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Abstract
Safe lock-free memory reclamation is a difficult problem. Existing solutions follow three basic methods
(or their combinations): epoch based reclamation, hazard pointers, and optimistic reclamation. Epoch-
based methods are fast, but do not guarantee lock-freedom. Hazard pointer solutions are lock-free
but typically do not provide high performance. Optimistic methods are lock-free and fast, but
previous optimistic methods did not go all the way. While reads were executed optimistically, writes
were protected by hazard pointers. In this work we present a new reclamation scheme called version
based reclamation (VBR), which provides a full optimistic solution to lock-free memory reclamation,
obtaining lock-freedom and high efficiency. Speculative execution is known as a fundamental tool for
improving performance in various areas of computer science, and indeed evaluation with a lock-free
linked-list, hash-table and skip-list shows that VBR outperforms state-of-the-art existing solutions.
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1 Introduction

Lock-freedom guarantees eventual system-wide progress, regardless of the behavior of the
executing threads. Achieving this desirable progress guarantee in practice requires a lock-free
memory reclamation mechanism. Otherwise, available memory space may be exhausted and
the executing threads may be indefinitely blocked while attempting to allocate, foiling any
progress guarantee. Automatic garbage collection could solve this problem for high-level
managed languages, but while some efforts have been put into designing a garbage collector
that supports lock-free executions [28,30,42–44], a lock-free garbage collector for the entire
heap is not available in the literature. Consequently, lock-free implementations must use
manual memory reclamation schemes.

Manual reclamation methods rely on retire invocations by the program, announcing
that a certain object has been unlinked from a data-structure. After an object is retired,
the task of the memory reclamation mechanism is to decide when it is safe to reclaim it,
making its memory space available for reuse in future allocations. The memory reclamation
mechanism ensures that an object is not freed by one thread, while another thread is still
using it. Accessing a memory address which is no longer valid may result in unexpected
and undesirable program behavior. Conservative reclamation methods make sure that no
thread accesses reclaimed space, while optimistic methods allow threads to speculatively
access reclaimed memory, taking care to preserve correctness nevertheless.
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Conservative manual reclamation schemes can be roughly classified as either epoch–based
or pointer–based. In epoch–based reclamation (EBR) schemes [9, 22, 23, 33], all threads share
a global epoch counter, which is incremented periodically. Additionally, the threads share an
announcements array, in which they record the last seen epoch. During reclamation, only
objects that had been retired before the earliest recorded epoch are reclaimed. These schemes
are often fast, but they are not robust. I.e., a stalled thread may prevent the reclamation
of an unbounded number of retired objects. At a worst-case scenario, these objects will
consume too much memory space resulting in blocking all new allocations and consequently,
foiling system-wide progress.

Pointer–based reclamation methods [26,35,37,50] allow threads to protect specific objects.
Namely, before accessing an object, a thread can announce its access in order to prevent this
object from being reclaimed. While pointer-based methods can guarantee robustness (and
consequentially, lock-freedom), they incur significant time overheads because they need to
protect each dereference to shared memory, and issue an expensive memory synchronization
fence to make sure the protection is visible to all threads before accessing the derefeneced
object. Furthermore, pointer-based schemes are not applicable to many concurrent data-
structures (e.g., to Harris’s linked-list [22]).

Hybrid schemes that enjoy stronger progress guarantees and smaller time overheads have
been proposed. Some epoch-based algorithms try to minimize the chance a non-cooperative
thread will block the entire system, by allowing reclamation of objects whose life cycle do
not overlap with the activity of the non-responsive thread, e.g., HE (Hazard Eras [45])
and IBR (Interval-Based Reclamation [56]). However, while these algorithms are effectively
non-blocking in most practical scenarios, a halted thread can still prevent the reclamation
of a large space that relates to the size of the heap. There exists a wait-free variant of
the Hazard Eras algorithm [41] which provides a better guarantee but is naturally slower.
Another hybrid approach, called PEBR [31], obtains lock-freedom at a lower cost, but relies
on the elimination of the costly memory fences using the mechanism of Dice et al. [17], which
in turn relies on hardware modifications or on undocumented operating systems assumptions
that might not hold in the future. Another hybrid of pointer- and epoch-based reclamation
is the DEBRA+ and the subsequent NBR [9, 49] reclamation schemes. In order to deal with
stuck threads in the epoch-based reclamation, these schemes signal non-cooperative threads
and prevent them from postponing the reclamation procedure. While DEBRA+ and NBR
are fast, their lock-free property relies on the system’s lock-free implementation of signaling.
This assumption is not currently available in most existing operating systems, but it may
become available in the future.

The first optimistic approach to lock-free memory reclamation was the Optimistic Access
scheme [13] (also denoted as OA), speculatively allowing reads from retired objects, but
protecting writes from modifying retired objects through the use of conservative pointer-based
reclamation. After each read, designated per-thread flags signify whether reclamation took
place. This allows the reading thread to avoid using stale data loaded from reclaimed space.
Subsequent work [11,12] increased automation and applicability. While the optimistic access
reclamation scheme initiated speculative memory reclamation, its mechanism only allowed
speculative read instructions. Write instructions were still applied conservatively, using
hazard pointers (also denoted as HP) protection to avoid writes on reclaimed space, limiting
the benefits of speculative execution.

In this paper we present VBR, a novel optimistic memory reclamation scheme that allows
full speculative execution, achieving safe and highly efficient lock-free memory reclamation.
Both read and write instructions are allowed to access reclaimed space. VBR uses a global
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epoch counter to assign versions to objects and to (mutable) fields. The versioning of objects
ensures that read and write accesses to reclaimed space are guarded from affecting program
semantics. The key invariant is that the global epoch counter is guaranteed to increment
(at least once) between the time an object is retired and the time its space is re-allocated
as a new object. Each logical object is associated with its birth epoch and (eventually) its
retire epoch, and each of its mutable fields is associated with a version (representing an
epoch smaller or equal to its last update). A speculative read access prudently backs out and
retries if the global epoch counter advances while the data structure operation is active. A
speculative write operation always fails to modify a re-allocated object due to the modified
versions of the object’s mutable fields. To support this, each mutable field within a node is
represented as a ⟨value, epoch#⟩ pair, and modified only with a double-width compare and
swap.

VBR is fully optimistic. Unlike OA [11–13], writes are also speculative and do not
require costly fences. Memory fences are used infrequently, upon updating the global epoch.
VBR provides full lock-freedom and it does not allow a non-cooperative thread to stall the
reclamation process. In fact, VBR never prevents the reclamation of any retired memory
object. VBR does not rely on hardware or operating system assumptions (or modifications),
except for the existence of a double-word compare and swap instruction, which is available
on most existing architectures (e.g., x86).

The proposed VBR can reuse any retired object immediately after it is retired without
jeopardizing correctness, which makes it highly space efficient. However, VBR does encounter
an issue that pops up in several other schemes [9, 12, 13, 37, 49]. The memory manager
sometimes causes a read or a write instruction to “fail” due to a memory reclamation
validation test. This failure is not part of the original program control flow and thus, an
adequate handling of such failure should be added. In [37] Michael proposes informally
to “skip over the hazards and follow the path of the target algorithm when conflict is
detected, i.e., try again, backoff, exit loop, etc.”. Indeed in many known lock-free data
structures [19,20,22,32,34,38,40,46], handling validation failures is easy, which makes the
use of VBR, and other reclamation schemes easy in practice. However, the question arises
whether there is a methodology to handle failed validations for all data structures, even when
we do not master their specific algorithm. A first rigorous treatment of these failures was
provided in [13] for data structures that are written in the normalized form of lock-free data
structures [53]. Subsequently, a weaker version of normalized concurrent data structures was
presented in [49], where the failure problem is somewhat more severe, as signals may occur
at an arbitrary point in the program flow. In this paper, we follow this line of work, and
provide a rigorous treatment of a failed read or write validation.

We have implemented VBR on a linked-list, a skip-list, and a hash table and evaluated it
against epoch-based reclamation, hazard pointers, hazard eras, interval-based reclamation,
and no reclamation at all. As expected, speculative execution outperforms conservative
approaches and so VBR yields both lock-freedom as well as high performance.

This paper is organized as follows. In Section 2 we provide an overview of the VBR scheme.
In Section 3, we describe our shared memory model and specify some assumptions a data
structure must satisfy in order to be correctly integrated with our reclamation mechanism.
We describe the VBR scheme integration in Section 4. Experiments appear in Section 5.
Related work is surveyed in Section 6. A full correctness proof, along with an illustration of
integrating VBR into a lock-free data-structure (Harris’s linked-list [22]), appear in the full
version of this paper [48].
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2 Overview of VBR

The VBR memory reclamation scheme follows an optimistic approach where access to
reclaimed objects is allowed. Optimistic approaches reduce the overhead but require care
to guarantee correctness. First, VBR allows immediate reclamation of each retired object.
There is no need to wait for guards to be lowered to make sure an object is reclaimable as in
other methods. This property ensures that stalled threads do not delay reclamation of any
object. Second, on strongly-ordered systems (e.g., x86, SPARC TSO, etc.) VBR does not
require a costly overhead on read or write accesses. No additional shared memory writes or
memory synchronization fences are required with reads or writes to shared memory. This
provides the high efficiency seen in the evaluation. However, on weakly-ordered systems
(e.g., ARM, PowerPc, etc.), reads must be ordered using special CPU load or memory fence
instructions [15]. VBR requires a type-preserving allocator. I.e., a memory space allocated
for a specific type is used only for the same type, even when re-allocated. The assumption of
type preserving (see also [12, 13, 56]) is necessary for applying our scheme, and is reasonable
because data structure nodes are typically fixed-size nodes. Retired nodes are not returned
to the operating system. Instead, they are returned to a shared pool of nodes, from which
they can be re-allocated by any thread. As in [9,49], a collection of local node pools (one per
thread) is added to the shared pool. A thread accesses the shared pool only when it has no
available nodes in its local pool.

Similarly to epoch-based reclamation, VBR maintains a global epoch counter, and as
in [3,41,45,56], VBR tracks the birth epoch and retire epoch of each allocated node. The
birth epoch is determined upon allocation, and the retire epoch is set upon retirement. The
reclamation of a retired node does not involve any action. Upon an allocation of a node,
a thread makes sure that the retire epoch of the node is smaller than the current global
epoch. If it is not, then the thread increments the global epoch. This ensures that an object
is allocated at a global epoch that is strictly larger than its previous retire epoch. Next, the
thread re-allocates the object by updating its birth epoch with the current global epoch.
This method guarantees that the ABA problem [36] can only occur when the global epoch
changes. Namely, when a thread encounters a node during a data-structure traversal, it is
guaranteed that this node has not been re-allocated during the traversal if the global epoch
has not changed.

VBR allows accessing reclaimed objects, while conservatively identifying reads that may
access reclaimed nodes. To identify the access to a reclaimed node, each executing thread
keeps track of the global epoch, by reading it upon most shared memory reads (as long as
the epoch does not change, this read is likely to hit in the cache). When the thread observes
an epoch change, it conservatively assumes that a value was read from a reclaimed memory
and it applies a roll-back mechanism (described in Section 4.2), returning to a pre-defined
checkpoint in its code. Since a node is always re-allocated at an epoch that is strictly larger
than its former retirement, threads never rely on the content of stale values.

We now move on to handling optimistic writes. In addition to the birth epoch and retire
epoch, each mutable field (e.g., node pointers) is associated with a version that resides next
to it on the data structure node. During the execution, mutable fields are always updated
atomically with their associated versions (using a wide CAS instruction). Throughout the
life-cycle of a not-yet retired node, all of its versions remain greater than or equal to its birth
epoch, and they never exceed its future retire epoch. Versions are decreased or increased
during the execution in the following manner: when updating a pointer from a node n to a
node m, the pointer’s version is set to the maximum birth epoch of the two nodes (either n’s
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or m’s). Notice that we assume that n’s pointer is never updated after its retirement (for
more details, see Section 3.3), and therefore, none of its pointers are assigned a version that
exceeds their retirement epoch.

Let us consider the ABA problem for this versioning scheme. The concern is that re-
allocations may result in an erroneous success of CAS executions. For example, suppose
that a node n points to another node, m, which in turn points to a third node, k. Now,
suppose that a thread T1 tries to remove m by setting n’s pointer to point to k. Right
before executing the removing CAS, T1 is halted. While T1 is idle, T2 removes m and then
reallocates m’s space as a new node d. Next, T2 inserts d as a new node between n and k.
In the lack of versions, T1’s CAS will now be erroneously successful. However, with versions
it must fail. Since d’s birth epoch is necessarily bigger than m’s retire epoch, the version in
the original pointer to m must be smaller than the version assigned to the pointer when d

becomes its referent, and the CAS fails (for more details, see [48]).

3 Settings and Assumptions

In this section we describe our shared memory model and specify the assumptions a data
structure must satisfy for integrating with our reclamation mechanism.

3.1 System Model
We use the basic asynchronous shared memory model, as described in [24]. In this model,
a fixed set of threads communicate through memory access operations. Threads may be
arbitrarily delayed or may crash in the middle of their execution (which immediately halts
their execution). The shared memory is accessed via atomic instructions, provided by the
hardware. Such instructions may be atomic reads and writes, the compare-and-swap (CAS)
instruction and the wide-compare-and-swap (WCAS, which atomically updates two adjacent
memory words, and is often supported in commodity hardware [57]) instruction. The CAS
operation receives three input arguments: an address of a certain word in memory, an
expected value and a new value (both of the size of a single word). It then atomically
compares the memory address content to the expected value, and if they are equal, it replaces
it with the new received value. Otherwise, it does nothing. The WCAS operation operates
in the same manner, on two adjacent memory words.

Concurrent implementations provide different progress guarantees. Lock-freedom guar-
antees that as long as at least one thread executes its algorithm long enough, some thread
will eventually make progress (e.g., complete an operation). This progress guarantee is not
affected by the scheduler or even by the crash of all threads except for one. For a lock-free
data structure to be truly lock-free, it must rely on an allocation method that is also lock-free,
because otherwise a blocked allocation can prevent all threads from making progress.

A data structure represents a set of items, which are distinguished by unique keys, and
are often arranged in some order. Each item is represented by a node, consisting of both
mutable and immutable fields. In particular, each node has an immutable key field. The
data-structure has a fixed set of entry points (e.g., the head of the linked-list in [22]), which
are node pointers. A data structure provides the user with a set of operations for accessing it.
Moreover, The user cannot access the data-structure in other ways, and the data structure
operations never return a node reference. An item that belongs to the data structure set of
items must be represented by a node which is reachable from an entry point, by following
a finite set of pointers. In particular, the data-structure nodes are accessible only via the
entry points. However, a reachable node does not necessarily represent an item in the data
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structure set of items. We denote the removal of an item from the set of items that the data
structure represent by logical deletion, and we denote the unlinking of a node from the data
structure (i.e., making the node unreachable from the entry points) as physical deletion. E.g.,
in [22], a special mechanism is used in order to mark reachable nodes as deleted. Once a
node is marked, it stops representing an item in the data structure set of items (i.e., it is
logically deleted), even though it is reachable from an entry point.

3.2 Executions, Histories and Linearizability
A step can either be a shared-memory access by a thread (including the access input and
output values), a local step that updates its own local variables, an invocation of an operation
or the return from an operation (including the respective inputs and outputs). We assume
each step is atomic, so an execution E = s1 · s2 · . . . consists of a sequence of steps, assumed
to start after an initial state, in which all data-structures are initialized and empty. Given E,
we further denote the finite sub-execution s1 · s2 · . . . · si as Ei.

We follow [29], and model an execution E by its history H (and Ei by Hi, respectively),
which is the sub-sequence of operation invocation and response steps. A history is sequential
if it begins with an invocation step, and all invocations (except possibly the last one) have
immediate matching responses. We assume that a concurrent system is associated with a
sequential specification, which is a prefix-closed set of all of its possible sequential histories.
A sequential history is legal iff it belongs to the sequential specification. An invocation is
pending in a given history if the history does not contain its matching response. Given a
history H, its sub-sequence excluding all pending invocations is denoted as complete(H).
An extension of a history H is a history constructed by appending responses to zero or
more pending invocations in H. We further extend the notion of extensions, and say that
an execution E’ is an extension of an execution E if E is a prefix of E’. In addition, given
an execution E, EXT(E) is the set of all histories H’ such that (1) H’ is an extension of E’s
respective history, and (2) H’ is the respective history of an extension of E. Given a history
H and a thread T, T’s sub-history, denoted as H|T, is the sub-sequence of H consisting of all
(and exactly) the steps executed by T. Two histories H and H’ are equivalent if for every
thread T, H|T and H’|T are equal. A history H is well-formed if for every executing thread
T, H|T is a sequential history. A well-formed history H is linearizable if it has an extension
H’ for which there exists a legal sequential history S such that (1) complete(H’) is equivalent
to S, and (2) if a response step precedes an invocation step in H, then it also precedes it in S.

3.3 Implementation Assumptions
We focus on adding the VBR reclamation scheme to lock-free linearizable concurrent data-
structure implementations. As in [55], we first assume that modifications are executed
using the CAS instruction. No simple writes are used, and no other atomic instructions are
supported. Consequently, our scheme does not support the use of other atomic primitives
(such as fetch&add and swap).

▶ Assumption 1. All updates occur only via CAS executions.

In general, as in [45], we assume that all mutable fields of a removed node are invalidated,
in order to prevent their future updates. It can be achieved either by marking them [22,34]
or by self-linking (in the case of pointers). More formally:

▶ Assumption 2. Node fields are invalidated (and become immutable) using a designated
invalidate() method. This method receives as input a node field and invalidates it. The
invalidation succeeds iff the field is valid and is not concurrently being updated by another
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thread. In order to check whether a certain field is invalid, a thread calls a designated
isValid() method. Finally, given a node field, a thread separates the value from the (possible)
invalidation mark by calling a designated getField() method.

Following the standard interface for manual reclamation [13,31, 37,45,56], applying our
reclamation scheme to an existing implementation includes allocating nodes using an alloc
instruction and retiring nodes using a retire instruction. Nodes are always retired before
they can be reclaimed by the reclamation scheme. We assume that it is possible to retire
each node only once. To sum up, in a similar way to [37]:

▶ Assumption 3. We assume the following life-cycle of a node n:
1. Allocated: n is allocated by an executing thread, but is not yet reachable from the data-

structure entry points. Once it is physically inserted into the data-structure, it becomes
reachable.

2. Reachable (optional): n is reachable from the data structure entry points, but is not
yet necessarily logically inserted into the data-structure (e.g., [47,52]). When it is made
logically included in the data structure it becomes Reachable and valid.

3. Reachable and valid: n is reachable from the entry points and is considered logically in
the data-structure (i.e., valid). At the end of this phase, fields of n are invalidated. We
think of n as invalid when at least one of its mutable fields is invalid.

4. Invalid: n is logically deleted by a designated invalidation procedure, and all of its
mutable fields are invalidated (e.g., by marking [22]). Once a field is invalidated, it
becomes immutable. At the end of this phase, n is unlinked (physically deleted) from the
data structure.

5. Unlinked: At this point, n is not reachable from the data-structure entry points, and
therefore, it is not reachable from any other linked node. At the end of this phase it is
retired by some thread. We assume a node is retired only once in an execution. After
being retired the node is never linked back into the data structure.

6. Retired: n has been retired, by a certain thread. We assume that only unlinked nodes
can be retired.

Notice that, as discussed in [12, 20], a node can be physically removed and re-inserted
into the data-structure several times during stage 4. However, a retire instruction is issued
on a node only after it is physically removed for the last time.

Finally, we assume that a thread does not use data on nodes without occasionally checking
that the nodes are valid. For our scheme to work, we require this check after modifying the
data structure. We assume that if a thread performs a successful modification of the data
structure, and if it has some locally saved pointers that were read prior to the modification,
then the thread makes limited use of these pointers. Actually, we do not even need to
impose the restriction on all modifications. Restrictions are needed only for “important”
modifications that cannot be rolled back. Such modifications are called rollback-unsafe and
they are formally defined in Section 4.2.1 below. In particular:

▶ Assumption 4. If thread T executes any rollback-unsafe modification after updating a local
pointer p, then a future use of p is limited. Suppose p references a node n, then a future (i.e.,
after the rollback-unsafe modification) read of one of n’s mutable fields by T is allowed only
if the read is followed by an isValid() call, and if it returns FALSE, the field content is not
used by T .

While “not using” the content of a read field is intuitively clear, let us also formally say
that the content of a read field is not used by a thread T , if T ’s behavior is indistinguishable
from its behavior when reading the ⊥ sign instead of the actual value read. Note that even
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after a rollback-unsafe update, T is allowed to use the content of fields that were read before
the modification. However, after the modification, T is not allowed to dereference a local
pointer and read values from the referenced node without checking the validity of the node.
For example, T is allowed to use previously read pointers as expected values of a CAS, or as
the target of a write operation. T can traverse a list in a wait free manner (since there is no
modification involved). T can trim all invalid nodes along a traversal. This is allowed since
trimming includes checking the validity of the traversed nodes. All known lock-free data
structures that we are aware of (e.g., [19, 20, 22, 27, 32, 34, 38, 40, 46]) satisfy Assumption 4.

4 VBR: Version Based Reclamation

In this section we present VBR: a lock-free recycling support for lock-free linearizable [29]
data-structures. We start by describing the reclamation scheme and the modifications applied
to the nodes’ representation in Section 4.1, and continue with the modifications applied to
the data-structure operations in Section 4.2. In Section 4.2.1 we define the notion of code
checkpoints and show how to insert them into an existing linearizable implementation. In
Section 4.2.2 we go over the necessary adjustments to read operations (from shared variables).
Handling update operations is described in Section 4.2.3. A full example API appears in
Figure 1. For ease of presentation, we refer to data-structures for which each node has a single
immutable field (the node’s key) and a single mutable field (the node’s next pointer), and
nodes’ invalidation is executed via the marking mechanism [22]. However, this interface can
be easily extended to handle multiple immutable and mutable fields, and other invalidation
schemes. We present a full correctness proof for Theorem 1 in [48].

▶ Theorem 1. Given a lock-free linearizable data-structure implementation, satisfying all of
the assumptions presented in Section 3.3, it remains lock-free and linearizable after integrating
it with VBR according to the modifications described in Sections 4.1–4.2.

4.1 The Reclamation Mechanism
VBR uses a shared epoch counter, denoted e, incremented periodically by the executing
threads. In addition, each executing thread keeps track of the global epoch using a local
my_e variable. Each node is associated with birth_epoch and retire_epoch fields. Its birth
epoch contains the epoch seen by the allocating thread upon its allocation, and its retire
epoch contains the epoch seen by the thread which removed this node from the data structure,
right before its retirement. We add a version field adjacent to each mutable field (e.g., node
pointers). The field’s version is guaranteed to always be equal to or greater than the node’s
birth epoch, and equal to or smaller than its eventual retire epoch (if there exists any). The
field’s data and its associated version are always updated together. E.g., see lines 9, 33.

Handling reclamation at the operating system level often requires using locks (unless it is
configured to ignore certain traps). Therefore, for maintaining lock-freedom, VBR uses a
user-level allocator. Retired nodes are inserted into manually-managed node pools [25,54]
for future re-allocation. We use a type-preserving allocator. I.e., a memory space allocated
for a specific type is used only for the same type, even when re-allocated.

Each thread’s allocation and reclamation mechanism works as follows. Besides sharing
a global nodes pool [25,54], each executing thread maintains a local pool of retired nodes,
from which it retrieves reclaimed nodes for re-allocations. When the local pool becomes large
enough, retired nodes may be moved to a global pool of retired nodes, allowing re-distribution
of reclaimed nodes between the threads. When retiring a node, it is possible to re-allocate
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this node immediately. However, we use a local retired list to stall its re-allocation for a while.
This allows infrequent increments to the global epoch counter, which improves performance.
A retired node is therefore added to the private list of retired nodes. When the size of the
retired list exceeds a pre-defined threshold, it is appended as a whole to the thread’s local
allocation pool, becoming available for allocation.

The full allocation method appears in lines 1–11 of Figure 1. First, the thread reads the
retire epoch of the next available node in its allocation pool. If it is equal to the shared
epoch counter, then the thread increments the shared epoch counter using CAS (line 4) and
executes a rollback to the previous checkpoint (for more details, see Section 4.2.1). This
makes sure that the birth epoch of a new node is larger than the retire epoch of the node that
was previously allocated on the same memory space. If the CAS is unsuccessful, then another
thread has incremented the global epoch value and there is no need to try incrementing it
again. If e is bigger than the retired node’s retire epoch, the thread sets the new node’s birth
epoch to its current value. After setting the node’s birth epoch, its next pointer version is set
to this value, along with an initialization of its data to NULL in line 9. Due to Assumption 3
(the mutable fields of a node become immutable before it is retired), the WCAS executed in
line 9 is always successful. Finally, the key field is set to the key received as input.

The retire method appears in lines 12–16. First, the retiring thread makes sure that the
node is not already retired in line 13 (for more details, see [48]). Then, it sets the node’s
retire epoch to be the current global epoch, and appends the retired node to its local retired
nodes list. In case its local copy of the global epoch counter is not up to date, it performs a
checkpoint rollback in line 16 (for more details, see Section 4.2.1).

4.2 Code Modifications

Unlike former reclamation methods, VBR allows both optimistic reads and optimistic writes.
Namely, the executing threads may sometimes access a previously reclaimed node, and either
read its stale values or try to update it. To the best of our knowledge, there exists no other
scheme which allows optimistic writes, and optimistic reads are allowed only in [11–13]. Our
versioning mechanism ensures that a write to a previously reclaimed node always fails, and
that stale values that are read from reclaimed nodes are always ignored. This gives rise to an
additional problem – when failing to read a fresh value due to an access to a reclaimed node,
the program needs to move control to an adequate location. This problem does not arise
with epoch based reclamation because a thread never fails due to a test that the memory
reclamation scheme imposes. Failures that arise due to optimistic access are not part of
the original lock-free concurrent data structure. Interestingly, deciding how to treat failed
reads or writes is very easy in practice. We could easily modify lock-free data structures
that satisfy the assumptions presented in Section 3.3 (e.g., [19, 20, 22, 32, 34, 38, 40, 46]),
at a minimal performance cost. However, while presenting this scheme, we would also
like to propose a general manner to handle failed accesses. We are going to define the
notion of execution checkpoints. Upon accessing an allegedly stale value, the code just rolls
back to the appropriate checkpoint. This problem is given general treatment in the format
of a normalized form assumption in [12, 13], and in a total separation between read and
write phases during the execution in [49]. Although the VBR scheme can be applied to
implementations that adhere to both models, both of them require extensive modifications
to the original program’s structure. Therefore, we propose a new method, which is more
general and makes less assumptions on the given implementation. Our method is to carefully
define program checkpoints.
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1: alloc(int key)
2: n := alloc_list → next
3: if (n → retire_epoch ≥ my_e)
4: CAS(&e, my_e, my_e + 1)
5: alloc_list → next := n
6: return to checkpoint ▷ Checkpoint rollback
7: n → birth_epoch := my_e
8: n → retire_epoch := ⊥
9: WCAS(&(n → next), ⟨n → next.data, n → next.version⟩, ⟨NULL, my_e⟩)

10: n → key := key
11: return n

12: retire(Node* n, long n_b)
13: if (n → birth_epoch > n_b || n → retire_epoch ̸= ⊥) return ▷ Avoiding double retirements
14: n → retire_epoch := e.get()
15: retired_list → next := n
16: if (n → retire_epoch > my_e) return to checkpoint ▷ Checkpoint rollback

17: getNext(Node* n)
18: n_next := unmark(n → next.data)
19: n_next_b := n_next → birth_epoch
20: if (my_e ̸= e.get()) return to checkpoint ▷ Checkpoint rollback
21: return n_next, n_next_b

22: getKey(Node* n)
23: n_key := n → key
24: if (my_e ̸= e.get()) return to checkpoint ▷ Checkpoint rollback
25: return n_key

26: isMarked(Node* n, long n_b)
27: res := isMarked(n → next.data)
28: if (n → birth_epoch ̸= n_b) return TRUE ▷ The node is already removed
29: return res

30: update(Node* n, long n_b, Node* exp, long exp_b, Node* new, long new_b)
31: exp_v := max { n_b, exp_b }
32: new_v := max { n_b, new_b }
33: return WCAS(&(n → next), ⟨ exp, exp_v ⟩, ⟨ new, new_v ⟩)

34: mark(Node* n, long n_b)
35: exp := unmark(n → next.data)
36: exp_v := max { n_b, exp → birth_epoch }
37: if (n → birth_epoch ̸= n_b) return FALSE ▷ The node is already removed
38: new := mark(exp)
39: return WCAS(&(n → next), ⟨ exp, exp_v ⟩, ⟨ new, exp_v ⟩)

Figure 1 An example VBR interface.

4.2.1 Defining Checkpoints
VBR occasionally requires a rollback to a predefined checkpoint. In order to install checkpoints
in a given code in an efficient manner, one needs to be able to distinguish important shared-
memory accesses that cannot be rolled back from non-important accesses that allow rolling
back. The notion of important shared-memory accesses is similar to the definition of an
owner CAS in [53], and shares some mutual concepts with the capsules definition, given
in [5, 6]. Informally, non-important shared-memory accesses (that can be rollbacked) either
do not affect the shared memory view (e.g., reading from the shared-memory) or do not have
any meaningful impact on the execution flow. For example, consider Hariss’s implementation
of a linked-list [22]. The physical removal of a node, i.e., trimming the node from the list
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after it has been marked, can be safely rollbacked. If we try the same trim again, it will
simply fail, and if we rollback further, this trim will not even be attempted. However, the
(successful) insertion of a new node into the list and the (successful) marking of a node for
logical deletion are both important and are not rollback-safe. In both cases, performing a
rollback right after the successful update would result in a non-linearizable history (as the
inserter or remover would not return TRUE after successfully inserting or removing the node,
respectively). We now define the notion of rollback-safe steps in a given execution E with a
respective history H.

▶ Definition 2 (Rollback-Safe Steps). We say that si is a rollback-safe step in an execution
E if EXT(Ei)=EXT(Ei−1).

If si is not a rollback-safe step, then we say that it is a rollback-unsafe step. According
to Definition 2, if si is a rollback-safe step, executed by a thread T during E, then T can
safely perform a local rollback step after si. I.e., right after executing si by T, T can restore
the contents of all of its local variables and program counter (assuming they were saved
before si), and the obtained execution would have the same set of corresponding history
extensions. Note that, by Definition 2, local steps, shared memory reads and unsuccessful
memory updates (CAS executions returning FALSE) are considered as rollback-safe steps.
We extend Definition 2 in the following manner: a thread T can rollback to any previously
saved set of local variables (including its program counter), as long as it has not performed
any rollback-unsafe steps since they had been saved. I.e., it can safely rollback to its last
visited checkpoint.

Given a code for a concurrent data-structure, checkpoints are first installed after some
shared memory update instructions, in the following manner: let l be a shared-memory
update instruction (i.e., a CAS instruction). If there exists an execution E = s1 · . . . such
that l is executed successfully during a step si (i.e., the CAS execution returns TRUE), and
si is a rollback-unsafe step in E, then a checkpoint is installed right after l. The installation
of a checkpoint includes a check that the update is indeed successful (the CAS execution
returns TRUE). If it is, then the checkpoint reference is updated (to the current value of the
program counter), and all local variables are saved for a future restoration1. If the update
is not successful (the CAS execution returns FALSE), then nothing is done. Checkpoints
are also installed in the beginning of each data-structure operation. As opposed to the first
type of checkpoint triggers, the installation does not depend on anything when done upon
an operation invocation. Recall that, by Definition 2, an operation invocation is always a
rollback-unsafe step. After rolling back to a checkpoint, the thread updates its local copy of
the global epoch, recovers its set of local variables, and continues its execution2.

4.2.2 Read Methods
As threads may access stale values, the only way to avoid relying on a stale value is to
constantly check that the node from which the value was read has not been re-allocated. In
a conservative way, we think of a read instruction as potentially reading a stale value if the
global epoch number changed since the last checkpoint. A read of a stale value must imply a
change of the global epoch number because the birth epoch of a node is strictly larger than
the retirement epoch of a previous node that resides on the same memory space. Therefore,

1 It is unnecessary to save uninitialized variables and variables that are not used anymore
2 Right before a thread rolls-back to its previous checkpoint, it handles some unlinked nodes for guaran-

teeing VBR’s robustness. As this issue does not affect correctness, we move this discussion to [48].
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the shared epoch counter e is read upon each operation invocation (see Section 4.2.1), each
node retirement, and after certain allocations and reads from the shared memory. Since a
node cannot be allocated during an epoch in which a node, previously allocated from the
same memory address, is not yet removed from the data-structure (see lines 3-6 in Figure 1),
as long as the global epoch, read before the read of a node, is equal to the one read after the
read of the node, it is guaranteed that the node’s value is not stale. In general, when reading
a node pointer into a local variable, it is always saved together with the node’s birth epoch,
as the node is represented by its birth epoch as well.

W.l.o.g. and for simplifying our presentation, we assume each node originally consists
of an immutable key field and a mutable next pointer field, and that a node is invalidated
using the mark() method [22]. Therefore, there are roughly three types of read-only accesses
in the original reclamation-free algorithm. The first type is the read of a node via the next
pointer of its predecessor, the second one is the read of a node’s key, and the third one is
the read of a node’s mark bit. We install the getNext() method instead of each pointer read
in the original code, the getKey() method instead of each key read, and a new isMarked()
method instead of the original one. Accesses to other (mutable or immutable) node fields
should be very similar, and therefore require the same treatment.

The code for the getNext() method appears in lines 17-21, and the code for the getKey()
method appears in lines 22-25. Both methods receive a pointer to the target node (assumed
to be given as an unmarked pointer). First, the next node and its birth epoch (or the key,
respectively) are saved in local variables. Then, the global epoch is read and compared to
the previous recorded epoch. If the epoch has changed since the previous read, then the
values may be stale, and the execution returns to the last checkpoint. Otherwise, the data is
returned in line 21 (or line 25, respectively).

The code for the VBR-integrated isMarked() method appears in lines 26-29. It also
receives an unmarked pointer to the target node, and additionally, its birth epoch. It
first checks whether the node’s next pointer is indeed marked (line 27), using the original
isMarked() method, which receives the actual allegedly marked pointer and checks if it is
marked. Then the node’s birth epoch is read, for guaranteeing that the given node is the
correct one (and not another one, allocated from the same memory space). If it is not, then
the target node has certainly been marked in the past, and the method returns TRUE in
line 28. Otherwise, it returns the answer received in line 27. As this method returns a correct
answer regardless of epoch changes or the retirement of the target node, it does not read the
global epoch nor returns to the last checkpoint.

4.2.3 Update Methods
By Assumption 1, all data structure updates are executed using CAS instructions. We
consider two types of pointer updates. The first type, depicted in lines 30-33 of Figure 1,
is the update of an unmarked pointer. The second type (lines 34-39) is the marking of an
unmarked pointer. The update of other mutable fields can be similarly implemented. In
particular, the version of non-pointer mutable fields should always be equal to the node’s
birth epoch (which makes such fields much easier to handle).

The update() method replaces the original pointer update via a single CAS instruction.
It receives pointers to the target node, its expected successor and the new successor, together
with their respective birth epochs. All three pointers are assumed to be unmarked. The
expected and new pointer versions are calculated in the same manner (lines 31-32): the
maximum birth epoch of the target node and successor node. The next field is either
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successfully updated or remains unchanged in line 33. In [48] we prove that the target node’s
next pointer is updated iff (1) it has not been reclaimed yet, (2) it is not marked, and (3) it
indeed points to the expected node (including the given birth epoch).

The mark() method marks an unmarked next pointer, without changing its pointed node.
It receives the target node and its birth epoch. The actual marking is executed in line 39. It
uses the unmarked and marked variants of the pointer, and does not change the pointer’s
version (calculated in line 36). In [48] we prove that the target node is marked iff (1) it has
not been reclaimed yet, (2) it is not marked, and (3) it indeed points to the expected node
(read in line 35), just before the marking.

5 Evaluation

For evaluating throughput of VBR we implemented lock-free variants of a linked-list from [34],
a hash table (implemented using the same list), and a skip list. We implemented Herlihy and
Shavit’s lock-free skiplist [27] with the amendment suggested in [20] for lock-free reclamation.
VBR was integrated into all data-structures according to the guidelines presented in Section 4.

We evaluated VBR against a baseline execution in which memory is never reclaimed
(denoted NoRecl), an optimized implementation of the epoch-based reclamation method [22]
(denoted EBR), the traditional hazard pointers scheme [37] (denoted HP), the hazard eras
scheme [45] (denoted HE), and the 2GEIBR variant of the interval-based scheme [56] (denoted
IBR). For all reclamation schemes, we implemented optimized local allocation pools. Objects
were reclaimed once the retire list is full, and were allocated from the shared pool if there
were no objects available in the local pool. As retired objects cannot be automatically
reclaimed in EBR, IBR, HE and HP, we tuned their retire list sizes in order to achieve high
performance. We further tuned the global epoch update rate in EBR, HE and IBR (in VBR
it seldom happens and does not require any tuning).

Pointer-based methods require that it would not be possible to reach a reclaimed node
by traversing the data structure from a protected node, even if the protected node has
been unlinked and retired. This prevents schemes like HP, HE, IBR, etc. from being used
with some data structures such as Harris’s original linked-list [22] or the lock-free binary
tree of [10, 40]. We did not implement binary search trees, because some of the measured
competing schemes cannot support it.

5.1 Setup
Our experimental evaluation was performed on an Ubuntu 14.04 (kernel version 4.15.0) OS.
The machine featured 4 AMD Opteron(TM) 6376 2.3GHz processors, each with 16 cores
(64 threads overall). The machine used 128GB RAM, an L1 cache of 16KB per core, an L2
cache of 2MB for every two cores and an L3 cache of 6MB per processor. The code was
compiled using the GCC compiler version 7.5.0 with the -O3 optimization flag.

We implemented object pools in a similar way to [12], to avoid returning reclaimed
objects to the OS. All schemes used that implementation, in which all pools are pre-allocated
before the test. Each test was a fixed-time micro benchmark in which threads randomly
call the Insert(), Delete() and Search() operations according to three workload profiles: (1)
a search-intensive workload (80% searches, 10% inserts and 10% deletes), (2) a balanced
workload (50% searches, 25% inserts and 25% deletes), and (3) an update-intensive workload
(50% inserts and 50% deletes). Each execution started by filling the data-structure to half of
its range size. For the hash-table, the load factor was 1. We measured the throughput of
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(a) Linked-list. Key range: 256.
10% inserts 10% deletes 80% reads.
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(b) Linked-list. Key range: 256.
25% inserts 25% deletes 50% reads.
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(c) Linked-list. Key range: 256.
50% inserts 50% deletes.
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(d) Skiplist. Key range: 10K. 10%
inserts 10% deletes 80% reads.
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(e) Skiplist. Key range: 10K. 25%
inserts 25% deletes 50% reads.
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(f) Skiplist. Key range: 10K. 50%
inserts 50% deletes.
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(g) Hash table. Key range: 10M.
10% inserts 10% deletes 80% reads.
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(h) Hash table. Key range: 10M.
25% inserts 25% deletes 50% reads.
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(i) Hash table. Key range: 10M.
50% inserts 50% deletes.

Figure 2 Throughput evaluation. Y axis: throughput in million operations per second. X axis:
#threads.

the above schemes. Each experiment lasted 1 second (as longer executions showed similar
results) and was run with a varying number of executing threads. Each experiment was
executed 10 times, and the average throughput across all executions was calculated.

5.2 Discussion

Figure 2 shows that VBR is faster than other manual reclamation schemes, even when
contention is high (Figures 2a-2c), and in update-intensive workloads (Figures 2c, 2f, 2i).
VBR outperforms epoch-based competitors (EBR, IBR and HE) due to its infrequent epoch
updates. In order to avoid allocation bottlenecks, EBR, IBR and HE require frequent
epoch updates. I.e., many global epoch accesses result in cache misses and slow down the
allocation process, the reclamation process and the operations executions. In contrast to
these methods, VBR requires infrequent epoch updates. An increment is triggered when
the next node to be allocated has a retire epoch equal to the current global epoch. Most
global epoch accesses during VBR hit the cache, and are negligible in terms of performance.
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In addition, VBR outperforms its pointer-based competitors (IBR, HE and HP) since it
requires neither read nor write fences. Specifically, in the hash table implementation, it
surpasses the next best algorithm, EBR, by up to 60% in the search-intensive workload
(Figure 2g), by up to 50% in the balanced workload (Figure 2h), and by up to 40% in the
update-intensive workload (Figure 2i). In the skiplist implementation, VBR is comparable to
the baseline and EBR for the search-intensive and balanced workloads (Figures 2d-2e). For
the update-intensive workload, it outperforms the next best algorithm, IBR, by up to 35%
(Figure 2f). In the linked-list implementation, VBR outperforms the next best algorithm,
EBR, by up to 10%, 11% and 8%, respectively (Figures 2a-2c). For cache locality reasons,
VBR outperforms the baseline execution for all linked-list and skiplist workloads and for all
key ranges (Figures 2a-2f). As cache locality plays no role in the hash table implementation,
VBR has no advantage against the baseline for this data-structure. VBR’s throughput is
around 75% of the baseline for the search-intensive workload, around 60% of the baseline for
the balanced workload and around 65% of the baseline for the update-intensive workload.

6 Related Work

Much related work was already discussed in the introduction. There are many memory
management schemes, and in the evaluation we compared VBR against highly efficient
schemes whose code is available (We could not compare against all). Previous works [31, 49]
defined a set of desirable reclamation properties. Safe reclamation algorithms should be fast
(show low latency and high throughput), robust (the number of unreclaimed objects should
be bounded), widely applicable and self-contained (not relying on external features).

Two novel methods initiated the study of memory reclamation for concurrent data
structures. Pointer-based schemes [17,26,37] protect objects that are currently accessed by
placing a hazard pointer referencing them. These methods are often slow and not always
applicable. Epoch-based schemes [9, 22] (and quiescent state based schemes [23]) wait until
all threads move to the next operation to make sure that an unlinked node cannot be
further accessed. Such methods are sometimes not robust, and most hybrids of the two
approaches [4, 9, 41, 45, 56] are either not always applicable, or rely on special hardware
support. Drop-the-anchor [8] extends HP by protecting only some of the traversed nodes and
reclaiming carefully, yet it is not easily applicable and has only been applied to linked-lists.

Another approach, which is neither fast nor robust, is reference counting based recla-
mation [7, 16, 21, 26]. This scheme keeps an explicitly count of the number of pointers to
each object, and reclaims an object with a zero count. Such schemes require a way to break
cyclic structures of retired objects, and are often slow or rely on hardware assumptions. This
scheme has a wait-free (and in particular, robust) variant [51] and a lock-free variant [14],
but they are not fast, since they require multiple expensive synchronization fences.

Many schemes rely on Hardware-specific or OS features, or affect the execution envi-
ronment. ThreadScan [2], StackTrack [1], and Dragojević et al. [18] rely on transactional
memory for the reclamation, which is not always available in hardware or may be slow in
a software implementation. DEBRA+ [9] and NBR [49] use OS signals in order to wake
unresponsive threads and allow lock-free progress even for EBR-based methods, if the OS
signal implementration is lock-free. Morrison and Afek [39] avoid memory fences by waiting
for a short while. This relies on specific hardware properties that might not always be
available. Dice et. al. [17] and PEBR [31] avoid costly fences by relying on the existence of
process-wide memory fences. QSense [4] requires control of the OS scheduler. In particular,
to make hazard pointers visible, threads are periodically swapped out.
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