 2E[bu] which formalizes our earlier claim that
au = bu = 1

2 cannot always happen for an average vertex u.
To turn the intuition above into an actual analysis of the approximation factor for

Algorithm 2 under a random partitioning, we write a factor revealing program formalized
as Program 1. We prove that the solution to Program 1 is indeed a lower bound for the
approximation ratio of Algorithm 2. The proof can be found in the full version of the paper
and is based on our intuition above regarding the relation between E[au] and E[bu] for a
vertex u chosen at random.

We note that for generality Program 1 is written with a parameter p which is 1/2 (more
generally p can be thought of as the probability that each edge is given to Alice).

▶ Lemma 16. Let r be the solution of Program 1 below for p = 1
2 ; then E|x| ≥ r · E[µ(G)].

▶ Program 1. A factor revealing (non-linear) program for the performance of Algorithm 2.

find a distribution S for (a, b) over [0, 1] × [0, 1]
minimizing ES [f(a, b)]/ES [ 1

2 a + b]
subject to ES [a] = 2p

1−p ES [b]
PrS [a + b ≤ 1] = 1
PrS [a, b ≥ 0] = 1

In order to find the solution of Program 1, we simplify it and then write a factor revealing
LP, showing that r ≥ 0.7167 which implies the same bound on the approximation ratio of
Algorithm 2. Due to space limits, we omit the details of this step, referring interested readers
to the full version of the paper.

5 Lifting Knowledge of Distribution via Minimax Theorems

As discussed before, our protocol of Section 4 achieves its claimed approximation guarantee
assuming that the input graph G is drawn from some distribution G that is known to the
algorithm a priori. In the standard communication complexity model, however, we do not have
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access to distribution G and the algorithm should work against every possible input graph. In
this section, we show how one can use minimax theorems to lift the assumption on knowledge
of the distribution G in our protocols, without incurring any loss to the approximation
guarantee. The following theorem formalizes our main result in the Introduction.

▶ Theorem 17. There is a randomized one-way protocol that given any arbitrary input graph
G partitioned randomly between Alice and Bob, outputs a matching M(G) in G such that
E |M(G)| ≥ 0.716 · µ(G). The protocol requires O(n) communication from Alice to Bob.

Consider a deterministic protocol A and let us use A(GA, GB) to denote the size of the
matching returned by the protocol A when Alice receives subgraph GA and Bob receives
subgraph GB. Recall that in our discussion of Section 4, we say protocol A obtains an
α-approximation if

E
G∼G,(GA,GB)

[A(GA, GB)] ≥ α · E
G∼G

[µ(G)], (10)

where here and throughout this section, by subscript (GA, GB) we mean the random process
of partitioning the edges of G into GA and GB independently and uniformly at random.
This guarantee is inherently different from that of Theorem 17. In the following, we first
show how one can remedy this part and then give the argument for lifting the assumption
on the knowledge of G.

Step 1: Getting an Instance-Wise Approximation Guarantee. In order to remove the
assumption on the knowledge of the distribution G we first show that we can slightly modify
our protocols to get an instance-wise expected approximation guarantee.

▶ Lemma 18. Suppose that given any input distribution G on n-vertex graphs, there is an α-
approximate maximum matching protocol A (i.e., A satisfies Eq (10)) with communication cost
O(n). For any input distribution G and any parameter ε > 0, there is another deterministic
protocol A′ with communication cost O( n

ε ) such that

E
G∼G,(GA,GB)

[
A′(GA, GB)/µ(G)

]
≥ (1 − ε − o(1)) · α.

Due to space constraints, we omit the proof of Lemma 18. However, we note that it is
easy to prove if one allows O(n log n/ε) communication instead of O(n/ε). To see this, note
that if distribution G was such that µ(G) was the same in all outcomes of G, then Lemma 18
would be trivial. Therefore, one can make O(log n/ε) geometrically increasing guesses for the
value of µ(G), condition on each separately, and run protocol A on them in parallel. In the
full version of the paper, we show how one can avoid the extra O(log n) factor and achieve
this with just O(n/ε) communication.

Step 2: Using Yao’s Minimax. Now that we have an instance-wise approximation guarantee
using Lemma 18, we show how one can use Yao’s minimax principle [41] to give a single
randomized protocol that works against all possible input graphs without knowledge of the
distribution G from which the graph is drawn. The discussion of this section is essentially a
straightforward extension of Yao’s minimax principle [41] (see, e.g., [38, Section 2.2] or [36])
for the random partition model. The proof of this proposition is almost identical to that of
the original Yao’s minimax principle and we claim no novelty for this proof.

▶ Proposition 19. Let C and α be two parameters. Suppose for every distribution G on
n-vertex graphs, there exists a deterministic protocol AG with communication cost C with an
instance-wise approximation guarantee EG∼G,(GA,GB)∼G

[
AG(GA, GB)/µ(G)

]
≥ α where here
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(GA, GB) is a random partitioning of G. Then, there exists a randomized protocol A⋆ with
communication cost C such that for every graph G, EA⋆,(GA,GB)∼G[A⋆(GA, GB)] ≥ αµ(G),
where the expectation here is taken over both the randomness of the protocol and the random
partitioning of the edge-set of G between the players.

Proof. Consider a game between two players called the Input player and the Algorithm
player. The set of strategies of the Input player are all bipartite graphs on n vertices, denoted
by G(n), and the set of strategies of the Algorithm player are all deterministic one-way
protocols with communication cost C, denoted by P(C); for fixed n and C, both sets are
finite.

For any graph G ∈ G(n) as a strategy of the Input player and deterministic protocol
A ∈ P(C) as the strategy of the Algorithm player, we define:

val(G, A) := E
(GA,GB)∼G

[
A(GA, GB)/µ(G)

]
.

On a choice of (pure) strategies G and A by the players, we define the payoff of the Algorithm
player as val(G, A) and for the Input player as −val(G, A). Alternatively, the Algorithm
player would like to maximize val(G, A) (by choosing A), while the Input player tries to
minimize it (by choosing G). Thus, this is a zero-sum game.

Let ∆G denote the set of all distributions on strategies (graphs) of the Input player and
∆P denote the set of all distributions on strategies (deterministic protocols) of the Algorithm
player. This way, ∆G and ∆P denote the set of all mixed strategies for the Input player
and Algorithm player, respectively. Considering this is a zero-sum game, Von Neumann’s
Minimax Theorem asserts that,

min
G∈∆(G)

max
A∈P(C)

E
G∼G

[val(G, A)] = max
AR∈∆P

min
G∈G(n)

E
A∼AR

[val(G, A)].

Replacing the value of val(G, A) with its definition on both sides, we have

min
G∈∆(G)

max
A∈P(C)

E
G,(GA,GB)

[
A(GA, GB)

µ(G)

]
= max

AR∈∆P

min
G∈G(n)

E
A∼AR,(GA,GB)

[
A(GA, GB)

µ(G)

]
.

(11)

The LHS in Eq (11) corresponds to picking any possible distribution on inputs and then
running the “best” deterministic protocol on this distribution and measuring the instance-wise
expected approximation ratio of the protocol. Thus, by the statement of the proposition, the
LHS is ≥ α.

The RHS in Eq (11) corresponds to picking any distribution over deterministic protocols,
i.e., a (public-coin) randomized protocol, and then running this protocol on the “worst” input
graph and measure the expected ratio of the protocol. By the lower bound on LHS and
Eq (11), this is at least α, which means that there exists a randomized protocol A⋆ with
communication cost C (the arg max of RHS in Eq (11)) that achieves an α-approximation
in expectation for every input graph partitioned randomly between Alice and Bob. This
concludes the proof. ◀

Theorem 17 now follows immediately from Theorem 8, Lemma 18 and Proposition 19.
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