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Abstract
There is no wait-free algorithm that solves k-set agreement among n ≥ k+1 processes in asynchronous
systems where processes communicate using only registers. However, proofs of this result for k ≥ 2
are complicated and involve topological reasoning. To explain why such sophisticated arguments are
necessary, Alistarh, Aspnes, Ellen, Gelashvili, and Zhu recently introduced extension-based proofs,
which generalize valency arguments, and proved that there are no extension-based proofs of this
result.

In the synchronous message passing model, k-set agreement is solvable, but there is a lower
bound of t rounds for any k-set agreement algorithm among n > kt processes when at most k

processes can crash each round. The proof of this result for k ≥ 2 is also a complicated topological
argument. We define a notion of extension-based proofs for this model and we show there are
no extension-based proofs that t rounds are necessary for any k-set agreement algorithm among
n = kt + 1 processes, for k ≥ 2 and t > 2, when at most k processes can crash each round. In
particular, our result shows that no valency argument can prove this lower bound.
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1 Introduction

In the k-set agreement problem, each process has an input from {0, . . . , k} and each process
that does not crash must output a value from among the inputs (validity) such that at
most k different values are output (k-agreement). In 1993, Borowsky and Gafni [6], Herlihy
and Shavit [11], and Saks and Zaharoglou [14] concurrently proved, using sophisticated
topological proofs, that there are no wait-free algorithms that solve k-set agreement among
n ≥ k + 1 processes in asynchronous models where processes communicate by reading from
and writing to shared registers (or objects that can be built from registers).

Extension-based proofs were recently introduced by Alistarh, Aspnes, Ellen, Gelashvili,
and Zhu [2, 3] as a generalization of valency arguments. They proved that, for k ≥ 2, there
are no extension-based proofs of this impossibility result in the iterated immediate snapshot
and iterated snapshot models. These are asynchronous shared-memory models that are
closely related to the models used by Borowsky and Gafni, Herlihy and Shavit, and Saks
and Zaharoglou. This explains the necessity of the topological arguments used to prove this
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impossibility result. Subsequently, Attiya, Castañeda, and Rajsbaum [4] presented a simpler,
but more restricted, class of proofs and showed that, for k ≥ 2, this class contains no proof of
the impossibility of a uniform algorithm solving k-set agreement among n ≥ k + 1 processes
in the iterated immediate snapshot model.

In the synchronous message passing model, Chaudhuri, Herlihy, Lynch, and Tuttle [7]
proved that ⌊f/k⌋ + 1 rounds are necessary and sufficient to solve k-set agreement among
n ≥ k + f + 1 processes when at most f processes can crash. Their upper bound is a simple,
elegant algorithm, which is described in Section 3. The proof of their lower bound is a
complicated topological argument, which constructs a k-dimensional simplex of executions
in which adjacent executions are indistinguishable to certain processes. Subsequent papers
by Herlihy, Rajsbaum, and Tuttle [9, 10] presented more succinct proofs using additional
topological tools, showing that it is impossible to solve k-set agreement among n ≥ k(t+1)+1
processes in t rounds, assuming at most k processes crash each round. Gafni [8] gave a
different proof. He presented a technique that converts any synchronous t round k-set
agreement algorithm for n ≥ k(t + 1) + 1 processes, assuming at most k processes crash each
round, into an asynchronous k-set agreement algorithm for n ≥ k + 1 processes, assuming at
most k processes crashes. Since there is no such asynchronous algorithm, he obtained the
same lower bound.

A natural question is whether there is a simpler proof of this lower bound, analogous to
the valency arguments used to prove that more than t rounds are necessary to solve binary
consensus among n ≥ t+2 processes when at most one process can crash each round [1, 5, 13].
Following the approach by Alistarh, Aspnes, Ellen, Gelashvili, and Zhu [2, 3], we define a
version of extension-based proofs for the synchronous message passing model in Section 4.
Then, in Section 5, we prove that for k, t ≥ 2, there is no extension-based proof of the
impossibility of solving k-set agreement among n = k(t + 1) + 1 processes in t rounds when
at most k processes crash each round.

2 Model

A synchronous message passing model consists of a set of n processes, P = {p0, p1, . . . , pn−1}.
Executions of an algorithm proceed in synchronous rounds, in which each process (that has
not already terminated or crashed) sends messages to other processes, then receives the
messages other processes sent to it in that round, updates its state based on the messages it
receives, and either outputs a value and terminates or proceeds to the next round.

A process crashes during some round if there is some other process to which it is supposed
to send a message during that round, but it does not. If a process crashes during a round,
it does not send any messages in any subsequent round and it does not output a value. A
process is active at the beginning of round r ≥ 1 if it has not terminated or crashed during
the first r − 1 rounds. Every process is active at the beginning of round 1.

Initially, each process pi has an input xi that is (part of) its state. A configuration is an
n-component vector C that describes the states of all processes at the beginning of some
round. If process pi is active, then C[i] is its state at the beginning of this round. If it
terminated in a previous round, then C[i] = (⊤, m), where m is the value it output. If it
crashed in a previous round, then C[i] = ⊥. An initial configuration consists of the state
of every process before any computation occurs. A final configuration is a configuration in
which no process is active, i.e., every process has either terminated or crashed.
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An algorithm specifies what message each active process wants to send to every other
process in each round, as a function of its state at the beginning of the round. A full
information algorithm is an algorithm in which, in every round, each active process pi sends
its state to every other process and updates its state to be the n-component vector s, where
s[i] is its previous state and s[j] is the last message it received from process pj , for all j ̸= i.
If process pi has never received a message from process pj , then s[j] = ⊥. If process pi

terminates in state s and outputs m, then s = (⊤, m). Note that every algorithm can be
transformed into a full information algorithm using the same number of rounds: It simply
does not pay attention to any extra information it has received when deciding when to
terminate and what value to output.

A one round schedule is an n-component vector σ, where σ[i] ⊆ P consists of pi and the
set of processes to which pi sent messages during the round, if pi is active at the beginning
of the round, and is ∅, otherwise. The one round schedule σ is applicable to configuration C

if pi ∈ σ[i] for every process pi that is active in C and σ[i] = ∅ for every process pi that is
not active in C. Note that if C has no active processes, then the only one round schedule
applicable to C is the empty schedule σ, where σ[i] = ∅ for every process pi.

Suppose that C is a configuration of an algorithm and σ is a one round schedule that
is applicable to C. Consider the round in which each process pi that is active in C sends
the messages specified by the algorithm when pi is in state C[i] to the processes in σ[i].
Let C ′ be the configuration resulting from this round when performed from configuration
C. Then Cσ denotes the configuration C ′. The processes that crash during σ are those
that have crashed in C ′, but have not crashed in C. In other words, pi crashes during σ if
C ′[i] = ⊥ and C[i] ̸= ⊥.

Two configurations C and C ′ are indistinguishable to process pi when C[i] = C ′[i].
Suppose that σ and σ′ are one round schedules applicable to configurations C and C ′,
respectively. If process pi receives messages from the same set of processes Q during σ and
σ′ and configurations C and C ′ are indistinguishable to pi and each of the processes in Q,
then configurations Cσ and C ′σ′ are indistinguishable to process pi.

An execution of an algorithm from configuration C is an (infinite or finite) alternating
sequence of configurations and one round schedules C = C0, σ1, C1, σ2, C2, . . . such that σr

is applicable to Cr−1 and Cr = Cr−1σr for all rounds r ≥ 1. The sequence σ = σ1, σ2, . . . is
called a schedule applicable to C. When σ has length t, it is called a t round schedule and
Cσ denotes the configuration Ct. For any set of processes Q ⊆ P = {p0, . . . , pn−1}, a Q-only
schedule is a schedule in which only processes in Q send messages (i.e., σ[j] ⊆ {pj} for every
process pj ̸∈ Q and every round σ in the schedule). Note that, if configurations C and C ′

are indistinguishable to every process in Q, then the set of Q-only schedules applicable to C

and C ′ are the same.
A complete execution ends with a final configuration. The round complexity of an

algorithm is the maximum number t such that some process is active at the beginning of
round t in some execution of the algorithm from an initial configuration. Every algorithm
with round complexity t can be converted into an algorithm in which no process outputs a
value before the end of round t: A process that outputs a value in round r < t can, instead,
simply send no messages in rounds r + 1 through t and output the value at the end of round t.

3 The FloodMin Algorithm

The FloodMin Algorithm [7, 12] solves k-set agreement among n ≤ k(t + 1) processes in t

rounds, when at most k processes can crash each round. We present this algorithm because
it motivates parts of the construction in Section 5.

DISC 2021
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In the first round of this algorithm, each process broadcasts its input value and then
adopts the smallest value from among its own value and the values it received from other
processes. In each successive round, each process broadcasts its adopted value and then
adopts the smallest value from among its own value and the values it received from other
processes. At the end of round t, each process outputs its adopted value.

Let α = C0, σ1, C1, σ2, . . . , σt, Ct be an execution of FloodMin starting from an initial
configuration, let adopt(C0) denote the set of input values of processes in configuration C0,
and, for each r ∈ {1, . . . , t}, let adopt(Cr) denote the set of values adopted by processes (that
have not crashed) in configuration Cr. The proof that at most k different values are output
in α is an easy consequence of the following two facts.

▶ Lemma 1. adopt(Cr) ⊆ adopt(Cr−1) for all r ∈ {1, . . . , t}.

▶ Lemma 2. If at most d − 1 processes crash during round r, then #adopt(Cr) ≤ d.

Since the set of output values, adopt(Ct), is a subset of the set of input values, adopt(C0),
FloodMin satisfies validity. It also satisfies k-agreement for n ≤ k(t + 1) processes: If there is
a round r of α in which fewer than k processes crash, then, by Lemma 2, #adopt(Cr) ≤ k and,
hence, by Lemma 1, #adopt(Ct) ≤ k. Otherwise, in every round of α, at least k processes
crash. Hence, at the end of round t, there are at most n − kt ≤ k active processes and, thus,
#adopt(Ct) ≤ k.

However, when n = k(t + 1) + 1, there are executions of FloodMin in which the set
of adopted values has size k + 1 at the end of round t. For example, consider an initial
configuration C ′

0 in which kt + 1 processes have input k and one process has input i, for
each i ∈ {0, . . . , k − 1}. Inductively, for 1 ≤ r ≤ t, there is a configuration C ′

r in which
k(t − r) + 1 processes have adopted value k and one process has adopted value i, for each
i ∈ {0, . . . , k − 1}. It can be obtained from configuration C ′

r−1 by a one round schedule in
which the processes with value k don’t crash and the processes with other values each sends
one message to a different process with value k and then crashes. In configuration C ′

t, there
are k + 1 processes, each with a different adopted value. If they terminated at the end of
round t, then k-agreement would be violated.

4 Extension-Based Proofs

As in the definition of an extension-based proof in the iterated immediate snapshot or iterated
snapshot model [2, 3], an extension-based proof for the synchronous message passing model
is an interaction between a prover and an algorithm, which the prover is trying to prove is
incorrect. The prover starts with no knowledge about the algorithm except for its initial
configurations.

Suppose that the algorithm claims to solve a task T for n processes within t rounds when
up to f processes can crash each round. Without loss of generality, we may assume that
no process outputs a value before the end of round t. Let M be the set of possible output
values for T . There are t + 1 phases in the interaction.

In phase 0, the prover asks about the values that can be output in executions from initial
configurations. A query (C, Q, u, m) consists of an initial configuration C, a set of at least
n − u processes Q, an upper bound u ∈ {0, . . . , f}, and a value m ∈ M . The algorithm
either:

responds positively with a Q-only t round schedule σ from C and a process pi ∈ Q such
that

at most u processes crash in each round of σ and
pi has output m in configuration Cσ

or responds none, if there are no such schedule and process.
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After a finite number of queries, the prover ends phase 0 by choosing an initial configuration
C0. Then the players proceed to phase 1.

Let 1 ≤ r ≤ t − 1. At the end of phase r − 1, the prover has chosen a configuration Cr−1
that is reachable from an initial configuration by an r − 1 round schedule in which at most f

processes crash each round. During phase r, the prover considers configurations that can
be reached from Cr−1 by one round schedules. It asks about the values that can be output
in t − r round executions from such configurations. A query (Cr−1, σ′

r, u, m) consists of an
upper bound u ∈ {0, . . . , f}, a value m ∈ M , and a one round schedule σ′

r applicable to Cr−1
in which at most f processes crash. The algorithm either:

responds positively with a t − r round schedule σ from Cr−1σ′
r and a process pi such that

at most u processes crash in any round of σ and
pi has output m in configuration Cr−1σ′

rσ

or responds none, if there are no such schedule and process.

After a finite number of queries, the prover ends phase r by choosing a one round schedule
σr applicable to Cr−1 in which at most f processes crash and defines Cr = Cr−1σr. Then
the players proceed to phase r + 1.

In phase t, the prover asks what values are output by processes at the end of one round
executions from configuration Ct−1. A query (Ct−1, σ′

t, pi) consists of a one round schedule
σ′

t applicable to Ct−1, in which at most f processes crash, and a process pi, which is not
crashed in configuration Ct−1σ′

t. The algorithm responds with the value output by pi in
configuration Ct−1σ′

t.
At the end of phase t, the prover chooses a one round schedule σt applicable to Ct−1 in

which at most f processes crash and defines Ct = Ct−1σt.

Finally the winner of the interaction is determined. If the outputs in configuration Ct

violate the specifications of task T , then the prover wins. If there is contradictory information
from the algorithm, then the prover also wins. Otherwise, the prover loses.

An Extension-Based Proof of the Lower Bound for Binary Consensus

Binary consensus is another name for k-set agreement when k = 1. As an example, we present
an extension-based proof that any algorithm solving binary consensus among n ≥ t + 2
processes requires at least t + 1 rounds when at most one process crashes each round. It is
based on the valency arguments used to prove this result [1, 5, 13].

Suppose that A is t round algorithm that claims to solve consensus among n ≥ t + 2
processes. We construct a prover that wins against A. Note that, if A responds negatively to
both (C, Q, u, 0) and (C, Q, u, 1) for some initial configuration C, bound u ∈ {0, 1}, and set
Q of at least n − u processes, then it has provided contradictory information. Specifically, in
the t round execution from C in which no processes crash, every process must output 0 or 1.
Likewise, if A responds negatively to both (Cr−1, σ′

r, u, 0) and (Cr−1, σ′
r, u, 1), where σ′

r is a
one round schedule applicable to Cr−1, then it has provided contradictory information. Since
providing contradictory information causes A to lose, we’ll suppose that A never does this.

In phase 0, the prover will try to find a bivalent initial configuration. The prover asks the
queries (Dj , P, 1, 0) and (Dj , P, 1, 1), for all 0 ≤ j ≤ n, where Dj is the initial configuration
in which the first j processes, p0, . . . , pj−1, have input 0 and the rest have input 1. If there
exists j such that A responds positively to both queries, the prover chooses C0 = Dj and
proceeds to phase 1.

DISC 2021
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Otherwise, for each j, there exists mj ∈ {0, 1} such that A responded positively to
(Dj , P, 1, mj) and responded negatively to (Dj , P, 1, 1 − mj). If m0 = 0, then the algorithm
violates validity, since all processes in configuration D0 have input 1. Similarly, if mn = 1, the
algorithm violates validity, since all processes in configuration Dn have input 0. So, assume
that m0 = 1 and mn = 0. Then there exists 0 ≤ j < n such that mj = 1 and mj+1 = 0. Next,
the prover asks the queries (Dj , Q, 1, 0) and (Dj , Q, 1, 1), where Q = P − {pj}. Since Q ⊆ P

and A responded negatively to (Dj , P, 1, 0), A must respond negatively to (Dj , Q, 1, 0) and
positively to (Dj , Q, 1, 1) to avoid providing contradictory information. Let σ and pi ∈ Q

be its response to (Dj , Q, 1, 1). Since Dj and Dj+1 are indistinguishable to every process
in Q and σ is a Q-only schedule, pi also outputs 1 in Dj+1σ. However, this contradicts the
negative response A gave to the query (Dj+1, P, 1, 1). Thus, the prover wins.

In phase r, for 1 ≤ r ≤ t−1, the prover tries to find a bivalent configuration reachable from
Cr−1 by a one round schedule. The prover asks the queries (Cr−1, σ′

r, 1, 0) and (Cr−1, σ′
r, 1, 1)

for every one round schedule σ′
r applicable to Cr−1 in which at most 1 process crashes. If

there exists σ′
r such that A responds positively to both, then Cr−1σ′

r is bivalent. In this case,
the prover chooses Cr = Cr−1σ′

r and proceeds to phase r + 1.
Otherwise, for each σ′

r, there exists m(σ′
r) ∈ {0, 1} such that A responded positively to

(Cr−1, σ′
r, 1, m(σ′

r)) and responded negatively to (Cr−1, σ′
r, 1, 1 − m(σ′

r)). Let α denote the
one round schedule applicable to Cr−1 in which no processes crash. Consider the set of all
one round schedules σ′

r applicable to Cr−1 in which one process crashes and m(σ′
r) ̸= m(α).

This set is nonempty since Cr−1 is bivalent. Among all schedules in this set, let β be one
in which the process pi that crashes sends the largest number of messages to the processes
that are active in Cr−1. Let Q be the set of processes that are active in Cr−1β. If pi sends a
message to every process in Q during β (i.e., Q ⊆ β[i]), then A has provided contradictory
information. Specifically, Cr−1α and Cr−1β are indistinguishable to every process in Q,
but m(α) ̸= m(β). So, suppose there is some process pℓ ∈ Q to which pi does not send
a message in β. Let β′ be the one round schedule applicable to Cr−1 that is the same
as β except that pi also sends a message to pℓ. Then, by definition of β, it follows that
m(β′) ̸= m(β). In this case, A has provided contradictory information, since Cr−1β′ and
Cr−1β are indistinguishable to all processes in Q − {pℓ}. Thus, the prover wins.

In phase t, the prover asks the queries (Ct−1, σ′
t, pi) for all one round schedules σ′

t

applicable to Ct−1 in which at most 1 process crashes and all processes pi which have not
crashed in Ct−1σ′

t. If A responded with both 0 and 1 as output values in Ct−1σ′
t, for some

one round schedule σ′
t, then the prover wins, since A has violated 1-agreement.

Otherwise, for each σ′
t, there exists m(σ′

t) ∈ {0, 1} such that A responded with m(σ′
t)

to the queries (Ct−1, σ′
t, pi) for all processes pi which have not crashed. Let α denote the

one round schedule applicable to Ct−1 in which no processes crash. Consider the set of all
one round schedules σ′

t applicable to Ct−1 in which one process crashes and m(σ′
t) ̸= m(α).

This set is nonempty since Ct−1 is bivalent. Among all schedules in this set, let β be one
in which the process pi that crashes sends the largest number of messages to the processes
that are active in Ct−1. Let Q be the set of processes excluding pi that are active in Ct−1.
If pi sends a message to every process in Q during β (i.e., Q ⊆ β[i]), then A has provided
contradictory information. Specifically, Ct−1α and Ct−1β are indistinguishable to every
process in Q, but m(α) ̸= m(β). So, suppose there is some process pℓ ∈ Q to which pi does
not send a message in β. Let β′ be the one round schedule applicable to Cr−1 that is the
same as β except that pi also sends a message to pℓ. Then, by definition of β, it follows that
m(β′) ̸= m(β). In this case, A has provided contradictory information, since Ct−1β′ and
Ct−1β are indistinguishable to all processes in Q − {pℓ}. Thus, the prover wins.
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5 Why Extension-Based Lower Bounds Fail

This section is devoted to proving the main result of the paper.

▶ Theorem 3. For k, t ≥ 2, there is no extension-based proof of a lower bound of t+1 rounds
for solving k-set agreement among n = k(t + 1) + 1 processes when each process has an input
in {0, . . . , k} and at most k processes can crash each round.

To prove this result, we construct a t round adversarial algorithm A that is able to win
against every extension-based prover.

We begin by presenting some terminology and notation used to describe A. For any
configuration C and any process pi that is not crashed in C, let adopt(C, pi) be the smallest
input value process pi saw in the execution leading to configuration C. If C is an initial
configuration, then adopt(C, pi) = xi, the input value of process pi. If C ′ = Cσ, where σ

is a one round schedule, and pi is not crashed in C ′, then {adopt(C, pj) | pi ∈ σ[j]} is the
set of adopted values that pi saw during σ, either because the value was adopted by pi in C

or the value was adopted by some other process that sent a message to pi during σ. As in
FloodMin, adopt(C ′, pi) = min{adopt(C, pj) | pi ∈ σ[j]}. For any configuration C, any set
of processes Q that are active in C, and any possible value m ∈ M = {0, . . . , k}, let

adopt(C, Q) = {adopt(C, q) | q ∈ Q}

be the set of values adopted in C by processes in Q.

The following one round schedules will be useful for defining our adversarial algorithm.
Let C be any configuration, let Q be any subset of the active processes in C, and let m ∈ M

be any possible output value.
In α(C, Q), processes in Q do not crash and all other active processes crash without
sending any messages:

α(C, Q)[i] =


{p0, . . . , pn} if pi ∈ Q

{pi} if pi is active in C, but pi ̸∈ Q

ϕ if pi is not active in C.

In β(C, Q, m), processes in Q that have adopted a value other than m in C do not crash
and all other active processes crash without sending any messages:

β(C, Q, m)[i] =


{p0, . . . , pn} if pi ∈ Q and adopt(C, pi) ̸= m

{pi} if pi is active in C, but pi ̸∈ Q or adopt(C, pi) = m

ϕ if pi is not active in C.

If m ̸∈ adopt(C, Q), then β(C, Q, m) is the same as α(C, Q). Otherwise, it is like α(C, Q),
except that the processes in Q that have adopted m in C crash before sending any
messages.
In β(C, Q, <m), processes in Q that have adopted a value greater than or equal to m in
C do not crash and all other active processes crash without sending any messages:

β(C, Q, <m)[i] =


{p0, . . . , pn} if pi ∈ Q and adopt(C, pi) ≥ m

{pi} if pi is active in C, but pi ̸∈ Q or adopt(C, pi) < m

ϕ if pi is not active in C.

If adopt(C, Q) ⊆ {m, m + 1, . . . , k}, then β(C, Q, m) is the same as α(C, Q). Otherwise,
it is like α(C, Q), except that the processes in Q that have adopted values less than m in
C crash before sending any messages.

DISC 2021
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If C is a configuration at the end of round r < t − 1 and γ is a one round schedule starting
from C, then γ∗ is the t − r round schedule where the first round is γ and no processes crash
in the remaining t − r − 1 rounds.

Algorithm B(m∗)

Before defining the adversarial algorithm A, we consider k + 1 different bad algorithms,
B(m∗), one for each value m∗ ∈ M . Except for what they output, processes in B(m∗) behave
as in FloodMin, with each active process repeatedly trying to send its adopted value to all
other processes and adopting the smallest value it saw. At the end of round t, every process
pi that has not crashed will output a value (but not necessarily the smallest value) that it
saw in the last round. Specifically, let ai be the value that pi adopted at the end of round
t − 1. Then pi outputs ai, except in two special cases.

During round t, if pi received at least k + 1 messages, no message with value ai, and at
least one message with every other value, then it outputs the smallest value it saw at
least twice.
If ai = m∗ and pi saw each value in M exactly once during round t, then it outputs
(m∗ + 1) mod (k + 1).
Otherwise, pi outputs ai.

Note that, if pi saw each value in M exactly once, then it received exactly k messages, so
these two cases are mutually exclusive.

Since the set of adopted values at each round is a subset of the input values, every output
value is an input value. Hence B(m∗) satisfies validity.

Consider any configuration C ′
t−1 reachable from an initial configuration by a t − 1 round

schedule in which at most k processes crash each round, any one round schedule σ′
t applicable

to C ′
t−1 in which at most k processes crash, and any process pi that has not crashed in

C ′
t = C ′

t−1σ′
t. The following three observations are consequences of the definition of B(m∗).

They are true because neither of the special cases are applicable.

▶ Observation 4. In algorithm B(m∗), if process pi saw at most k different values during
σ′

t, then pi outputs adopt(C ′
t−1, pi) in configuration C ′

t.

▶ Observation 5. In algorithm B(m∗), if process pi saw the value it adopted in C ′
t−1 at least

twice during σ′
t, then pi outputs adopt(C ′

t−1, pi) in configuration C ′
t.

▶ Observation 6. Let m ∈ M . In algorithm B(m∗), if process pi did not see m during round
σ′

t, then pi does not output m in configuration C ′
t.

Here is another useful property of this algorithm.

▶ Lemma 7. Let m ∈ M . In algorithm B(m∗), if process pi saw m at most once, saw every
other value in M at least once, and received at least k + 1 messages during σ′

t, then pi does
not output m in configuration C ′

t.

Proof. If pi did not see m during σ′
t, then, by Observation 6, it does not output m in C ′

t. So,
suppose that pi saw m exactly once during σ′

t. Also suppose that, during σ′
t, pi saw every

other value in M at least once and it received at least k + 1 messages.
If pi saw the value it adopted in C ′

t−1 at least twice during σ′
t, then, by Observation 5, it

outputs adopt(C ′
t−1, σ′

t) ̸= m in configuration C ′
t. Therefore, suppose that pi saw the value

it adopted in C ′
t−1 only once during σ′

t. Then, during σ′
t, it received no message with this

value and received messages with every other value. Since the conditions of the first special
case are satisfied, pi outputs the smallest value it saw at least twice, which is not m. ◀
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If at most k different values were adopted at the end of round t − 1, it doesn’t matter
which of these values a process outputs. So suppose that each of the k + 1 values in M

was adopted by some process at the end of round t − 1. By Lemmas 1 and 2, this can only
occur if k processes crashed in each of the first t − 1 rounds. Hence, there are 2k + 1 active
processes at the end of round t − 1. At least one value in M was adopted by at least two
active processes. Furthermore, at most k values in M were adopted by at least two active
processes. Thus, a process can output a value that it sees at least twice during round t. It is
also possible that k processes crash at the beginning of round t and each of the remaining
k + 1 processes sees each of the k + 1 values in M exactly once during round t. In B(m∗),
this symmetry is broken by having the process that had adopted m∗ at the end of round
t − 1 output a different value. If m∗ is a value that was adopted by at most one process at
the end of round t − 1, then these two approaches don’t interfere with one another. However,
for each m∗ ∈ M , there is some final configuration of algorithm B(m∗) in which all k + 1
values in M are output. We explicitly construct such a configuration in the appendix.

The Adversarial Algorithm

During phases 0 through t − 1, the adversarial algorithm A responds to each query in a way
that is consistent with all these bad algorithms. At the end of phase t − 1, the adversarial
algorithm chooses one of these bad algorithms and responds as if it is that algorithm during
phase t. Its choice depends on the prover’s choice of configuration Ct−1. The chosen bad
algorithm has the property that it does not violate k-agreement in any final configuration
reachable from Ct−1. Next, we give detailed specifications for how the adversarial algorithm
responds to queries in each phase. Then we show that at most k different values are output
in the configuration chosen by the prover at the end of phase t. Finally, to show that A
never answers queries inconsistently, we prove that A responded to every query in a way that
is consistent with the bad algorithm it chose.

Phase 0

Consider any query (C, Q, u, m) made by the prover during phase 0, where C is an initial
configuration, Q is a set of processes, u ∈ {0, . . . , k} is an upper bound on the number of
crashes per round, and m ∈ M is a value.

If m is the input of some process in Q (i.e., m ∈ adopt(C, Q)) and there are at most u

processes that are not in Q or have inputs less than m, then A responds with the schedule
β∗(C, Q, <m) (in which these processes crash immediately) and the process pi ∈ Q with
smallest index that has input m in configuration C.
Otherwise, A responds with none.

The following observations are useful consequences of this specification.

▶ Observation 8. If A responds to the query (C, Q, u, m) in phase 0 with β∗(C, Q, <m) and
pi, then m is the only value pi saw in the last round of β∗(C, Q, <m).

▶ Observation 9. If A responds to the query (C, Q, u, m) in phase 0 with none, then, for
every configuration C ′

t−1 reachable from C by a (t − 1)-round Q-only schedule in which at
most u processes crash each round, m ̸∈ adopt(C ′

t−1, Q′
t−1), where Q′

t−1 is the set of active
processes in C ′

t−1.
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Phases 1, . . . , t − 2

In phase r, where 1 ≤ r ≤ t − 2, the adversarial algorithm A behaves similarly. Consider any
query (Cr−1, σ′

r, u, m) made by the prover during phase r, where σ′
r is a one round schedule

applicable to Cr−1 in which at most k processes crash, u ∈ {0, . . . , k} is an upper bound on
the number of crashes per round, and m ∈ M is a value. Let C ′

r = Cr−1σ′
r and let Q′

r be
the set of active processes in C ′

r.
If m is the adopted value of some process in Q′

r (i.e., m ∈ adopt(C ′
r, Q′

r)) and there are
at most u processes in Q′

r with adopted value less than m, then A responds with the
schedule β∗(C ′

r, Q′
r, <m) (in which these processes crash immediately) and the process

pi ∈ Q′
r with smallest index that has adopted m in C ′

r.
Otherwise, A responds with none.

The following two observations are analogous to Observation 8 and Observation 9.

▶ Observation 10. If A responds to the query (Cr−1, σ′
r, u, m) in phase 1 ≤ r ≤ t − 2 with

β∗(C ′
r, Q′

r, <m) and pi, where Q′
r is the set of active processes in C ′

r = C ′
r−1σ′

r, then m is
the only value pi saw in the last round of β∗(C ′

r, Q′
r, <m).

▶ Observation 11. If A responds to the query (Cr−1, σ′
r, u, m) in phase 1 ≤ r ≤ t − 2 with

none, then, for every configuration C ′
t−1 reachable from Cr−1σ′

r by a (t − 1 − r)-round
schedule in which at most u processes crash each round, m ̸∈ adopt(C ′

t−1, Q′
t−1), where Q′

t−1
is the set of active processes in C ′

t−1.

Note that, during phases 0 through t − 2, the adversarial algorithm responds in a way
that is consistent with FloodMin.

Phase t − 1

In phase t − 1, the adversarial algorithm’s strategy is different. It depends on the query
and the prover’s choice for Ct−2. Consider any query (Ct−2, σ′

t−1, u, m) made by the prover
during phase t − 1, where σ′

t−1 is a one round schedule applicable to Ct−2 in which at most k

processes crash, u ∈ {0, . . . , k} is an upper bound on the number of crashes per round, and
m ∈ M is a value. Let C ′

t−1 = Ct−2σ′
t−1 and let Q′

t−1 be the set of active processes in C ′
t−1.

The response chosen by A depends on the values adopted by these processes in configuration
C ′

t−1.
If m ̸∈ adopt(C ′

t−1, Q′
t−1), then A responds none.

So, suppose m ∈ adopt(C ′
t−1, Q′

t−1). Let i = min{j | pj ∈ Q′
t−1 and adopt(C ′

t−1, pj) = m}
be the smallest index of a process that adopted m. Let m′ ∈ M − {m} be the smallest value
other than m that was adopted in C ′

t−1 by the fewest number of processes. In particular, it
is possible that m′ ̸∈ adopt(C ′

t−1, Q′
t−1).

If at most u processes adopted m′, then A responds with the one round schedule
β(C ′

t−1, Q′
t−1, m′) (in which these processes crash immediately) and process pi.

If more than u processes adopted m′ and at least 2 processes adopted m, then A responds
with the one round failure-free schedule α(C ′

t−1, Q′
t−1) and process pi.

Otherwise, A responds none.
The information communicated by positive and negative responses in phase t − 1 is different
than in the previous phases.

▶ Lemma 12. If A responds to the query (Ct−2, σ′
t−1, u, m) in phase t − 1 with σ and pi,

then pi had adopted value m in Ct−2σ′
t−1 and either pi saw at most k different values during

σ or pi saw m at least twice during σ.
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Proof. Suppose that A responds to (Ct−2, σ′
t−1, u, m) in phase t − 1 with σ and pi. By

construction, adopt(Ct−2σ′
t−1, pi) = m. Let m′ be the smallest value other than m that was

adopted in C ′
t−1 = Ct−2σ′

t−1 by the fewest number of processes in Q′
t−1.

If at most u processes adopted m′ in C ′
t−1, none of these processes sent any messages

in σ = β(C ′
t−1, Q′

t−1, m′). Then, during σ, pi did not see m′, so it saw at most k different
values.

Otherwise, more than u processes adopted m′ in C ′
t−1, at least 2 processes adopted m in

C ′
t−1, and σ = α(C ′

t−1, Q′
t−1). By definition, no processes crash in σ, so pi saw m at least

twice during σ. ◀

▶ Lemma 13. If A responds to the query (Ct−2, σ′
t−1, u, m) in phase t − 1 with none, then

m ̸∈ adopt(C ′
t−1, Q′

t−1) or
exactly one process in Q′

t−1 adopted m in C ′
t−1 and

more than u, but at most 2, processes in Q′
t−1 adopted m′ in C ′

t−1,
where Q′

t−1 is the set of active processes in C ′
t−1 and m′ ∈ M − {m} is the smallest value

other than m that was adopted by the fewest number of processes in C ′
t−1.

Proof. Suppose that A responds to (Ct−2, σ′
t−1, u, m) in phase t − 1 with none and m ∈

adopt(C ′
t−1, Q′

t−1). Then, from the specifications of A, more than u processes in Q′
t−1

adopted m′ and less than 2 processes in Q′
t−1 adopted m in configuration C ′

t−1. Since
m ∈ adopt(C ′

t−1, Q′
t−1), exactly one process in Q′

t−1 adopted m in C ′
t−1.

By definition of m′, each value m′′ ∈ M − {m} was adopted in C ′
t−1 by at least as many

processes in Q′
t−1 as m′ was. Since m′ was adopted by more than u ≥ 0 processes in Q′

t−1,
it follows that m′′ ∈ adopt(C ′

t−1, Q′
t−1). Hence #adopt(C ′

t−1, Q′
t−1) = k + 1. By Lemma 2,

at least k processes crashed in each of the t − 1 rounds of the execution from C0 to C ′
t−1.

At most k processes can crash each round, so exactly k processes crashed in each of these
rounds and #Q′

t−1 = n − k(t − 1) = 2k + 1. Since only one process in Q′
t−1 has adopted m,

the other 2k processes in Q′
t−1 have each adopted one of the k values in M − {m}. Thus,

m′, which was adopted by the fewest number of these processes, was adopted by at most 2
of these processes. ◀

Phase t

Let Qt−1 be the set of active processes in Ct−1 and let m∗ ∈ M be the smallest value
that was adopted in Ct−1 by the fewest number of processes in Qt−1. In particular,
if #adopt(Ct−1, Qt−1) ≤ k, then m∗ was adopted by no process in Qt−1. However, if
#adopt(Ct−1, Qt−1) = k + 1, then, by Lemma 2, at least k processes crashed in each of the
t − 1 rounds of the execution from C0 to Ct−1. At most k processes can crash each round, so
exactly k processes crashed in each of these rounds and #Qt−1 = n − k(t − 1) = 2k + 1. In
this case, the number of processes in Qt−1 that adopted m∗ is at most ⌊#Qt−1/(k + 1)⌋ =
⌊(2k + 1)/(k + 1)⌋ = 1.

Consider any query (Ct−1, σ′
t, pi) made by the prover during phase t, where σ′

t is a one
round schedule applicable to Ct−1 in which at most k processes crash and pi is a process
that has not crashed in Ct−1σ′

t. Then A responds with adopt(Ct−1, pi), except in two special
cases.

If pi received at least k + 1 messages, no message with value adopt(Ct−1, pi), and at least
one message with every other value, then A responds with the smallest value pi saw at
least twice during σ′

t.
If adopt(Ct−1, pi) = m∗ and pi saw each value in M exactly once during σ′

t then A
responds with (m∗ + 1) mod (k + 1).
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Otherwise, A responds with adopt(Ct−1, pi).
Note that, during σ′

t, if pi saw each value in M exactly once, then it received exactly k

messages, so the two special cases are mutually exclusive.
When A responds to a query with value m∗, the execution has special properties.

▶ Lemma 14. If A responds to the query (Ct−1, σ′
t, pi) in phase t with m∗, then

adopt(Ct−1, pi) = m∗ and pi saw at most k different values during σ′
t.

Proof. Since at most one process in Qt−1 adopted m∗ in Ct−1, process pi saw m∗ at most
once during σ′

t, so A does not respond with m∗ as a result of the first special case. Since
m∗ ̸= (m∗ + 1) mod k, A does not respond with m∗ as a result of the second special case.
Thus, adopt(Ct−1, pi) = m∗.

To obtain a contradiction, suppose that pi saw all k + 1 values during σ′
t. Since the

second special case does not hold, there is a value m ∈ M that pi saw at least twice during
σ′

t. Hence, pi received at least k + 1 messages during σ′
t. Since pi is the only process in Qt−1

that adopted m∗ in Ct−1, it did not receive a message with value m∗ = adopt(Ct−1, pi), but
it did receive at least one message with every other value. But then the first special case
holds, which is a contradiction. Hence, pi saw at most k different values during σ′

t. ◀

The following observation is a consequence of the specifications, since neither of the
special cases is applicable.

▶ Observation 15. If pi saw the value it adopted in Ct−1 at least twice during σ′
t, then A

responds to the query (Ct−1, σ′
t, pi) in phase t with adopt(Ct−1, pi).

Agreement

Let Ct be the the final configuration chosen by the prover at the end of phase t and let σt be
the one round schedule such that Ct = Ct−1σt. We show that A does not lose by violating
k-agreement in Ct.

▶ Lemma 16. Consider the set of processes Qt that output values in Ct. A responds to the
queries (Ct−1, σt, pi) for pi ∈ Qt with at most k different values.

Proof. Suppose not. For each m ∈ M , let qm ∈ Qt be the process with smallest index that
outputs m. By Lemma 14, process qm∗ saw at most k different values during σt. During σt,
process qm∗ received a message from every process in Qt, so #adopt(Ct−1, Qt) is bounded
above by the number of different values qm∗ saw during σt. Thus adopt(Ct−1, Qt) ⊊ M .
Consider the sequence m0, m1, . . . , mk+1, where

m0 = min(M − adopt(Ct−1, Qt)) is the smallest value not in adopt(Ct−1, Qt) and
mi = adopt(Ct−1, qmi−1) ∈ M is the value adopted by qmi−1 in Ct−1, for all i ≥ 1.

Since #M = k + 1, the sequence contains at least one duplicate. Let j be the smallest
positive integer such that mj = mi for some i < j.

Note that mi ̸= m0, since m0 ̸∈ adopt(Ct−1, Qt), but mj = adopt(Ct−1, qmj−1) ∈
adopt(Ct−1, Qt). By the minimality of j, mj−1 ̸= mi−1, so qmj−1 and qmi−1 output different
values in Ct, but they adopted the same value mj = mi in Ct−1. During σt, processes qmi−1

and qmj−1 receive a message with this value from one another. Therefore both qmj−1 and
qmi−1 saw mj at least twice during σt. By Observation 15, both these processes output
the values they had adopted in Ct−1. Hence mj−1 = adopt(Ct−1, qmj−1) = mj = mi =
adopt(Ct−1, qmi−1) = mi−1, which is a contradiction. ◀
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Consistency

To show that the responses of the adversarial algorithm A to the queries do not contradict
one another, we show that they are all consistent with algorithm B(m∗), where m∗ is the
smallest value adopted by the fewest number of processes in Ct−1, the configuration chosen
by the prover at the end of phase t − 1. Note that the choice of m∗ depends on the choices
made by the prover.

First, we show that, whenever A responded positively to a query, B(m∗) can give the
same response. The queries made in each phase are considered separately.

▶ Lemma 17. If A responded to a query with a schedule and a process (in phases 0 to t − 1)
or with a value (in phase t), then that response is consistent with algorithm B(m∗).

Proof. Suppose the prover asked query (C, Q, u, m) in phase 0 and A responded with
β∗(C, Q, <m) and pi. Let σ′

t be the last round of this schedule and let C ′
t−1 be the second

last configuration in the execution of β∗(C, Q, <m) from C. Then Cβ∗(C, Q, <m) = C ′
t−1σ′

t.
By Observation 8, m was the only value pi saw in σ′

t. In particular, adopt(C ′
t−1, pi) = m.

Then, by Observation 4, in algorithm B(m∗), process pi outputs adopt(C ′
t−1, pi) = m in

configuration C ′
t−1σ′

t.

Suppose the prover asked query (Cr−1, σ′
r, u, m) in phase r, where 1 ≤ r ≤ t − 2, and

A responded with β∗(C ′
r, Q′

r, < m) and pi. Then C ′
r = Cr−1σ′

r and Q′
r is the set of active

processes in C ′
r. Let σ′

t be the last round of the schedule β∗(C ′
r, Q′

r, <m) and let C ′
t−1 be the

second last configuration in the execution of β∗(C ′
r, Q′

r, <m) from C ′
r. By Observation 10,

m is the only value pi saw in σ′
t. This implies that adopt(C ′

t−1, pi) = m and, hence, by
Observation 4, in algorithm B(m∗), pi outputs m in configuration C ′

t−1σ′
t.

Suppose the prover asked query (Ct−2, σ′
t−1, u, m) in phase t − 1. Let C ′

t−1 = Ct−2σ′
t−1,

let Q′
t−1 be the set of active processes in C ′

t−1, and let m′ ∈ M − {m} be the smallest value
other than m that was adopted by the fewest number of processes in C ′

t−1.
If A responded with β(C ′

t−1, Q′
t−1, m′) and pi, then at most u processes in Q′

t−1 adopted
m′ in configuration C ′

t−1 and adopt(C ′
t−1, pi) = m. Since all processes in Q′

t−1 that adopted
value m′ crash without sending any messages in β(C ′

t−1, Q′
t−1, m′), it follows that, during

β(C ′
t−1, Q′

t−1, m′), process pi did not see m′ and, hence, saw at most k different values. By
Observation 4, in algorithm B(m∗), process pi outputs adopt(C ′

t−1, pi) = m in configuration
C ′

t−1σ′
t .

If A responded with α(C ′
t−1, Q′

t−1) and pi, then at least two processes adopted m and
adopt(C ′

t−1, pi) = m. Since no processes crash in α(C ′
t−1, Q′

t−1), process pi received a message
from every other process in Q′

t−1, so pi saw m at least twice during α(C ′
t−1, Q′

t−1). By
Observation 5, in algorithm B(m∗), process pi outputs adopt(C ′

t−1, pi) = m in configuration
C ′

t−1σ′
t.

Finally, suppose the prover asked query (Ct−1, σ′
t, pi) in phase t and A responded with

m. Since the same three cases also occur in the specification of B(m∗), pi outputs m in
configuration Ct−1σ′

t of algorithm B(m∗). ◀

Next, we show that whenever A responded negatively to a query, B(m∗) also responds
negatively. Again, we consider the queries made in each phase separately.

▶ Lemma 18. If A responded to a query with none, then algorithm B(m∗) responds to the
query with none.
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Proof. Suppose the prover asked query (C, Q, u, m) in phase 0 and A responded with none.
Then, by Observation 9, for every configuration C ′

t−1 reachable from C by a (t − 1)-round
Q-only schedule in which at most u processes crash each round, m ̸∈ adopt(C ′

t−1, Q′
t−1),

where Q′
t−1 is the set of active processes in C ′

t−1. Therefore, for every one round schedule σ′
t

applicable to C ′
t−1 in which at most u processes crash, every process that is not crashed in

C ′
t−1σ′

t did not see m during σ′
t. By Observation 6, in algorithm B(m∗), pi does not output

m in configuration C ′
t−1σ′

t. Hence, B(m∗) also responds with none to the query (C, Q, u, m)
in phase 0.

Suppose the prover asked query (Cr−1, σ′
r, u, m) in phase r, where 1 ≤ r ≤ t − 2, and

A responded with none. Then, by Observation 11, for every configuration C ′
t−1 reachable

from Cr−1σ′
r by a (t − 1 − r)-round schedule in which at most u processes crash each round,

m ̸∈ adopt(C ′
t−1, Q′

t−1), where Q′
t−1 is the set of active processes in C ′

t−1. Therefore, for
every one round schedule σ′

t applicable to C ′
t−1 in which at most u processes crash, every

process that is not crashed in C ′
t−1σ′

t did not see m during σ′
t. By Observation 6, in algorithm

B(m∗), pi does not output m in configuration C ′
t−1σ′

t. Hence, B(m∗) also responds with
none to the query (Cr−1, σ′

r, u, m) in phase r.

Suppose the prover asked query (Ct−2, σ′
t−1, u, m) in phase t − 1 and A responded with

none. Let C ′
t−1 = Ct−2σ′

t−1 and let Q′
t−1 be the set of active processes in C ′

t−1. If
m ̸∈ adopt(C ′

t−1, Q′
t−1), then, for every one round schedule σ′

t applicable to C ′
t−1 in which at

most u processes crash, every process that is not crashed in C ′
t−1σ′

t did not see m during
σ′

t. By Observation 6, in algorithm B(m∗), pi does not output m in configuration C ′
t−1σ′

t.
Hence B(m∗) also responds with none to the query (Ct−1, σ′

t, u, m) in phase t − 1.
Therefore, suppose that m ∈ adopt(C ′

t−1, Q′
t−1). By Lemma 13, exactly one process in

Q′
t−1 adopted m in configuration C ′

t−1 and more than u, but at most 2, processes in Q′
t−1

adopted m′ in configuration C ′
t−1, where m′ ∈ M − {m} is the smallest value other than m

that was adopted by the fewest number of processes in C ′
t−1. Let σ′

t be an arbitrary one
round schedule applicable to C ′

t−1 in which at most u processes crash and let pi be a process
that is not crashed in C ′

t−1σ′
t. Since only one process in Q′

t−1 adopted m in configuration
C ′

t−1, process pi saw m at most once during σ′
t.

By definition of m′, each value m′′ ∈ M − {m} was adopted in C ′
t−1 by at least as many

processes in Q′
t−1 as m′ was. Since m′ was adopted by more than u ≥ 0 processes in Q′

t−1
and at most u processes crash in σ′

t, process pi saw m′′ during σ′
t.

At most k processes crash in each of the first t − 1 rounds and at most u < 2 processes
crash in σ′

t, so pi receives at least n − 1 − k(t − 1) − 1 = 2k − 1 messages. Note that
2k − 1 ≥ k + 1 since k ≥ 2. Hence, by Lemma 7, in algorithm B(m∗), process pi does not
output m in configuration C ′

t−1σ′
t. Therefore, B(m∗) also responds with none to the query

(Ct−1, σ′
t, u, m) in phase t − 1. ◀

6 Conclusions

In this paper, we define the class of extension-based proofs for synchronous message passing
models and study the power of such proofs. On one hand, we give an an extension-based
proof of the t round lower bound for solving binary consensus among n ≥ t + 1 processes
when at most one process can crash each round. On the other hand, we show that, for k ≥ 2
and t > 2, there is no extension-based proof of the t round lower bound for solving k-set
agreement among n = kt + 1 processes when at most k processes can crash each round.

There are a number of problems that remain open. First, is there an extension-based
proof of the t round lower bound for solving k-set agreement among n > kt + 1 processes if
at most k processes can crash each round, for k ≥ 2? If so, what is the smallest value of n for
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which such a proof exists? A related problem is whether there is an extension-based proof
of the t round lower bound for solving k-set agreement among among n = kt + 1 processes
when any number of processes can crash in each round.

There is a simple 1 round lower bound for solving k-set agreement among n ≥ k + 1
processes. Without any communication, every process must output its input value to ensure
validity. Hence, in any initial configuration in which all k + 1 values in M appear as inputs,
either validity or k-agreement is violated.

Is there an extension-based proof of the 2 round lower bound for solving k-set agreement
among n = 2k + 1 processes? The proof of Theorem 3 does not work in this case, since
Observation 8 and Observation 9 do not always hold. The reason it may be difficult to extend
the result to include this case is that there are more queries the prover can ask in phase t − 1
when t = 1 than when t > 1. In phase 0, for any bound u, value m, and initial configuration
C ′

0, the prover can specify a set Q of at most n − u processes and ask whether there is a
one round Q-only schedule in which at most u processes crash and some process outputs
m when applied to configuration C ′

0. However, when t > 1, for any bound u, value m, and
configuration C ′

t−1 = Ct−2σ′
t−1, in phase t − 1, the prover can only ask whether there is a

one round schedule in which at most u processes crash and some process outputs m when
applied to configuration C ′

t−1. In particular, for u > 0, the prover cannot specify a subset Q

of processes that must crash at the beginning of the one round schedule. This restriction
gives the adversary more flexibility when choosing what to answer, which we take advantage
of in our proof.

Our choice of allowable queries in the definition of extension-based proofs was influenced
by the valency argument showing the lower bound for consensus. Specifically, to make
extension-based proofs interesting in the synchronous message passing model, this valency
argument should be able to be expressed as an extension-based proof. Although it suffices to
only use queries in which there is no additional restriction on the number of processes that
can crash each round (i.e., u = k), also allowing queries with smaller values of u makes the
prover stronger and, hence, makes Theorem 3 better. Other definitions for extension-based
proofs are certainly possible. It would be interesting to see if a more restricted class of
queries allows Theorem 3 to be extended to n > k(t + 1) + 1 or t = 1, or makes its proof
significantly easier.

Finally, we would like to show that there are other problems for which extension-based
proofs cannot be used to obtain known lower bounds on the number of rounds necessary to
solve them.
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A Why Algorithm B(m∗) Violates k-Agreement

To show that algorithm B(m∗) violates k-agreement, we construct a final configuration C ′
t of

B(m∗) in which each of the k + 1 values in M is output by some process. As in the lower
bound for FloodMin, presented at the end of Section 3, we start from an initial configuration
in which there are k +1 different input values and construct an execution in which k processes
crash each round and the set of adopted values has size k + 1 after each of the first t − 1
rounds.

Let C ′
0 be an initial configuration in which process pi has input m ∈ {0, . . . , k − 1} for

i = k(t + 1) − m and has input k for 0 ≤ i ≤ kt. In other words, the first n − k = kt + 1
process have input k and the last k processes have inputs k −1 to 0. Inductively, we construct
a configuration C ′

r at round r, for 1 ≤ r ≤ t − 2, in which process pi

adopted m ∈ {0, . . . , k − 1} for i = k(t + 1 − r) − m

adopted k for 0 ≤ i ≤ k(t − r), and
is crashed for k(t + 1 − r) < i ≤ n − 1.

In other words, the first n − k(r + 1) = k(t − r) + 1 process adopted k, the next k processes
adopted k − 1 to 0, and the last kr processes are crashed.

For 1 ≤ r ≤ t − 2, consider the one round schedule σ′
r applicable to C ′

r−1 in which

σ′
r[i] =


{pi, pi−k} for k(t + 1 − r) < i ≤ k(t + 2 − r),
P for 0 ≤ i ≤ k(t + 1 − r), and,

ϕ for k(t + 2 − r) < i < n.

In other words, the first n − kr = k(t − r − 1) + 1 processes do not crash and the next
k processes each crash after sending a single message, to the process whose index is k

less than its own index. Let C ′
r = C ′

r−1σ′
r. Note that, for 0 ≤ i ≤ k(t − r), the only

messages process pi received during σ′
r were from the first k(t − r − 1) + 1 processes, all of

which had adopted value k in C ′
r−1, so pi keeps k as its adopted value in C ′

r. However, for
k(t − r) < i ≤ k(t − r + 1), process pi also received a message from process pi+k, which had
adopted value m = k(t + 1 − (r − 1)) − (i + k) = k(t + 1 − r) − i in C ′

r−1, so pi adopts value
m in C ′

r.
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Consider the one round schedule σ′
t−1 applicable to C ′

t−2 in which

σ′
t−1[i] =


{pi, pi−k, p0} if m∗ ̸= k and i = 3k − m∗,

{pi, pi−k} for 2k < i < 3k − m∗ and 3k − m∗ < i ≤ 3k,

P for 0 ≤ i ≤ 2k, and,

ϕ for 3k < i ≤ n − 1.

In other words, the first n − k(t − 1) = 2k + 1 processes do not crash, and the next k

processes crash after sending one or two messages. These k processes each send a message
to the process whose index is k less than its own index. In addition, if m∗ ≠ k, process
p3k−m∗ also sends a message to process p0. Let C ′

t−1 = C ′
t−2σ′

t−1. Note that, for 0 < i ≤ k,
the only messages process pi received during σ′

t−1 were from the first 2k + 1 processes, all
of which had adopted value k in C ′

t−2, so pi keeps k as its adopted value in C ′
t−1. For

k < i ≤ 2k, process pi also received a message from process pi+k, which had adopted value
m = k(t + 1 − (r − 1)) − (i + k) = k(t + 1 − r) − i in C ′

t−2, so pi adopts value m in C ′
t−1.

If m∗ = k, process p0 adopts value m∗. If m∗ ̸= k, process p0 also received a message from
p3k−m∗ , which had adopted value m∗ in C ′

t−2, so p0 also adopts value m∗.

Finally, consider the one round schedule σ′
t in which

σ′
t[i] =


{p0, p2k−m∗} for i = 0,

{pi} for 1 ≤ i ≤ k − 1,

P for k ≤ i ≤ 2k, and
ϕ for 2k + 1 ≤ i < n − 1.

Let C ′
t = C ′

t−1σ′
t. Note that, for k ≤ i ≤ 2k, process pi sent the value 2k − i it adopted

in C ′
t−1 to every other process during σ′

t. Thus, each process pi saw each value in M at
least once during σ′

t. If i ̸= 2k − m∗, then pi received no other messages during σ′
t, so it

outputs 2k − i ̸= m∗ by the specifications of B(m∗). If i = 2k − m∗, then process pi also
received a message with value m∗ from process p0 during σ′

t, so it outputs 2k − i = m∗ by
the specifications of B(m∗). Hence, k + 1 different values are output in configuration C ′

t.
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