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Abstract
We revisit the minimum dominating set problem on graphs with arboricity bounded by α. In the
(standard) centralized setting, Bansal and Umboh [6] gave an O(α)-approximation LP rounding
algorithm, which also translates into a near-linear time algorithm using general-purpose approxima-
tion results for explicit mixed packing and covering or pure covering LPs [39, 57, 1, 50]. Moreover,
[6] showed that it is NP-hard to achieve an asymptotic improvement for the approximation factor.
On the other hand, the previous two non-LP-based algorithms, by Lenzen and Wattenhofer [43],
and Jones et al. [36], achieve an approximation factor of O(α2) in linear time.

There is a similar situation in the distributed setting: While there is an O(log2 n)-round LP-
based O(α)-approximation algorithm implied in [40], the best non-LP-based algorithm by Lenzen
and Wattenhofer [43] is an implementation of their centralized algorithm, providing an O(α2)-
approximation within O(log n) rounds.

We address the questions of whether one can achieve an O(α)-approximation algorithm that
is elementary, i.e., not based on any LP-based methods, either in the centralized setting or in the
distributed setting. We resolve both questions in the affirmative, and en route achieve algorithms
that are faster than the state-of-the-art LP-based algorithms. Our contribution is two-fold:
1. In the centralized setting, we provide a surprisingly simple combinatorial algorithm that is

asymptotically optimal in terms of both approximation factor and running time: an O(α)-
approximation in linear time. The previous state-of-the-art O(α)-approximation algorithms are
(1) LP-based, (2) more complicated, and (3) have super-linear running time.

2. Based on our centralized algorithm, we design a distributed combinatorial O(α)-approximation
algorithm in the CONGEST model that runs in O(α log n) rounds with high probability. Not
only does this result provide the first nontrivial non-LP-based distributed o(α2)-approximation
algorithm for this problem, it also outperforms the best LP-based distributed algorithm for a
wide range of parameters.
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1 Introduction

1.1 Background
The minimum dominating set (MDS) problem is a classic combinatorial optimization problem.
Given a graph G we want to find a minimum cardinality set D of vertices, such that every
vertex of the graph is either in D or has a neighbor in D. Besides its theoretical implications,
solving this basic problem efficiently has many practical applications in domains ranging
from wireless networks to text summarizing (see, e.g., [56, 46, 52]). The MDS problem was
one of the first problems recognized as NP-complete [27]. It was also one of the first problems
for which an approximation algorithm was analyzed: a simple greedy algorithm achieves a
ln n-approximation in general graphs [35]. This approximation factor is optimal up to lower
order terms unless P = NP [19].

Distributed MDS in general graphs. The first efficient distributed approximation algorithm
for MDS was given by Jia, Rajaraman, and Suel [34], who gave a randomized O(log ∆)-
approximation in O(log2 n) rounds in the CONGEST model. This was improved by Kuhn,
Moscibroda and Wattenhofer [40], who gave a randomized (1+ε)(1+ln(∆+1))-approximation
in O(log2 ∆/ε4) rounds in the CONGEST model and in O(log n/ε2) rounds in the LOCAL
model. Ghaffari, Kuhn, and Maus [30] showed that by allowing exponential-time local
computation, one can get a randomized (1 + o(1))-approximation in a polylogarithmic
number of rounds in the LOCAL model. This result was derandomized by the network
decomposition result of Rozhoň and Ghaffari [51]. From the lower bounds side, Kuhn,
Moscibroda, and Wattenhofer [41] showed that getting a polylogarithmic approximation
ratio requires Ω

(√
log n

log log n

)
and Ω

( log ∆
log log ∆

)
rounds in the LOCAL model.

For deterministic distributed algorithms, improving over previous work, Deurer, Kuhn,
and Maus [17] recently gave two algorithms in the CONGEST model with approximation factor
(1+ε) ln(∆+1) for ε > 1/polylog∆, running in 2O(

√
log n log log n) and O((∆+log∗ n)polylog∆)

rounds, respectively; the running time of the former CONGEST algorithm [29], achieving
approximation factor O(log2 n), is dominated by the time needed for deterministically
computing a network decomposition in the CONGEST model, which, due to [28], is thus
reduced to O(poly log n).

Graphs of bounded arboricity. The MDS problem has been studied on a variety of restricted
classes of graphs, such as graphs with bounded degree (e.g., [14]), planar and bounded genus
graphs (e.g., [5, 16, 3]), and graphs of bounded arboricity – which is the focus of this paper.
The class of bounded arboricity graphs is a wide family of uniformly sparse graphs, defined
as follows:

▶ Definition 1. Graph G has arboricity bounded by α if ms

ns−1 ≤ α, for every S ⊆ V , where
ms and ns are the number of edges and vertices in the subgraph induced by S, respectively.

The class of bounded arboricity graphs contains the other graph classes mentioned above
as well as bounded treewidth graphs, and in general all graphs excluding a fixed minor.
Moreover, many natural and real world graphs, such as the world wide web graph, social
networks and transaction networks, are believed to have bounded arboricity. Consequently,
this class of graphs has been subject to extensive research, which led to many algorithms
for bounded arboricity graphs in both the (classic) centralized setting (e.g. [23, 32, 13])
and in the distributed setting (e.g. [15, 7, 31, 54]); there are also many algorithms in other
settings, such as dynamic graph algorithms, sublinear algorithms and streaming algorithms
(see [11, 33, 49, 48, 47, 53, 37, 20, 21, 22, 9, 44, 10, 8], and the references therein).
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In distributed settings, one cannot always assume that all processors know the arboricity
of the graph, so it is important to devise robust algorithms, which can perform correctly also
when the arboricity is unknown to the processors (see e.g. [7, 43]).

1.2 Approximating MDS on graphs of arboricity α

Centralized setting. In the centralized setting, there are two non-LP-based algorithms for
MDS for graphs of arboricity (at most) α (for brevity, in what follows we may write graphs of
“arboricity α” instead of arboricity at most α). One is by Lenzen and Wattenhofer [43], the
other is by Jones, Lokshtanov, Ramanujan, Saurabh, and Suchỳ [36], and both achieve an
O(α2)-approximation in deterministic linear time1. There is also a very simple LP rounding
algorithm by Bansal and Umboh that gives a 3α-approximation [6]. This algorithm is very
simple, after the LP has been solved. To solve the LP, there are near-linear time general-
purpose approximation algorithms for explicit mixed packing and covering or pure covering
LPs [39, 57, 1, 50]. Combining such an algorithm with [6] yields an O(α)-approximation for
MDS, either deterministically within O(m log n) time [57] or randomly (with high probability)
within O(n log n+m) time [39]. The latter bound is super-linear in the entire (non-degenerate)
regime of arboricity α = o(log n); the regime α = Ω(log n) is considered degenerate, since
in that case one can use the greedy linear-time ln n-approximation algorithm. Bansal and
Umboh [6] also proved that achieving asymptotically better approximation is NP-hard.2

Distributed setting. In the distributed setting, there are two non-LP-based algorithms
for MDS for graphs of arboricity α, both by Lenzen and Wattenhofer [43]. The first is a
randomized O(α2)-approximation algorithm in the CONGEST model that runs in O(log n)
rounds with high probability. This algorithm was made deterministic by Amiri [2], and uses
an LP-based subroutine of Even, Ghaffari, and Medina [24]. The second algorithm of Lenzen
and Wattenhofer is a deterministic O(α log ∆)-approximation algorithm in the CONGEST
model that runs in O(log ∆) rounds, where ∆ is the maximum degree.

Regarding LP-based algorithms, Kuhn, Moscibroda, and Wattenhofer [40] developed a
general-purpose method for solving LPs of a particular structure in the distributed setting.
It seems that by applying their method (specifically, Corollary 4.1 of [40]) to the LP
approximation result of Bansal and Umboh in bounded arboricity graphs [6], one can get a
deterministic O(α)-approximation algorithm for MDS in the CONGEST model that runs in
O(log2 ∆) rounds, but such a result has not been explicitly claimed in the literature.

A natural question. The aforementioned results demonstrate a significant gap for MDS
algorithms in bounded arboricity graphs when comparing LP-based methods to elementary
combinatorial approaches. It is natural to ask whether this gap can be bridged.

In the centralized setting, is there any efficient non-LP-based O(α)-approximation al-
gorithm for MDS (even one that is slower than the aforementioned O(m log n) time
deterministic and O(n log n + m) time randomized LP-based algorithms)? Further, can
one achieve an O(α)-approximation in linear time using any (even LP-based) algorithm?

1 Note that the theorem statement of [43] has a typo suggesting that the approximation factor is O(α).
2 Achieving (α − 1 − ε)-approximation is NP-hard for any ε > 0 and any fixed α; achieving (⌊α/2⌋ − ε)-

approximation is NP-hard for any ε > 0 and any α = 1, . . . , logδ n, for some constant δ [6, 18].
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In the distributed setting, is there any efficient non-LP-based distributed O(α)-
approximation algorithm for MDS? Further, can one achieve an O(α)-approximation in
the CONGEST model within o(log2 ∆) rounds using any (even LP-based) algorithm?

We note the caveat that there is no clear-cut distinction between combinatorial and non-
combinatorial algorithms, but we operate under the premise that an algorithm is combinatorial
if all its intermediate computations have a natural combinatorial interpretation in terms of
the original problem. While all algorithms presented in this paper are certainly combinatorial
under this premise, it is far less clear whether prior work is. In particular, the previous
state-of-the-art LP-based approaches are based on general-purpose primal/dual methods;
when restricted to the MDS problem, it is possible that these methods could reduce, after
proper adaptations, into simpler combinatorial algorithms. Nonetheless, even if possible, it
is unlikely that the resulting algorithm would be as simple and elementary as ours. In the
distributed setting, [42] gives an LP-based algorithm specifically for MDS that is simpler than
the subsequent general-purpose LP-based algorithm of Moscibroda, and Wattenhofer [40];
however, [42] is inferior to [40] in both approximation ratio and running time.

1.3 Our Contributions
We answer all parts of the above question in the affirmative. In particular, we give algorithms
that achieve the asymptotically optimal approximation factor of O(α), and are not only
simple and elementary, but also run faster than all known algorithms, including LP-based
algorithms. We note that O(α) is the asymptotically optimal approximation factor for
polynomial time algorithms in the centralized setting and also in distributed settings where
processors are assumed to have polynomially-bounded processing power.

Centralized Setting. Our core contribution is an asymptotically optimal algorithm in the
centralized setting.

▶ Theorem 2. For graphs of arboricity α, there is an O(m) time O(α)-approximation
algorithm for MDS.

We note that our algorithm works even when α is not known a priori, since there is a
linear time 2-approximation algorithm for computing the arboricity of a graph [4].

Our algorithm is asymptotically optimal in both running time and approximation factor:
it runs in linear time, and asymptotically improving the approximation factor it gets is proved
to be NP-hard [6]. (The constant in the approximation ratio is not tight; our algorithm gives
an 8α-approxmation.) While the quantitative improvement in running time over prior work
is admittedly minor (a logarithmic factor over the deterministic algorithm, and log n/α over
the randomized algorithm), still getting a truly linear time algorithm is qualitatively very
different than an almost-linear time. Indeed, the study of linear time algorithms has received
much attention over the years, even when it comes to shaving factors that grow as slowly as
inverse-Ackermann type functions. This line of work includes celebrated breakthroughs in
computer science: For example, for the Union-Find data structure, efforts to achieve a linear
time algorithm led to a lower bound showing that inverse-Ackermann function dependence
is necessary [25], matching the upper bound [55], which is a cornerstone result in the field.
Another example is MST, where the inverse-Ackermann function was shaved from the upper
bound of [12] to achieve a linear time algorithm either using randomization [38] or when the
edge weights are integers represented in binary [26], but it remains a major open problem
whether or not there exists a linear time deterministic comparison-based MST algorithm.
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Distributed Setting. We demonstrate the applicability of our centralized algorithm, by
using its core ideas to develop a distributed algorithm.

▶ Theorem 3. For graphs of arboricity α, there is a randomized distributed algorithm in the
CONGEST model that gives an O(α)-approximation for MDS and runs in O(α log n) rounds.
The bound on the number of rounds holds with high probability (and in expectation). The
algorithm works even when either α or n is unknown to each processor.

For the “interesting” parameter regime where ∆ is polynomial in n, and α = o(log n), the
number of rounds in our algorithm beats the prior work obtained by combining [40] and [6]
which appears to run in O(log2 ∆) rounds; as noted already, such an algorithm has not been
claimed explicitly before. We note the caveat that our algorithm is randomized while their
algorithm appears to be deterministic.

In the process of obtaining our distributed algorithm, we also obtain a deterministic
algorithm in the LOCAL model (with polynomial message sizes) in a polylogarithmic number
of rounds, via reduction to the maximal independent set (MIS) problem:

▶ Theorem 4. Suppose there is a deterministic (resp., randomized) distributed algorithm
in the LOCAL model for computing an MIS on a general graph in R(n) rounds. Then, for
graphs of arboricity α, there is a deterministic (resp., randomized) distributed algorithm in
the LOCAL model that gives an O(α)-approximation for MDS in O(R(n) · α2 log n) rounds.
The algorithm works even when either α or n is unknown to each processor.

While Theorem 4 is the first deterministic non-LP-based algorithm to achieve an O(α)-
approximation, we note that the LP-based approach obtained by combining [40] and [6]
appears to achieve fewer rounds and work in the CONGEST model. Theorem 4 is not our
main result and is used as a stepping stone towards our O(α log n) round algorithm in the
CONGEST model, which is deferred to the full version [45] due to space constraints.

We finally note that unlike in the centralized setting, handling unknown α in the dis-
tributed setting it is not trivial and requires special treatment; in the full version [45]
we demonstrate that all of our distributed algorithms can cope with unknown α without
increasing the approximation factor and running time beyond constant factors.

Wider applicability. We have demonstrated the applicability of our centralized algorithm
to the distributed setting. We anticipate that the core idea behind our centralized algorithm
could be applied more broadly, to other settings that involve locality. Perhaps the prime
example in this context is the standard (centralized) setting of dynamic graph algorithms,
where the graph undergoes a sequence of edge updates (a single edge update per step), and
the algorithm should maintain the graph structure of interest (O(α)-approximate MDS in
our case) with a small update time – preferably poly log(n) and ideally O(1).

1.4 Technical overview
Centralized algorithm. As a starting point, we consider the algorithm of Jones, Lokshtanov,
Ramanujan, Saurabh, and Suchỳ [36], which achieves an O(α2)-approximation in linear time.
Their algorithm is as follows. They iteratively build a dominating set D and maintain a
partition of the remaining vertices into the dominated vertices B (the vertices that have
a neighbor in D), and the undominated vertices W . This partition of the vertices, as
well as further partitioning described later, is shown in Figure 1. The basic property of
arboricity α graphs used by their algorithm is that every subgraph contains a vertex of
degree O(α). They begin by choosing a vertex v with degree O(α) and adding v along with
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v’s entire neighborhood N(v) to D. The intuition behind this is that at least one vertex
in {v} ∪N(v) must be in OPT (an optimal dominating set), since OPT must dominate v.
Hence, they add at least one vertex in OPT and use that to pay for adding O(α) vertices
not in OPT . We say that a vertex w witnesses v and the vertices in N(v) that are added
to D, if w ∈ OPT ∩ ({v} ∪N(v)). Now, the goal of the algorithm is to iteratively choose
vertices v to add to D along with O(α) many of v’s neighbors so that each vertex in OPT

witnesses O(α) vertices v along with O(α) neighbors for each such vertex v. That is, each
vertex in OPT witnesses O(α2) vertices in D, which yields an O(α2)-approximation.

To choose which vertices v and which O(α) of v’s neighbors to add to D, they partition
the set B into two subsets Blow and Bhigh, which are the sets of vertices in B with low and
high degree to W , respectively, where the degree threshold is δα for some constant δ. We
also define Wlow ⊆W (differently from the notation of [36]) as the subset of vertices with
degree at most δα in the subgraph induced by W ∪ Bhigh. They add a vertex w ∈ Wlow

to D along with w’s O(α) neighbors that are in W ∪ Bhigh. In the interest of brevity, we
will not motivate why this scheme achieves the desired outcome that each vertex in OPT

witnesses O(α2) vertices in D.
The key innovation in our algorithm that allows us to reduce the approximation factor

from O(α2) to O(α) is a simple but powerful idea. After choosing a vertex w to add to D,
we do not immediately add O(α) of w’s neighbors to D. Instead w casts a “vote” for these
O(α) neighbors, and only once a vertex gets δα many votes is it added to D. With this
modification, we can argue that each vertex in OPT still witnesses O(α) such vertices w as
in the previous approach, but the catch here is that each such vertex w contributes only O(1)
neighbors to D on average, so each vertex in OPT only witnesses a total of O(α) vertices in
D, rather than O(α2). Moreover, it is trivial to implement this algorithm in linear time.

D

(dominating set) (dominated vertices) (undominated vertices)

B W

Bhigh

Blow

Wlow

≤ δα

> δα ≤ δα to
shaded area

Figure 1 The partition of V into D, B and W , and further partitions of B and W .

Distributed algorithms using MIS. This section concerns the proof of Theorem 4: our
reduction from MDS to MIS in the LOCAL model. This section also concerns a modification
of this reduction that gives an O(α2 log2 n) round algorithm in the CONGEST model. We
use this algorithm as a stepping stone towards obtaining our main distributed algorithm
(Theorem 3) which runs in O(α log n) rounds in the CONGEST model.

We adapt our centralized algorithm to the distributed setting as follows. Recall that in
our centralized algorithm, we repeatedly choose a vertex w ∈Wlow, add w to D, and cast a
vote for each vertex in N(w) ∩ (W ∪Bhigh). For our distributed algorithms, we would like
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to choose many such vertices w and process them in parallel. In fact, a constant fraction
of the vertices in W ∪ Bhigh could be chosen as our vertex w since a constant fraction of
vertices in a graph of arboricity α have degree O(α). However, we cannot simply process all
of these vertices in parallel. In particular, if a vertex v has many neighbors being processed
in parallel, v might accumulate many votes during a single round. This would invalidate the
analysis of the algorithm, which relies on the fact that once a vertex v receives δα votes, v

enters D.
To overcome this issue, we compute an MIS with respect to a 2-hop graph built from a

subgraph of “candidate” vertices, and only process the vertices in this MIS in parallel. This
MIS has two useful properties: 1. Its maximality implies that in any 2-hop neighborhood of a
candidate vertex there is a vertex in the MIS; this helps to bound the number of rounds, and
2. Its independence implies that every vertex has at most one neighbor in the MIS, which
ensures that any vertex can only receive one vote per round. To conclude, this approach gives
a reduction from distributed MDS to distributed MIS in the LOCAL model. This approach
can be made to work in the CONGEST model by replacing the black-box MIS algorithm with
a 2-hop version of Luby’s algorithm. This approach of running the 2-hop version of Luby’s
algorithm was also used in [43] for their distributed (α2)-approximation for MDS.

Faster randomized distributed algorithm. In the CONGEST model, our distributed al-
gorithm using MIS runs in O(α2 log2 n) rounds with high probability. We devise a new, more
nuanced algorithm that decreases the number of rounds to O(α log n) with high probability.
Our new algorithm is based on our previous algorithm, but with two key modifications, which
save factors of log n and α, respectively.

Our first key modification, which shaves a log n factor from the number of rounds, is that
we do not run an MIS algorithm as a black box. Instead, we run only a single phase of a
Luby-like MIS algorithm before updating the data structures. Intuitively, this saves a log n

factor because we are running just one phase of a O(log n)-phase algorithm, but it is not
clear a priori if we achieve the same progress as Luby’s algorithm in a single phase. We show
that this is indeed the case via more refined treatment of the behavior of each edge.

Our second key modification, which shaves an α factor from the number of rounds,
concerns the Luby-like algorithm. Recall that in Luby’s algorithm, each vertex v picks a
random value p(v) and then joins the MIS if p(v) is the local minimum. In our algorithm, a
vertex v instead joins the dominating set if p(v) is an α-minimum, which roughly means that
p(v) is among the α smallest values that it is compared to. We show that with this relaxed
definition, we still have the desired property that no vertex receives more than δα votes in a
single round.

The main technical challenge is the analysis of the number of rounds. It is tempting to
use an analysis similar to that of Luby’s algorithm, where we count the expected number of
“removed edges” over time. However, our above modifications introduce several complications
that preclude such an analysis. Instead, we use a carefully chosen function to measure our
progress. Throughout the algorithm, we add “weight” to particular edges, and our function
measures the “total available weight”. Specifically, whenever a vertex v is added to the
dominating set, v adds weight to a particular set of edges in its 2-hop neighborhood. We show
that the total amount of weight added in a single iteration of the algorithm decreases the
total available weight substantially, which allows us to bound the total number of iterations.

All of our distributed algorithms so far have assumed that α is known to each processor
but that n is unknown. We additionally show that all of them can be made to work in
the setting where α is unknown but n is known. The idea of this modification is to guess
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log n values of α and run a truncated version of the algorithm for each guess. However, it is
impossible for an individual processor to know which guess of α is the most accurate without
knowing the whole graph, so the processors cannot coordinate their guesses globally. We end
up with different processors using different guesses of α, but we show that we can nonetheless
obtain an algorithm whose approximation factor and running time are in accordance with
the correct α.

1.5 Organization
Section 2 is for preliminaries. In Section 3, we present our centralized algorithm (Theorem 2).
In Section 4, we present our distributed algorithms using MIS: in the LOCAL model we prove
Theorem 4, and in the CONGEST model we give a randomized algorithm with O(α2 log2 n)
rounds, as a warm-up for the faster algorithm of Theorem 3. In section 5 of the full version [45]
we prove Theorem 3 and that all our distributed algorithms can cope with unknown α.

2 Preliminaries

Let G = (V, E) be an unweighted undirected graph. For any S ⊆ V , let G[S] be denote
the subgraph induced by S. For any v ∈ V , NG(v) denotes the neighborhood of v, and
degG(v) = |NG(v)| denotes the degree of v. When the graph G is clear from context, we
omit the subscript.

Our distributed algorithm apply to the LOCAL and CONGEST models of distributed
computing; definitions can be found in section 2 of the full version [45]. For the problem of
MDS in both models, the requirement is that at the end of the computation, every vertex
knows whether or not it belongs to the dominating set.

The following two simple claims about graphs of bounded arboricity will be useful.

▷ Claim 5. In a graph of arboricity α, every subgraph contains a vertex of degree ≤ 2α.

▷ Claim 6. In a graph G with arboricity α, at least half of the vertices in any subgraph
have degree at most 4α.

3 Linear time O(α)-approximation for MDS

In this section we will prove Theorem 2.

3.1 Algorithm
A description of our algorithm is as follows. See Algorithm 1 for the pseudocode.

We first introduce some notation. Since our algorithm builds off of [36], we stick to
their notation for the most part. See Figure 1. We define a constant δ and let δα be
our degree threshold. We will set δ = 2, but we use the variable δ so that our analysis
also applies to our distributed algorithms, where δ is a different constant. We maintain
a partition of the vertices into three sets: D, B, and W , where initially D = ∅, B = ∅,
and W = V . The set D is our current dominating set, the set B is the vertices not in
D with at least one neighbor in D, and the set W is the remaining vertices, i.e. the
undominated vertices. The set B is further partitioned into two sets based on the degree of
each vertex to W . Let Blow = {v ∈ B : |N(v) ∩W | ≤ δα} and let Bhigh = B \ Blow. Let
Wlow = {v ∈W : |N(v)∩ (W ∪Bhigh)| ≤ δα} Also, each vertex v has a counter cv initialized
to 0. (The counter cv counts the number of “votes” that v receives, for the notion of “votes”
introduced in the technical overview.)



A. Morgan, S. Solomon, and N. Wein 33:9

First we claim that while W is nonempty, Wlow is also nonempty. By Claim 5, G[W∪Bhigh]
contains a vertex v of degree at most 2α. Since δ = 2, v cannot be in Bhigh by the definition
of Bhigh, so v must be in W , and hence in Wlow.

The algorithm proceeds as follows. While there still exists an undominated vertex (i.e.
while W ̸= ∅), we do the following. First, we pick an arbitrary vertex w ∈Wlow (we showed
that Wlow is nonempty). Then, for all v ∈ N(w) ∩ (W ∪ Bhigh), we increment cv, and if
cv = δα, we add v to D. Then, we add w to D. Lastly, we update the sets B, low, Bhigh, W ,
and Wlow according to their definitions. This concludes the description of the algorithm.

Algorithm 1 Linear time O(α)-approximation for MDS.

1: Initialize partition: D ← ∅, B = ∅, Bhigh ← ∅, Blow ← ∅, W ← V , Wlow = {v ∈ V :
deg(v) ≤ δα}

2: Initialize counters: ∀v ∈ V : cv ← 0
3: while W ̸= ϕ do
4: w ← a vertex in Wlow

5: for all v ∈ N(w) ∩ (W ∪Bhigh) do
6: cv ← cv + 1
7: if cv = δα then
8: D ← D ∪ v

9: D ← D ∪ w

// Bookkeeping to update partition:
10: B = {v : N(v) ∩D ̸= ∅}
11: Blow = {v ∈ B : |N(v) ∩W | ≤ δα}
12: Bhigh = B \Blow

13: W = V \ (D ∪B)
14: Wlow = {v ∈W : |N(v) ∩ (W ∪Bhigh)| ≤ δα}
15: Return D

3.2 Analysis
First, we note that D is indeed a dominating set because the algorithm only terminates once
the set W of vertices that are not dominated, is empty.

3.2.1 Approximation ratio analysis
Let OPT be an optimal MDS. We will prove that the set D returned by Algorithm 1 is of
size at most 4δα · |OPT |.

We first make the next claim about the behavior of the partition of vertices over time.

▷ Claim 7.
(1) No vertex can ever leave D.
(2) No vertex can ever enter W from another set.
(3) No vertex can ever leave Blow.

Proof. Item 1 is by definition. Item 2 follows from item 1 combined with the fact that W is
defined as the set of vertices with no neighbors in D. Now we prove item 3. A vertex from
Blow cannot enter W by item 2. A vertex from Blow cannot enter Bhigh since the degree
partition of B is based on degree to W , and by item 2 the degree of any vertex to W can
only decrease over time. A vertex from Blow cannot enter D because there are two ways
a vertex can enter D: on Algorithm 1 a vertex can only enter D from W ∪ Bhigh, and on
Algorithm 1 a vertex can only enter D from W . ◁
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To show that |D| ≤ 4δα · |OPT |, we partition D into two sets, Dactive and Dpassive, and
bound each of these sets separately. The set Dactive consists of the vertices added to D due to
being chosen as the vertex w; that is, the vertices added to D in Algorithm 1 of Algorithm 1.
The set Dpassive consists of the vertices added to D as a result of their counters reaching δα;
that is, the vertices added to D in Algorithm 1 of Algorithm 1. We first bound |Dactive|.

▷ Claim 8. |Dactive| ≤ 2δα · |OPT |.

Proof. For each vertex v ∈ Dactive, we assign v to an arbitrary vertex u ∈ N(v) ∩OPT , and
we say that u witnesses v. Such a vertex u exists since OPT is a dominating set. For each
vertex u ∈ OPT , let Du ⊆ Dactive be the set of vertices that u witnesses. Our goal is to
show that for each u ∈ OPT , |Du| ≤ 2δα.

Fix a vertex u ∈ OPT . We partition the vertices v ∈ Du into two sets Du[Blow] and
Du[Bhigh ∪W ]. Let Du[Blow] ⊆ Du be the vertices that enter D while u is in Blow. Let
Du[Bhigh ∪W ] ⊆ Du be vertices that enter D while u is in Bhigh ∪W . We note that no
vertex in Du can enter D while u is in D, because by definition, every vertex in Dactive ⊇ Du

moves directly from W to D. Therefore, Du = Du[Blow] ∪Du[Bhigh ∪W ].
We first bound

∣∣Du[Blow]
∣∣. By definition, while u is in Blow, u has at most δα neighbors

in W . Since no vertex can ever enter W by Claim 7, no vertex can ever enter N(u) ∩W .
Therefore, starting from the time that u first enters Blow, the total number of vertices ever
in N(u) ∩W is at most δα. Every vertex v ∈ Du[Blow] is in N(u) ∩W right before moving
to D, so

∣∣Du[Blow]
∣∣ ≤ δα. Next, we bound Du[Bhigh ∪W ]. By the specification of the

algorithm, whenever a vertex v ∈ Du[Bhigh ∪W ] enters D, the counter cu is incremented.
Once cu reaches δα, u is added to D. Therefore,

∣∣Du[Bhigh ∪W ]
∣∣ ≤ δα.

Putting everything together, we have |Du| =
∣∣Du[Blow]

∣∣ +
∣∣Du[Bhigh ∪W ]

∣∣ ≤ 2δα. ◁

Now we bound Dpassive.

▷ Claim 9. |Dpassive| ≤ |Dactive|.

Proof. We will show that every vertex in Dpassive has at least δα neighbors in Dactive, while
every vertex in Dactive has at most δα neighbors in Dpassive. Then, by the pigeonhole
principle, it follows that |Dpassive| ≤ |Dactive|.

First, we will show that every vertex in Dpassive has at least δα neighbors in Dactive. By
definition, every vertex v ∈ Dpassive has had its counter cv incremented δα times. Every
time cv is incremented, one of v’s neighbors (the vertex w from Algorithm 1) is added to D,
joining Dactive. Each such neighbor of v that joins Dactive is distinct since every vertex can
be added to D at most once by Claim 7. Therefore, every vertex in Dpassive has at least δα

neighbors in Dactive.
Now we will show that every vertex in Dactive has at most δα neighbors in Dpassive. Fix

a vertex w ∈ Dactive. By definition, when w enters D, w is moved straight from W to D.
Thus, by Claim 7, w is never in B. Therefore, w is added to D before any of its neighbors are
added to D, as otherwise w would enter B. Therefore, when w enters D, all of w’s neighbors
that will enter Dpassive are in B ∪W . By Claim 7, no vertex in Blow can ever enter D, so
actually, when w enters D all of w’s neighbors that will enter Dpassive are in Bhigh ∪W . By
definition, when w enters D, w has at most δα neighbors in Bhigh ∪W . Therefore, w has at
most δα neighbors in Dpassive. ◁

Combining Claim 8 and Claim 9, we have that |D| = |Dactive|+ |Dpassive| ≤ 4δα · |OPT |.
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3.2.2 Running time analysis
Our goal is to prove that Algorithm 1 runs in O(m) time.

Throughout the execution of the algorithm, we maintain a data structure that consists of
the following:

The partition of V into D, B, W ; with subsets Blow, Bhigh, Wlow

The induced graph G[W ∪Bhigh] represented as an adjacency list
For each vertex v ∈W ∪Bhigh, the quantities |N(v) ∩W | and |N(v) ∩ (W ∪Bhigh)|

We can bound the time needed for maintaining the data structure using the following
observations:

The data structure can be initialized in O(m) time
To maintain this data structure, it suffices to scan the neighborhood of a vertex every
time it move between subsets
Every vertex moves between subsets a constant number times during the run of the
algorithm
Maintaining the data structure allows the algorithm to run in time O(m)

The first three observations implies that maintaining the data structure takes time O(m).
Together with the last observation, we have that the entire algorithm takes time O(m). Full
analysis and proof can be found in subsection 3.2.2 of the full version [45].

4 Distributed O(α)-approximation for MDS using MIS

In this section we will prove Theorem 4. We also show how to modify of the proof of
Theorem 4 to get a bound in the CONGEST model:

▶ Theorem 10. For graphs of arboricity α, there is a randomized distributed algorithm in
the CONGEST model that gives an O(α)-approximation for MDS that runs in O(α2 log2 n)
rounds with high probability. The algorithm works even when either α or n is unknown to
each processor.

In the full version [45], we use the algorithm of Theorem 10 as a starting point to get an
improved algorithm with O(α log n) rounds.

The algorithms presented in this section assume that α is known to each processor but n

is unknown. We defer discussion of handling unknown α to the full version [45].

4.1 Algorithm
4.1.1 Overview
Our algorithm is an adaptation of our centralized algorithm from Theorem 2 to the distributed
setting. Recall that in our centralized algorithm, we repeatedly choose a vertex w ∈Wlow, add
w to the dominating set, and increment the counter of w’s neighbors that are in W ∪Bhigh.
For our distributed algorithms, we would like process many vertices in Wlow in parallel.
There are in fact many vertices in Wlow (if δ ≥ 4) since Claim 6 implies that at least half of
the vertices in any subgraph has degree at most 4α. However, we cannot simply process all
of Wlow at once. In particular, if a vertex v has many neighbors being processed in parallel,
v might have its counter incremented once for each of these neighbors. This is undesirable
because the analysis of our centralized algorithm relies on the fact that once a vertex has its
counter incremented to δα, it is added to the dominating set. Therefore, we would like to
guarantee that only a limited number of v’s neighbors are processed in parallel.
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This is where the MIS problem becomes relevant: we ensure that no vertex has more
than one neighbor being processed in parallel by taking an MIS I with respect to the graph
Glow defined as follows: the vertex set of Glow is Wlow. There is an edge (u, v) in Glow if
there is a path of length 2 between u and v in G[W ∪Bhigh]. Note that because no vertex
has more than one neighbor in I, we can process all vertices in I in parallel and only increase
the counter of each vertex by at most one.

The algorithms for Theorem 4 and Theorem 10 are identical except for the MIS subroutine.
Theorem 4 is for the LOCAL model so we can simply run any distributed MIS algorithm
that works in the LOCAL model on Glow as a black box. On the other hand, Theorem 10 is
for the CONGEST model and because Glow can have higher degree than G, running an MIS
algorithm directly on Glow could result in messages that become too large after translating
the algorithm to run on G. To bypass this issue, we use a simple modification of Luby’s
algorithm that computes I using only small messages, without increasing the number of
rounds.

4.1.2 Algorithm description
We provide a description of the algorithms here, and include the pseudocode in Algorithm 2.
The only difference between the algorithms for Theorem 4 and Theorem 10 is the MIS
subroutine, which we will handle separately later.

The sets D, B, W , Bhigh, Blow, and Wlow are defined exactly the same as in our
centralized algorithm, except we set δ = 4 instead of δ = 2 so that we can apply Claim 6
instead of Claim 5. We repeat the definitions here for completeness. The set D is our current
dominating set, the set B is the vertices not in D with at least one neighbor in D, and the set
W is the remaining vertices, i.e. the undominated vertices. The set B is further partitioned
into two sets based on the degree of each vertex to W . Let Blow = {v ∈ B : |N(v)∩W | ≤ δα}
and let Bhigh = B \ Blow. Also, let Wlow = {v ∈ W : |N(v) ∩ (W ∪ Bhigh)| ≤ δα}. Lastly,
each vertex v has a counter cv.

Each vertex v maintains the following information:
The set(s) among D, B, W , Bhigh, Blow, and Wlow that v is a member of.
The quantity |N(v) ∩W |.
The quantity |N(v) ∩ (W ∪Bhigh)|.
The counter cv.

At initialization, every vertex v is in W (so D and B are empty). Consequently, the
quantities |N(v)∩W | and |N(v)∩ (W ∪Bhigh)| are both equal to deg(v). For each vertex v,
if deg(v) ≤ δα, then v ∈Wlow. Each counter cv is initialized to 0.

It will be useful to define the graph Glow, which changes over the execution of the
algorithm:

▶ Definition 11. Let Glow be the graph with vertex set Wlow such that there is an edge (u, v)
in Glow if there is a path of length 2 between u and v in G[W ∪Bhigh].

The algorithm proceeds as follows. Repeat the following until W is empty. Compute
an MIS I with respect to Glow. This step is implemented differently for Theorem 4 and
Theorem 10, and we describe the details of this step later.

Then, each vertex in I adds itself to D and tells its neighbors to increment their counters.
Whenever the counter of a vertex reaches δα, it enters D (and does not tell its neighbors to
increment their counters).
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Whenever a vertex moves from one set of the partition to another, it notifies each of its
neighbors v so that v can update the quantities |N(v) ∩W | and |N(v) ∩ (W ∪Bhigh)|, and
move to the appropriate set. When no more vertices are left in W , Bhigh is also empty, and
all processors terminate. This concludes the description of the algorithm. See Algorithm 2
for the precise ways that vertices react to the messages that they receive.

4.1.3 MIS subroutine
Theorem 4 is a reduction from MDS to MIS, while Theorem 10 is not, so we need to describe
the MIS subroutine (in the CONGEST model) only for Theorem 10. Recall that we cannot
use a reduction to MIS in the CONGEST model because running an MIS algorithm directly
on Glow could result in messages that become too large after translating the algorithm to
run on G.

Our goal is to compute an MIS with respect to Glow, using small messages sent over G.
We use a simple adaptation of Luby’s algorithm. Recall that Luby’s algorithm builds an
MIS I as follows. While the graph is non-empty, do the following: Add all singletons to I.
Then, each vertex v picks a random value p(v) ∈ [0, 1]. Then, all vertices whose value is less
than that of all of their neighbors are added to I. Then, all vertices that are in I or have a
neighbor in I are removed from the graph for the next iteration of the loop.

We use the following adaptation of Luby’s algorithm. See Algorithm 3 for the pseudocode.
Initially, the set L of live vertices is the set Wlow. While L ̸= ∅, do the following: Each vertex
v ∈ L picks a random value p(v) ∈ [0, 1]. In the first round each v ∈ L sends p(v) to its
neighbors. In the second round, each vertex that receives one or more values p(v), forwards
to its neighbors the minimum value that it received. Then, for each vertex v ∈Wlow, if p(v)
is equal to the minimum value that v receives in the second round, v is added to I. When v

is added to I, v notifies its neighbors, and each neighbor of v that is in W ∪Bhigh forwards
this notification to their neighbors. Note that each vertex has at most one neighbor in I, so
forwarding this notification only takes one round. Now, every vertex knows whether it has a
neighbor with respect to Glow that is in I, and every vertex that does is removed from L for
the next iteration of the loop.

The proof that this algorithm runs in O(log n) rounds with high probability and produces
an MIS with respect to Glow is the same as the analysis of Luby’s algorithm and we will not
include it here.

4.2 Analysis
The proof that Algorithm 2 achieves an O(α)-approximation is precisely the same as that of
the centralized algorithm (see Section 3.2.1) given that no counter cv ever exceeds δα. This
is true because in a single iteration of the while loop each vertex can only have its counter
incremented once since only vertices in the MIS I send increment counter messages, and
each vertex in W ∪Bhigh only has at most one neighbor in I. This bound on the number
of neighbors in I holds, since otherwise there is a path of length 2 between two vertices in
G[W ∪Bhigh], making I not an independent set in Glow. Once cv reaches δα, the vertex v

enters D, which prevents cv from increasing in the future.
Our goal in this section is to prove that if the MIS subroutine takes R(n) rounds, then

Algorithm 2 takes O(R(n) · α2 log n) rounds. First, we note that the body of the while loop
besides the MIS subroutine takes a constant number of rounds. Thus, our goal is to show
that the number of iterations of the while loop is O(α2 log n).
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Algorithm 2 Distributed O(α)-approximation for MDS using MIS.
1: Initialize partition: D ← ∅, Bhigh ← ∅, Blow ← ∅, W ← V , Wlow ← {v ∈ V : deg(v) ≤

δα}
2: Initialize counters: ∀v ∈ V : cv ← 0
3: Initialize degrees: ∀v ∈ V : |N(v) ∩W | = deg(v), |N(v) ∩ (W ∪Bhigh)| = deg(v)
4: while W ̸= ∅ do
5: Find an MIS I with respect to the graph Glow

6: Each vertex v runs the following procedure:
7: if v ∈ I then
8: Move v to D

9: Send increment counter message to neighbors
10: Send moved from W to D message to neighbors
11: if v ∈W ∪Bhigh and v receives increment counter then
12: Increment cv

13: if cv = δα then
14: if v ∈W then
15: Send moved from W to D message to neighbors
16: if v ∈ Bhigh then
17: Send moved from Bhigh to D message to neighbors
18: Move v to D

// The rest of the algorithm is bookkeeping
19: if v receives moved from W to D then
20: Decrement |N(v) ∩W |
21: if v ∈ Bhigh and |N(v) ∩W | = δα then
22: Move v to Blow

23: if v receives moved from W to D or moved from Bhigh to D then
24: Decrement |N(v) ∩ (W ∪Bhigh)|
25: if v ∈W and |N(v) ∩W | ≤ δα then
26: Move v to Blow

27: Send moved from W to Blow message to neighbors
28: else if v ∈W and |N(v) ∩W | > δα then
29: Move v to Bhigh

30: Send moved from W to Bhigh message to neighbors
31: if v receives moved from W to Blow or moved from W to Bhigh then
32: Decrement |N(v) ∩W |
33: if v ∈ Bhigh and |N(v) ∩W | = δα then
34: Move v to Blow

35: if v receives moved from W to Blow then
36: Decrement |N(v) ∩ (W ∪Bhigh)|
37: if v ∈W and |N(v) ∩ (W ∪Bhigh)| = δα then
38: Add v to Wlow
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Algorithm 3 Distributed MIS with respect to Glow in the CONGEST model.

1: L = Wlow

2: while L ̸= ∅ do
3: Each vertex v runs the following procedure:
4: if v ∈ L then
5: p(v)← a value in [0, 1] chosen uniformly at random
6: Send p(v) message to neighbors
7: Send mv = miny∈N(v)∩L p(y) message to neighbors
8: if p(v) = miny∈N(v) my then
9: Add v to I

10: Send added message to neighbors
11: if v ∈W ∪Bhigh and v receives added then
12: Send neighbor added message to neighbors
13: if v receives neighbor added and v ∈ L then
14: Remove v from L

We begin with a simple claim about the behavior of the partition of vertices over time:

▷ Claim 12.
(1) No vertex can ever enter W from another set.
(2) No vertex can ever move from Wlow to Whigh.

Proof. The proof of item 1 is the same as in the proof of Claim 7. For item 2, it is impossible
for a vertex to move from Wlow to Whigh since for all v the quantity N(v)∩ (W ∪Bhigh) that
determines membership in Wlow versus Whigh, can only decrease over time (in Algorithm 2,
this quantity is only decremented). ◁

We begin with the following claim, which when combined with Claim 12, implies that
each vertex only spends a limited number of rounds in Wlow.

▷ Claim 13. For every vertex v that is ever in Wlow, within (δα)2 iterations of the while
loop after v joins Wlow, v leaves W .

Proof. First we note that by Claim 12 no vertex can ever move from Wlow to Whigh. Thus, if
v is in Wlow, v will remain in Wlow until v leaves W . Suppose v is in Wlow at the beginning
of an iteration of the while loop. Because I is an MIS with respect to Glow, if v does not
join I during this iteration, then v has a neighbor y ∈W ∪Bhigh such that a neighbor z of
y joins I. As a result, z immediately joins D and cy is incremented. Thus, during every
iteration that v remains in Wlow, a vertex in N(v)∩ (W ∪Bhigh) has its counter incremented.
Recall that whenever a vertex has its counter incremented δα times, it joins D. Because
v ∈ Wlow, we have that |N(v) ∩ (W ∪ Bhigh)| ≤ δα. Therefore, the event that a vertex in
N(v)∩ (W ∪Bhigh) has its counter incremented can only happen at most (δα)2 times. Thus,
v can only remain in Wlow for (δα)2 iterations of the while loop. ◁

We will complete the analysis using the fact that enough vertices are in Wlow at any given
point in time. In particular, Claim 6 implies that at least half of the vertices in W ∪Bhigh

are in Wlow. This implies that at least half of the vertices in W are in Wlow. Formally,
we divide the execution of the algorithm into phases where each phase consists of (δα)2

iterations of the while loop. At the beginning of any phase, at least half of the vertices
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in W are in Wlow. By the end of the phase, all of these vertices have left W by Claim 13.
Therefore, each phase witnesses at least half of the vertices in W leaving W . By Claim 12,
no vertex can re-enter W , so there can only be O(log n) phases.

Putting everything together, there are O(log n) phases, each consisting of (δα)2 iterations
of the while loop, and one iteration of the while loop takes O(R(n)) rounds. Therefore, the
total number of rounds is O(R(n) · α2 log n).

For Theorem 10, R(n) = O(log n), so the number of rounds is O(α2 log2 n).
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