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Abstract

We give a new proof of the fact that the parallel repetition of the (3-player) GHZ game reduces the
value of the game to zero polynomially quickly. That is, we show that the value of the n-fold GHZ
game is at most n−Ω(1). This was first established by Holmgren and Raz [18]. We present a new
proof of this theorem that we believe to be simpler and more direct. Unlike most previous works on
parallel repetition, our proof makes no use of information theory, and relies on the use of Fourier
analysis.

The GHZ game [15] has played a foundational role in the understanding of quantum information
theory, due in part to the fact that quantum strategies can win the GHZ game with probability 1.
It is possible that improved parallel repetition bounds may find applications in this setting.

Recently, Dinur, Harsha, Venkat, and Yuen [7] highlighted the GHZ game as a simple three-player
game, which is in some sense maximally far from the class of multi-player games whose behavior
under parallel repetition is well understood. Dinur et al. conjectured that parallel repetition
decreases the value of the GHZ game exponentially quickly, and speculated that progress on proving
this would shed light on parallel repetition for general multi-player (multi-prover) games.
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1 Introduction

The focus of this paper is multi-player games, and in particular their asymptotic behavior
under parallel repetition.

Multi-player games consist of a one-round interaction between a referee and k players.
In this interaction, the referee first samples a “query” (q1, . . . , qk) from some joint query
distribution Q, and for each i sends qi to the ith player. The players are required to
respectively produce “answers” a1, . . . , ak without communicating with one another (that is,
each ai is a function only of qi) and they are said to win the game if (q1, . . . , qk, a1, . . . , ak)
satisfy some predicate W that is fixed and associated with the game.

Suppose that a game G has the property that the maximum probability with which
players can win is 1 − ϵ, no matter what strategy they use. This quantity is called the value
of G. The parallel repetition question [13] asks

How well can the players concurrently play in n independent copies of G?

More precisely, consider the following k-player game, which we call the n-wise parallel
repetition of G and denote by Gn:
1. The referee samples, for each i ∈ [n] independently, query tuples (qi

1, . . . , qi
k) ∼ Q. We

refer to the index i as a coordinate of the parallel repeated game.
2. The jth player is given (q1

j , . . . , qn
j ) and is required to produce a tuple (a1

j , . . . , an
j ).

3. The players are said to win in coordinate i if (qi
1, . . . , qi

k, ai
1, . . . , ai

k) satisfies W . They
are said to win (without qualification) if they win in every coordinate i ∈ [n].

One might initially conjecture that the value of Gn is (1 − ϵ)n. However, this turns out
not to be true [14, 9, 12, 25], as players may benefit from correlating their answers across
different coordinates. Still, Raz showed that if G is a two-player game, then the value of Gn

is 2−Ω(n), where the Ω hides a game-dependent constant [23, 17]. Tighter results, based on
the value of the initial game are also known [8, 5]. For many applications, such bounds are
qualitatively as good as the initial flawed conjecture.

Games involving three or more players have proven more difficult to analyze, and the best
known general bound on their parallel repeated value is due to Verbitsky [26]. This bound
states that the value of Gn approaches 0, but the bound is extremely weak (it shows that
the value is at most 1

α(n) , where α denotes an inverse Ackermann function). The weakness of
this bound is generally conjectured to reflect limitations of current proof techniques rather
than a fundamental difference in the behavior of many-player games. In the technically
incomparable but related no-signaling setting however, Holmgren and Yang showed that
three-player games genuinely behave differently than two-player games [19]. Specifically, they
showed that there exists a three-player game with “no-signaling value” bounded away from 1
such that no amount of parallel repetition reduces the no-signaling value at all.

Parallel repetition is a mathematically natural operation that we find worthy of study in
its own right. At the same time, parallel repetition bounds have found several applications
in theoretical computer science (see this survey by [24]). For example, parallel repetition
of 2 player games shares intimate connections with multi-player interactive proofs [4],
probabilistically checkable proofs and hardness of approximation [3, 10, 16], geometry of
foams [11, 20, 1], quantum information [6], and communication complexity [22, 2]. Recent
work also shows that strong parallel repetition for a particular class of multiprover games
implies new time lower bounds on Turing machines that can take advice [21].

Dinur et al. [7] describe a restricted class of multi-player games for which Raz’s approach
generalizes (giving exponential parallel bounds). Specifically, they consider games whose
query distribution satisfies a certain connectivity property. For games outside this class,
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Verbitsky’s bound was the best known. Dinur et al. highlighted one simple three-player
game, called the GHZ game [15], that in some sense is maximally far from the aforementioned
tractable class of multi-player games. In the GHZ game, the players’ queries are (q1, q2, q3)
chosen uniformly at random from {0, 1}3 such that q1 ⊕q2 ⊕q3 = 0, and the players’ goal is to
produce (a1, a2, a3) such that a1 ⊕a2 ⊕a3 = q1 ∨q2 ∨q3. Dinur et al. conjectured that parallel
repetition decreases the value of the GHZ game exponentially quickly, and speculated that
progress on proving this would shed light on parallel repetition for general games. The GHZ
game has also played a foundational role in the understanding of quantum information theory,
due in part to the fact that quantum strategies can win the GHZ game with probability 1.
It is possible that improved parallel repetition bounds will find applications in this setting as
well.

In a recent work, Holmgren and Raz [18] proved the following polynomial upper bound
on the parallel repetition of the GHZ game:
▶ Theorem 1. The value of the n-wise repeated GHZ game is at most n−Ω(1).

Our main contribution is a different proof of this theorem that, in our view, is significantly
simpler and more direct than the proof of [18]. Like [18], we actually do not rely on any
properties of the GHZ game other than its query distribution, and in particular we do not
rely on specifics of the win condition. Furthermore, unlike most previous works on parallel
repetition, our proof makes no use of information theory, and instead relies on the use of
Fourier analysis.

1.1 Technical Overview
Let P denote the distribution of queries in the n-wise parallel repeated GHZ game. Let
α = Θ(1/nε) for a small constant ε > 0 and E = E1 × E2 × E3 be any product event with
significant probability under P, i.e., P(E) ≥ α. The core of our proof is establishing that
for a random coordinate i ∈ [n], the query distribution P|E (P conditioned on E) is mildly
hard in the ith coordinate. That is, given queries sampled from P|E, the players’ maximum
winning probability in the ith coordinate is bounded away from 1. Using standard arguments
from the parallel repetition literature, this will imply an inverse polynomial bound for the
value of the n-fold GHZ game. The difficulty, as usual, is that the n different queries in P|E
may not be independent.

Our approach at a high level is to:
1. Identify a class D of simple distributions (over queries for the n-wise repeated GHZ game)

such that it is easy to analyze (in step 3 below) which coordinates are hard for any given
D ∈ D. By hard, we mean that the players’ maximum winning probability in the ith

coordinate is 3
4 .

2. Approximate P|E by a convex combination of distributions from D. That is, we write

P|E ≈
∑

j

pjDj ,

where {Dj} are distributions in D, pj are non-negative reals summing to 1, and ≈ denotes
closeness in total variational distance.

3. Show that in the above convex combination, “most” of the Di have many hard coordinates.
More precisely, if we sample j with probability pj , then the expected fraction of coordinates
in which Dj is hard is at least a constant (say 1/3).

Completing this approach implies that if i ∈ [n] is uniformly random, then the ith coordinate
of P|E can be won with probability at most 1 − Ω(1). We elaborate on each of these steps
below.

APPROX/RANDOM 2021
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Bow Tie Distributions

For our class of “simple” distributions D, we introduce the notion of a “bow tie” distribution.
We then define D to be the set of all bow tie distributions. A bow tie is a set B of the form

(x0, y0, z0),
(x0, y1, z1),
(x1, y0, z1),
(x1, y1, z0)

 ⊆ (Fn
2 )3

such that for each (x, y, z) in B, we have x + y + z = 0. In particular this requires that
x0 + x1 = y0 + y1 = z0 + z1. A bow tie distribution is the uniform distribution on a bow
tie. Our name of “bow tie” is based on the fact that bow ties are thus determined by
{(x0, y0), (x0, y1), (x1, y0), (x1, y1)}, which we sometimes view as a set of edges in a graph.
In this case, bow ties are special kinds of K2,2 subgraphs, where K2,2 denotes the complete
bipartite graph.

The main property of a bow tie distribution D is that for every coordinate i for which
(x0)i ̸= (x1)i (equivalently (y0)i ≠ (y1)i, or (z0)i ̸= (z1)i), the ith coordinate of D is as hard
as the GHZ game (i.e. players cannot produce winning answers for the ith coordinate with
probability more than 3

4 ). This follows by “locally embedding” the (unrepeated) GHZ query
distribution into the ith coordinate of D as follows. We first swap x0 ↔ x1, y0 ↔ y1, z0 ↔ z1
as necessary to ensure that

(x0)i = (y0)i = (z0)i = 0. (1)

An even number of swaps are required to do this by the assumption that x0 +y0 +z0 = 0, and
bow ties are invariant under an even number of such swaps. Thus Equation (1) is without
loss of generality. Suppose f̄1, f̄2, f̄3 : Fn

2 → F2 comprise a strategy for the ith coordinate
of D. Then a strategy f1, f2, f3 : F2 → F2 for the basic (unrepeated) GHZ game can be
constructed as

f1(b) = f̄1(xb)
f2(b) = f̄2(yb)
f3(b) = f̄3(zb).

The winning probability of this strategy is the same as the winning probability of f̄1, f̄2, f̄3
in the ith coordinate because

(
(xb1)i, (yb2)i, (zb3)i

)
= (b1, b2, b3). Hence both probabilities

are at most 3/4.

Approximating P|E by Bow Ties

We now sketch how to approximate P|E by a convex combination of bow tie distributions,
where E is a product event E1 × E2 × E3. We assume for now that the non-zero Fourier
coefficients of each Ej are small. We will return to this assumption at the end of the overview
– it turns out to be nearly without loss of generality.

We show that P|E is close in total variational distance to the distribution obtained by
sampling a uniformly random bow tie B ⊆ E, and then outputting a random element of B.
The latter distribution is equivalent to sampling (x, y, z) with probability proportional to
the number of bow ties B ⊆ E that contain (x, y, z). This number is

(∑
z′∈Fn

2
E1(y + z′)E2(x + z′)E3(z′)

)
− 1 if (x, y, z) ∈ supp(P|E)

0 otherwise,
(2)



U. Girish, J. Holmgren, K. Mittal, R. Raz, and W. Zhan 62:5

where we identify E1, E2, and E3 with their indicator functions. Note that we are subtracting
1 to cancel the term corresponding to z′ = z.

Intuitively, the fact that all Ej have small Fourier coefficients means that they look
random with respect to linear functions. Thus, one might guess that the above sum is close
to 2n · µ(E1)µ(E2)µ(E3) for most (x, y, z) ∈ supp(P|E), where µ(S) = |S|/2n denotes the
measure of S under the uniform distribution on Fn

2 . If “close to” and “most” have the right
meanings, then this would imply that our distribution is close in total variational distance to
P|E as desired.

Our full proof indeed establishes this. More precisely, we view Equation (2) as a vector
indexed by (x, y, z) and establish bounds on that vector’s ℓ1 and ℓ2 norms as a criterion for
near-uniformity. In the process our proof repeatedly uses the following claims (see Lemma 16).
For all sets S, T ⊆ Fn

2 that are sufficiently large, we have

E
z∼Fn

2
x∼Fn

2

[S(x) · T (x + z) · E3(z)] ≈ µ(S) · µ(T ) · µ(E3)

and

E
z∼Fn

2

[(
E

x∼Fn
2

[S(x) · E2(x + z)]
)2

· E3(z)
]

≈ µ(S)2 · µ(E2)2 · µ(E3).

Most Bow Ties are Hard in Many Coordinates

For the final step of our proof, we need to show that the distribution of bow ties analyzed in
the previous step produces (with high probability) bow ties that differ in many coordinates.

We begin by parameterizing a bow tie by (x0, y0, x0 ⊕ x1) and noting that in the previous
step, we essentially showed that E contains 23n−O(log n) different bow ties. The O(log n)
term in the exponent arises from the fact that the events {Ej} have density in Fn

2 that is
inverse polynomial in n. A simple counting argument then shows that for a random bow tie,
the min-entropy of x0 ⊕ x1 is close to n. This means that x0 ⊕ x1 is close to the uniform
distribution in the sense that any event occurring with probability p under the uniform
distribution occurs with probability p · nO(1) under the distribution of x0 ⊕ x1. Thus we can
finally apply a Chernoff bound to deduce that with all but 2−Ω(n) probability, x0 ⊕ x1 has
Hamming weight at least n/3.

In other words, a bow tie sampled uniformly at random differs in at least a 1
3 fraction of

coordinates. By the main property of bow ties, this implies that the corresponding bow tie
distribution is hard on a 1

3 fraction of coordinates (indeed, the same set of coordinates).

Handling General Events

For general (product) events E = E1 × E2 × E3 (where the sets {Ei} need not have small
Fourier coefficients), we can partition the universe Fn

2 × Fn
2 × Fn

2 into parts π such that for
most of the parts π, the event E restricted to π has the structure that we already analyzed.
For this to make sense, we ensure several properties of the partition. First, π should be a
product set (π = π1 × π2 × π3) so that E ∩ π is a product set as well, i.e. E ∩ π has the form
Ẽ1 × Ẽ2 × Ẽ3. Second, each πi should be an affine subspace of Fn

2 so that we can do Fourier
analysis with respect to this subspace. Finally π1, π2, and π3 should all be affine shifts of
the same linear subspace so that the set {(x, y, z) ∈ π : x + y + z = 0} has the same Fourier-
analytic structure as the parallel repeated GHZ query set {(x, y, z) ∈ (Fn′

2 )3 : x + y + z = 0}
for some n′ < n.

APPROX/RANDOM 2021
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We prove the existence of such a partition with n′ not too small (n′ = n − o(n)) by a
simple iterative approach, which is similar to [18].

1.2 Comparison to [18]
Our proof has some similarity to [18] – in particular, both proofs partition (Fn

2 )3 into
subspaces according to Fourier-analytic criteria and analyze these subspaces separately – but
the resemblance ends there. In fact, there are fundamental high-level differences between the
two proofs.

The biggest qualitative difference is that our high-level approach decomposes any condi-
tional distribution P|E into components (bow tie distributions) for which many coordinates
are hard. [18] takes an analogous approach, but it establishes a weaker result that differs in
the order of quantifiers: it first fixes a strategy f , and then decomposes P|E into components
such that f performs poorly on many coordinates of many components. This difference
is due to the fact that [18] uses uniform distributions on high-dimensional affine spaces as
their basic “hard” distributions. It is not in general possible to express P|E as a convex
combination of such distributions (for example if each Ej is a uniformly random subset of
Fn

2 ). Instead, [18] expresses P|E as a convex combination of “pseudo-affine” distributions.
This significantly complicates their proof, and we avoid this complication entirely by our use
of bow tie distributions, which are novel to this work.

The remainder of our proof (the analysis of hardness within each part of the partition) is
entirely different.

2 Notation & Preliminaries

A significant portion of these preliminaries is taken verbatim from [18].
We write exp(t) to denote et for t ∈ R.
Let n ∈ N. For a vector v ∈ Rn and i ∈ [n], we write v(i) or vi to denote the i-th

coordinate of v. For p ∈ N, we write ∥v∥p
def=

(∑
i∈[n] |v(i)|p

)1/p

to denote the ℓp norm of v.

For z ∈ {0, 1}∗, hwt(z) def= ∥z∥1 denotes the Hamming weight of z.
We crucially rely on the Cauchy-Schwarz inequality.

▶ Fact 2 (Cauchy-Schwarz). Let k ∈ N and a1, . . . , ak, b1, . . . , bk ∈ R. Then,
∑k

i=1 |ai · bi| ≤√∑k
i=1 a2

i ·
√∑k

i=1 b2
i .

2.1 Set Theory
Let Ω be a universe. By a partition of Ω, we mean a collection of pairwise disjoint subsets of
Ω, whose union equals Ω. If Π is a partition of Ω and ω is an element of Ω, we will write Π(ω)
to denote the (unique) element of Π that contains ω. Thus, we can view Π as a function
Π : Ω → 2Ω.

For a set S ⊆ Ω, we identify S with its indicator function S : Ω → {0, 1} defined at ω ∈ Ω
by

S(ω) =
{

1 if ω ∈ S

0 otherwise.

For sets S, T ⊆ Ω such that T ̸= ∅, we use S|T ⊆ T to denote the set S ∩ T when viewed
as a subset of T . In particular, S|T is an indicator function from T to {0, 1}.
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2.2 Probability Theory
Probability Distributions

Let P be a distribution over a universe Ω. We sometimes think of P as a vector in R|Ω| whose
value in coordinate ω ∈ Ω is P (ω). In particular, we use ∥P −Q∥1 to denote the ℓ1 norm of the
vector P − Q ∈ R|Ω|, where P and Q are probability distributions. We use ω ∼ P to denote
a random element ω distributed according to P . We use supp(P ) = {ω ∈ Ω : P (ω) > 0} to
denote the support of the distribution P .

Random Variables

Let Σ be any alphabet. We say that X : Ω → Σ is a Σ-valued random variable. If Σ = R,
we say that the random variable is real-valued. If X is a real-valued random variable, the
expectation of X under P is denoted Eω∼P [X(ω)]. Often, the underlying distribution P is
implicit, in which case we simply use E[X]. If X is a Σ-valued random variable and P is a
probability distribution, we write PX or X(P ) to denote the induced probability distribution
of X under P , i.e., PX(σ) = (X(P ))(σ) def= P (X = σ) for all σ ∈ Σ. In particular, we say
that X is distributed according to PX and we use σ ∼ X(P ) to denote a random variable σ

distributed according to PX . The distribution P is often implicit, and we identify X with
the underlying distribution PX .

Events

We refer to subsets of Ω as events. We use standard shorthand for denoting events. For
instance, if X is a Σ-valued random variable and x ∈ Σ, we write X = x to denote the event
{ω ∈ Ω : X(ω) = x}. Similarly, for a subset F ⊆ Σ, we write X ∈ F to denote the event
{ω ∈ Ω : X(ω) ∈ F}. We use P (E) to denote the probability of E under P . When P is
implicit, we use the notation Pr(E) to denote P (E).

Conditional Probabilities

Let E ⊆ Ω be an event with P (E) > 0. Then the conditional distribution of P given E is
denoted (P |E) : Ω → R and is defined to be

(P |E)(ω) =
{

P (ω)/P (E) if ω ∈ E

0 otherwise.

If E is an event, we write PX|E as shorthand for (P |E)X .

Measure under Uniform Distribution

For any set S ⊆ Ω, we sometimes identify S with the uniform distribution over S. In
particular, we use x ∼ S to denote x sampled according to the uniform distribution on S.
For S, π ⊆ Ω such that π ̸= ∅, we use µπ(S) = |S∩π|

|π| to denote the measure of S under the
uniform distribution over π. When π = Ω, we omit the subscript and simply use µ(S).

2.3 Fourier Analysis
Fourier Analysis over Subspaces

For any (finite) vector space V over F2, the character group of V, denoted V̂, is the set of
group homomorphisms mapping V (viewed as an additive group) to {−1, 1} (viewed as a

APPROX/RANDOM 2021
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multiplicative group). Each such homomorphism is called a character of V. For functions
mapping V → R, we define the inner product

⟨f, g⟩ def= E
x∼V

[f(x)g(x)] .

The character group of V forms an orthonormal basis under this inner product. We refer to
the all-ones functions χ : V → {−1, 1}, χ ≡ 1 as the trivial character or the zero character and
denote this by χ = ∅.

For all characters χ ̸= ∅, since ⟨χ, ∅⟩ = 0, we have Ex∼V [χ(x)] = 0, in particular, χ(V)
is a uniform {±1}-random variable. Let ∅ ̸= S ⊆ V be a set. Then µV(S) ≜ |S∩V|

|V| = Ŝ(∅),
where we identify S with its indicator function S : V → {0, 1} as mentioned before. For
χ ∈ V̂, we have Ex∼S [χ(x)] = Ŝ(χ)

Ŝ(∅)
.

▶ Fact 3. Given a choice of basis for V, there is a canonical isomorphism between V and V̂.
Specifically, if V = Fn

2 , then the characters of V are the functions of the form

χγ(v) = (−1)γ·v

for γ ∈ Fn
2 .

▶ Definition 4. For any function f : V → R, its Fourier transform is the function f̂ : V̂ → R
defined by

f̂(χ) def= ⟨f, χ⟩ = E
x∼V

[f(x)χ(x)] .

Since the characters of V are orthonormal and V is finite, we can deduce that f is equal to∑
χ∈V̂ f̂(χ) · χ.

▶ Theorem 5 (Plancherel). For any f, g : V → R,

⟨f, g⟩ =
∑
χ∈V̂

f̂(χ) · ĝ(χ).

An important special case of Plancherel’s theorem is Parseval’s theorem:

▶ Theorem 6 (Parseval). For any f : V → R,

E
x∼V

[
f(x)2]

=
∑
χ∈V̂

f̂(χ)2.

Fourier Analysis over Affine Subspaces

Fix any subspace V ⊆ Fn
2 and a vector a ∈ Fn

2 . Let U = a + V denote the affine subspace
obtained by shifting V by a. For every function f : V → R, we associate it with a function
fa : U → R defined by fa(x) = f(x + a) for all x ∈ U . This is a bijective correspondence
between the set of functions from U to R and the set of functions from V to R. Under this
association, we can identify χ ∈ V̂ with χa : U → {−1, 1} where χa(x) = χ(x + a) for all
x ∈ U . This defines an orthonormal basis Ûa := {χa : U → {−1, 1} | χ ∈ V̂} for the vector
space of functions from U to R. We call this the Fourier basis for U with respect to a. This
basis depends on the choice of the shift a ∈ U . However, for all possible shifts b ∈ U and
character functions χ ∈ V̂ , the functions χa and χb only differ by a sign. To see this, observe
that

χa(x) = χ(a + x) = χ(b + x) · χ(a + b) = χb(x) · χ(a + b)
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We will sometimes ignore the subscript and simply use χ ∈ V̂ to index functions in the
Fourier basis of U . This is particularly the case when the properties we are dealing are
independent of choice of basis (for example, the absolute values of Fourier coefficients of a
function).

2.4 Multi-Player Games
In parallel repetition we often work with Cartesian product sets of the form (X1 × · · · × Xk)n.
For these sets, we will use subscripts to index the inner product and superscripts to index
the outer product. That is, for X = X1 × . . . × Xk we view elements x of X n as tuples
(x1, . . . , xk), where xi ∈ X n

i . We use xj
i or xi(j) to refer to the jth coordinate of xi. We use

xj to denote the vector (xj
1, . . . , xj

k).
If {Ei ⊆ Xi}i∈[k] is a collection of subsets, we write E1 × · · · × Ek to denote the set

{x ∈ X : ∀i ∈ [k], xi ∈ Ei}. We say that f : (X1 × · · · × Xk)n → (Y1 × · · · × Yk)n is a product
function if f = f1 × · · · × fk for some functions fi : X n

i → Yn
i .

▶ Definition 7 (Multi-player Games). A k-player game is a tuple (X , Y, Q, W ), where X =
X1 × · · · × Xk and Y = Y1 × · · · × Yk are finite sets, Q is a probability measure on X , and
W : X × Y → {0, 1} is a “winning” predicate. We refer to Q as the query distribution or the
input distribution of the game.

▶ Definition 8 (Deterministic Strategies). A deterministic strategy for a k-player game
G = (X , Y, Q, W ) is a function f = f1 × · · · × fk where each fi : Xi → Yi. The success
probability of f in G is denoted and defined as

val(G, f) def= Pr
x∼Q

[
W

(
x, f(x)

)
= 1

]
.

The most important quantity associated with a game is the maximum probability with
which the game can be “won”.

▶ Definition 9. The value of a k-player game G = (X , Y, Q, W ), denoted val(G), is the
maximum, over all deterministic strategies f , of val(G, f).

It is often easier to construct probabilistic strategies for a game, i.e. strategies in which
players may use shared and/or individual randomness in computing their answers.

▶ Definition 10 (Probabilistic Strategies). Let G = (X , Y, Q, W ) be a k-player game. A
probablistic strategy for G is a distribution F of deterministic strategies for G. The success
probability of F in G is denoted and defined as

val(G, F) def= Pr
x∼Q
f∼F

[
W

(
x, f(x)

)
= 1

]
.

A standard averaging argument implies that for every game, probabilistic strategies
cannot achieve better success probability than deterministic strategies:

▶ Fact 11. Replacing “deterministic strategies” by “probabilistic strategies” in Definition 9
yields an equivalent definition.

The main operation on multi-player games that we consider in this paper is parallel
repetition:
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▶ Definition 12 (Parallel Repetition). Given a k-player game G = (X , Y, Q, W ), its n-fold
parallel repetition, denoted Gn, is defined as the k-player game (X n, Yn, Qn, W n), where
W n(x, y) def=

∧n
j=1 W (xj , yj). For x ∈ X n, we refer to xi ∈ X n

i as the input to the i-th
player.

To bound the value of parallel repeated games, it is helpful to analyze the probability of
winning in a particular instance of the game under various modified query distributions.

▶ Definition 13 (Value in jth coordinate). If G = (X , Y, Q, W n) is a game (with a product
winning predicate), the value of G in the jth coordinate for j ∈ [n], denoted val(j)(G), is the
value of the game (X , Y, Q, W ′), where W ′(x, y) = W (xj , yj).

▶ Definition 14 (Game with Modified Query Distribution). Let G = (X , Y, Q, W ) be a game.
For a probability measure P on X , we write G|P to denote the game (X , Y, P, W ). For an
event E on X , we write G|E to denote the game (X , Y, QE , W ).

2.5 GHZ Distribution
Let X = X1 × X2 × X3 and Y = Y1 × Y2 × Y3 where Xi = Yi = F2. Let Q denote the
uniform distribution over {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. Define W : X × Y → {0, 1} at
x ∈ X , y ∈ Y by W (x, y) = 1 if and only if x1 ∨ x2 ∨ x3 = y1 + y2 + y3 (mod 2). The GHZ
game refers to the 3-player game (X , Y, Q, W ), which has value 3/4. The n-fold repeated
GHZ game refers to the n-fold parallel repetition of (X , Y, Q, W ). Our parallel repetition
results easily generalize with any other (constant-sized) answer alphabet Y ′ and any predicate
W ′, as long as the game (X , Y ′, Q, W ′) has value less than 1.

We typically use X = (X1, X2, X3) ∈ X n to denote a random variable distributed
according to Qn where Xi ∈ X n

i denotes the input to the i-th player.

3 Partitioning into Pseudorandom Subspaces

We make use of the notion of affine partition similar to the one defined in [18]. We say that
Π is an affine partition of (Fn

2 )3 of codimension at most d if Π is a partition on (Fn
2 )3 and:

Each part π ∈ Π has the form aπ + V3
π where Vπ is a subspace of Fn

2 and aπ ∈ (Fn
2 )3, and

Each Vπ has codimension at most d.
The main take-away from this section is Proposition 15, which states the following: Given
the query distribution to the n-fold GHZ game, and a product event E ⊆ (Fn

2 )3 with large
enough probability mass, we can find an affine partition Π of (Fn

2 )3 such that on a typical
part π ∈ Π, the non-zero Fourier coefficients of the indicator functions E1|π1 , E2|π2 , E3|π3

are small. Recall that Ei|πi : πi → {0, 1} is the indicator function of the set Ei ∩ πi ⊆ πi.
Formally, the proposition is as follows:

▶ Proposition 15. Let P = Qn. Let E = E1 × E2 × E3 ⊆ (Fn
2 )3 be such that P(E) = α.

For all δ > 0, there exists an affine partition Π of (Fn
2 )3 of codimension at most 3

δ3 such
that the following holds. With probability at least 1 − δ

α over π ∼ Π(P|E), for all i ∈ [3] and
non-zero χ ∈ V̂, we have

∣∣∣Êi|πi
(χ)

∣∣∣ ≤ δ, where π is of the form π1 × π2 × π3 for affine shifts
π1, π2, π3 of some subspace V of Fn

2 .

Recall that Π(P|E) is the distribution induced by sampling x ∼ P|E and outputting the
part of Π to which x belongs. Note that in the statement of the proposition, we don’t specify
a choice of Fourier basis for πi. This is because for any set S ⊆ πi, the quantity

∣∣∣Ŝ(χai)
∣∣∣ is



U. Girish, J. Holmgren, K. Mittal, R. Raz, and W. Zhan 62:11

independent of choice of ai ∈ πi so we simply write
∣∣∣Ŝ(χ)

∣∣∣. The proof of Proposition 15 is
similar in nature to the proof of Lemma 6.2 in [18], but is much simpler and is presented in
the full version of the paper.

4 Key Fourier Analytic Lemmas

We crucially make use of the following lemma, the proof of which can be found in the full
version of the paper.

▶ Lemma 16. Let V ⊆ Fn
2 be a subspace and a1, a2, a3 ∈ Fn

2 be such that a1 + a2 + a3 = 0.
Let π = π1 × π2 × π3 where πi = ai + V. Let A ⊆ π1, B ⊆ π2, C ⊆ π3 be sets such that for
all non-zero χ ∈ V̂, we have

∣∣∣Ĉ(χ)
∣∣∣ ≤ δ1. Then,∣∣∣∣∣ E

z∼π3
x∼π1

[A(x) · B(x + z) · C(z)] − µπ1(A) · µπ2(B) · µπ3(C)

∣∣∣∣∣ ≤ δ1.

If furthermore for all non-zero χ ∈ V̂, we have
∣∣∣B̂(χ)

∣∣∣ ≤ δ2, then∣∣∣∣∣ E
z∼π3

[(
E

x∼π1
[A(x) · B(x + z)]

)2
· C(z)

]
− µπ1(A)2 · µπ2(B)2 · µπ3(C)

∣∣∣∣∣ ≤ δ2
2 + δ1.

Recall from Section 2.2 that µπi(S) ≜ |S∩πi|
|πi| . In the statement of this lemma, we don’t

specify a choice of Fourier basis for π2 and π3. Since the properties
∣∣∣Ĉ(χa3)

∣∣∣ ≤ δ1 and∣∣∣B̂(χa2)
∣∣∣ ≤ δ2 are independent of the choice of a2 and a3, we simply write

∣∣∣Ĉ(χ)
∣∣∣ ≤ δ1 and∣∣∣B̂(χ)

∣∣∣ ≤ δ2.

5 Main Proof

We use the following Parallel Repetition Criterion which is similar to, but weaker than the
one from [18] for the GHZ game and has a slightly simpler proof.

Let G refer to the n-fold parallel repetition of the GHZ game. Let P = Qn.

▶ Lemma 17 (Parallel Repetition Criterion). Let c ∈ (0, 1] be a constant and ρ(n) : N → R be a
function such that ρ(n) ≥ exp(−n). Suppose for all large n ∈ N and all subsets E1, E2, E3 ⊆
Fn

2 such that P(E) ≥ ρ(n) where E = E1 × E2 × E3, we have Ei∼[n]

[
val(i)(G|E)

]
≤ 1 − c.

Then,

val(G) ≤ ρ(n)Ω(1).

This lemma is proved in [18] under the weaker assumption that there is some coordinate
i ∈ [n] for which val(i)(G|E) ≤ 1 − c. The proof is slightly simpler under our stronger
assumption that Ei∼[n]

[
val(i)(G|E)

]
≤ 1 − c. We prove this in Appendix A.1.

Given this criterion, our goal of showing an inverse polynomial bound for val(G) reduces
to showing the following. Let E = E1 × E2 × E3 be any event such that P(E) = α ≥ 1

n1/100

and n be large enough. It suffices to show that Ei∼[n]

[
val(i)(G|E)

]
≤ 0.95. We do this as

follows.
Let δ = α20

n1/40 . Proposition 15 implies the existence of a partition Π of (Fn
2 )3 into affine

subspaces of codimension at most O
( 1

δ3

)
= o(n) such that:

APPROX/RANDOM 2021



62:12 Parallel Repetition for the GHZ Game: A Simpler Proof

Every π ∈ Π is of the form a + V3 where V ⊆ Fn
2 is a subspace and a ∈ (Fn

2 )3.
With probability at least 1 − δ

P(E) ≥ 1 − o(1) over π ∼ Π(P|E), we have
∣∣∣Êi|πi(χ)

∣∣∣ ≤ δ

for all i ∈ [3] and non-zero χ ∈ V̂, where V is the subspace of Fn
2 for which π is an affine

shift of V3.

Under the distribution Π(P|E), the probability that π is sampled equals (P|π)(E)·P(π)
P(E) by

Bayes’ rule. This implies that the probability that π ∼ Π(P|E) satisfies (P|π)(E) ≤ P(E)/10
is at most 1/10. We will focus on π = π1 × π2 × π3 that satisfy both these properties, namely,
the measure of E under P|π is significant, furthermore, for all i ∈ [3], all non-zero Fourier
coefficients of the sets Ei restricted to πi are small.

▶ Definition 18. We say that π is good if

(P|π)(E) ≥ α/10, and for all non-zero χ ∈ V̂ and i ∈ [3], we have
∣∣∣Êi|πi(χ)

∣∣∣ ≤ δ. (3)

By a union bound, a random π ∼ Π(P|E) will be good with probability at least 1 − 1
10 − δ

α .
Fix any such good π = π1 × π2 × π3 ∈ Π, and let V be the subspace such that π is an affine
shift of V3.

For all z ∈ E3 ∩ π3, define a (partial) matching Mz between π1 and π2 as follows. For
x ∈ π1 ∩ E1, y ∈ π2 ∩ E2, z ∈ π3 ∩ E3 such that x + y = z, put an edge (x, y). Let Lz (resp.
Rz) be the left (resp. right) endpoints of Mz. Let G = ∪z∈E3∩π3Mz be the bipartite graph
between π1 and π2 obtained by combining edges from the matchings for z ∈ E3 ∩π3. Let E(G)
denote the set of edges in G. For every edge e ∈ E(G), we can identify e with a valid input
to the n-fold GHZ game that is contained in E ∩ π. Namely, we associate (x0, y0) ∈ E(G) to
the input (x0, y0, x0 + y0) ∈ supp(P) ∩ E ∩ π. This is a bijective correspondence because of
the way we defined the graph G. Under this correspondence, the uniform distribution over
edges of G corresponds to the distribution P|E, π. We now introduce the important notion
of a bow tie.

▶ Definition 19 (Bow Tie). We say that a subset of edges b ⊆ E(G) is a bow tie if
b = {x0, x1} × {y0, y1} for some x0 ̸= x1 ∈ π1, y0 ̸= y1 ∈ π2 such that x0 + y0 = x1 + y1 (or
equivalently x0 + y1 = x1 + y0). Alternatively, for z0 = x0 + y0 and z1 = x0 + y1, we have
(xi, yj , zk) ∈ supp(P) for all (i, j, k) ∈ supp(Q).

Let b = {x0, x1} × {y0, y1} be a bow tie. As before, we identify b with the indicator
vector b ∈ {0, 1}E(G) of the edges of b, that is, b(e) = 1 iff e ∈ {(xi, yj) : i, j ∈ {0, 1}}.
We use b̃ to denote the uniform distribution on the edges of the bow tie, when viewed as
inputs to the n-fold GHZ game. More precisely, b̃ denotes the uniform distribution on
{(xi, yj , xi + yj) | i, j ∈ {0, 1}}.

We say that b differs in the i-th coordinate for i ∈ [n] if x0(i) ̸= x1(i), or equivalently,
y0(i) ̸= y1(i), or equivalently, z0(i) ̸= z1(i).

Let b be a bow tie and I ⊆ [n] be the coordinates on which b differs. The following claim
shows that val(i)(G|b̃) ≤ 3/4 for all i ∈ I. The proof is deferred to Appendix A.2

▷ Claim 20. Let b = {x0, x1}×{y0, y1} be a bow tie. Let I ⊆ [n] be the subset of coordinates
on which b differs. Then, val(i)(G|b̃) ≤ 3/4 for all i ∈ I.

Let B denote the set of all bow ties. Consider the distribution on edges defined by first
sampling a uniformly random bow tie from B, and then a uniformly random edge from the
bow tie. We now provide an alternate description of this distribution. For each z ∈ E3 ∩ π3,
define 1z ∈ {0, 1}|E(G)| as follows. For each e = (x, y) ∈ E(G), define 1z(e) = 1 if x and y
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are both matched in Mz but not to each other, and define 1z(e) = 0 otherwise. Alternatively,
1z is the indicator of the set ((Lz × Rz) \ Mz) ∩ E(G). Let v := Ez∼E3∩π3 [1z]. Note that v

has |E(G)| coordinates, each of which have non-negative values, so v induces a distribution
on E(G). Consider this distribution ṽ = v

∥v∥1
on E(G) defined by normalizing v. We show

that this distribution is an alternate description of the aforementioned distribution.

▷ Claim 21. v = |E3 ∩ π3|−1 ·
(∑

b∈B b
)
. In particular, we can think of the distribution

ṽ := v
∥v∥1

on E(G) as obtained by sampling a uniformly random bow tie b in G and outputting
a uniformly random edge of b.

The proof of this is deferred to Appendix A.3. Our goal now is to show that the
distribution ṽ is close to the uniform distribution over edges of G. To do so, we study some
properties of G. Observe that |E(G)| ≜ |V|2 · Ex∼π1

z∼π3
[E1(x) · E2(x + z) · E3(z)]. We apply

Lemma 16 with parameters A = E1 ∩π1, B = E2 ∩π2, C = E3 ∩π3. Since π ∈ supp(Π(P|E)),
the set π ∩ supp(P) is non-empty, therefore, we may choose a ∈ supp(P) so that π = a + V3.
This, along with Equation (3) implies that the first hypothesis of Lemma 16 is satisfied.
Lemma 16 implies that∣∣∣|E(G)| − |V|2 · µπ1(E1) · µπ2(E2) · µπ3(E3)

∣∣∣ ≤ |V|2 · δ. (4)

We make use of the following bounds on the ℓ1 and ℓ2 norms of v. The proofs of these are
by Fourier analysis and are deferred to Appendices A.4 and A.5.

▷ Claim 22.

∥v∥1 ≥ |V|2 ·
(
µπ1(E1)2 · µπ2(E2)2 · µπ3(E3) − 3 · δ

)
− |V| ·

(
µπ1(E1) · µπ2(E2) + 2 · δ · µπ3(E3)−1)

(5)

▷ Claim 23.

∥v∥2
2 ≤ |V|2 ·

(
µπ1(E1)3 · µπ2(E2)3 · µπ3(E3) + 10 ·

√
δ
)

(6)

We now bound ∥ṽ∥2 = ∥v∥2
∥v∥1

by plugging in appropriate bounds on δ and dividing
Equation (6) by Equation (5). Our choice of δ = α20/n1/40, and our assumption that
α/10 ≤ (P|π)(E) (which in turn is at most mini∈[3] (µπi

(Ei))) implies that δ is much smaller
than any µπi

(Ei). In particular, we highlight that
√

δ = o
(
µπ1(E1)3 · µπ2(E2)3 · µπ3(E3)

)
δ = o

(
µπ1(E1)2 · µπ2(E2)2 · µπ3(E3)

)
δ = o

(
µπ1(E1) · µπ2(E2) · µπ3(E3)

)
Furthermore, since |V| = 2Ω(n) and 1 ≥ µπi

(Ei) = Ω(α) = n−O(1), we have

|V| · µπ1(E1) · µπ2(E2) = o
(
|V|2 · µπ1(E1)2 · µπ2(E2)2 · µπ3(E3)

)
.

Thus the dominant term on the right-hand side of Equation (5) is |V|2 · µπ1(E1)2 ·
µπ2(E2)2 · µπ3(E3), and the dominant term on the right-hand side of Equation (6) is
|V|2 · µπ1(E1)3 · µπ2(E2)3 · µπ3(E3). More precisely, we have

∥v∥1 ≥ (1 − o(1)) · |V|2 · µπ1(E1)2 · µπ2(E2)2 · µπ3(E3) (7)
∥v∥2

2 ≤ (1 + o(1)) · |V|2 · µπ1(E1)3 · µπ2(E2)3 · µπ3(E3). (8)
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This implies that

∥ṽ∥2
2 = ∥v∥2

2
∥v∥2

1
≤ 1 + o(1)

|V|2 · µπ1(E1) · µπ2(E2) · µπ3(E3) (9)

In comparison, Equation (4) gave that

|E(G)| ∈ (1 ± o(1)) · |V|2 · µπ1(E1) · µπ2(E2) · µπ3(E3).

Thus we can rewrite Equation (9) as

∥ṽ∥2 ≤ 1 + o(1)√
|E(G)|

(10)

This, together with the fact that by construction ∥ṽ∥1 = 1, is sufficient to deduce that
ṽ is close to the “uniform distribution” vector ũ

def= ( 1
|E(G)| , . . . , 1

|E(G)| ). More formally, we
have:

▶ Fact 24. Suppose that ṽ ∈ Rm is an m-dimensional vector such that ∥ṽ∥1 = 1, and
∥ṽ∥2 = 1+β√

m
for some β ∈ [0, 1]. Then

∥ṽ − ũ∥1 ≤
√

3β,

where ũ denotes the vector ( 1
m , . . . , 1

m ).

The proof of Fact 24 is deferred to Appendix A.6
Applying Fact 24 to Equation (10) shows that dTV(ṽ, ũ) = o(1). In other words, a

uniformly random edge of a uniformly random bow tie is distributed close to uniformly on
E(G).

We now show that a typical bow tie differs in a considerable fraction of coordinates.

▷ Claim 25. Pri∼[n]
b∼B

[b differs in i-th coordinate] ≥ 1/3 − o(1).

The proof of Claim 25 is deferred to Appendix A.7.
Claim 20, along with Claim 25 implies that Pri∼[n]

b∼B

[val(i)(G|b̃) ≤ 3/4] ≥ 1/3 − o(1) ≥

0.3. For those i ∈ [n] and b ∈ B such that b doesn’t differ at the i-th coordinate, we
bound val(i)(G|b̃) by 1. This, along with Claim 21 implies that Ei∼[n]

[
val(i)(G|ṽ)

]
≤

Ei∼[n]
b∼B

[val(i)(G|b̃)] ≤ 0.75 × 0.3 + 1 × 0.7 ≤ 0.925. Since dTV(ũ, ṽ) ≤ o(1) and ũ corres-

ponds to P|π, E, this implies that Ei∼[n]

[
val(i)(G|π, E)

]
= 0.925 + o(1) ≤ 0.93. Since

π ∼ Π(P|E) is good with probability at least 1 − δ · α−1 − 1/10 ≥ 0.9 − o(1) ≥ 0.8, we have
Ei∼[n]

[
val(i)(G|E)

]
≤ E

i∼[n]
π∼Π(P|E)

[
val(i)(G|E, π)

]
≤ 0.8 × 0.93 + 0.2 × 1 < 0.95. This, along

with Lemma 17 completes the proof.
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A Appendix

A.1 Proof of Lemma 17
Proof of Lemma 17. Let P = Qn. Choose the largest integer m ≥ 0 such that 32−m ≥ ρ(n)·
2
c . Note that m = Θ(log(1/ρ(n))). Fix any deterministic product strategy f̄ = (f̄1, f̄2, f̄3) for
the players where f̄i : Fn

2 → Fn
2 denotes the strategy for the i-th player. Let Yi = f̄i(Xi) ∈ Fn

2
denote the output of player i on input Xi. Let {j1, . . . , jm} ⊆ [n] be a set of coordinates.
Let Wi denote the event of winning the GHZ game in the ji-th coordinate under the strategy
f̄ and let W≤i := W1 ∧ . . . ∧ Wi. Observe that

val(G, f̄) ≤
m−1∏
i=0

Pr [Wi+1 | W≤i] .

We show how to construct a sequence of coordinates so that every term in the above
product is at most 1 − c/2. This would imply that val(G) ≤ (1 − c/2)Θ(log(1/ρ(n)) = ρ(n)Ω(1).

Fix any i ∈ {0, . . . , m − 1} and assume that we have found j1, . . . , ji. Let X ∼ P and X≤i

denote X restricted to the coordinates {j1, . . . , ji}. Let Y≤i denote the outputs of the players
restricted to the coordinates {j1, . . . , ji}. Let Z≤i = (X≤i, Y≤i). Since W≤i is a function of
Z≤i, we have

Pr [Wi+1 | W≤i] = E
z≤i∼Z≤i|W≤i

[Pr [Wi+1 | Z≤i = z≤i]]

≤ E
z≤i∼Z≤i|W≤i

[
val(ji+1) (G|Z≤i = z≤i)

]
. (11)

Let F = F (z≤i) denote the event that P [Z≤i = z≤i|W≤i] ≥ c
2 · 1

N where N = 32i ≥
supp(Z≤i). We argue that F occurs with probability at least 1 − c/2. This is because we
are sampling z≤i with probability P[Z≤i = z≤i|W≤i], hence the measure of z≤i for which
P[Z≤i = z≤i|W≤i] ≤ c

2 · 1
N is at most c

2 . Fix any z≤i such that F holds. Our choice of m

implies that 1
N · c

2 ≥ ρ(n). Note that we can express the distribution P|Z≤i = z≤i as P|E
where E = E1 ×E2 ×E3 for E1, E2, E3 ⊆ Fn

2 and P(E) ≥ ρ(n). The hypothesis of Lemma 17
implies that Ej∼[n]

[
val(j) (G|Z≤i = z≤i)

]
≤ 1 − c. This implies that

E
z≤i∼Z≤i|W≤i

j∼[n]

[
val(j) (G|Z≤i = z≤i)

]
≤ Pr

z≤i∼Z≤i|W≤i

[¬F ]

+ E
z≤i∼Z≤i|W≤i,F

j∼[n]

[
val(j) (G|Z≤i = z≤i)

]
≤ c

2 + 1 − c = 1 − c
2 .

By linearity of expectation, we can fix a j ∈ [n] such that E
z≤i∼Z≤i|W≤i

[
val(j) (G|Z≤i = z≤i)

]
≤

1 − c
2 . Note that j /∈ {j1, . . . , ji} since we already win the game on these coordinates. This,

along with Equation (11) completes the proof. ◀

A.2 Proof of Claim 20
Proof of Claim 20. Let i ∈ I. Since the bow tie b differs in the i-th coordinate, we have

{x0(i), x1(i)} = {y0(i), y1(i)} = {z0(i), z1(i)} = {0, 1}.
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We may thus assume without loss of generality that x0(i) = y0(i) = 0. Define embeddings
ϕ1 : F2 → {x0, x1}, ϕ2 : F2 → {y0, y1} and ϕ3 : F2 → {z0, z1} at a ∈ F2 by ϕ1(a) = xa,
ϕ2(a) = ya and ϕ3(a) = za. It follows for all a ∈ {0, 1} and j ∈ [3], we have (ϕj(a))(i) = a. In
particular, for ϕ = ϕ1 ×ϕ2 ×ϕ3, the distribution ϕ(Q) is exactly the distribution b̃. Given any
strategies f̄1, f̄2, f̄3 : Fn

2 → Fn
2 for the players for the n-fold GHZ game restricted to the query

distribution b̃, the functions ϕ1, ϕ2, ϕ3 induce a strategy for the GHZ game as follows. Define
fj : F2 → F2 by fj(a) = (f̄j(ϕj(a)))(i). The success probability of the strategy f1 × f2 × f3
on the distribution Q is exactly the success probability in the i-th coordinate of the strategy
f̄1 × f̄2 × f̄2 on the distribution b̃. It follows that val(i)(G|b̃) ≤ 3/4. ◁

A.3 Proof of Claim 21
Proof of Claim 21. Fix any e ∈ E(G), e = (x0, y0). This implies that x0 ∈ E1∩π1, y0 ∈ E2∩π2
and z0 := x0 + y0 ∈ E3 ∩ π3. Note that v(e) = Prz∼E3∩π3 [(x0, y0) ∈ (Lz × Rz) \ Mz]. For
any z1 ∈ E3 ∩ π3,

e ∈ (Lz1 × Rz1) \ Mz1 ⇐⇒ x0 + z1 ∈ E2 ∩ π2, y0 + z1 ∈ E1 ∩ π1, z1 ̸= z0

⇐⇒ x0, x1 ∈ E1 ∩ π1, y0, y1 ∈ E2 ∩ π2, z1 ̸= z0 ∈ E3 ∩ π3

where x1 := y0 + z1, y1 := x0 + z1

⇐⇒ {x0, x1} × {y0, y1} is a bow tie
where x1 := y0 + z1, y1 := x0 + z1.

This implies that for all e = (x0, y0) ∈ E(G) and z1 ∈ E3 ∩ π3, we have 1z1(e) = 1 if and
only if b = {x0, x1} × {y0, y1} is a bow tie. Observe that as we vary z1 ∈ E3 ∩ π3, we obtain
all possible bow ties that contain the edge e, i.e. the bow ties b for which b(e) ̸= 0. This
implies that v ≜ Ez1∼E3∩π3 [1z] = |E3 ∩ π3|−1 ·

(∑
b∈B b

)
. ◁

A.4 Proof of Claim 22
For ease of notation, we define weight functions as follows.

▶ Definition 26 (Weight functions). Let P = Qn. For z ∈ π3, let

wtπ(z) := Pr
X∼P

[(X1 ∈ E1 and X2 ∈ E2)|(X ∈ π and X3 = z)] = E
x∼π1

[E1(x)E2(x + z)] .

Proof of Claim 22. Let z ∈ E3 ∩ π3. Note that wtπ(z) = µπ1(Lz) = µπ2(Rz). Observe that
∥1z∥1 = |E(G) ∩ (Lz × Rz) \ Mz|. We apply Lemma 16 with parameters A = Lz ∩ π1, B =
Rz ∩ π2, C = E3 ∩ π3. The first hypothesis of Lemma 16 is satisfied due to Equation (3).
Lemma 16 implies that

|E(G) ∩ (Lz × Rz)| ≜ |V|2 · E
z′∼π3
x∼π1

[Lz(x) · Rz(x + z′) · E3(z′)]

≥ |V|2 · (µπ1(Lz) · µπ2(Rz) · µπ3(E3) − δ)
≜ |V|2 ·

(
wtπ(z)2 · µπ3(E3) − δ

)
.

Similarly, |Mz| ≜ |V| · Ex∼π1 [E1(x) · E2(x + z)] = |V| · wtπ(z). We apply Lemma 16 with
parameters A = E1, B = E2, C = E3. All the hypothesis are satisfied due to Equation (3).
Lemma 16, along with conditioning z ∼ π3 on z ∈ E3 implies that∣∣∣∣ E

z∼E3∩π3

[
wtπ(z)2]

− µπ1(E1)2 · µπ2(E2)2
∣∣∣∣ ≤ 2 · δ · µπ3(E3)−1. (12)
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∣∣∣∣ E
z∼E3∩π3

[wtπ(z)] − µπ1(E1) · µπ2(E2)
∣∣∣∣ ≤ 2 · δ · µπ3(E3)−1.

Substituting this in the previous inequalities and taking an expectation over z ∼ E3 ∩ π3,

∥v∥1 = E
z∼E3∩π3

[∥1z∥1] = E
z∼E3∩π3

[|E(G) ∩ (Lz × Rz)| − |Mz|]

≥ |V|2 ·
(

E
z∼E3∩π3

[
wtπ(z)2]

· µπ3(E3) − δ

)
− |V| · E

z∼E3∩π3
[wtπ(z)]

≥ |V|2 ·
(
µπ1(E1)2 · µπ2(E2)2 · µπ3(E3) − 3 · δ

)
− |V| ·

(
µπ1(E1) · µπ2(E2) + 2 · δ · µπ3(E3)−1)

. ◀

A.5 Proof of Claim 23
Proof of Claim 23. Define wtπ(·) as in the proof of Claim 22. Let z, z′ ∈ E3 ∩ π3. Observe
that ⟨1z, 1z′⟩ = |E(G) ∩ ((Lz ∩ Lz′) × (Rz ∩ Rz′)) \ (Mz ∪ Mz′)|. We apply Lemma 16 with
parameters A = Lz ∩ Lz′ ∩ π1, B = Rz ∩ Rz′ ∩ π2 and C = E3 ∩ π3. The first hypothesis is
satisfied due to Equation (3). Lemma 16 implies that

⟨1z, 1z′⟩ =
∣∣E(G) ∩ ((Lz ∩ Lz′) × (Rz ∩ Rz′)) \ (Mz ∪ Mz′)

∣∣
≤ |V|2 · (µπ1(Lz ∩ Lz′) · µπ2(Rz ∩ Rz′) · µπ3(E3) + δ) .

Taking an expectation over z′ ∼ E3 ∩ π3 and applying Cauchy-Schwartz yields that

E
z′∼E3∩π3

[⟨1z, 1z′⟩]

≤ |V|2 · E
z′∼E3∩π3

[µπ1(Lz ∩ Lz′) · µπ2(Rz ∩ Rz′) · µπ3(E3) + δ]

≤ |V|2 ·
(√

E
z′∼E3∩π3

[µπ1(Lz ∩ Lz′)2] ·
√

E
z′∼E3∩π3

[µπ2(Rz ∩ Rz′)2] · µπ3(E3) + δ

)
.

Observe that µπ1(Lz ∩ Lz′) = Ex∼π1 [Lz(x)E2(x + z′)] for all z′ ∈ E3 ∩ π3. We now apply
Lemma 16 with parameters A = Lz ∩ π1, B = E2 ∩ π2, C = E3 ∩ π3. All the hypotheses are
satisfied due to Equation (3). Lemma 16, along with the aforementioned observation implies
that∣∣∣∣ E

z′∼E3∩π3

[
µπ1(Lz ∩ Lz′)2]

− µπ1(Lz)2 · µπ2(E2)2
∣∣∣∣ ≤ 2 · δ · µπ3(E3)−1.

An analogous inequality holds for |Rz ∩ Rz′ |. Substituting this in the previous inequality
and using the fact that

√
a + b ≤

√
a +

√
b, we have

E
z′∼E3∩π3

[⟨1z, 1z′⟩]

≤ |V|2 ·
( (

µπ1(Lz) · µπ2(E2) +
√

2·δ
µπ3 (E3)

)
·
(

µπ2(Rz) · µπ1(E1) +
√

2·δ
µπ3 (E3)

)
· µπ3(E3)

+ δ
)

≤ |V|2 ·
(

µπ1(Lz) · µπ2(Rz) · µπ1(E1) · µπ2(E2) · µπ3(E3) + 8 ·
√

δ
)

= |V|2 ·
(

wtπ(z)2 · µπ1(E1) · µπ2(E2) · µπ3(E3) + 8 ·
√

δ
)

.

We now take an expectation over z ∼ E3 ∩ π3 and use Equation (12) to conclude that

E
z,z′∼E3∩π3

[⟨1z, 1z′⟩] ≤ |V|2 ·
(

µπ1(E1)3 · µπ2(E2)3 · µπ3(E3) + 10 ·
√

δ
)

. ◀
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A.6 Proof of Fact 24
Proof of Fact 24.

∥ṽ − ũ∥2
2 = ⟨ṽ − ũ, ṽ − ũ⟩

= ∥ṽ∥2
2 + ∥ũ∥2

2 − 2⟨ũ, ṽ⟩

= 1 + 2β + β2

m
+ 1

m
− 2

m

= 2β + β2

m
≤ 3β

m
.

Finally, we bound the ℓ1 distance in terms of the ℓ2 distance:

∥ṽ − ũ∥1 ≤ ∥ṽ − ũ∥2 ·
√

m ≤
√

3β. ◀

A.7 Proof of Claim 25
Proof of Claim 25. It suffices to show that a random b ∼ B differs in less than n/3 coordinates
with probability at most 2−Ω(n) = o(1).

The Chernoff bound implies that Prx0,x1∼Fn
2

[hwt(x0 + x1) < n/3] ≤ 2−Ω(n). We condition
on x0, x1 ∈ π1 to conclude that Prx0,x1∼π1 [hwt(x0 + x1) < n/3] ≤ 2−Ω(n) · 22n

|V|2 .
Let b = {x0, x1} × {y0, y1} be a bow tie. By definition, we have y1 = x0 + x1 + y0. In

particular, the bow tie b is uniquely identified by x0, x1, y0. This implies that the probability
that a random b ∼ B differs in less than n/3 coordinates is precisely

|V|3

|B|
Pr

x0,x1∼π1
y0∼π2

y1=x0+x1+y0

[{x0, x1} × {y0, y1} ∈ B and hwt(x0 + x1) < n/3]

≤ |V|3

|B|
Pr

x0,x1∼π1
[hwt(x0 + x1) < n/3]

≤ |V|3

|B|
· 2−Ω(n) · 22n

|V|2

Recall that v = Ez∼E3∩π3 [1z] = 1
µπ3 (E3)·|V|

∑
z∈E3∩π3

1z, where for each e,
∑

z∈E3∩π3
1z(e)

equals the number of bow ties containing the edge e. Since each bow tie contains 4 edges, we
have that ∥v∥1 = 4

µπ3 (E3)·|V| · |B|. Then, equation (7) implies that

|B| ≥ 1
8 · |V|3 · µπ1(E1)2 · µπ2(E2)2 · µπ3(E3)2 ≥ 1

8 · |V|3 · α6.

This implies that |V|3

|B| ≤ 8/α6. Recall that α ≥ n−O(1) and the co-dimension of V is
o(n). This implies that 22n

|V|2 = 2o(n). This along with the above calculation implies that the
probability that a uniformly random b ∼ B differs in less than n/3 coordinates is at most
8·2−Ω(n)

α6 · 2o(n) = 2−Ω(n). This completes the proof. ◁
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