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Abstract
We present a poly log log n time randomized CONGEST algorithm for a natural class of Lovász Local
Lemma (LLL) instances on constant degree graphs. This implies, among other things, that there are
no LCL problems with randomized complexity between Ω(log n) and poly log log n. Furthermore,
we provide extensions to the network decomposition algorithms given in the recent breakthrough by
Rozhoň and Ghaffari [STOC2020] and the follow up by Ghaffari, Grunau, and Rozhoň [SODA2021].
In particular, we show how to obtain a large distance separated weak network decomposition with a
negligible dependency on the range of unique identifiers.
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1 Introduction

Our main contribution is a poly log log n round randomized distributed CONGEST algorithm
to solve a natural class of Lovász Local Lemma (LLL) instances on constant degree graphs.
Among several other applications, e.g., various defective graph coloring variants, this implies
that there is no LCL problem (locally checkable labeling problem) with randomized complexity
strictly between poly log log n and Ω(log n), which together with the results of [3] implies
that the known world of complexity classes in the sublogarithmic regime in the CONGEST
and LOCAL model are almost identical. As a side effect of our techniques we extend the
understanding of the computation of network decompositions in the CONGEST model. We
now explain our contributions on LLL and LCLs in more detail; in the second half of the
introduction we explain our techniques, contributions on network decomposition and how
they relate to results in the LOCAL model.

We work in the CONGEST model of distributed computing, where a network of com-
putational devices is abstracted as an n-node graph, where each node corresponds to a
computational unit. In each synchronous round, the nodes can send messages of size
b = O(log n) to their neighbors. In the end of the computation, each node is responsible of
outputting its own part of the output/solution, e.g., its color in a graph coloring problem.
The LOCAL model is otherwise the same, except that there is no bound on the message
size b.
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31:2 Efficient CONGEST Algorithms for the Lovász Local Lemma

Background on LLL and LCLs in LOCAL

An instance of the Lovász Local Lemma problem is formed by a set of variables and a set of
bad event E1, . . . , En that depend on the variables. The famous Lovász Local Lemma [23]
states that if the probability of each event is upper bounded by p, each event only shares
variables with at most d other events and epd < 1 holds, then there exists an assignment to
the variables that avoids all bad events. An example of a problem that can be solved via
LLL is the sinkless orientation problem on graphs with minimum degree 4. In the sinkless
orientation problem the objective is to orient the edges of a graph such that every vertex has
at least one outgoing edge. This can be modeled by an LLL as follows: Orient each edge
randomly – each edge represents a variable – and introduce a bad event for each vertex that
holds if and only if all edges are oriented towards it. One obtains p = 2−d and d ≥ 4 such that
epd < 1 holds. The Lovász Local Lemma has had a huge success in theory of computation.
One highlight is the beautiful and simple parallel algorithm by Moser and Tardos [39]. In
the distributed version of the problem each variable and each event is simulated by one node
of the communication network such that the variables of each event E are simulated by the
node simulating E or one of its neighbors. The algorithm by Moser and Tardos immediately
yields a randomized O(log2 n) LLL algorithm in the LOCAL model. Often one has stronger
guarantees on the relation of p and d, e.g., a polynomial criterion epd2 < 1 (or even larger
exponents) instead of only epd < 1, and can obtain simpler and faster algorithms. E.g., in
the same model, Chung, Pettie, and Su obtained a randomized algorithm that runs in time
O(logepd2 n) whenever the criterion epd2 < 1 holds [20].
LCLs through LLL: The main recent interest in distributed LLL are constant degree graphs
motivated by the study of LCLs. LCL problems are defined on constant degree graphs and
in an LCL problem each node is given an input from a constant sized set of labels and must
output a label from a constant sized set of labels. The problem is characterized by a set of
feasible constant-radius neighborhoods (for a formal definition see Section 4). Many classic
problems are LCL problems, e.g., the problem of finding a vertex coloring with ∆ colors
in a graph with maximum degree ∆. The systematic study of LCLs in the LOCAL model
initiated by Naor & Stockmeyer [40] has picked up speed over the last years leading to an
almost complete classification of the complexity landscape of LCL problems in the LOCAL
model [18, 19, 4, 2, 43]. One of the most important results in this line of research is by
Chang and Pettie [19] who showed that any o(log n)-round randomized LOCAL algorithm
for an LCL problem P implies the existence of a TLLL-round algorithm for P where TLLL is
the runtime of an LLL algorithm with an (arbitrary) polynomial criterion, e.g., for p(ed)100.
Among other implications, the breakthrough result by Rozhoň and Ghaffari provided an
(poly log log n)-round LLL algorithm, in the LOCAL model, for the case that the dependency
degree d is bounded. This implies a gap in the randomized complexity landscape for LCLs.
There is no LCL problem with a complexity strictly between poly log log n and Ω(log n) in
the LOCAL model.

1.1 Our Results on the Distributed Lovász Local Lemma and LCLs

Motivated by the progress in LOCAL using the LCLs through LLL application, we aim to
design CONGEST algorithms for the LLL problem. The first observation is that one wants to
limit the range of the variables, as any reasonable algorithm should be able to send the value
of a variable in a CONGEST message, and one also wants to limit the number of variables
at a node such that nodes can learn assignments of all variables associated with their bad
event(s) efficiently. We call an LLL instance with dependency degree d range bounded if each
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event only depends on poly d variables and each variable uses values from a range of size
poly d. At first sight, this seems like a a very restrictive setting, but in fact most instances of
LLL satisfy these requirements. Our main result is contained in the following theorem and
meets the poly log log n round state of the art in the LOCAL model [43].

▶ Theorem 1. There is a randomized CONGEST algorithm that with high probability solves
any range bounded Lovász Local Lemma instance that has at most n bad events, dependency
degree d = O(1) and satisfies the LLL criterion p(ed)8 < 1 where p is an upper bound on the
probability that a bad event occurs, in poly log log n rounds.

On the negative side, it is know that a double logarithmic dependency cannot be avoided.
There is an Ω(log log n)-round lower bound for solving LLL instances with randomized
algorithms in the LOCAL model [11], that holds even for constant degree graphs, and it
naturally applies to the CONGEST model as well. It stems from a lower bound on the
aforementioned sinkless orientation problem.

Implications for the Theory of LCLs

As the reduction from [19], that reduces sublogarithmic time randomized algorithms to
LLL algorithms, immediately works in CONGEST, our fast LLL algorithm implies a gap in
the complexity landscape of LCLs. A more precise definition of LCLs and a proof for the
following corollary will be presented in the end of Section 4.

▶ Corollary 2. There is no LCL problem with randomized complexity strictly between
poly log log n and Ω(log n) in the CONGEST model.

In fact, Corollary 2 together with the results of [3] implies that the known world of
complexity classes in the sublogarithmic regime in the CONGEST and LOCAL model are
almost identical. In fact, a difference can only appear in the extremely small complexity
regime between Ω(log log∗ n) and O(log∗ n) and in the important regime of complexities that
lie between Ω(log log n) and poly log log n where complexity classes are not understood in the
LOCAL model. An immediate implication of Corollary 2 is a poly log log n-round randomized
CONGEST algorithm for ∆-coloring when ∆ is constant, a result that was previously only
known in the LOCAL model [29]. Chang and Pettie [19] conjecture that the runtime of LLL
in the LOCAL model is O(log log n) on general bounded degree graphs which would further
simplify the complexity landscape for LCLs. On trees this complexity can be obtained [17]
in the LOCAL model and for the specific LLL instances that arise in the study of LCLs on
trees an O(log log n)-round algorithm has also been found in the CONGEST model [3].

1.2 Technical Overview and Background on our Methods
Our core technical contribution to obtain Theorem 1 is a bandwidth efficient derandomization
of the LLL algorithm by Chung, Pettie, and Su [20] that we combine with the shattering
framework of Fischer and Ghaffari [24]. To explain these ingredients and how we slightly
advance our understanding of network decompositions in the CONGEST model on the way,
we begin with explaining the background on distributed derandomization and network
decompositions and the relation to results in the LOCAL model.

Background on Network Decompositions and Distributed Derandomization

Network decompositions are a powerful tool with a range of applications in the area of
distributed graph algorithms and were introduced by Awerbuch, Luby, Goldberg, and
Plotkin [1]. A (C, D)-network decomposition (ND) is a partition of the vertices of a graph
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into C collections of clusters (or color classes of clusters) such that each cluster has diameter1

at most D. Further, it is required that the clusters in the same collection are independent,
i.e., are not connected by an edge. This is extremely helpful in the LOCAL model, e.g., to
compute a (∆ + 1)-coloring of the network graph one can iterate through the C collections,
and within each collection process all clusters in parallel (due to their independence). Due
the unbounded message size dealing with a single cluster is trivial. A cluster leader can learn
all information about the cluster in time that is proportional to the cluster diameter D, solve
the problem locally and disseminate the solution to the vertices of the cluster. Thus the
runtime scales as O(C · D). Hence, the objective has been to compute such decompositions
as fast as possible and with C and D as small as possible, optimally, all values should be
polylogarithmic in n. Awerbuch et al. gave a deterministic LOCAL algorithm with round
complexity and C and D equal to 2O(

√
log n log log n) ≫ poly log n. Panconesi and Srinivasan

improved both parameters and the runtime to 2O(
√

log n) [41]. Linial and Saks showed that
the optimal trade-off between diameter and the number of colors is C = D = O(log n) and
they provided an O(log2 n)-round randomized algorithm to compute such decompositions
[38] . These algorithms remained the state of the art for almost three decades even though
the need for an efficient deterministic algorithm for the problem has been highlighted in
many papers, e.g., [7, 32, 27, 19, 31].

A few years ago, Ghaffari, Kuhn, and Maus [33] and Ghaffari, Harris, and Kuhn [28]
highlighted the importance of network decompositions by showing that an efficient deter-
ministic LOCAL algorithm for network decompositions with C = D = poly log n would
immediately show that an efficient randomized LOCAL algorithm for any efficiently verifiable
graph problem would yield an efficient deterministic algorithm. Here, all occurrences of
efficient mean polylogarithmic in the number of nodes of the network. Then, in the afore-
mentioned breakthrough Rozhoň and Ghaffari [43] devised such an efficient deterministic
algorithm for network decompositions, yielding efficient deterministic algorithms for many
problems. The result also had an immediate impact on randomized algorithms. Many
randomized algorithms in the area use the shattering technique that at least goes back to
Beck [10] who used the technique to solve LLL instances in centralized settings. It has
been introduced to distributed computing by Barenboim, Elkin, Pettie and Schneider in
[9]. The shattering technique usually implements the following schematic: First, the nodes
use a randomized process and the guarantee is that with high probability almost all nodes
find a satisfactory output. The remainder of the graph is shattered into small components,
that is, after this so called pre-shattering phase the unsolved parts of the graph induce
small – think of N = poly log n size – connected components. In the post-shattering phase
one wishes to use an efficient deterministic algorithm, e.g., a deterministic algorithm with
complexity T (n) = poly log n applied to each small component results in a complexity of
T (N) = T (poly log log n). Combining the shattering technique, e.g., [9, 24, 25], the network
decomposition algorithm from [43] and the derandomization from [32, 27] the randomized
complexities for many graph problems in the LOCAL model are poly log log n.

1 For the sake of this exposition it is enough to assume that a cluster C has diameter D, that is, any two
vertices in the cluster are connected with a path within the cluster of length at most D. Actually, often
these short paths are allowed to leave the cluster which may cause congestion when one uses these paths
for communication in two clusters in parallel. The details of the standard way to model this congestion
and its impact are discussed in Section 3.
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The Challenges in the CONGEST Model

The holy grail would be to obtain a similar derandomization result in the CONGEST model.
But, even though the network decomposition algorithm from [43] immediately works in
CONGEST, we are probably far from obtaining such a result. Even for simple problems
like computing a maximal independent set or a (∆ + 1)-coloring one has to work much
harder to even get poly log n round deterministic algorithms in the CONGEST model, even
if a (log n, log n)-network decomposition is given for free [15, 5]. For LLL obtaining such a
bandwidth efficient algorithm seems much harder. Even in the LOCAL model one either has
to go through the aforementioned derandomization result or one can solve an LLL instance
with criterion p(ed)λ, e.g., think of λ = 10, if the network decomposition only has λ color
classes. This immediately implies [38] that the cluster diameter is Ω(n1/λ) and algorithms
that rely on aggregating all information about a cluster in a cluster leader must use at least
Ω(n1/λ) rounds. In the LOCAL model there are black box reductions [32, 43, 8] to compute
such decompositions. We provide an analysis of the algorithm by Rozhoň and Ghaffari (and
of another algorithm by Ghaffari, Grunau and Rozhoň [26]) where we carefully study the
trade-off between number of colors, the diameter of the clusters, and the runtime of the
algorithm to obtain such decompositions in CONGEST.

▶ Theorem 8 (informal). For k ≥ 1 and 1 ≤ λ < log n there is an O(k ·n1/λ poly log n)-round
deterministic CONGEST algorithm to compute a (λ, (k·n1/λ poly log n)-network decomposition
such that any two clusters with the same color have distance strictly more than k. The
algorithm works with a mild dependence on the ID space2.

For k = 1, decompositions with few colors similar to Theorem 8 could already be obtained
(using randomization) through the early works by Linial and Saks, who also showed that their
trade-off of the number of colors and the cluster diameter in Theorem 8 is nearly optimal [38].
In fact, Theorem 8 does not just provide an improved analysis of the algorithm of [43] but it
also comes with a mild dependence on the identifier space and an arbitrary parameter to
increase the distance between clusters. Both ingredients are also present in our second result
on network decompositions (Theorem 6) where they are crucial for the proof of Theorem 1.

Our Solution: Range bounded LLLs in CONGEST. We use the shattering framework for
LLLs of [24] whose pre-shattering phase, as we show, works in the CONGEST model for range
bounded LLLs. As a result we obtain small remaining components of size N ≪ n, in fact, we
obtain N = O(log n). Furthermore, one can show that the remaining problem that we need
to solve on the small components is also an LLL problem. We solve these small instances
via a bandwidth efficient derandomization of the LLL algorithm by Chung, Pettie, Su [20].
Note that we cannot solve the small components without derandomizing their algorithm, as
running their randomized algorithm on each component for T (N) = O(log N) = O(log log n)
rounds would imply an error probability of 1/N which is exponentially larger than the desired
high probability guarantee of 1/n. Thus, we desire to find good random bits for all nodes with
which we can execute the algorithm from [20] without any error. The goal is to use a network
decomposition algorithm to partition the small components into O(log N) = O(log log n)
collections of independent clusters. Then, we iterate through the collections and want to
obtain good random bits for the vertices inside each cluster. Since the randomized runtime
of [20] on a small component would be T (N) = O(log N) = O(log log n), we observe that the

2 To be precise, the dependency on an ID space S space is a log∗ |S| factor.

DISC 2021



31:6 Efficient CONGEST Algorithms for the Lovász Local Lemma

random bits of a node v cannot influence the correctness at a node u if u and v are much
further than T (N) hops apart. Thus, similar to Theorem 8 we devise the following theorem
to compute network decompositions with large distances between the clusters. In fact, if we
apply the theorem with k > 2 · T (N), we obtain independent clusters in each color class of
the decomposition.

▶ Theorem 6 (informal). For k ≥ 1 there is an O(k·poly log n)-round deterministic CONGEST
algorithm to compute a (log n, poly log n)-network decomposition such that any two clusters
with the same color have distance strictly more than k. The algorithm works with a mild
dependence on the ID space.

While [43] provided a modification of their algorithm that provides a larger distance
between clusters its runtime and cluster diameter depend polylogarithmically not only on
the number of nodes in the network but also on the ID space. In [26] Ghaffari, Grunau
and Rozhoň have reduced the ID space in the special case in which the cluster distance k

equals one. However, our bandwidth efficient LLL algorithm requires k ≫ 1 and identifier
independence at the same time. Thus, one can either say we add the ID space independence
to [43] or we extend the results of [26] to k > 1.

We already explained why we require that we obtain a network decomposition with a large
cluster distance to derandomize an algorithm. The mild dependence on the identifier space in
Theorem 6 is also essential as the small components with N nodes on which we want to use
the network decomposition algorithm, actually live in the original communication network
G. Thus they are equipped with identifiers that are polynomial in n, that is, exponential
in N . The fact that the small components live in the large graph makes our life harder
when computing a network decomposition but it helps us when designing efficient CONGEST
algorithms. The bandwidth when executing an algorithm on the small components is still
O(log n) bits per edge per round while the components are of size N ≪ n. Ignoring details
for the sake of this exposition, we use the increased bandwidth to gather enough information
about a cluster in a single cluster leader such that it can select good random bits for all
nodes of the cluster and in parallel with all other clusters of the same color class due to the
large distance between clusters.

We emphasize that there have been several other approaches to derandomize algorithms in
the CONGEST model and discussing all of them here would be well beyond the scope of this
work. However, we still believe that our derandomization technique in the post-shattering
phase might be of independent interest as it applies to a more general class of algorithms
than just the aforementioned LLL algorithm from [20].
Other Implications. As the runtime of Theorem 6 is a log n factor faster than the result
in [43], it also improves the complexity of deterministic distance-2 coloring with (1 + ε)∆2

colors in the CONGEST model to O(log7 n) rounds when plugged into the framework of [35].
Similar improvements carry over to the approximation of minimum dominating sets [21] and
spanner computations [30]. Due to the identifier independence and possibility to increase the
distance between clusters Theorem 6 yields an improved randomized complexity of distance-2
coloring. Using Theorem 6 in the shattering based algorithm from [36] improves the runtime
for ∆2 + 1 colors from 2O(

√
log log n) to O(log7 log n) rounds.

Roadmap

In Section 1.3, we provide pointers for further related work, mainly on network decompositions.
In Section 2 we define the models and introduce notation. In Section 3 we formally state the
result on network decompositions and indicate the main changes to prior work. Due to space
limitations, the formal proofs of these results appear in the full version of the paper. The
main part of the paper, Section 4, deals with proving Theorem 1.
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1.3 Further Related Work
We already mentioned that [26] provides an efficient deterministic CONGEST algorithm with
a mild dependence on the ID space. More precisely, they provided a (O(log n, log2 n))-network
decomposition in O(log5 n + log4 n · log∗ b) rounds, where log∗ b is the dependency on the
identifier length b [26]. One drawback that we have ignored until now – and that also applies
to all of our results – is that these network decompositions only have so called weak diameter,
that is, the diameter of a cluster is only guaranteed to be small if it is seen as a subset of
the communication network G, that is, the distance between two vertices is measured in G

and not only in the subgraph induced by a cluster. In contrast, in so called strong network
decompositions the diameter in the subgraph of G that is induced by each cluster has to be
small. Very recently, at the cost of increasing the polylogarithmic factors in the runtime
the results of [26] were extended to obtain strong (O(log n, log2 n))-network decompositions
[16]. Earlier works by Elkin and Neiman provided an O(log2 n) randomized algorithm for
computing strong (O(log n), O(log n))-decompositions [22].

Most previous works in the CONGEST model do not ensure large distances between
clusters. Besides the result in [43] that we have already discussed there are two notable
exceptions. Ghaffari and Kuhn matched the complexity of the LOCAL model algorithm by
Awerbuch et al. by giving a deterministic k · 2O(

√
log n log log n) round algorithm [30]. Later,

this was improved to k · 2O(
√

log n) rounds by Ghaffari and Portmann [34]. In both cases, the
decomposition parameters were identical to the runtimes. None of these results is the state
of the art anymore, except for the fact that they compute strong network decompositions
with large distances between the clusters.

Barenboim, Elkin, and Gavoille provide various algorithms with different trade-offs
between the number of colors and the cluster diameter, most notably a randomized algorithm
to compute a strong network decomposition with diameter O(1) and O(nε) colors [8]. A
similar result with O(n1/2+ε) colors was obtained by Barenboim in [6].

Brandt, Maus, and Uitto and Brandt, Grunau, and Rozhoň have shown that LLL instances
with an exponential LLL criterion, that is, p2d < 1 holds, can be solved in O(log∗ n) rounds
on bounded degree graphs [14, 12]. Furthermore, it is known that Ω(log∗ n) rounds cannot
be beaten under any LLL criterion that is a function of the dependency degree d [20].
For an exponential criterion that satisfies p2d ≥ 1, it follows from the works of Brandt et
al. and Chang, Kopelowitz, and Pettie [18] that there is a lower bound of Ω(log n) rounds
for deterministic LLL. Hence [14, 12] and [18] show that there is a sharp transition of the
distributed complexity of LLL at 2pd = 1. Before the result in [43] improved the runtime
to poly log log n, Ghaffari, Harris, and Kuhn gave the state of the art randomized LLL
algorithm in the LOCAL model. On constant degree graphs its runtime was described by a
tower function and lies between poly log log n and 2O(

√
log log n) [27]. We are not aware of

any works that explicitly studied LLL in the CONGEST model before our paper.

2 Models, LCLs & Notation

Given a graph G = (V, E) the hop distance in G between two vertices u, v ∈ V is de-
noted by distG(u, v). For a vertex v ∈ V and a subset S ⊆ V we define distG(v, S) =
minu∈S{dist(v, u)} ∈ N ∪ {∞}. For two subsets S, T ⊆ V we define distG(S, T ) =
minv∈T distG(v, S). For an integer n we denote [n] = {0, . . . , n − 1}.

The LOCAL and CONGEST Model of distributed computing [37, 42]. In both models
the graph is abstracted as an n-node network G = (V, E) with maximum degree at most
∆. Communication happens in synchronous rounds. Per round, each node can send one
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message to each of its neighbors. At the end, each node has to know its own part of the
output, e.g., its own color. In the LOCAL model there is no bound on the message size and
in the CONGEST model messages can contain at most O(log n) bits. Usually, in both models
nodes are equipped with O(log n) bit IDs (polynomial ID space) and initially, nodes know
their own ID or their own color in an input coloring but are unaware of the IDs of their
neighbors. Randomized algorithms do not use IDs (but they can create them from space
[nc] for a constant c and with a 1/nc additive increase in the error probability), have a fixed
runtime and need to be correct with probability strictly more than 1 − 1/n (Monte Carlo
algorithm). Actually, algorithms are defined such that a parameter n is provided to them,
where n represents an upper bound on the number of nodes of the graph and the algorithm’s
guarantees have to hold on any graph with at most n nodes. For technical reasons in our
gap results, we assume that the number of random bits used by each node is bounded by
some finite function h(n). We note that the function h(n) can grow arbitrarily fast and that
this assumption is made in previous works as well [18, 3].

▶ LCL definition ([40]). An LCL problem Π is a tuple (Σin, Σout, F, r) satisfying the following.
Both Σin and Σout are constant-size sets of labels,
the parameter r is an arbitrary constant, called the checkability radius of Π,
F is a finite set of pairs (H = (V H , EH), v), where:

H is a graph, v is a node of H, and the radius of v in H is at most r;
Every pair (v, e) ∈ V H × EH is labeled with a label in Σin and a label in Σout.

In an instance of an LCL problem Π = (Σin, Σout, F, r) on a graph G = (V, E) each node
receives an input label from Σin. An algorithm solves Π if, for each node v ∈ V , the radius-r
hop neighborhood of v together with the input labels and computed outputs for the nodes
lies in the set of feasible labelings F .

3 Graph Decompositions

In this section we state our results on network decompositions and provide the respective
definitions. At the end of the section we provide a short overview of the techniques that we
use to prove the results. The formal proofs appear in the full version of the paper.

3.1 Cluster Collections and Network Decompositions with Congestion
Classically, one defines a (weak) (c, d)-network decomposition as a coloring of the vertices of
a graph G with c colors such that the connected components of each color class have weak
diameter at most d. The weak diameter of a subset C ⊆ V is the maximum distance in G

that any two vertices of C have.
We use the following definition that augments one color class of a network decomposition

with a communication backbone for each cluster. A cluster C of a graph is a subset of nodes.
A Steiner tree is a rooted tree with nodes labeled as terminal and nonterminal.

▶ Definition 3 (cluster collection). A collection of clusters of a graph G = (V, E) consists of
subsets of vertices C1, . . . , Cp ⊆ V and has Steiner radius β and unique b-bit cluster identifiers
if it comes with associated Steiner subtrees T1, . . . , Tp of G such that clusters are disjoint,
i.e., Ci ∩ Cj = ∅ for i ̸= j and for each i ∈ 1, 2, . . . , p we have
1. cluster Ci has a unique b-bit identifier idCi

,
2. the terminal nodes of Steiner tree Ti of cluster Ci are formed by Ci (Ti might contain

nodes /∈ Ci as non terminal nodes),
3. the edges of Steiner Tree Ti are oriented towards a cluster leader ℓCi ,
4. Steiner tree Ti has diameter at most β (Steiner tree diameter).
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The collection has congestion κ if each edge in E is contained in at most κ Steiner trees.
When we compute a cluster collection in the CONGEST model, we require that each node of
a cluster knows the cluster identifier. Furthermore, we require that for each edge of Ti that
is incident to some v ∈ V , node v knows idCi and additionally v knows the direction of the
edge towards the root rCi

.

We now define our notion of a network decomposition with a communication backbone.

▶ Definition 4 (network decomposition with congestion). Let k ≥ 1. A (C, β)-network
decomposition with cluster distance k and congestion κ of a graph G = (V, E) is a partition
of V into C cluster collections with Steiner radius β and congestion κ such that any two
clusters C ̸= C′ in the same cluster collection have distance strictly more than k, i.e.,
distG(C, C′) > k.

The C cluster collections are also called the C color classes of the decomposition.

Instead of a network decomposition with cluster distance k, we often just speak of a network
decomposition of Gk. In all cases the Steiner trees are given by vertices and edges in G and
not by edges in Gk, which would corresponds to paths in G. The default value for k is 1
which we use whenever we do not specify its value. in this case the definition corresponds
with the classic network decomposition.

3.2 Network Decomposition and Ball Carving Algorithms
At the core of our network decomposition algorithm is the following ball carving result to
form one color class of the decomposition, i.e., to form one cluster collection. The name ball
carving stems from the original existential proof for network decompositions [1].

▶ Lemma 5 (ball carving, k ≥ 1). Let k ≥ 1 be an integer and x ≥ 1 (both potentially
functions of n). Then there is a deterministic distributed CONGEST (bandwidth b and b-bit
identifiers) algorithm that, given a graph G = (V, E) with at most n nodes and a subset
S ⊆ V , computes a cluster collection C1, . . . , Cp ⊆ S with

|C1 ∪ . . . ∪ Cp| ≥ (1 − 1/x) · |S|,
Steiner radius β = O(k · x · log3 n) and congestion κ = O(log n · min{k, x · log2 n}),
the pairwise distance in G between Ci and Cj for 1 ≤ i ̸= j ≤ p is strictly more than k.

The runtime is O(k · x · log4 n · log∗ b) + O(k · x2 · log6 n · min{k, x · log2 n}) rounds.

By using the aggregation tools for overlapping Steiner trees of [26] Lemma 5 is by a log n

factor faster than the corresponding result in [43]. The ball carving result immediately imply
the following network decomposition results.

▶ Theorem 6 (O(log n) colors). For any (potentially non constant) k ≥ 1, there is a
deterministic CONGEST algorithm with bandwidth b that, given a graph G with at most n nodes
and unique b-bit IDs from an exponential ID space, computes a (weak) (O(log n), O(k ·log3 n))-
network decomposition with cluster distance k and with congestion O(log2 n · min{k, log2 n})
in O(k · log7 n · min{k, log2 n}) rounds.

We also analyze a more involved ball carving algorithm of [26] for different parameters in
order to obtain decompositions with fewer colors. Then Lemmas 5 and 7 imply the following
result for network decompositions with few colors.

▶ Lemma 7 (faster ball carving, k = 1). Let x ≥ 1 (potentially a function of n). Then there
is a deterministic distributed CONGEST (bandwidth b and b-bit identifiers) algorithm that,
given a graph G = (V, E) with at most n nodes and a subset S ⊆ V , computes a cluster
collection C1, . . . , Cp ⊆ S with
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|C1 ∪ . . . ∪ Cp| ≥ (1 − 1/x) · |S|,
Steiner radius β = O(x · log2 n) and congestion κ = O(log n),
the pairwise distance in G between Ci and Cj for 1 ≤ i ̸= j ≤ p is strictly more than 1.

The runtime of the algorithm is O(x2 log4 n) rounds.

▶ Theorem 8 (few colors). For any λ ≤ log n there is a deterministic CONGEST algorithm
with bandwidth b that, given a graph G with at most n nodes and unique b-bit IDs from
an exponential ID space, computes a weak (λ, n1/λ log2 n)-network decomposition of G in
O(λ · n2/λ · log4 n) rounds with congestion κ = O(log n).

For any (possibly non constant) k ≥ 1 and any λ ≤ log n there is a deterministic
CONGEST algorithm that, given a graph G with at most n nodes and unique IDs from an
exponential ID space, computes a weak (λ, k · n1/λ log3 n)-network decomposition of Gk in
O(k · n2/λ · log6 n · min{k, x log2 n}) rounds.

Theorems 6 and 8 also work with more general ID spaces, as long as the IDs fit into a
CONGEST message. To simplify the statements and because exponential IDs are (currently)
the main application we do not explicitly state their mild dependence on the size of the
ID space S in theorems. It can be quantified by O(x · poly log n · log∗ |S|) where the
polylogarithmic terms are strictly dominated by the ones in the theorems.

Summary of Our Ball Carving Contributions. Both, the ball carving results in [43] and [26]
begin with each vertex of the to be partitioned set S (see Lemmas 5 and 7) being its own
cluster inheriting its node ID as the cluster ID. Then they implement a distributed ball
growing approach in which vertices leave their cluster, join other clusters, or become dead,
i.e., are disregarded; even whole clusters can dissolve, e.g., if all their vertices join a different
cluster. The goal is to ensure that at the end no two alive clusters are neighboring, that is,
in distance k, that the fraction of vertices of S that are declared dead is small and that the
diameter of the clusters does not become too large. In fact, as vertices can leave clusters
one only obtains guarantees on the weak diameter of clusters. To this end the algorithm of
[43] iterates through the bits of the cluster IDs and in phase i, vertices change their clusters
or become dead such that at the end of the i-th phase no two neighboring clusters have
the same i-th bit in their cluster ID. If cluster IDs have b bits, then after the b-th phase
each remaining cluster is not connected to any other cluster. Thus, the runtime crucially
depends on the size of the cluster IDs. The main change in [26] to remove this ID space
dependence is to replace the bits (0 or 1) used in phase i with a coloring of the clusters
with two colors, red and blue. A new coloring is computed in every phase and the crucial
property of the coloring that ensures progress towards the separation of the clusters is that
each connected component of clusters has roughly the same number of red and blue clusters.
Thus, intuitively, at the end of a phase red and blue clusters are separated and the sizes of
all connected components decrease.

In our algorithms we follow the same high level approach but extend the techniques (for
identifier “independence”) to work with a larger separation between the clusters, and also
for the computation of decompositions with fewer colors. A crucial difficulty is that we
cannot quickly disregard all dead vertices and reason that each connected components of
clusters in G can be treated independently. It might even be that two clusters are connected
by a path with ≤ k hops and the path might contain dead vertices. Instead, we consider
connected components in Gk and always keep all vertices of G in mind. As two clusters that
are adjacent in such a component might not be adjacent in the original graph we ensure that
no congestion appears in between the clusters. Careful algorithm design and reasoning is
needed when computing a balanced coloring of clusters in such components.
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To obtain the network decompositions with fewer colors, e.g., with λ = 10 colors, we
analyze our algorithm for a suitable choice of parameters and show that all congestion
parameters are not affected by the choice of λ.

4 Distributed Range Bounded LLL and its Implications

The objective of this section is to prove the following theorem.

▶ Theorem 1. There is a randomized CONGEST algorithm that with high probability solves
any range bounded Lovász Local Lemma instance that has at most n bad events, dependency
degree d = O(1) and satisfies the LLL criterion p(ed)8 < 1 where p is an upper bound on the
probability that a bad event occurs, in poly log log n rounds.

Distributed Lovász Local Lemma (LLL). In a distributed Lovász Local Lemma instance we
are given a set of independent random variables V and a family X of (bad) events E1, . . . , En

on these variables. Each bad event Ei ∈ X depends on some subset vbl(Ei) ⊆ V of the
variables. Define the dependency graph HX = (X , {(E , E ′) | vbl(E) ∩ vbl(E ′) ̸= ∅}) that
connects any two events which share at least one variable. Let ∆H be the maximum degree in
this graph, i.e., each event E ∈ X shares variables with at most d = ∆H other events E ′ ∈ X .
The Lovász Local Lemma [23] states that Pr(

⋂
E∈X E) > 0 if epd < 1. In the distributed

LLL problem each bad event and each variable is assigned to a vertex of the communication
network such that all variables that influence a bad event E that is assigned to a vertex v

are either assigned to v or a neighbor of v. The objective is to compute an assignment for
the variables such that no bad event occurs. At the end of the computation each vertex v

has to know the values of all variables that influence one of its bad events (by definition
these variables are assigned to v or one of its neighbors). In all results on distributed LLL
in the LOCAL model that are stated below the communication network is identical to the
dependency graph H. Most result in the distributed setting require stronger LLL criteria.

Algorithm 1 The algorithm from [20] iteratively resamples all variables of local ID minima
of violated events. IDs can be assigned in an adversarial manner. The runtime is with high
probability O(logepd2 n) rounds under LLL criterion epd2 < 1.

Initialize a random assignment to the variables
Let F be the set of bad events under the current variable assignment
while F ̸= ∅ do

Let I =
{

A ∈ F | ID(A) = min{ID(B)|B ∈ N+
F (A)}

}
Resample vbl(I) = ∪A∈Ivbl(A)

end

Despite its simplicity – the algorithm simply iteratively resamples local ID minima of
violated events, i.e., bad events that hold under the current variable assignment – Algorithm 1
results in the following theorem.

▶ Theorem 9 ([20], Algorithm 1). Given an LLL instance with condition epd2 < 1, the
LOCAL Algorithm 1 run for O(logepd2 n) rounds and has error probability < 1/n on any LLL
instance with at most n bad events.

▶ Definition 10 (Range bounded Lovász Local Lemma). An instance (V, X ) of the Lovász
Local Lemma with bad events E1, . . . , En and dependency graph H is range bounded if
|vbl(Ei)| = poly ∆H for each 1 ≤ i ≤ n and the value of each random variable x ∈ V can be
expressed by at most O(log ∆H) bits.
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Note that most applications of the Lovász Local Lemma in the distributed form are range
bounded instances. Algorithm 1 can be executed with the same asymptotic runtime for range
bounded LLL instances and uses few random bits while doing so.

▶ Lemma 11 (Proof deferred to the full version). For a range bounded LLL instance with
condition epd2 < 1 with constant dependency degree there is a randomized CONGEST (constant
bandwidth) algorithm that runs in O(logepd2 n) rounds and has error probability < 1/n on
any (dependency) graph with at most n nodes. Furthermore, in the algorithm each node only
requires access to O(log n) random values from a bounded range. The unique IDs can be
replaced by an acyclic orientation of the edges of the graph.

The currently fastest randomized algorithm for LLL on bounded degree graphs with
polynomial criterion in the LOCAL model is based on two main ingredients. The first
ingredient is a deterministic poly log n-round LLL algorithm obtained via a derandomization
(cf. [32, 27]) of the O(log2 n)-round randomized algorithm [39] using the breakthrough
efficient network decomposition algorithm [43]. The second ingredient is the (randomized)
shattering framework for LLL instances by [24], which shatters the graph into small unsolved
components of logarithmic size. Then, these components are solved independently and in
parallel with the deterministic algorithm.

We follow the same general approach of shattering the graph via the methods of [24], but
need to be more careful to obtain a bandwidth efficient algorithm when dealing with the
small components. We begin with a lemma that describes how fast we can gather information
in a cluster leader with limited bandwidth. Its proof uses standard pipelining techniques
(see e.g. [42, Chapter 3] and fills each b-bit messages with as much information as possible.

▶ Lemma 12 (Token learning). Let G be a communication graph on n vertices in which each
node can send b bits per round on each edge. Assume a cluster collection with Steiner radius
β and congestion κ in which each cluster C is of size at most N and each vertex holds at
most x bits of information. Then, in parallel each cluster leader ℓC can learn the information
of each vertex of C in O

(
κ · (β + N · x/b)

)
rounds. In the same runtime the leader ℓC can

disseminate x bits of distinct information to each vertex of C.

Next, we prove our core derandomization result that we use to obtain efficient deterministic
algorithms for the small components that arise in the post-shattering phase. It might be of
independent interest.

▶ Lemma 13 (Derandomization). Consider an LCL problem P , possibly with promises on
the inputs. Assume a T (n)-round randomized CONGEST (bandwidth b = Θ(log n)) algorithm
A for P with error probability < 1/n on any graph with at most n nodes that uses at most
O(log n) random bits per node.

Then for any graph on at most N nodes there is a deterministic T (N) · poly log N round
CONGEST (with bandwidth b = Θ(N)) algorithm B to solve P under the same promises,
even if the ID space is exponential in N .

Proof. For an execution of algorithm A on a graph with N nodes define for each v ∈ V an
indicator variable Xv that equals to 1 if the verification of the solution fails at node v and
0 otherwise. The value of Xv depends on the randomness of nodes in the (T (N) + r) hop
neighborhood of v, where r = O(1) is defined by the LCL problem.

We design an efficient algorithm B that deterministically fixes the (random bits) of each
node v ∈ V such that Xv = 0 for all nodes. Thus, executing A with these random bits
solves problem P . During the execution of B we fix the random bits of more and more
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nodes. At some point during the execution of algorithm B let X ⊆ V denote the nodes whose
randomness is already fixed and let ϕX be their randomness (we formally define ϕX later).
The crucial invariant that we maintain for each cluster C at all times is the following

Invariant: E

[∑
v∈V

Xv | ϕX

]
< 1. (1)

The invariant will be made formal in the rest of the proof. Initially (when X = ∅), it holds
with the linearity of expectation and as the error probability of the algorithm implies that
E[Xv] = P (Xv = 1) < 1/n holds.

Algorithm B

Compute a weak network decomposition with cluster distance strictly more than 4(T (N) + r)
with O(log N) color classes, β = T (N) · poly log N Steiner tree cluster radius and congestion
κ = O(log N). Iterate through the color classes of the decomposition and consider each
cluster separately. We describe the process for one cluster C when processing the i-th color
class of the network decomposition. We define three layers according to the distance to
vertices in C. Denote the vertices in C as W 0

C , the vertices in V \ W 0
C in distance at most

r + T (N) from C as W 1
C and the vertices in V \ (W 0

C ∪ W 1
C ) with distance at most 2(r + T (N))

from C as W 2
C . Define WC = W 0

C ∪W 1
C ∪W 2

C . Note that we have WC ∩WC′ = ∅ for two distinct
clusters C, C′ in the same color class of the decomposition due to the cluster distance. Further,
even if Lemma 13 is applied to a subgraph H (with size at most N) of a communication
network G we have |WC | ≤ N , as WC only contains nodes of H.
Dealing with one cluster C: Extend the Steiner tree of C to WC using a BFS, ties broken
arbitrarily. Notice that no two BFS trees interfere with each other since we handle different
color classes separately and two clusters of the same color are in large enough distance. Use
the Steiner tree to assign new IDs (unique only within the nodes in WC)) from range [N ] to
all nodes in WC . Different clusters use the same set of IDs and each ID can be represented
with O(log N) bits. Each node of WC learns about the new ID of each of its (at most) ∆
neighbors in WC in one round and uses O(∆ · log N) = O(log N) bits to store its adjacent
edges. Using Lemma 12, the cluster leader ℓC learns the whole topology, inputs and already
determined random bits of G[WC ] in O(κ · (β + (N · poly log N)/b)) rounds. In this step, the
input also includes an acyclic orientation of the edges between vertices of WC , where an edge
is oriented from u ∈ WC to v ∈ WC if the original ID of v is larger than the original ID of v.

For a node v let Rv describe its randomness. When we process cluster C we determine
values {rv | v ∈ C} for the random variables {Rv | v ∈ C}. Let X be a set of vertices v for
which we have already determined values rv. Then we denote ϕX =

∧
v∈X(Rv = rv). The

proof of the following claim is deferred to Appendix A.

▷ Claim 14. Assume that Invariant (1) holds for X =
⋃

C has color < i C before processing
the clusters of color i. Then the cluster leaders ℓC of all clusters C of color i, can in parallel,
find values {rv | v ∈ C} such that Invariant (1) holds afterwards for X ′ =

⋃
C has color ≤ i C.

Once the cluster leader ℓC has fixed the randomness for the vertices in C, it disseminates
them to all vertices of its cluster via Lemma 12 and we continue with the next color class of
the network decomposition. At the end of the algorithm each node knows the values of its
random bits and one can execute T (N) with it, as the initial algorithm A also works with
bandwidth b. Due to the Invariant (1) we obtain that the distributed random bits are such
that E[

∑
v∈V Xv | ϕV ] < 1 at the end of the algorithm, but as all Xv’s are in {0, 1} and

there is no randomness involved (each vertex is processed in at least one cluster and thus we
fix Rv = rv for each v ∈ V ) we obtain that Xv = 0 for all v ∈ V , that is, the algorithm does
not fail at any vertex.
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Runtime: Computing the network decomposition takes T (N) · poly log N rounds via Theo-
rem 6. The runtime for processing one color class of the network decomposition is bounded as
follows. Collecting the topology and all other information takes T (N) · poly log N rounds due
to Lemma 12, fixing randomness locally does not require communication. Disseminating the
random bits to the vertices of each cluster takes poly log N rounds, again due to Lemma 12.
As there are only log N color classes the runtime for computing good random bits for all nodes
is T (N) · poly log N . Executing algorithm A with these random bits takes T (N) rounds. ◀

▶ Lemma 15. There is a deterministic LLL algorithm for range bounded LLL instances
with constant dependency degree d and LLL criterion epd2 < 1 that runs in O(poly log log n)
rounds on any graph with at most n nodes if the communication bandwidth is b = Θ(n).

Proof. Plug the randomized algorithm of Lemma 11 into the derandomization result of
Lemma 13. We can apply the lemma because the feasibility of a computed solution can be
checked in 1 round in CONGEST. ◀

Proof of Theorem 1. The goal is to apply the shattering framework of [24]. The pre-
shattering phase takes poly ∆ + O(log∗ n) rounds and afterwards all events with an unset
variable induce small components of size N = poly(∆, log n). Furthermore, each of the small
components also forms an LLL instance, but with a slightly worse LLL criterion. Then
we apply Lemma 15 to solve all small components in parallel. Next, we describe these
steps in detail. The pre-shattering phase begins with computing a distance-2 coloring of
the dependency graph H with O(∆2) colors, i.e., a coloring in which each color appears
only once in each inclusive neighborhood. In the LOCAL model this takes O(log∗ n) rounds
with Linial’s algorithm [37]. In the CONGEST model we can compute such a coloring in
O(poly ∆H · log∗ n) = O(log∗ n) rounds.

Next, we iterate through the O(∆2) color classes to set some of the variables. The unset
variables either have the status frozen or non-frozen. At the beginning all variables are unset
and non-frozen. We iterate through the O(∆2

H) color classes and process all vertices (events)
of the same color class in parallel. Each non-frozen variable of a processed event E is sampled;
then the node checks how the conditional probabilities of neighboring events have changed.
As the LLL is range bounded this step can be implemented in O(1) rounds. If there is an
event E ′ (possibly = E) whose probability has increased to at least p′ = √

p, its variables are
unset and all variables of event E ′ are frozen. The next three observations are proven in [24]
and capture the properties of this pre-shattering phase.

▶ Observation 16. For each event E ∈ X , the probability of E having at least one unset
variable is at most (d + 1)√p. Furthermore, this is independent of events that are further
than 2 hops from E.

The following result follows with Observation 16 and the by now standard shattering
lemma. We do not discuss the details as it has been done in [24].

▶ Observation 17 (Small components). The connected components in H induced by all events
with at least one unset variable are w.h.p. in n of size N = poly(∆H) · log n = O(log n).

The following observation holds as each event with an unset variable fails at most with
probability p′ = √

p when its variables are frozen. It is proven in [24].

▶ Observation 18. The problem on each connected component induced by events with at
least one unset variable is an LLL problem with criterion p′(d + 1) < 1.
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To complete our proof we apply the deterministic algorithm of Lemma 15 on each
component in parallel. Let U be the set of nodes that have its random bits not yet determined.
Note that any vertex in U is part of one component. For each u ∈ U the values of already
determined random bits in the r-hop ball around u are included in u’s input – many nodes
already determine their random bits in the pre-shattering phase. Even conditioned on the
random bits determined in the pre-shattering phase (formally this provides a promise to the
inputs), each instance is a range bounded LLL on a bounded degree graph with at most
N nodes and the standard CONGEST bandwidth is b = Ω(log n) = Ω(N), the runtime is
poly log N = poly log log n. All instances can be dealt with independently since by definition,
the connected unsolved components share no events nor variables. ◀

The celebrated result by [19] says that an LCL problem either cannot be solved faster
than in Ω(log n) rounds or can be solved with an LLL algorithm. In our work, we show that
their proof can be easily extended to work with range bounded LLLs.

▶ Lemma 19 ([19], Proof deferred to the full version). Any LCL problem that can be solved
with a randomized o(log n)-round LOCAL algorithm with error probability < 1/n on any
graph with at most n nodes can be solved via the following procedure: Create a bounded range
LLL instance with LLL criterion p(ed)100 < 1, solve the instance, and run a constant time
deterministic LOCAL algorithm that uses the solution of the LLL instance as input.

Lemma 19 of [19] has been used in several other works, e.g., in [3, 13]. Note that [3] sets up the
same LLL with the purpose of designing an efficient CONGEST algorithm for it; however, [3]
is restricted to the setting where the input graph is a tree which allows for very different
methods of solving the respective LLL and admits even an O(log log n)-round algorithm. We
combine Lemma 19 with our LLL algorithm in Theorem 1 to prove Corollary 2.

▶ Corollary 2. There is no LCL problem with randomized complexity strictly between
poly log log n and Ω(log n) in the CONGEST model.

The results in this section imply randomized poly log log n-round algorithms for classic
problems such as ∆-coloring on constant degree graphs (as ∆-coloring is an LCL which has
an o(log n)-round LOCAL algorithm [29] the result follows along the same lines as Corollary 2)
and various defective coloring variants for constant degree graphs by modeling them as range
bounded LLLs and applying Theorem 1, see [20] for various such problems and how they
can be modeled as LLLs.

Our network decomposition algorithm with few colors in combination with the LOCAL
model LLL algorithm from [24] provides the following theorem. Due to the unconstrained
message size in the LOCAL model, it does not require the LLL instances to be range bounded.

▶ Theorem 20. Let λ ∈ N be constant. There exists a deterministic n2/λ poly log n round
LOCAL algorithm for LLL instances with criterion p(ed)λ < 1.
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A Proof of Claim 14

▷ Claim 14. Assume that Invariant (1) holds for X =
⋃

C has color < i C before processing
the clusters of color i. Then the cluster leaders ℓC of all clusters C of color i, can in parallel,
find values {rv | v ∈ C} such that Invariant (1) holds afterwards for X ′ =

⋃
C has color ≤ i C.

If we considered just a single cluster C, independently from all other clusters with color i,
then there are choices for the values of rv satisfying the claim due to the law of total probability,
e.g., as used in the method of conditional expectation, and as E

[ ∑
v∈V Xv | ϕX

]
< 1 holds

before we fix any randomness of vertices inside C.

Proof. The only information that cluster leaders need to perform the necessary calculations
is information on the topology of G[WC ], inputs to nodes in WC , the relative order of adjacent
IDs of nodes in G[WC ] and already determined randomness of nodes in X ∩ WC .

We show that the randomness of all vertices in clusters with color i can be fixed with
this knowledge. To this end the cluster leader rC fixes the randomness ϕC such that

E
[ ∑

v∈WC

Xv | ϕC ∧ ϕX∩WC

]
≤ E

[ ∑
v∈WC

Xv | ϕX∩WC

]
holds. Such a choice for ϕC exists, again due to the law of total probability, and ℓC has full
information to compute such values as all values in the inequality only depend on information
that vertices in WC sent to ℓC . In particular, the randomness of nodes in C only influences
the random variables Xv of nodes in W 0

C ∪ W 1
C and computing this influence only requires

knowledge from W 0
C ∪ W 1

C ∪ W 2
C .

After all cluster leaders of clusters with color i fix the randomness of the vertices in their
clusters according to the above method the invariant is still satisfied since the randomness
Rv for v ∈ C does not influence the random variable Xu for u ∈ V \ WC. More formally,
let X be the set of vertices with fixed randomness before we process the i-th color class
of clusters and let Y be the set of vertices whose randomness we fix when processing the
i-th color class. Let X ′ = X ∪ Y . Let W =

⋃
C has color i WC . Recall that WC ∩ WC′ = ∅ for

C ̸= C′. Due to the linearity of expectation and the aforementioned reasons we obtain
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E

[∑
v∈V

Xv | ϕX′

]
= E

 ∑
v∈V \W

Xv | ϕX′

 +
∑

C has color i

E

[ ∑
v∈WC

Xv | ϕX′∩WC

]

≤ E

 ∑
v∈V \W

Xv | ϕX

 +
∑

C has color i

E

[ ∑
v∈WC

Xv | ϕX∩WC

]

= E

[∑
v∈V

Xv | ϕX

]
< 1.

All clusters can be processed in parallel as their distance is strictly more than 4(T (N) + r)
and the choices in cluster C do not change the probability for Xv = 1 for v ∈ C′ ̸= C. ◁
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