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Abstract
In this work, we present an abstract framework for some algebraic error-correcting codes with the
aim of capturing codes that are list-decodable to capacity, along with their decoding algorithm. In
the polynomial ideal framework, a code is specified by some ideals in a polynomial ring, messages
are polynomials and their encoding is the residue modulo the ideals. We present an alternate way of
viewing this class of codes in terms of linear operators, and show that this alternate view makes
their algorithmic list-decodability amenable to analysis.

Our framework leads to a new class of codes that we call affine Folded Reed-Solomon codes
(which are themselves a special case of the broader class we explore). These codes are common
generalizations of the well-studied Folded Reed-Solomon codes and Univariate Multiplicity codes,
while also capturing the less-studied Additive Folded Reed-Solomon codes as well as a large family
of codes that were not previously known/studied.

More significantly our framework also captures the algorithmic list-decodability of the constituent
codes. Specifically, we present a unified view of the decoding algorithm for ideal-theoretic codes
and show that the decodability reduces to the analysis of the distance of some related codes. We
show that good bounds on this distance lead to capacity-achieving performance of the underlying
code, providing a unifying explanation of known capacity-achieving results. In the specific case
of affine Folded Reed-Solomon codes, our framework shows that they are list-decodable up to
capacity (for appropriate setting of the parameters), thereby unifying the previous results for Folded
Reed-Solomon, Multiplicity and Additive Folded Reed-Solomon codes.
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1 Introduction

Reed-Solomon codes are obtained by evaluations of polynomial of degree less than k at
n distinct points in a finite field F. Folded-Reed-Solomon (FRS) codes are obtained by
evaluating a polynomial at sn (carefully chosen) points that are grouped into n bundles of
size s each, and then viewing the resulting sn evaluations as n elements of Fs. Multiplicity
codes are obtained by evaluating the polynomial, and s − 1 of its derivatives and again
viewing the resulting sn evaluations as n elements of Fs.

This “bundling” (or folding, as it is called for FRS codes) in FRS codes and Multiplicity
codes may be viewed at best as a harmless operation – it does not hurt the rate and (relative)
distance of a code which is already optimal in these parameters. But far from merely
being harmless, in the context algorithmic list-decoding, bundling has led to remarkable
improvements and to two of the very few explicit capacity achieving codes in the literature.
Indeed the only other codes that achieve list-decoding capacity algorithmically and do not
use one of the above codes as an ingredient are the Folded Algebraic-Geometric codes, which
also use bundling. Despite this central role, the bundling operation is not well-understood
algebraically. Indeed it seems like an “adhoc” operation rather than a principled one.
Unearthing what bundling is and understanding when and why it turns out to be so powerful
is the primary goal of this work, and we make some progress towards this.

Turning to the algorithms for list-decoding the above codes close to capacity, there are
two significantly different ones in the literature. A (later) algorithm due to Guruswami and
Wang [6]1 which seems more generalizable, and the original algorithm of Guruswami and
Rudra [3] which is significantly more challenging to apply to multiplicity codes (see [9]). In
both cases, while the algorithm for FRS works in all (reasonable) settings, the algorithms for
multiplicity codes only work when the characteristic of the field is larger than the degrees of
the polynomials in question. Looking more closely at FRS codes, part of the careful choice of
bundling in FRS codes is to pick each bundle to be a geometric progression. If one were to
switch this to an arithmetic progression, then one would get a less-studied family codes called
the Additive-FRS. It turns out the Additive-FRS codes are also known to be list-decodable
to capacity but only via the original algorithm. Thus, the short summary of algorithmic
list-decoding is that there is no short summary! Algorithms tend to work but we need to
choose carefully and read the fine print.

The goal of this paper is to provide a unifying algebraic framework that (a) captures
bundling algebraically, (b) captures most of the algorithmic success also algebraically, leaving
well-defined parts for combinatorial analysis and (c) leads to new codes that also achieve
capacity. In this work we use basic notions from linear algebra and polynomial rings to present
a unifying definition (see Definitions 3.1 and 4.4) that captures the codes very generally, and
also the decoding ability (see Theorem 1.1). We elaborate on these below.

Polynomial ideal codes

Our starting point is what we term “polynomial ideal codes”. A polynomial ideal code over a
finite field F and parameters k, s is specified by n pairwise relatively prime monic polynomials
E0(X), . . . , En−1(X) ∈ F[X]of degree equal to s.2 The encoding maps a message p ∈ Fk

1 We note that the Guruswami-Wang algorithm is inspired by an idea due to Vadhan [12, Theorem 5.24]
that shows that it suffices to interpolate a polynomial Q which is linear in the y-variables. However,
the algorithm from [12] is not applicable to our setting since it uses polynomial factorization as well as
analysis tools that are specific to Reed-Solomon codes. The further simplifications developed in [6] are
key to the applicability in our setting.

2 Here F[X] refers to the ring of univariate polynomials in the variable X over the field F while F<k[X]
refers to the vector-space of polynomials in F[X] of degree strictly less than k.
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(interpreted as a polynomial of degree less than k) to n symbols as follows:

F<k[X] −→ (F<s[X])n

p(X) 7−→ (p(X) (mod Ei(X)))n−1
i=0

The codes described above, Reed-Solomon, FRS, Multiplicity and Additive-FRS, are all
examples of polynomial ideal codes. For Reed-Solomon codes, this is folklore knowledge:
the evaluation point ai corresponds to going mod Ei(X) = (X − ai). For any bundling of
the Reed-Solomon codes this follows by taking product of the corresponding polynomials.
For multiplicity codes of order s, the evaluation of a polynomial and its derivatives at ai

corresponds to going modulo Ei(X) = (X − ai)s.
The abstraction of polynomial ideal codes is not new to this work. Indeed Guruswami,

Sahai and Sudan [4, Appendix A] already proposed these codes as a good abstraction of
algebraic codes. Their framework is even more general, in particular they even consider
non-polynomial ideals such as in Z. They suggest algorithmic possibilities but do not flesh
out the details. In this work we show that polynomial ideal codes, as we define them, are
indeed list-decodable up to the Johnson radius. We note that the proof involves some steps
not indicated in the previous work but for the most part this confirms the previous thinking.

The abstraction above also captures “bundling” (or folding) nicely - we get them by
choosing Ei(X) to be a product of some Eij(X). But the above abstraction thus far fails to
capture the capacity-achieving aspects of the codes (i.e., the benefits of this bundling) and
the decoding algorithms. This leads us to the two main novel steps of this paper:

We present an alternate viewpoint of polynomial ideal codes in terms of linear operators.
We abstract the Guruswami-Wang linear-algebraic list-decoding algorithm in terms of
linear operators.

The two sets of “linear operators”, in the codes and in the decoding algorithm, are not
the same. But the linearity of both allows them to interact nicely with each other. We
elaborate further below after introducing them.

Linear operator codes

In this work, a linear operator is an F-linear function L : F[X] → F[X]. A linear operator code
is characterized by a family of linear operators L = (L0, . . . , Ls−1), a set A = {a0, . . . , an−1} ⊆
F of evaluation points and k a degree parameter such that k ≤ s · n. The corresponding
linear operator code, denoted by LOA

k (L), is given as follows:

F<k[X] −→ (Fs)n

p(X) 7−→ (L(p)(ai))n−1
i=0

Linear operator codes easily capture polynomial ideal codes. For instance, the multiplicity
codes are linear operator codes wherein the linear operators are the successive derivative
operators. But they are also too general – even if we restrict the operators to map F<k[X]
to itself, an operator allows k2 degrees of freedom.

We narrow this broad family by looking subfamilies of linear operators and codes. The
specific subfamily we turn are what we call “ideal linear operators”. We say that linear
operators L0, . . . , Ls−1 are ideal linear operators with respect to a set A of evaluation points
if for every a ∈ A, the vector space

Ia(L) = {p ∈ F[X] | L(p)(a) = 0̄}

APPROX/RANDOM 2021
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is an ideal. (When the set of evaluation points is clear from context, we drop the phrase
“with respect to A”.) Linear operator codes corresponding to ideal linear operators are called
ideal linear operator codes (see Definitions 4.1 and 4.4 for precise definitions).

It is not hard to see that a family of linear operators L = (L0, . . . , Ls−1) has the ideal
property if is satisfies the following linearly-extendibility property: There exists a matrix
M(X) ∈ F[X]s×s such that for all p ∈ F[X] we have

L(X · p(X)) = M(X) · L(p(X)).

This motivates yet another class of linear operators and code: We say that an operator family
L is a linearly-extendible linear operator if such a matrix M(X) exists and the resulting code
is said to be a linearly-extendible linear operator code (see Definitions 4.2 and 4.4 for precise
definitions).

It turns out that these three definitions of codes – polynomial ideal codes, ideal linear
operator codes and linearly-extendible linear operator codes – are equivalent (see Propo-
sitions 4.6 and 4.8 and Corollary 4.9). And while the notion of polynomial ideal codes
captures the codes mentioned thus far naturally, the equivalent notion of linearly-extendible
codes provides a path to understanding the applicability of the linear-algebraic list-decoding
algorithm of Guruswami and Wang.

While it is not the case that every linearly-extendible linear operator code (and thus
every polynomial ideal code) is amenable to this list-decoding algorithm, it turns out that
one can extract a nice sufficient condition on the linear-extendibility for the algorithm to be
well-defined. This allows us to turn the question of list-decodability into a quantitative one –
how many errors can be corrected. And the linear operator framework now converts this
question into analyzing the rank of an associated matrix.

The sufficient condition we extract is the following: we say that an operator L : F[X] →
F[X] is degree-preserving if degX(Lf) ≤ degX(f) for all f ∈ F[X]. Observe that any
degree-preserving linear operator when restricted to F<k[X] can be represented by an upper-
triangular matrix in Fk×k. A family of linear operators obtained by repeated iteration,
L = (I = L0, L = L1, L2, . . . , Ls−1) is called an iterative family. We associate with any
degree-preserving family L = (L0, . . . , Ls−1) of linear operators a simple matrix in Fs×k

called Diag(L), whose ith row is the diagonal of Li and consider the code in Fk generated by
Diag(L).

The following theorem now shows that for any degree-preserving iterative linearly-
extendible operator codes, lower bound on the distance of Diag(L) yields an upper bound on
the list size obtained by the Guruswami-Wang algorithm, even when the number of errors
approaches (1 − rate) of the code.

▶ Theorem 1.1. Suppose L : F[X] → F[X] is a degree-preserving linear operator and A a
set of evaluation points such that for L = (L0, L1, . . . , Ls−1) the corresponding code C is a
linearly-extendible linear operator code. Furthermore, if the matrix Diag(L) ∈ Fs×k formed
by stacking the diagonals of the s linear operators as the rows is the generator matrix of a
code with distance 1 − ℓ

k , then, C is list-decodable up to the distance 1 − k
(s−m+1)n − 1

m with
list size qℓ for any 1 ≤ m ≤ s.

We remark that our actual theorem is more general (see Theorem 5.2) where we further
separate the role of linear operators used to build the code, from those that seed the decoding
algorithm. But it immediately implies Theorem 1.1 above, which in turn already suffices to
capture the capacity achieving decodability of FRS, multiplicity and additive-FRS codes.
Regarding the aspect of the need to lower bound the distance of the code generated by
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Diag(L), to bound the list size of the codes, we stress that for each of these codes the lower
bound on the distance follows from fairly simple arguments. Indeed the generality of the
arguments allows us to capture broader families of codes uniformly, as described next.

A Common Generalization

Our framework leads very naturally to a new class of codes that we call the Affine Folded Reed-
Solomon (Affine-FRS) codes: these are codes defined by ideals of the form

∏s−1
i=0 (X − ℓ(i)(a))

where ℓ(z) = αz + β is any linear form and ℓ(i)(z) = ℓ(ℓ . . . ℓ(z) . . . )︸ ︷︷ ︸
i times

. These codes generalize

all the previously considered codes: The case ℓ(z) = γz are the FRS codes, the case ℓ(z) = z

are the Multiplicity codes, and the case ℓ(z) = z + β are the Additive FRS codes!

▶ Theorem 1.2 (Informal statement – see Theorem A.8). Let ℓ be any linear form such that
either ord(ℓ) ≥ k or (char(F) ≥ k and β ̸= 0) 3. Then the Affine-FRS codes corresponding to
the linear form ℓ are list-decodable up to capacity.

Previously, even for the special case of the Additive FRS codes, list-decodability close to
capacity was only achieved by the more involved algorithm of Guruswami & Rudra [3] and
Kopparty [9] (see paragraph on Additive Folding and Footnote 4 in [2, Section III]). (A
similar approach can be extended to cover the case of ord(ℓ) ≥ k in Theorem 1.2: however,
it seems difficult to do so for the case when ord(ℓ) is small.)

Thus, our Affine-FRS codes lead to the first common abstraction of the three codes as
well as the first common algorithm for solving the list-decoding problem for these codes.
(Furthermore, this algorithm is linear-algebraic.)‘ Arguably thus, even if the Affine-FRS
codes had been studied previously, it is not clear that the ability to decode them for every
choice of ℓ(z) would be obvious.

Organization
The rest of the paper is organized as follows. We begin with some preliminaries in Section 2.
We then formally define polynomial ideal codes and linear operator codes in Sections 3 and 4
respectively. In Section 5, we discuss list-decoding algorithms for polynomial ideal codes.
We first present the list-decoding algorithm for all polynomial ideal codes up to the Johnson
radius in Section 5.1 and then the list-decoding algorithm beyond the Johnson radius for
special families of linear operator codes in Section 5.2. Finally, we conclude by demonstrating
how these results can be used to show that several well-known families of codes (Folded
Reed-Solomon, multiplicity, additive Folded Reed-Solomon codes) as well as their common
generalization affine folded Reed-Solomon achieve list-decoding capacity in Appendix A.

Throughout the paper, we skip the proofs of various claims due to space constraints. We
refer the interested reader to the full version of the paper [1] for the complete proofs.

2 Notations and Preliminaries

We start with some notations that we follow in the rest of this paper.
For a natural number n, [n] denotes the set {0, 1, . . . , n − 1}.
F denotes a field.

3 ord(ℓ) refers to the smallest positive integer u such that ℓ(u)(z) = z.

APPROX/RANDOM 2021
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For a, b, i, j ∈ Z, where a, b, i, j ≥ 0 the bivariate monomial XiY j is said to have (a, b)-
weighted degree at most d if ai + bj ≤ d. N(a, b) denotes the number of bivariate
monomials of (1, a)-weighted degree at most b.
For a, b ∈ Z, a bivariate polynomial Q(X, Y ) is said to have (a, b)-weighted degree at
most d, if it is supported on monomials of (a, b)-weighted degree at most d.
We say that a function f(n) : N → N is poly(n), if there are constants c, n0 ∈ N such that
for all n ≥ n0, f(n) ≤ nc.
F[X] is the ring of univariate polynomials with coefficients in F, and for every k ∈ N,
F<k[X] denotes the set of polynomials in F[X] of degree strictly less than k.
For a multivariate polynomial f(X0, X1, . . . , Xn−1) ∈ F[X0, X1, . . . , Xn−1], degXi

(f)
denotes the degree of f , when viewing it as a univariate in Xi, with coefficients in the
polynomial ring on the remaining variables over the field F.

Estimates on N(a, b)

We rely on the following simple lemma to estimate the number of bivariate monomials with
(1, a)-weighted degree at most b. See the full version [1] for the proof.

▶ Lemma 2.1. For every a, b ∈ N, let N(a, b) denote the number of bivariate monomials
with (1, a)-weighted degree at most b. Then, the following are true.
1. N(a − 1, b) ≥ b2/2a.
2. For every η ∈ N, if a divides b, then

N(a, b) − N(a, b − aη) − η(b − aη + 1) = aη(η + 1)/2 .

Johnson radius

▶ Theorem 2.2 (List decoding up to Johnson radius). Let q ∈ N be a natural number. Any
code with block length n and relative distance δ over an alphabet of size q is (combinatorially)
list decodable from (1 −

√
(1 − δ)) fraction of errors with list size at most n2qδ.

We have the following bound for codes, referred to popularly as the Singleton bound [11],
though the bound appears earlier in the works of Joshi [7] and Komamiya [8].

▶ Theorem 2.3 (Komamiya-Joshi-Singleton bound). The rate R and the relative distance δ

of a code satisfy R + δ ≤ 1 + o(1).

In particular, for codes which lie on the Komamiya-Joshi-Singleton bound, we have that they
are combinatorially list decodable from 1 −

√
R − o(1) fraction errors with polynomial list

size.

List-decoding upto capacity

▶ Definition 2.4 (List-decoding Capacity). Consider a family of codes C = {C1, . . . , Cn, . . .}
where Cn has rate ρn and block length n with alphabet Σn. Then, C is said to achieve
list-decoding capacity if ∀ε > 0 there exists an n0 such that ∀n ≥ n0 and all received
words w ∈ Σn, there exists at most a polynomial number of codewords c ∈ Cn such that
δ(c, w) ≤ (1 − ρn(1 + ε)).

Further, if there exists an efficient algorithm for finding all these codewords, then, C is
said to achieve list-decoding capacity efficiently. Ideally, we want to keep Σn as small as
possible.



S. Bhandari, P. Harsha, M. Kumar, and M. Sudan 56:7

Chinese remainder theorem

We also rely on the following version of the Chinese Remainder Theorem for the polynomial
ring.
▶ Theorem 2.5. Let E0(X), E1(X), . . . , Es−1(X) be univariate polynomials of degree equal
to d over a field F such that for every distinct i, j ∈ [s], Ei and Ej are relatively prime. Then,
for every s-tuple of polynomials (r0(X), . . . , rs−1(X)) ∈ F[X]s such that each ri is of degree
strictly less than d (or zero), there is a unique polynomial p(X) ∈ F[X] of degree at most
ds − 1 such that for all i ∈ [s],

p(X) = ri(X) mod Ei(X) .

Polynomial ideals

▶ Definition 2.6. A subset I ⊆ F[X] of polynomials is said to be an ideal if the following
are true.

0 ∈ I.
For all p(X), q(X) ∈ I, p + q ∈ I.
For every p(X) ∈ I and q(X) ∈ F[X], p(X) · q(X) ∈ I.

For the univariate polynomial ring F[X], we also know that every ideal I is principal, i.e.
there exists a polynomial p(X) ∈ I such that

I = {p(X)q(X) : q(X) ∈ F[X]} .

3 Polynomial ideal codes

In this section, we discuss polynomial ideal codes in more detail, and see how this framework
captures some of the well studied families of algebraic error correcting codes.

We start with the formal definition of polynomial ideal codes.
▶ Definition 3.1 (polynomial ideal codes). Given a field F, parameters s, k and n satisfying
k < s · n, the polynomial ideal code is specified by a family of n polynomials E0, . . . , En−1 in
the ring F[X] of univariate polynomials over the field F satisfying the following properties.

1. For all i ∈ [n], polynomial Ei has degree exactly s.
2. The Ei’s are monic polynomials.
3. The polynomials Ei’s are pairwise relatively prime.

The encoding of the polynomial ideal code maps is as follows:

F<k[X] −→ (F<s[X])n

p(X) 7−→ (p(X) (mod Ei(X)))n−1
i=0

As is clear from the definition, polynomial ideal codes are linear over F and have rate k/sn

and relative distance (1 − (k − 1)/sn). Since the sum of rate and relative distance satisfy the
Komamiya-Joshi-Singleton bound, these codes are maximal-distance separable (MDS) codes.

We note that in general, Ei’s need not have the same degree, but for notational convenience,
we work in the setting when each of them is of degree equal to s. We also note that these
codes continue to be well defined even if the Ei’s are not relatively prime. In this case, the
condition, k < s · n is replaced by k being less than the degree of the lowest common multiple
of E0, E1, . . . , En−1. However, the distance of the code suffers in this case, and such codes
need not approach the Komamiya-Joshi-Singleton bound. We now observe that some of the
standard and well studied family of algebraic error correcting codes are in fact instances of
polynomial ideal codes for appropriate choice of E0, E1, . . . , En−1.

APPROX/RANDOM 2021
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3.1 Some well known codes via polynomial ideals
The message space for all these codes is identified with univariate polynomials of degree
at most k − 1 in F[X]. We assume that the underlying field F is of size at least n for this
discussion, else, we work over a large enough extension of F.

Reed-Solomon Codes

Let a0, a1, . . . , an−1 be n distinct elements of F. In a Reed-Solomon code, we encode a
message polynomial p(X) ∈ F[X]<k by its evaluation on a0, a1, . . . , an−1. To view these as
a polynomial ideal code, observe that p(ai) = p(X) mod (X − ai). Thus, we can set the
polynomials Ei(X) in Definition 3.1 to be equal to (X − ai) for each i ∈ [n]. Thus, s = 1.
Clearly, the Ei’s are relatively prime since a0, a1, . . . , an−1 are distinct.

Folded Reed-Solomon Codes [3]

Let γ ∈ F∗
q be an element of multiplicative order at least s, i.e. γ0, γ, . . . , γs−1 are all distinct

field elements. Further, let the set of evaluation points be A = {a0, . . . , an−1} such that for
any two distinct i and j the sets

{
ai, aiγ, . . . , aiγ

s−1} and
{

aj , ajγ, . . . , ajγs−1} are disjoint.
In a Folded Reed-Solomon code, with block length n and folding parameter s is defined by
the following encoding function.

p(X) 7−→
(

p(ai), p(aiγ
1), . . . , p(aiγ

(s−1))
)n−1

i=0

Thus, these are codes over the alphabet Fs.
To view these as polynomial ideal codes, we set Ei(X) =

∏s−1
j=0(X − aiγ

j). Clearly,
each such Ei is a polynomial of degree equal to s, and since for any two distinct i and
j the sets

{
ai, aiγ, . . . , aiγ

s−1} and
{

aj , ajγ, . . . , ajγs−1} are disjoint, the polynomials
E0, E1, . . . , En−1 are all relatively prime.

To see the equivalence between these two viewpoints observe that p(aiγ
j) = p(X)

mod (X − aiγ
j). Moreover, (X − aiγ

j) are all relatively prime as j varies in [s] for every
i ∈ [n]. Thus, by the Chinese Remainder Theorem over F[X], there is a bijection between
remainders of a polynomial modulo {(X − aiγ

j) : j ∈ [s]} and the remainder modulo the
product Ei =

∏
j∈[s](X − aiγ

j) of these polynomials.

Additive Folded Reed-Solomon Codes [3]

Additive Folded Reed-Solomon codes are a variant of the Folded Reed-Solomon codes defined
above. Let Fq have characteristic at least s and let β ∈ F∗

q . Further, let the set of evaluation
points be A = {a0, . . . , an−1} where ai − aj /∈ {0, β, 2β, . . . , (s − 1)β} for distinct i and j.
Here, s denotes the folding parameter. The encoding is defined as follows.

p(X) 7−→ (p(ai), p(ai + β), . . . , p(ai + β(s − 1)))n−1
i=0

Thus, these are also codes over the alphabet Fs.
To view these as polynomial ideal codes, we set Ei(X) =

∏s−1
j=0(X − ai + βj). Clearly,

each such Ei is a polynomial of degree equal to s, and since ai − aj /∈ {0, β, 2β, . . . , (s − 1)β}
for distinct i and j, the polynomials E0, E1, . . . , En−1 are all relatively prime.

To see the equivalence between the two definitions, the argument is again identical to that
for Folded Reed-Solomon codes discussed earlier in this section. We just observe (X −ai + βj)
are all relatively prime j varies in [s] for every i ∈ [n], and thus by the Chinese Remainder
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Theorem over F[X], there is a bijection between remainders of a polynomial modulo {(X −
ai + βj) : j ∈ [s]} and the remainder modulo the product Ei =

∏
j∈[s](X − ai + βj) of these

polynomials.

Univariate Multiplicity Codes [10]

Univariate multiplicity codes, or simply multiplicity codes are a variant of Reed-Solomon,
where in addition to the evaluation of the message polynomial at every ai, we also give the
evaluation of its derivatives of up to order s − 1. While they can be defined over all fields,
for the exposition in this paper, we consider these codes over fields F of characteristic at
least sn. Moreover, we also work with the standard derivatives (from analysis), as opposed
to Hasse derivatives which is typically the convention in coding theoretic context. Let
a0, a1, . . . , an−1 ∈ F be distinct field elements.

The encoding is defined as follows.

p(X) 7−→
(

p(ai),
∂p

∂X
(ai), . . . ,

∂s−1p

∂Xs−1 (ai)
)n−1

i=0

Here, ∂jp
∂Xj−1 denotes the (standard) jth order derivative of p with respect to X.

To view these as polynomial ideal codes, we set Ei(X) = (X − ai)s. Clearly, each such
Ei is a polynomial of degree equal to s, and since ai’s are all distinct, these polynomials
E0, E1, . . . , En−1 are all relatively prime.

The equivalence of these two definitions follows from an application of Taylor’s theorem
to univariate polynomials, which says the following.

p(X) = p(ai + X − ai)

= p(ai) + (X − ai)
∂p

∂X
(ai) + · · · + 1

(s − 1)! (X − ai)s−1 ∂s−1p

∂Xs−1 (ai) + (X − ai)s · q(X)

for some polynomial q(X) ∈ F[X]. Thus,

p(X) mod (X − ai)s = p(ai) + (X − ai)
∂p

∂X
(ai) + · · · + 1

(s − 1)! (X − ai)s−1 ∂s−1p

∂Xs−1 (ai).

Therefore, p(X) mod (X − ai)s we can read off the evaluations of the derivatives of p of
order up to s − 1 at ai by explicitly writing p(X) mod (X − ai)s as a polynomial in (X − ai)
(via interpolation for instance), and reading off the various coefficients. Similarly, using the
above expression, given the evaluation of all the derivatives of order up to s − 1 of p at ai,
we can also reconstruct p(X) mod (X − ai)s.

Affine Folded Reed-Solomon Codes

We now describe a common generalization of the codes defined above, which we call Affine
Folded Reed-Solomon Codes. Fix integers k, n, q with n ≤ q. Let α ∈ F∗

q and β ∈ Fq such
that the multiplicative order of α is u. Further, define ℓ(X) = αX + β and

ℓ(i)(X) = ℓ(ℓ . . . ℓ(X))︸ ︷︷ ︸
i times

= αiX + β ·
i−1∑
j=0

αj = αiX + βi.

In fact, if α ̸= 1, i.e, u > 1 then, βu = β ·
∑u−1

j=0 αj = 0 and hence ℓ(u)(X) = ℓ(0)(X).
Let ord(ℓ) denote the smallest positive integer t such that ℓ(t)(X) = X. The message
space of the Affine Folded Reed-Solomon code of degree k with block length n and folding
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parameter s is polynomials of degree at most k − 1 over F[X], i.e., F<k[X] where F = Fq.
Let the set of evaluation points be A = {a0, . . . , an−1} such that for distinct i, j the sets{

ℓ(0)(ai), . . . , ℓ(s−1)(ai)
}

and
{

ℓ(0)(aj), . . . , ℓ(s−1)(aj)
}

are disjoint.
The encoding function of Affine Folded Reed-Solomon Codes is given as: (Recall that

t = ord(ℓ); let s = v · t + r where r < t.)

p(X) 7−→


p(ℓ(0)(ai)) ∂p

∂X
(ℓ(0)(ai)) . . . ∂v−1p

∂Xv−1 (ℓ(0)(ai)) ∂vp
∂Xv (ℓ(0)(ai))

...
... . . .

...
...

...
... . . .

... ∂vp
∂Xv (ℓ(r−1)(ai))

p(ℓ(t−1)(ai)) ∂p
∂X

(ℓ(t−1)(ai)) . . . ∂v−1p
∂Xv−1 (ℓ(t−1)(ai))


n−1

i=0

.

Thus, these are also codes over the alphabet Fs.
To view these as polynomial ideal codes we set

Ei(X) =
s−1∏
j=0

(X − αjai − βj) =
r−1∏
j=0

(X − ℓ(j)(ai))v+1 ·
t−1∏
j=r

(X − ℓ(j)(ai))v.

For the choice of A as above, the polynomials Ei = E(X, ai) are pairwise co-prime. Similar to
the previous cases of Folded/Additive Reed-Solomon and Multiplicy codes we have a bijection
between the remainders of a polynomial modulo Ei and the encoding of the polynomial at ai.

3.2 An alternate definition
We now discuss an alternate definition of polynomial ideal codes; the advantage being that this
definition ties together the polynomials E0, E1, . . . , En−1 into a single bivariate polynomial.
This would be useful later on when we discuss the connection between polynomial ideal codes
and linear operator codes.

▶ Definition 3.2 (polynomial ideal codes (in terms of bivariate polynomials)). Given a field
F, parameters s, k and n satisfying k < s · n, the polynomial ideal code is specified by a
bivariate polynomial E(X, Y ) over the field F and a set of n field elements a0, a1 . . . , an−1 in
F satisfying the following properties.
1. degX E(X, Y ) = s.
2. E(X, Y ) is a monic polynomial in the variable X.
3. The polynomials E(X, ai)’s are pairwise relatively prime.
Since E is monic and has (exact) degree s in the variable X, any polynomial p ∈ F[X] has
the following unique representation.

p(X) = Q(p)(X, Y ) · E(X, Y ) + R(p)(X, Y ) where degX(R(p)(X, Y )) < s.

The encoding of the polynomial ideal code maps is as follows:

F<k[X] −→ (F<s[X])n

p(X) 7−→
(

R(p)(X, ai)
)n−1

i=0
.

The equivalence of Definitions 3.1 and 3.2 is not hard to see. We summarize this in the
simple observation below.

▶ Observation 3.3. Definitions 3.1 and 3.2 are equivalent.
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Proof. Given a code as per Definition 3.1, we can view this as a code according to Defini-
tion 3.2 by picking n distinct a0, a1, . . . , an−1 ∈ F (or in a large enough extension of F of size
at least n) and use standard Lagrange interpolation to find a bivariate polynomial E(X, Y )
such that for every i ∈ [n],

E(X, ai) = Ei .

More precisely, we define E(X, Y ) as follows.

E(X, Y ) :=
∑
i∈[n]

 ∏
j∈[n]\{i}

(Y − aj)
(aj − ai)

 · Ei(X) .

Clearly, E(X, ai)’s are relatively prime, and their degree in X equals s and E(X, Y ) is monic
in X. The equivalence of the encoding function also follows immediately from the definitions.

The other direction is even simpler. Given a code as per Definition 3.2, we can view this
as a code as per Definition 3.1 by just setting Ei(X) to be equal to E(X, ai) for every i ∈ [n].
The condition on the degree of Ei and their relative primality follows immediately from the
fact that E(X, Y ) is monic in X of degree s, and E(X, ai)’s are relatively prime. Once again,
the encoding map can be seen to be equivalent in both the cases. ◀

From Observation 3.3 and the discussion in Section 3.1, the Reed-Solomon codes, Folded
Reed-Solomon codes, Additive Folded Reed-Solomon codes and Multiplicity codes can also
be viewed as polynomial ideal codes as per Definition 3.2.

Reed-Solomon codes: We take E(X, Y ) to be equal to (X − Y ), the set of points
a0, . . . , an−1 remain the same.
Folded Reed-Solomon codes: We take E(X, Y ) =

∏
j∈[s](X − γjY ) and the set of

evaluation points a0, . . . , an−1 are set as before, and γ ∈ F∗ is an element of high enough
order.
Additive Folded Reed-Solomon codes: We take E(X, Y ) =

∏
j∈[s](X − Y + βj) and

the set of evaluation points a0, . . . , an−1 are set as before. Recall that F is taken to be a
field of characteristic at least s for these codes.
Multiplicity codes: We take E(X, Y ) to be equal to (X − Y )s, the set of points
a0, . . . , an−1 are distinct.
Affine Folded Reed-Solomon codes: We take E(X, Y ) =

∏s−1
i=0 (X − ℓ(i)(Y )) where

ℓ(Y ) = αY + β with α ∈ F∗
q and β ∈ Fq. Recall that the set of evaluation points

A = {a0, . . . , an−1} is such that for distinct i, j the sets
{

ℓ(0)(ai), . . . , ℓ(s−1)(ai)
}

and{
ℓ(0)(aj), . . . , ℓ(s−1)(aj)

}
are disjoint.

It follows immediately from these definitions that all the desired properties in Definition 3.2
are indeed satisfied. We skip the remaining details.

4 Linear operator codes

In this section, we give an alternate viewpoint of polynomial ideal codes in terms of codes
defined based on linear operators on the ring of polynomials.

▶ Definition 4.1 (linear operators). Let L = (L0, . . . , Ls−1) be a of s linear operators where
each Li : F[X] → F[X] is a F-linear operator over the ring F. For any f ∈ F[X], it will be
convenient to denote by L(f) the (row) vector (L0(f), . . . , Ls−1(f)) ∈ F[X]s.
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Given any such family L and element a ∈ F, define

Ia(L) = {p(X) ∈ F[X] | L(p)(a) = 0̄}.

If the family L of linear operators family and the set of field elements A ⊆ F further satisfy
the property that Ia(L) is an ideal for each a ∈ A, we refer to the family L as an ideal family
of linear operators with respect to A.

In this case, since F[X] is a principal ideal domain, for each a ∈ A, Ia(L) = ⟨Ea(L)(X)⟩
for some monic polynomial Ea(L) ∈ F [X].

We now define a special condition on the family of linear operators L which will help us
capture when Ia(L) forms an ideal.

▶ Definition 4.2 (linearly-extendible linear operators). The family L of linear operators is said
to be linearly-extendible if there exists a matrix M(X) ∈ F[X]s×s such that for all p ∈ F [X]
we have

L(X · p(X)) = M(X) · L(p(X)). (1)

We give two examples to illustrate the definition:
Let L0(f(X)) = f(X) and L1(f(X)) = f ′(X) where f ′ is the formal derivative of f . Then,
by the product rule L1(Xf(X)) = X · f ′(X) + f(X). Hence, in this case M(X) =

(
X 0
1 X

)
.

Let L0(f(X)) = f(X) and L1(f(X)) = f(γX) where γ ∈ Fq is non-zero. Then, we have
L1(Xf(X)) = γXf(γX). Hence, in this case M(X) =

( 1 0
0 γX

)
.

▶ Observation 4.3. Suppose L is linearly-extendible and M(X) is the corresponding matrix
from Equation (1).

For any j ≥ 0 we have L(Xj · p(X)) = (M(X))j · L(p(X)). Thus, by linearity we have
that for any q ∈ F[X]:

L(q(X) · p(X)) = q(M(X)) · L(p(X)).

For instance if q(X) = Xj then L(Xj · p(X)) = (M(X))j · L(p(X)).
The family L is completely specified by L(1) and M(X). In other words, L(p(X)) =
p(M(X)) · L(1).
For every set A of evaluation points, L is an ideal family of linear operators with
respect to A. This is because if at a point a we have L(p)(a) = 0 then L(Xp)(a) =
(M(X) · L(p(X)))(a) = M(X = a) · L(p)(a) = 0 . This means that if p(X) ∈ Ia(L) then
Xp(X) ∈ Ia(L), and hence by linearity for any q(X) ∈ F[X] we have q(X) ·p(X) ∈ Ia(L).

▶ Definition 4.4 (linear operator codes). Let L = (L0, . . . , Ls−1) be a family of linear
operators, A = {a1, . . . , an} ⊆ F be a set of evaluation points and k a degree parameter such
that k ≤ s · n. Then the linear operator code generated by L and A, denoted by LOA

k (L), is
given as follows:

F<k[X] −→ (Fs)n

p(X) 7−→ (L(p)(ai))n
i=1 .

If L is an ideal family of linear operators with respect to A where the polynomials
Ei := Eai(L), which are the monic generator polynomials for the ideals Iai(L), further
satisfy the following:

1. For all i ∈ [n], polynomial Ei has degree exactly s.
2. The polynomials Ei’s are pairwise relatively prime.
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Then the linear operator code is said to be an ideal linear operator code and denoted by
ILOA

k (L).
If the ideal linear operator code ILOA

k (L) further satisfies that L is linearly-extendible,
then the ideal linear operator code is said to be a linearly-extendible linear operator code,
denoted by LELOA

k (L).

▶ Remark 4.5. The rate of the LOA
k (L) code is k/sn. Further, if the the code is an ideal

linear operator code, i.e., ILOA
k (L), then its distance is 1 − k−1

sn . Hence, ILOA
k (L) is an

MDS code.

▶ Proposition 4.6. Any polynomial ideal code is a linearly-extendible linear operator code.

See the full version [1] for a proof.
▶ Remark 4.7. (degree preserving) If the bivariate polynomial E(X, Y ) has total degree s, then,
the linear operator in the LELO code obtained above has the property that degX Li(Xj) ≤ j:
in fact, degX Li(Xj) ≤ j − i.

▶ Proposition 4.8. Any ideal linear operator code is a polynomial ideal code.

Proof. Consider an ideal linear operator code ILOA
k (L). For any polynomial p(X) ∈ F[X]

and a point ai ∈ A, giving L(p(X))(a) is equivalent to giving p(X) mod ⟨Ei⟩ where ⟨Ei⟩ =
Iai(L). However, the Eis readily satisfy Definition 3.1. ◀

Now, we state a corollary which further corroborates the notion of linear-extendibility.

▶ Corollary 4.9 (Equivalence of ILO and LELO). From Propositions 4.6 and 4.8 it follows
that every ideal linear operator code is also a linearly-extendible linear operator code.

Below we state some well known codes in their linear operator descriptions (a more formal
treatment is given in Appendix A):

Reed-Solomon Codes: Let A = {a0, . . . , an−1} be distinct elements in Fq These are
LELOL,A where L = (I). That is the encoding of the message polynomial p(X) ∈ F<k[X]
at a point a is L(f(X))(a) = f(a).
Folded Reed-Solomon Codes: Let γ ∈ F ∗

q with multiplicative order at least s.
FRS[k, n] with folding parameter s are linearly-extendible linear operator codes LELOL,A

where:
L = (L0, . . . , Ls−1) with L1(f(X)) = f(γY ) for f(X) ∈ Fq[X] and Li = Li

1 for
i ∈ {0, 1, . . . , s − 1}.
For the above family of operators M(X) is given by M(X)ij = γiX · I[i = j] for
i, j ∈ [s].
The set of evaluation points is A = {a0, . . . , an−1} where for any two distinct i and j

the sets
{

ai, aiγ, . . . , aiγ
s−1} and

{
aj , ajγ, . . . , ajγs−1} are disjoint.

Multiplicity Codes: Then, MULT [k, n] codes of order s are linearly-extendible linear
operator codes LELOL,A where:

L = (L0, . . . , Ls−1) with L1(f(X)) = ∂f(X)
∂X for f(X) ∈ Fq[X] and Li = Li

1 for
i ∈ {0, 1, . . . , s − 1}.
For the above family of operators M(X) is given by M(X)ij = X ·I[i = j]+i·I[i−1 = j]
for i, j ∈ [s].
The set of evaluation points is A = {a0, . . . , an−1} where ais are all distinct.

Additive Folded Reed-Solomon Codes: Let β ∈ Fq be a non-zero element and the
characteristic of Fq be at least s. Then, Additive-FRS[k, n] codes with folding parameter
s are linearly-extendible linear operator codes LELOL,A where:
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L = (L0, . . . , Ls−1) with L1(f(X)) = f(X + β) for f(X) ∈ Fq[X] and Li = Li
1 for

i ∈ {0, 1, . . . , s − 1}.
For the above family of operators M(X) is given by M(X)ij = (X + iβ) · I[i = j] for
i, j ∈ [s].
The set of evaluation points is A = {a0, . . . , an−1} where ai − aj /∈
{0, β, 2β, . . . , (s − 1)β} for distinct i and j.

Affine Folded Reed-Solomon Codes: Let α ∈ F∗
q and β ∈ Fq. Further, let ℓ(X) =

αX + β with ord(ℓ) = u. Then Affine-FRS[k, n] codes with folding parameter s are
linearly-extendible codes LELOL,A described below. (See Observation A.7 for more
details.)
Define D1 : F[X] → F[X] as D1(f(X)) = ∂f(X)

∂X and S1 : F[X] → F[X] as S1(f(X)) =
f(ℓ(X)). Further, for i ≥ 0 let Di = Di

1 and Si = Si
1. Recall, that the order of α is u.

For any integer r ∈ [s] let r = r1u + r0, with r0 < u, be the unique representation of r.
Define Lr : F[X] → F[X] as Lr(f(X)) = Sr0(Dr1f(X)). Set L = (L0, . . . , Ls−1).
Clearly, L is a family of linear operators.
Lr(Xf) = Sr0(Dr1f) = Sr0(r1 ·Dr1−1f +X ·Dr1f) = r1 ·Lr−uf +Sr0(X) ·Lrf : hence,
L is a set of linearly-extendible linear operators.
The set of evaluation points A = {a0, . . . , an−1} is such that for distinct i, j the sets{

ℓ(0)(ai), . . . , ℓ(s−1)(ai)
}

and
{

ℓ(0)(aj), . . . , ℓ(s−1)(aj)
}

are disjoint.

5 List-decoding of polynomial ideal codes

In this section, we discuss the list-decoding of polynomial ideal codes.

5.1 List-decoding up to to the Johnson radius
We first observe that polynomial ideal codes are list decodable in polynomial time, up to the
Johnson radius.

▶ Theorem 5.1. Let k, s, n ∈ N be such that k < sn and s < k − 1. Let
E0(X), E1(X), . . . , En−1(X) ∈ F[X] be relatively prime monic polynomials of degree equal to
s each. Let Enc : F<k[X] −→ (F<s[X])n be the encoding function defined as

p(X) 7−→ (p(X) (mod Ei(X)))n−1
i=0 .

Then, there is an algorithm, which takes as input a received word c = (c0, c1, . . . , cn) ∈
F<s[X]n and for every ε > 0 outputs all polynomials f ∈ F<k[X] such that Enc(f) and c
agree on at least (k/sn)1/2 + ε fraction of coordinates in time poly(n, 1/ε).

Observe that the rate of this code is k/sn and distance is 1 − (k − 1)/sn, and thus
Theorem 5.1 gives us an algorithmic analog of Theorem 2.2 for these codes.

The list decoding algorithm for polynomial ideal codes is an (almost immediate) extension
of an algorithm of Guruswami, Sahai and Sudan [4] for list decoding codes based on Chinese
Remainder Theorem to this setting. This algorithm, in turn, relies on ideas in an earlier
algorithm of Guruswami and Sudan [5] for list decoding Reed-Solomon codes up to the
Johnson radius.

As noted in the introduction, most of the ideas for the proof of Theorem 5.1 were already
there in the work of Guruswami, Sahai and Sudan [4] and all we do in this section is to
flush out some of the details. Due to space constraints, we refer the interested reader to full
version [1] for details.
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5.2 List-decoding beyond the Johnson radius
In this section, we use the linear operator viewpoint of polynomial ideal codes to study their
list-decodability beyond the Johnson radius. We show that if the family of linear operators
L and the evaluation points satisfy some further properties, then the linear operator code is
list-decodable all the way up to the distance of the code.

Let G = (G0, . . . , Gm−1) and T = (T0, T1, . . . , Tr−1) be two families of linear operators
such that Gi : F[X] → F[X] and T is a linearly-extendible family of linear operators. We say
that the pair (T , G) list-composes in terms of L at the set of evaluation points A if we have
the following. For every linear operator G ∈ G and field element a ∈ A, there exists a linear
function hG,a : Fs → Fr such that for every polynomial f ∈ F[X] we have

T (G(f))(a) = hG,a(L(f)(a)).

▶ Theorem 5.2. If LOA
k (L) is a linear operator code and there exists two families of linear

operators G = (G0, . . . , Gm−1) and T = (T0, . . . , Tr−1) such that
1. (T , A) forms a linearly-extendible linear operator code LELOA

k+nr/m(T )
2. The pair (T , G) list-composes in terms of L at the set of evaluation points
3. G is degree-preserving
4. Diag(G) ∈ F|G|×k is the generator matrix of a code with distance k − ℓ.

Then, LOA
k (L) is list-decodable up to the distance 1 − k

rn − 1
m with list size qℓ.

This theorem clearly implies Theorem 1.1. We refer the interested reader to the full
version of the paper [1] for the proof.
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A Example of Codes Achieving List-Decoding Capacity

In this section we will use Theorem 5.2 to (re)prove the list-decoding capacity of the Folded
Reed-Solomon codes, multiplicity codes and additive Folded Reed-Solomon codes. We then
introduce a common generalization of all these codes, which we refer to as affine Folded
Reed-Solomon codes and prove the list-decoding up to capacity of these codes.

A.1 Folded Reed-Solomon (F RS) Codes
Fix integers k, n, q with n ≤ q. Fix γ ∈ F∗

q of multiplicative order at least s. The message
space of the FRSγ

s [k, n] code with folding parameter s is polynomials of degree at most
k − 1 over F[X], i.e., F<k[X] where F = Fq. Then, FRS codes are linearly-extendible linear
operator codes LELOL,A where:

L = (L0, . . . , Ls−1) with L1(f(X)) = f(γX) for f(X) ∈ Fq[X] and Li = Li
1 for i ∈

{0, 1, . . . , s − 1}.
For the above family of operators M(X) is given by M(X)ij = γiX · I[i = j] for i, j ∈ [s].
The set of evaluation points is A = {a0, . . . , an−1} where for any two distinct i and j the
sets

{
ai, aiγ, . . . , aiγ

s−1} and
{

aj , ajγ, . . . , ajγs−1} are disjoint.

▶ Remark A.1.
1. Recall that the bivariate polynomial E(X, Y ) corresponding to the polynomial ideal code

representation is E(X, Y ) =
∏s−1

i=0 (X − γiY ).
2. For the choice of A as above, the rate of the code is k

sn and its distance is 1 − k−1
sn as the

polynomials Ei = E(X, ai) are pairwise co-prime.

▶ Theorem A.2 ([6]). Let γ ∈ F∗
q be an element of order at least k. Further, let A =

{a0, . . . , an−1} be a set of evaluation points where for any two distinct i and j the sets{
ai, aiγ, . . . , aiγ

s−1} and
{

aj , ajγ, . . . , ajγs−1} are disjoint. For every ε > 0 there exists s

large enough (s ≥ Ω(1/ε2)) such that FRSγ
s [k, n] at the set of evaluation points A can be

efficiently list-decoded up to distance 1 − k
sn − ε.

Proof. We will prove this by applying Theorem 5.2. Set G = (L0, . . . , Lm−1) for some integer
m < s to be set later and T = (T0, . . . , Tr−1) with r = s − m + 1 and Ti = Li.

Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code
LELOA

k+nr/m(T ) which is FRSγ
r [k + nr/m, n] at the set of evaluation points A.

Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A, we have that for every polynomial
f ∈ F[X]: Tj(Gi(f))(a) = Li+j(f)(a). Notice that Li+j ∈ L as i + j ≤ s − 1.

Theorem 5.2-Item 3: Gi(xj) = γijyj , and hence G is degree preserving.
Theorem 5.2-Item 4: The matrix Diag(G) is given by Diag(G)ij = γij for i ∈ [m] and

j ∈ [k]. Hence, as long as γ has order at least k this is the generator matrix of RS[m − 1, k]
and hence its distance is k − m + 1.

Thus FRSγ
s [k, n] can be efficiently list-decoded up to distance 1 − k−1

rn − 1
m with list size

qm−1. By choosing a large enough m and s we can ensure that 1 − k−1
rn − 1

m > 1 − k
sn − ε. ◀

https://eccc.weizmann.ac.il/eccc-reports/2010/TR10-148
http://dx.doi.org/10.1145/2629416
http://dx.doi.org/10.1109/TIT.1964.1053661
http://dx.doi.org/10.1561/0400000010
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A.2 Multiplicity (MULT ) Codes
Fix integers k, n, q with n ≤ q. The message space of the MULTs[k, n] code of order s is
polynomials of degree at most k−1 over F[X], i.e., F<k[X] where F = Fq. Then, MULTs[k, n]
codes are linearly-extendible linear operator codes LELOL,A where:

L = (L0, . . . , Ls−1) with L1(f(X)) = ∂f(X)
∂X for f(X) ∈ Fq[X] and Li = Li

1 for i ∈
{0, 1, . . . , s − 1}.
For the above family of operators M(X) is given by M(X)ij = X · I[i = j] + i · I[i − 1 = j]
for i, j ∈ [s].
The set of evaluation points is A = {a0, . . . , an−1} where ais are all distinct.

▶ Remark A.3.
1. Recall that the bivariate polynomial E(X, Y ) corresponding to the polynomial ideal code

representation is E(X, Y ) = (X − Y )s.
2. For the choice of A as above, MULTs[k, n] is a code with rate k

sn and distance 1 − k−1
sn

as the polynomials Ei = E(X, ai) are pairwise co-prime.

▶ Theorem A.4 ([6]). Let the characteristic of Fq be at least max(s, k). Further, let the
set of evaluation points be A = {a0, . . . , an−1} where ais are all distinct. Then, for every
ε > 0 there exists s large enough (s ≥ Ω(1/ε2)) such that MULTs[k, n] can be efficiently
list-decoded up to distance 1 − k

sn − ε.

Proof. We will again appeal to Theorem 5.2. Set G = (G0, . . . , Gm−1) where Gi = Xi

i! · Li

for i ∈ {0, 1, . . . , m − 1} for some integer m < s to be set later and T = (T0, . . . , Tr−1) with
r = s − m + 1 and Ti = Li.

Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code
LELOA

k+nr/m(T ) which is MULTr[k + nr/m, n] of order r at the set of evaluation points A.
Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A, we have that for every polynomial

f ∈ F[X]:

Tj(Gi(f))(a) = (
j∑

b=0

(
j

b

)(
i

b

)
· (b!/i!) · Xi−bLi+b(f))(a).

Notice that the above expression only involves Lis where i < s.
Theorem 5.2-Item 3: Gi(Xj) =

(
j
i

)
· Xj , and hence G is degree preserving.

Theorem 5.2-Item 4: The matrix Diag(G) is given by Diag(G)ij =
(

j
i

)
for i ∈ [m]

and j ∈ [k]. This matrix can be transformed via elementary row operations to a RS[m, k]
generator matrix with points of evaluations as 0, 1, . . . , k−1; thus, as long as the characteristic
of Fq is at least k we have that the distance of Diag(G) is k − m + 1.

Thus MULTs[k, n] can be efficiently list-decoded up to distance 1− k−1
rn − 1

m with list size
qm−1. By choosing a large enough m and s we can ensure that 1 − k−1

rn − 1
m > 1 − k

sn − ε. ◀

A.3 Additive Folded Reed-Solomon (Additive-FRS) Codes
Fix integers k, n, q with n ≤ q. Let β ∈ Fq be a non-zero element and characteristic of Fq

is at least s. The message space of the Additive-FRSβ
s [k, n] code with folding parameter

s is polynomials of degree at most k − 1 over F[X], i.e., F<k[X] where F = Fq. Then,
Additive-FRSβ

s [k, n] codes are linearly-extendible linear operator codes LELOL,A where:
L = (L0, . . . , Ls−1) with L1(f(X)) = f(X + β) for f(X) ∈ Fq[X] and Li = Li

1 for
i ∈ {0, 1, . . . , s − 1}.
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For the above family of operators M(X) is given by M(X)ij = (X + iβ) · I[i = j] for
i, j ∈ [s].
The set of evaluation points is A = {a0, . . . , an−1} where ai −aj /∈ {0, β, 2β, . . . , (s − 1)β}
for distinct i and j.

▶ Remark A.5.
1. Recall that the bivariate polynomial E(X, Y ) corresponding to the polynomial ideal code

representation is E(X, Y ) =
∏s−1

i=0 (X − Y − iβ).
2. For the choice of A as above, Additive-FRSβ

s [k, n] is a code with rate k
sn and distance

1 − k−1
sn as the polynomials Ei = E(X, ai) are pairwise co-prime.

▶ Theorem A.6. Let the characteristic of Fq be at least max(s, k) and β ∈ Fq be a non-
zero element. Further, let the set of evaluation points A = {a0, . . . , an−1} be such that
ai − aj /∈ {0, β, 2β, . . . , (s − 1)β} for distinct i and j. Then, for every ε > 0 there exists s

large enough (s ≥ Ω(1/ε2)) such that Additive-FRSβ
s [k, n] over the set of evaluation points A

can be efficiently list-decoded up to distance 1 − k
sn − ε.

Proof. We will again appeal to Theorem 5.2. To define G = (G0, . . . , Gm−1) for some integer
m < s, we need the following definitions. Let B ∈ Fm×m

q be a matrix where Bij = (j)i

for i, j ∈ [m], i.e, the transpose of the Vandermonde matrix at the points {0, 1, . . . , m − 1}:
these points are distinct since the characteristic of the field is at least k. Further, let
bi ∈ Fm

q be a vector such that Bbi = ei for i ∈ [m] where eis are the standard basis vectors:
bis exist because B is full rank. Now, define Gi = Xi ·

∑m−1
c=0 bi(c)Lc for i ∈ [m]. Set

T = (T0, . . . , Tr−1) with r = s − m + 1 and Ti = Li.
Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code

LELOA
k+nr/m(T ) which is Additive-FRSβ

r [k + nr/m, n] with folding parameter r at the set
of evaluation points A.

Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A, we have that for every polynomial
f ∈ F[X]:

Tj(Gi(f))(a) = Tj

(
Xi ·

m−1∑
c=0

bi(c)Lc

)
(a)

=
(

(X + jβ)i ·
m−1∑
c=0

bi(c)Lc+j

)
(a).

Notice that the above expression only involves Lis where i < s. Theorem 5.2-Item 3:

Gi(Xj) = Xi ·
m−1∑
c=0

bi(c)Lc(Xj)

= Xi ·
m−1∑
c=0

bi(c)(X + cβ)j

= Xi ·
m−1∑
c=0

bi(c)
∑
h≤j

(
j

h

)
Xh · (cβ)j−h

= Xi ·

(j

i

)
βiXj−i +

∑
h≤j−m

αhXh
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(this is because Bbi = ei which means that for h > j − m we have
∑m−1

c=0 bi(c) · (c)j−h =
I[j − h = i]; αh are field constants)

=
(

j

i

)
βi−1Xj + . . . ,

and hence G is degree preserving.
Theorem 5.2-Item 4: By the above, the matrix Diag(G) is given by Diag(G)ij =

(
j
i

)
βi for

i ∈ [m] and j ∈ [k]. Up to scaling this is the same code as Diag(G) in Theorem A.4: and
hence, if the characteristic of the field is at least k then its distance is k − m + 1.

Thus Additive-FRSβ
s [k, n] can be efficiently list-decoded up to distance 1− k−1

rn − 1
m with list

size qm−1. By choosing a large enough m and s we can ensure that 1− k−1
rn − 1

m > 1− k
sn −ε. ◀

A.4 Affine Folded Reed-Solomon (Affine-FRS) Codes
We first recall the defintion of Affine-FRS codes. Fix integers k, n, q with n ≤ q. Let α ∈ F∗

q

and β ∈ Fq such that the multiplicative order of α is u. Further, define ℓ(X) = αX + β and

ℓ(i)(X) = ℓ(ℓ . . . ℓ(X))︸ ︷︷ ︸
i times

= αiX + β ·
i−1∑
j=0

αj = αiX + βi.

In fact, if α ≠ 1, i.e, u > 1 then, ℓ(u)(X) = ℓ(0)(X). Let ord(ℓ) denote the smallest
positive integer t such that ℓ(t)(z) = z. The message space of the Affine-FRSα,β

s [k, n]
code with folding parameter s is polynomials of degree at most k − 1 over F[X], i.e.,
F<k[X] where F = Fq. Let the set of evaluation points be A = {a0, . . . , an−1} such that
for distinct i, j the sets

{
ℓ(0)(ai), . . . , ℓ(s−1)(ai)

}
and

{
ℓ(0)(aj), . . . , ℓ(s−1)(aj)

}
are disjoint.

Then, Affine-FRSα,β
s [k, n] codes are polynomial ideal codes where:

The bivariate polynomial E(X, Y ) corresponding to the polynomial ideal code represen-
tation is E(X, Y ) =

∏s−1
i=0 (X − αiY − βi).

For the choice of A as above, Affine-FRSα,β
s [k, n] is a code with rate k

sn and distance
1 − k−1

sn as the polynomials Ei = E(X, ai) are pairwise co-prime.

We will now recall the description of Affine-FRS codes in terms of linear operators
which will be helpful while list-decoding. Define D1 : F[X] → F[X] as D1(f(X)) = ∂f(X)

∂X

and S1 : F[X] → F[X] as S1(f(X)) = f(ℓ(X)). Further, for i ≥ 0 let Di = Di
1 and

Si = Si
1. Recall, that the order of α is u. For any integer r ∈ [s] let r = r1u + r0,

with r0 < u, be the unique representation of r. Then, define Lr : F[X] → F[X] as
Lr(f(X)) = Sr0(Dr1f(X)). Set L = (L0, . . . , Ls−1). Clearly, L is a family of linear operators.
Further, Lr(Xf) = Sr0(Dr1Xf) = Sr0(r1 · Dr1−1f + X · Dr1f) = r1 · Lr−uf + Sr0(X) · Lrf :
hence, L is a set of linearly-extendible linear operators.

▶ Observation A.7. If u > 1 then at an evaluation point a ∈ Fq the following pieces of
information are the same:

f(X) mod
∏s−1

i=0 (X − αia − βi)
L(f)(a).

Hence, if u > 1, then, Affine-FRSα,β
s [k, n] at the points of evaluation A is LELOL,A.

▶ Theorem A.8. For every ε > 0, there exists a large enough s such that the follow holds.
Let Fq be a field, k a parameter and ℓ(X) = α · X + β such that α ∈ F∗

q and β ∈ Fq.
Furthermore, let the evaluation points A = {a0, . . . , an−1} be such that for distinct i, j the
sets

{
ℓ(0)(ai), . . . , ℓ(s−1)(ai)

}
and

{
ℓ(0)(aj), . . . , ℓ(s−1)(aj)

}
are disjoint. Then, if either:
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ord(ℓ) ≥ k or
char(Fq) > k and β ̸= 0

holds, Affine-FRSα,β
s [k, n] over the set of evaluation points A can be efficiently list-decoded

up to distance 1 − k
sn − ε.

Proof. We will again appeal to Theorem 5.2. Let u be the multiplicative order of α. Let
v = ⌊s/u⌋.

Case ord(ℓ) ≥ k. This means that u ≥ k. This is similar to decoding FRS codes. We
skip the details.

Henceforth, we assume that char(Fq) ≥ k and β ̸= 0.

Case u = 1. This is the same case as for Additive-FRS codes. Thus, by Theorem A.6 we
are done.

Case u > 1 and v ≥
√

s. (This case is similar to MULTv[k, n].)
Define G = (G0, . . . , Gm−1) for some integer m < s, as Gi(f) = (Xi/i!) · Dif . Let

r = (v − m)u and set T = {L0, L1, . . . , Lr−1}.
Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code

LELOA
k+nr/m(T ) which is Affine-FRSα,β

r [k + nr/m, n] at the set of evaluation points A.
Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A we have that for every polynomial

f ∈ F[X]:

Tj(Gi(f))(a) =
(

Sj0Dj1(Xi

i! · Di(f))
)

(a)

=
(

Sj0

j1∑
b=0

(
j1

b

)(
i

b

)
· (b!/i!) · Xi−bDi+b(f)

)
(a)

=
(

j1∑
b=0

(
j1

b

)(
i

b

)
· (b!/i!) · (Sj0Xi−b) · Lj0+(i+b)u(f)

)
(a).

Notice that the above expression only involves Lis where i < s.
Theorem 5.2-Items 3 and 4: are identical to the corresponding items in Theorem A.4.
Thus Affine-FRSβ

s [k, n] can be efficiently list-decoded up to distance 1− k−1
rn − 1

m with list
size qm−1. By choosing a large enough m and s we can ensure that 1 − k−1

rn − 1
m > 1 − k

sn − ε.

Case u >
√

s. (This case is similar to Additive-FRSβ
u[k, n].) As in Theorem A.6, to

define G = (G0, . . . , Gm−1) for some integer m < u, we need the following definitions. Let
B ∈ Fm×m

q be a matrix where Bij = (β(αj − 1)/(αj))i for i, j ∈ [m], i.e, the transpose of
the Vandermonde matrix at the points

{
β(αj − 1)/(αj) | j ∈ [m]

}
: these points are distinct

since the order of u is at least m. Further, let bi ∈ Fm
q be a vector such that Bbi = ei for

i ∈ [m] where eis are the standard basis vectors: bis exist because B is full rank.
Define G = (G0, . . . , Gm−1) for some integer m < s, as Gi = Xi ·

∑m−1
c=0 bi(c)Sc. Let

r = s − m + 1 and set T = {L0, . . . , Lr−1}.
Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code

LELOA
k+nr/m(T ) which is Affine-FRSα,β

r [k + nr/m, n] at the set of evaluation points A.
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Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A we have that for every polynomial
f ∈ F[X]:

Tj(Gi(f))(a) =
(

Sj0Dj1

(
Xi ·

m−1∑
c=0

bi(c)Scf

))
(a)

=
(

Sj0

j1∑
b=0

(
j1

b

)(
i

b

)
· (b!) · Xi−bDb

(
m−1∑
c=0

bi(c)Scf

))
(a)

=
(

Sj0

j1∑
b=0

(
j1

b

)(
i

b

)
· (b!) · Xi−b

(
m−1∑
c=0

(bi(c)αb
c)ScDbf

))
(a)

=
(

Sj0

j1∑
b=0

(
j1

b

)(
i

b

)
· (b!) · Xi−b

(
m−1∑
c=0

(bi(c)αb
c)Lbu+cf

))
(a).

Notice that the above expression only involves Lis where i < s.
Theorem 5.2-Items 3 and 4: follow almost identically to the corresponding items in

Theorem A.6.
Thus Affine-FRSβ

s [k, n] can be efficiently list-decoded up to distance 1− k−1
rn − 1

m with list
size qm−1. By choosing a large enough m and s we can ensure that 1− k−1

rn − 1
m > 1− k

sn −ε. ◀
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