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——— Abstract

We give a protocol for information dissemination in asynchronous networks of rational players, where
each player may have its own desires and preferences as to the outcome of the protocol, and players
may deviate from the protocol if doing so achieves their goals. We show that under minimalistic
assumptions, it is possible to solve the information dissemination problem in a truthful manner, such
that no participant has an incentive to deviate from the protocol we design. Our protocol works in
any asynchronous network, provided the network graph is at least 2-connected. We complement the
protocol with two impossibility results, showing that 2-connectivity is necessary, and also that our
protocol achieves optimal bit complexity.

As an application, we show that truthful information dissemination can be used to implement
a certain class of communication equilibria, which are equilibria that are typically reached by
interacting with a trusted third party. Recent work has shown that communication equilibria can
be implemented in synchronous networks, or in asynchronous, complete networks; we show that in
some useful cases, our protocol yields a lightweight mechanism for implementing communication
equilibria in any 2-connected asynchronous network.
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1 Introduction

Consider a network of n rational players trying to jointly carry out some distributed task,
such as computing a spanning tree or electing a leader. Each player has its own desires and
preferences: e.g., some players may want to be close to the root of the tree, while others may
want to minimize their degree, to reduce traffic flowing through them. The players are given
a protocol that can solve the task, but since they are self-interested, they may deviate from
the protocol if doing so would serve their interests. Can we design a distributed protocol
that solves the problem, such that faithfully following the protocol is an equilibrium — that is,
no player has an incentive to deviate from the protocol? This question is at the heart of the
recent line of work on game theory in distributed computing [2, 3, 1, 5, 6, 15, 4, 23]; we now
know that it is possible, for example, to choose a leader on the ring uniformly at random,
regardless of the players’ individual preferences, and even to do it in a manner resilient to
coalitions between the players (e.g., [4, 23, 15]).

In this paper we focus on one building block which is used in many distributed protocols:
information dissemination. We assume that each player ¢ has some piece of information z;,
initially known only to i, and we would like all players to learn all the information of all
the players. Information dissemination is typically solved by flooding or by pipelining [16].
However, these protocols do not work well when the players are self-interested: what is to
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prevent a player 4 from lying about its input, or lying about other players’ inputs, which ¢ is
supposed to forward? In this work we study information dissemination with rational players
in general asynchronous networks, and give a simple communication-optimal protocol, under
some minimalistic assumptions.

Solving the information dissemination problem does require some assumptions about
the wilities of the players — their desires and preferences. For example, if player 1’s input
is 1 € {0,1}, and player 1’s utmost desire is to have all players output that x; = 0, then
whenever x; = 1, player 1 will lie about its input throughout the protocol; nothing we do
can prevent that. Truthful information dissemination is only possible when players have
no a-priori reason to lie about their inputs, in the absence of any information about the
other players’ inputs. However, as soon as anything is learned about the other inputs, a
player may have an incentive to lie about its own input, so as to influence the final outcome.
For example, mechanisms for auctions often assume sealed bids, and may no longer remain
truthful if players have information about the other players’ bids when placing their own bid.

In addition to the assumption above (“no a-prior reason to lie”), we also need to assume
that players want the protocol to succeed, or at least not to abort; a similar assumption,
called solution preference, is made in prior work (e.g., [4, 23, 5, 14, 6, 15]).

Our protocol shows that these two assumptions together — that player have no a-priori
incentive to lie, and that they do not want the protocol to obviously fail — are sufficient to
solve information dissemination in a truthful manner in any 2-connected communication
network.

Application to communication equilibria. Part of the motivation for our work is to help
extend the scope of rational distributed algorithms, beyond algorithms that merely choose a
uniformly random solution from a set of legal solutions (as in, e.g., [4, 23, 5, 6]). A uniformly
random solution is fair, but it may not be good. For example, instead of electing a uniformly
random leader, as was done in [4, 23], we might wish to take the players’ preferences into
account, and elect the leader that maximizes the players’ happiness in some sense. This
motivates us to search for efficient distributed implementations of game-theoretic mechanisms
for finding a “good” solution, rather than a uniformly random solution.

The particular mechanism we consider here is communication equilibria [12], a type of
equilibrium that is usually reached with the help of a mediator. In classical game theory,
a mediator is a trusted entity that helps the players reach an equilibrium: the players
communicate with the mediator, and the mediator then suggests a course of action to each
player. Even though the players are free to lie to the mediator or ignore its recommendation,
it is known that adding a mediator can yield better payoffs for the players — it can enable us
to reach an equilibrium in games where the same equilibrium could not be reached without a
mediator [12, 8, 9]. For example, mediators are useful in congestion games [22], which can
be used to model routing of packets in a network (see, e.g., [21]).

In [2, 1] and others it is shown that in some scenarios, a distributed network of rational
players can simulate a mediator even when we do not have access to a real one; this enables
us to implement the rich class of communication equilibria in the distributed setting. This
type of simulation is referred to in the game theory community as “cheap talk” — the players
can communicate freely before deciding what actions to take. However, so far, all existing
literature on implementing a mediator in distributed networks has either assumed that the
network is synchronous, or that it is fully-connected. In addition, previous solutions are
heavily based on tools from cryptography — e.g., cryptographic primitives such as envelope
and ballot-box in [17, 19], or secure multi-party computation (secure MPC) in [2, 1]. These
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tools enable the players to simulate the mediator by securely computing the mediator’s

output, in such a way that no player finds out the private information of any other player.

However, this privacy comes at a cost: the cryptographic primitives used in the literature
are fairly heavyweight to implement, and require larger messages and higher running time
compared to plain computation where the inputs are not kept private. As a result, in addition
to the limitation of having a network that is either synchronous or fully-connected, these
protocols also incur a high overhead.

As an application of our algorithm, we identify several natural scenarios where privacy of
the inputs is not required to achieve an equilibrium, and information dissemination can be
used to implement a mediator, by simply having the players collect all inputs and compute
the mediator’s recommendations. In these scenarios, our information-dissemination algorithm
yields a lightweight, communication-optimal mediator implementation in general, 2-connected
asynchronous networks. We prove that our algorithm is indeed communication-optimal, by
proving a lower bound on the number of bits required to implement a mediator in a general
network (even in synchronous networks).

1.1 Our Results

A truthful information-dissemination protocol. In Section 4, we construct a randomized
protocol that solves information dissemination in any 2-connected network, and has the
property that no player can improve their expected payoff by deviating from the protocol
(that is, following the protocol is an equilibrium). Our protocol uses O(n) messages, O(n? - b)
total communication bits, and O(D) asynchronous rounds, where D is the diameter of the
network graph and b is the number of bits required to represent a single input.

Following [10, 13], we do not consider coalitions of players, or Byzantine attacks; these
are interesting questions to consider in future work. We conjecture that our protocol extends
to coalitions of k > 1 players, assuming the network is at least (k + 1)-connected. We also
assume that the network graph is known in advance. This assumption is common to most of
the work on game-theoretic distributed computing, with some exceptions, e.g., [5, 6]; these,
too, often focus on particular classes of graphs, such as rings.

Application to computing communication equilibria. We refer to the type of equilibria

that can be computed by our protocol as full-information communication equilibria. In

Section 6, we give two natural scenarios where a given communication equilibrium is also a

full-information equilibrium: the first is any game where a player’s payoff depends only on

its own output (and not the outputs of the other players), and the second is any distributed

task where

(a) the players prefer to reach a valid solution, and

(b) in any valid solution, given the outputs of any set of n — 1 players, there is a unique
valid output for the last player.

The second scenario includes agreement problems, such as leader election, but also other

useful distributed primitives.

Lower bounds. One might wonder whether it is necessary to collect all players’ inputs in
order to achieve a communication equilibrium. To complement our results, we prove that
the answer is “yes”: there is some game with a full-information communication equilibrium
that requires Q(n) messages and Q(n? - b) total bits of communication to achieve, where b is
the number of bits required to represent the players’ types and actions. This means that
using our information-dissemination protocol to compute full-information communication
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equilibria is optimal, in the worst-case. We also prove that the assumption of 2-connectivity,
which is made by our protocol, is necessary: in any network that is not 2-connected, there is
some game with a full-information communication equilibrium that cannot be achieved.

A remark about our solution concept. In the game theory community, many flavors of
equilibria have been considered. Following [4], the solution concept we adopt in this paper is
sequential equilibrium [18]. Our protocol, like that of [4], involves “collective punishment”: if
a player detects that another player has deviated from the protocol, it aborts the protocol,
thereby punishing itself as well as all the other players. One may view this as a “non-credible
threat” — why should any rational player actually carry out such an action? Following [4], we
showed that our protocol achieves a sequential equilibrium [18], a solution concept formulated
to handle non-credible threats. However, for the sake of accessibility, in the current paper we
focus on the weaker but more familiar concept of a Nash equilibrium.

2 Related Work

Information dissemination. Information dissemination is a central building block in dis-
tributed algorithms, and a goal in itself. In fault-free sychronous networks, a communication
and time-efficient solution is pipelining [16], and the problem has also been studied in a
variety of other network models.

To our knowledge, the only work to consider information dissemination in the game-
theoretic setting is [5], where the problem is referred to as knowledge sharing. Several protocols
for knowledge sharing are given in [5]: for synchronous rings, for synchronous or asynchronous
complete networks, and for synchronous general networks. General asynchronous networks
are not considered in [5]. Moreover, [5] makes a strong assumption, called full knowledge,
about the protocol that uses knowledge sharing as a building block: “for each agent that
does not know the values of all other agents, any output of the protocol is still equally
possible” [5] (emphasis ours). In particular, this implicitly assumes that the protocol that
uses the knowledge-sharing building block chooses a uniformly random solution. In contrast,
here we assume only that agents have no incentive to lie about their input in the absence
of any information about the other players’ inputs; as soon as a player has learned even a
single bit of another player’s input, it may have an incentive to lie about its own input.

Implementing a mediator. Our paper studies distributed implementations of a mediator
by cheap-talk protocols. This topic was first investigated by the economics community; the
most directly relevant work to ours is [10], which solves the same problem in a similar setting,
but it requires a fully-connected, synchronous network, and has high message complexity,
©(n?). [13] gave a protocol that implements rational secret sharing and secure multi-party
computation (secure MPC), and these results were extended in [2] to protocols that withstand
a coalition of rational players, or some players that are Byzantine instead of rational. A
mediator was implemented in [2] using secure MPC, but [2] required again a fully-connected
synchronous network. In [3], lower bounds were given for the size of a coalition we can
withstand when implementing a mediator.

The first work to implement a mediator in an asynchronous network was [1], which
showed that in a fully-connected asynchronous network, we can implement a mediator and
even handle coalitions and non-rational players. Since the protocols of [1] again rely on
secure MPC, their message complexity is O(n - N - ¢), where n is the number of players,
N is the number of messages in the mediated game, and ¢ is a bound on the number of
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arithmetic gates required to implement the mediator as an arithmetic circuit. In this paper,
by considering the restricted class of full-information communication equilibria, we obtain
an improved message complexity of O(n), and handle general asynchronous networks.

We remark that some of the works mentioned above achieve different solution concepts than
the type of equilibrium we aim for in this paper (sequential equilibrium). For example, [13, 2]
both obtain a Nash equilibrium that is resilient to the iterated deletion of weakly-dominated
strategies. This type of equilibrium, unlike sequential equilibrium, is not concerned with
what action the player should take in states that occur off the equilibrium path.

Other related work. Several recent works considered fair solutions to specific distributed
problems: electing a uniformly random leader was studied in [4, 23], and other problems and
building blocks were considered in [5, 14, 6, 15]. The solution concept we suggest in this paper
can solve some of these problems more generally: for example, choosing a uniformly random
leader is one type of full-information communication equilibrium, which ignores the utilities
of the players, but there are other equilibria that take the utilities into account (for example,
we can maximize the social welfare, the sum of the players’ utilities). On the negative side,
our protocol is not resilient against coalitions, while several of the aforementioned works
can handle coalitions and even Byzantine players. Also, like much of the prior work, we do
assume that the network graph is known to all the players in advance. (This is also assumed
in the secure MPC implementation of [20].)

3 Preliminaries

Games and protocols. In this paper we are concerned with two types of games: the
game we are trying to implement — that is, the problem specification — is a normal-form
Bayesian game, where players choose one action, and then their utility is determined by the
actions that all the players have taken. Our implementation, a protocol for asynchronous
networks, is formally modeled as an extensive-form Bayesian game, which represents all
possible executions in the asynchronous network, and captures the interactive nature of such
executions. For the sake of brevity, we define only normal-form Bayesian games here, as
extensive-form games are not necessary to understand our protocol. (We touch more on
extensive-form games in Section 5, where we give a high-level overview of the correctness
proof for our protocol.)

Notation. Given an n—tuple s = (80, ceey Sn—l)a we let S_; = (507 ce ey 815841y e Sn—l)
denote the (n — 1)-tuple obtained by omitting s;. When ¢ is clear from the context, the
notation (s;, s—;) represents the original n-tuple s.

Normal-form Bayesian games. A normal-form (or strategic-form) Bayesian game is defined
as follows. Note that the types referred to in the definition correspond to inputs in our case.

» Definition 1. A normal-form Bayesian game, I' = (N, (T;)ien, p, (Ai)ien, (Ui)ien), con-
sists of:

1. A set of players N. We usually assume for simplicity that N = [n], where n > 2 is the
number of players.

For each player i € N, a set of possible types (inputs) T;. Let T =Ty X ... Tp_1.

A probability distribution p : T — [0, 1] over the types of the players.

For each player i € N, a set of possible actions A;. Let A= Ag x -+ X Ap_1.

For each player i € N, a utility function u; : T x A — R.

e wbd
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The game is played as follows: first, the types are drawn from their distribution, ¢t =
(to,-..,tn—1) ~ p. Each player i is given only its own type ¢;, but the prior p is known to all
players. Next, each player i independently chooses an action a; € A;, and the utility of each
player is then determined by u;((to, ..., tn-1), (@0, -, an-1)).

Strategies and equilibria. A mized strategy for player i in the game T is a function mapping
player i’s type t; € T; to a probability distribution over player i’s actions A;; a strategy profile
is an n-tuple s = (sq, ..., S,—1) assigning to each player ¢ € N a mixed strategy s;. Player
i’s expected utility for the game I" under the strategy profile s = (sg, ..., s,—1) is given by
By plts a~s(t) [Ui(t, a)] . Here, t; denotes player i’s type, and s(t) denotes the distribution on
n-tuples of actions where the i-th element is sampled independently from s;(¢;).

A strategy s; for player i is called best response to s—; = (Sg,...,8i—1, Sit1,Sn—1) if it
maximizes player i’s expected utility, assuming that the other players play according to s_;.

A strategy profile s = (sg, ..., s,—1) is called a (mixed) Nash equilibrium if for each player
i, the strategy s; is player ¢’s best response to s_;.

Mediators. Some normal-form games may have strategy profiles that are desirable for
some reason — for example, they might lead to high social welfare — but which are not
Nash equilibria. In such cases, it can be helpful to enlist the help of an external mediator.
Intuitively, a mediator is a trusted entity; the players tell their types to the mediator, and
the mediator then provides each player with a recommended action. The players are free
to lie to the mediator or ignore its recommendation, but a good mediator will render such
deviations not profitable (in expectation).

Formally, a mediator d is a mapping from n-tuples of types to distributions on n-tuples
of actions, and we would like it to satisfy the following:

» Definition 2. A mediator d is a communication equilibrium of normal-form Bayesian
game T if for alli € N, t;,t, € Ty, o+ A; — A;:

> opltalt) Y dlaltyui(t,a) > Y p(toilts) Y dlalt—i, t)uilt, (i), ay)).

t_;€T_; a€A t_,€T_; a€A

Here, d(alt) represents the probability that the mediator returns a € A when the players send
itt e T, and d(alt_;,t}) represents the probability that the mediator returns a € A when
player i sends t;, and the other players send t_;.

Intuitively, the definition asserts that for each type t;, there is no “lie” ¢; that player i
could tell the mediator, or different action a(a;) that player ¢ could take instead of the
recommendation a; of the mediator, that would increase player i’s expected payoff.

Full-information equilibria. We introduce a subclass of communication equilibria, char-
acterized by being resilient to the revelation of the other players’ types and recommended
actions:

» Definition 3 (Full-information communication equilibrium). A mediator d is a full-information
communication equilibrium for a game T' = (N, (T})ien, p, (T1)ien, (Ai)ien, (u;)ien) if for
each player i € [n] and type t; € T},

1. The player has no incentive to lie about its type: for each t, € T;, and a), € A;,

D pltalts) Y dlaltyui(t,a) > Y p(toilts) > dlalt—i, t))ui(t, (af,as)).

t_,eT; acA t_,eT; a€A
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2. After receiving the mediator’s recommendation and learning all the other players’ types,
the player is still not incentivized to deviate: for each t_; € T_;,a € sup(d(-|t;,t—;)),
OéiZTXA,i—)Ai,

ui((tiy t—i),a) > ui((tis t—i), (i((tist—i),a),a—;)).

Here, sup(d(-|t)) C A denotes the support of the mediator’s distribution d when the players
send it the types t.

The difference from the standard definition of communication equilibria is in the second
condition, where we reveal to player ¢ the types and actions of the other players, not just its
own recommended action.

Punishment actions. When implementing a general communication equilibrium, we need
to assume that players have some means to retaliate against players that deviate from the
protocol. As is standard (see, e.g., [10]), we assume that the game contains a punishment
action, and any outcome where some player carries out this action yields the worst possible
payoff for all players.

The information dissemination problem. We model information dissemination as a Bayesian
game, [, where the actions of the players consist of outputting n-tuples of types, or aborting
the protocol; that is, if T}, ..., T, are the possible types (i.e., inputs) of each of the n players
(respectively), then the actions of each player i are A; = (T x ... x T,,) U{abort}. The utility
function u; of each player ¢ then takes the true types ¢t € T1 x ... x T,, of the players, and
the outputs ¢},...,t, € Ty x ... x T, of the players, and returns the payoff u;(t, (t|,...,t,))
of player 1.

As we explained in Section 1, a few assumptions about the utilities of the players are
necessary. First, we assume that abort is a punishment action, as explained above (that is,
players prefer to avoid it above all else). The second assumption is that players have no
a-priori incentive to lie about their input, and also that, having learned the other players’
inputs, they will correctly output what they have learned (instead of outputting something
else). The cleanest and most general way to model this assumption is to define a specific
mediator, which we call djnf, which gives each player the types of all the other players, and
require that the utilities be such that dinf is a full-information communication equilibrium.
This captures the requirement that in the absence of any information about the types of the
other players, no player has an incentive to lie about its own type, and that once the types
are learned, the player should output them correctly.

» Definition 4 (The information-dissemination mediator, dinfo.). Let dinfo : T1 X ... x T, —
((Ty x ... x T,)U{abort})" be the mediator for T that returns to each player the types of
all the other players: dinfo(t1,...,tn) = (t1,...,tn)".

We say that i is a feasible information-dissemination game if dinf, the mediator from
Definition 4, is a full-information communication equilibrium for T'jyf.

4 The Protocol

We now present the protocol that players are supposed to follow. Our protocol can implement
any given full-information communication equilibrium d for a normal-form Bayesian game
I', and in particular, the protocol solves the information-dissemination problem: if I is a
feasible information-dissemination game (as defined in Section 3), then we can have the
players simulate the mediator djf, to output the types of all the other players.
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Throughout the protocol, if any player i detects a deviation from the protocol by any
other player, player ¢ irrevocably decides to take its punishment action, guaranteeing the
worst possible payoff for all players. In particular, player i chooses to punish if it receives a
message from player j that could not have been sent in accordance with the protocol in any
execution (e.g., if player j is not supposed to message player ¢ at this stage of the protocol,
or if the message is ill-formatted).!

4.1 High-Level Overview

The goal of our protocol is to get all players to truthfully reveal their types to the entire
network, and then have each player locally simulate the mediator and output the action
the mediator recommends (or, if we simply want to solve information dissemination, output
the types that it has learned). We must manage the process of revealing the players’ types
carefully: for example, if player ¢ learns the type of player j before player i has said anything
about its own type, then player ¢ may have an incentive to lie about its type in order to
improve its expected utility. (Recall that the definition of a communication equilibrium
guarantees that the players have no incentive to lie in the absence of any information about
the other players’ types; once they have even partial information, all bets are off.)
The main idea underlying our protocol is to
(a) use a basic form of secret sharing to have players commit to their type, so that they
cannot lie about their type in the future; and, at the same time,
(b) ensure that no player i can learn anything about the type of another player j # ¢ before
player ¢ has committed to its type.

The protocol has four main stages, which we describe here at a high level, omitting many
details. A more detailed description will be given next.

Commitment on a cycle. We fix in advance some shortest cycle C in the graph (recall that
the graph must be 2-connected). Assume w.l.0.g. that cycle C' comprises players 0,1,...,¢,
in this order (with £ 4+ 1 being the length of the cycle).

In the first stage of the protocol, players 0 and 1 commit to their types, by “splitting’
each type into two shares, each of which reveals nothing about the type by itself. Together

)

both shares reveal the type. The shares are sent along opposite sides of the cycle, in a way
that ensures that neither player can receive both shares of the other player before it has
sent out both of its own shares, thereby committing to its type in a way that will reveal any
future attempt to lie about it.

Commitment on a tree. For the next part of the protocol, we fix in advance a spanning
tree T rooted at player 0 and excluding player 1. We proceed through the tree top-down,
and have each player interact with its children in the tree in a pairwise commitment protocol,
where the parent and the child reveal their types to one another. We ensure that a player
never reveals its type to its parent in the tree before the parent is committed — when we
start this phase, player 0 is already committed, and we maintain this invariant as we proceed

1 We note that player i cannot always detect the fact that player j sent it a message when j was not
supposed to, because player i does not know where player j is in its execution of the protocol, but in
some cases it is obvious — e.g., if player j is supposed to wait for a message from player i before sending
a message to i, and 7 has not yet sent that message. We address the “undetectable” cases in our proof
that the protocol is an equilibrium.
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down the tree. At the same time, we make sure the player does not know its parent’s type,
only that the parent has already committed to the type. Thus, neither parent nor child have
an incentive to deviate from the protocol.

Revealing the types. By the end of the previous part of the protocol, each player has
revealed its type to at least one other player. We now use the spanning tree to share all the
types with all the players, by simply collecting them up the tree and then broadcasting them
downwards.

Detecting deviations. The last stage of the protocol checks whether any player has been
“two-faced” and claimed that it has different types at different points in the protocol, or
whether some player has tried to lie about the type of another player. To do this, we fix
a sparse 2-connected subgraph G’ of the network graph in advance, and simply have each
player send all the types it received in the previous stage to its neighbors in G’. Each player
verifies that the types its neighbors have learned match what it has learned itself. Since G’
is 2-connected, between every two players j, k # i there is a path 7 that does not contain
i; if player ¢ has given “two different versions” of its type to players j, k, this inconsistency
will be discovered, as two neighboring nodes along the path 7 will have received different
versions of i’s type.

4.2 Detailed Description

We now give a detailed description of the protocol. Let b be the number of bits required to
represent the type of a player, and let R be the number of random bits used by the mediator.

Each player i starts the protocol with a secret, denoted s;. For all players except players
0 and 1, the secret is simply the player’s type, s; = t;. Players 0 and 1 play a special role in
the protocol, and at the beginning of the protocol, they generate random strings that will be
used later in the protocol. These random strings are part of the secrets of players 0 and 1:
for each i € {0,1}, the secret s; of player i is a tuple consisting of

The type t; € {0, 1}b of player i;

A private random string r; € {0, 1}R, which will later be used to simulate the mediator;

and

In the case of player 1, an additional private random string v € {0, 1}b, which will be

used in the next stage of the protocol.

Each player 7 € [n] has a local array called values, of length n + 1, where player ¢ stores
the secrets of the other players as it learns them. Each player ¢ initializes all cells in the
range {0,...,n — 1} to L, except for cell 4, which player 4 initializes to values[i] = s;. The
last cell, values[n], is initialized to L by all players except player 1, who sets values[n] = v.

During the algorithm, cells are updated only by calling the subroutine Store(i, z), which
ensures that once a value is written to the values array, any future attempt to overwrite it
with a different value will cause the player to execute the punishment action. The notation
values;[j] refers to cell j of the local values array of player i.

Step 1: Commitment in a Cycle

Let C be some fixed shortest cycle in the network graph, and assume w.l.o.g. that the nodes
of C' are consecutively named 0,1, ..., ¢. In this part of the protocol, players 0 and 1 commit
to each other, as follows: first, each player splits its secret s; into two shares — a uniformly
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random “key”; k; € {0, 1}'5”, and an “encryption” of its secret, e; = s; ® k;. The secret s;
can be reconstructed by taking k; & e;, but each share k;, e; by itself is uniformly random
and conveys no information about s;.

The goal now is for players 0,1 to exchange their shares in such a way that neither player
receives both of the other player’s shares before it has sent out both of its own shares. That
is, player 0 can receive either ki or e; before sending out both of its shares, but it should
not receive both (and vice-versa). To achieve this, we have each player send one of its shares
directly to the other player, and the other share is sent along the other side of the cycle. The
order in which shares are sent is orchestrated carefully:

1. First, player 0 sends eg to player 1.
2. After receiving eg, player 1 releases both of its shares: it sends k1 to player 0, and e; to

player 2.

3. After receiving ki, player 0 sends kg to player £. At the same time, ey is forwarded along
the cycle from player 2 to player £.
4. Agent ¢ waits until it has received both kg and e;. Only then does it forward the two

messages, sending e; to player 0 and kg to player ¢ — 1.

5. Finally, kg is forwarded along the cycle from player ¢ — 1 to player 1.
After receiving eg and ko, player 1 stores the secret sg = eg @ ko in values;[0], and player 0
stores s1 = e; @ k1 in valuesp[1].

Step 2: Commitment in a Tree

Let T be a precomputed BFS tree over the network G\{1}, rooted at player 0 and excluding
player 1. Let H be the height of T'. In this part of the protocol, we proceed through the
breadth-first layers of T in a top-down manner, and at each step, each player in the current
layer executes a short type-exchange protocol with its children in the tree, learning their
types and revealing its own type to them. The result is that after 0 < h < H steps, each
player i at distance at most h from player 0 in T" has revealed its type t; to some other player
j # i (where j is the parent of 4 in the tree if i # 0, and j = 1 if 4 = 0). We will later use this
commitment to verify that player ¢ has truthfully revealed its type to the entire network.
Recall that at the beginning of the protocol, player 1 chose a random string v, and this
string was revealed to player 0 at the end of the cycle-commitment stage (because it is part
of player 1’s secret). We now use v as a “secret key” that parents use to commit to their type
when they interact with their children in the tree. The value of v itself is also propagated
down the tree, so that at the end of this stage, all nodes of the network know it; thus, we
can later verify that all commitments were honored.

Let i £ 0 be some player in the tree, and let p be the parent of i. The parent-child
exchange protocol between players ¢ and p is executed as follows:

1. The parent p commits to its type by sending its child the message e, =t, ® v.

2. The child i responds by sending its type ¢; to p. The parent uses Store to store this
value in values,[i]. Note that at this point, ¢ knows nothing about the types of the other
players, so it has no incentive to lie about its type.

3. The parent “unpacks” its commitment by sending its type ¢, to the child, and the child
stores t,, in values;[p] and e, & t,, in values;[n].

We point out one subtlety of the protocol: there is nothing to stop a player p in the tree from

“fishing for information” by prematurely contacting its child i, sending it a garbage message,

and eliciting in return the type of player i. However, our protocol safeguards against this

behavior, by making sure that player p has no incentive to do so: if p sends a “garbage
message” instead of e, = t, ® v, then the child will discover this later on, when both ¢, and

v are revealed to all players, and it will punish p.
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Steps 3 and 4: Revealing the Types and Detecting Deviations

Once the second stage of the protocol completes, every player in the network is committed
to its type, and it is now safe to reveal all the types to everyone. This is carried out by first
collecting all the secrets up the tree to the root, and then broadcasting all the values down
the tree, so that each player in the network learns the secrets of all the other players. As they
learn new types (or more generally, secrets), players use the Store function to store them in
their local values array. Player 0, who is the root of the tree, sends valuesy to player 1, who
is not in the tree. At the end of this step, every player verifies that its values array is full: if
player i has some cell j such that values;[j] = L, then player i takes its punishment action
in the underlying game.

In the final stage of the protocol, we disseminate the secrets collected in the previous
stages on a sparse 2-connected subgraph G’ of G, and then have each agent verify that in
the previous stage, it received the same values as its neighbors did.

To construct G’, we show that any 2-connected graph on n vertices has a spanning,
2-connected subgraph with 2n edges:

» Proposition 5. Suppose that G is a 2-connected graph on n vertices. Then there is a
spanning 2-connected subgraph G’ of G with 2n edges.

The protocol for detecting whether any player has been inconsistent is simple: each player
1 compares its values array with its two neighbors in G’, and if any neighbor has a different
values array (that is, if even one cell is different), player i executes its punishment action. If
this step succeeds at all players that follow the protocol, and at most one player deviates,
then all these players will use the same values array when they simulate the mediator (next).

In addition, player i verifies that, if values;[1] = (t1,71, ) (recall that player 1’s secret
has three fields), then values;[n] = ©. If this step succeeds, it ensures that i’s parent p has
honored its commitment, that is, it correctly sent e, = ¢, ® v when it first communicated
with player i.

Taking action. All players know in advance the mediator function d, which takes a vector
t € {0, 1}"'b of n types and a string r € {0, 1}R, and returns an n-tuple of the mediator’s
recommended actions on types t using r as the mediator’s randomness.

Once the protocol is completed, each player i extracts from its values array the types of
all the players, and the random strings rg, ;. It now simulates the mediator by computing
a = d(t,ro ®r1), and outputting its recommended action a;.

5 Sketch of the Correctness Proof

We give an informal overview of the proof that our protocol correctly implements the given
full-information communication equilibrium.

Protocols as extensive-form games. As we mentioned in Section 3, we model a distributed
protocol as an extensive-form Bayesian game, which represents all possible executions of the
protocol. An extensive-form game is a tree, where each vertex represents a possible state of
the system, and the edges of the tree represent actions of players or the environment (the
scheduler). An extensive-form game I is called an extension of a normal-form game I if
the types (inputs) in T are the same as in T, and each leaf of T is labeled with an action
profile (ay,...,a,) € A1 X ... x A, from I'. In other words, we think of T as “filling in”
what happens in I' between the point where players are assigned their types, and the point
where players output their actions.
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Informally, we say that a protocol P implements a communication equilibrium d for a
normal-form game I if, in the extensive-form game induced by P and T, for every possible
schedule,

(a) following the protocol P is a Nash equilibrium (no player has an incentive to deviate),
and

(b) the actions output at every leaf are chosen according to d (that is, if the players’ types
are t, then the actions output are distributed according to d(-|t)).

Proving that our protocol implements the desired communication equilibrium. It is not
difficult to see that if all players follow the protocol, then the distribution of their actions
is exactly the distribution that the mediator would produce; we focus on proving that our
protocol is a Nash-equilibrium, that is, no player has an incentive to deviate from the protocol
at any point.

The key idea in our proof is that at certain points in the execution of the protocol, a
player becomes “locked in” to a type (and the random strings rg, or ro and v, in the case of
players 0 and 1 respectively). Following this point, the player can no longer fool the other
players about its type. Formally, given a vertex u of the game tree, we say that player i is
committed to value x in w if player i has already executed the following actions in wu:

Agent 0: has sent messages mq, my to players 1 and ¢ (resp.), and the first such messages

sent have m; ® my = x.

Agent 1: has sent messages mg, ms to players 0 and 2 (resp.), and the first such messages

sent have mg ® ms = x.

Agent i for i # 0, 1: either

Agent 7 has sent at least one message to its parent in the tree, and the first message

sent to the parent is x, or

Agent ¢ has sent at least one message m to one of its children in the tree, and the

contents of the first such message satisfies m @ v = .2
We point out a subtlety in the definition above: under the protocol, a player i ¢ {0,1} is
not meant to contact its children in the tree before it has finished executing the parent-child
protocol with its own parent. Thus, if ¢ follows the protocol, it commits to its type by
revealing its type to its parent, not by sending a message to some child. However, if 4
decides to deviate, it might try to gain some advantage by contacting its children before it is
supposed to, in order to elicit their types from them before it commits to its own value. The
children cannot detect this, as they cannot know when ¢ has already revealed its type to its
parent in the tree. Nevertheless, ¢ cannot gain by doing so: as soon as ¢ sends a message m
to some child, it is effectively “locked in” to the value m @ v, since v will be revealed at the
end of the protocol. Even if the child then responds with its true type, it is too late for ¢ to
“change its mind” about the value to which it committed.

We prove that “commitments are real”, in the sense that if player ¢ is committed to some
value, then this value will eventually appear in the values array of some other player, even if
player ¢ deviates from the protocol:

» Lemma 6. Let u be a leaf that is reached in a run where only player i deviates, and let
u’ be a vertex on the path to u. Suppose that player i is committed to value x at u'. Then
in u, either some player carries out a punishment, or there is a player j # i such that
values;[i] = x.

2 'We assume for convenience that the private randomness of the players is fixed at the beginning of the
run, so that the value v is defined even if player 1 has not yet taken a step.
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Observe that players that do not deviate from the protocol cannot be stopped from committing
to their true type, even if some other player deviates: under the protocol, the value to which
a player commits does not depend on any messages it receives.

Next, we show that if the protocol completes without any player carrying out a punishment,
then even if player i has deviated, all other players agree on their values arrays:

» Lemma 7. Let u be a leaf that is reached by a run where only player i deviates, and suppose
that no player takes a punishment action in u. Then in u, any two players j # k € [n] \ {i}
have values; = valuesy,.

Intuitively, this is because the values arrays are propagated along the edges of the two-
connected subgraph G’, so any inconsistency will be detected along a path that does not
include player i. Combined with the previous lemma, we now see that if player i is committed
to some type, then this type will eventually appear in all players’ values arrays, even if
player i deviates (unless some player carries out a punishment, which is never in player ’s
interest). This means that the value z will be the value used when calling the mediator, and
after committing, player ¢ can do nothing to change that, short of deviating from the protocol
in an obvious way that would cause some player to punish it. For all players that follow the
protocol, their true types will be used (as they commit to those values). It follows that after
committing to a type, player ¢ has no incentive to deviate from the protocol, because doing
so cannot improve its expected utility.

The next part of our proof deals with deviations that might occur prior to committing
to a type. In particular, we must rule out the possibility that a player ¢ that has not yet
committed to its type decides to lie, and commit to a value other than its true type. To rule
out such deviations, we prove that for each player 4, at any point in the run where player ¢
has not committed to its type, its belief about the other players’ types is unchanged from
the prior (in other words, player ¢ does not gain any information before committing — even if
player i deviates from the protocol).

This means that before player ¢ commits to a type, it is effectively in the same situation
that it would be in at the beginning of the mediated game: it knows only its own type and
the prior distribution of the other players’ types. Since the mediator is assumed to be a
communication equilibrium, player ¢ has no incentive to lie about its type in this situation.
Formalizing this intuition and making its precise is somewhat involved, since player ¢ can
deviate in many ways that do not immediately translate to “lying about its type” under
the protocol; nevertheless, we show that any strategy that player ¢ might employ can be
translated into a distribution on types that player ¢ might send to the mediator in the
mediated game, while following the protocol translates to telling the mediator player i’s true
type. We are therefore able to show that no strategy other than following the protocol can
improve player i’s expected payoff.

6 Examples of Full-Information Communication Equilibria

We point out two classes of normal-form Bayesian games I', such that any communication
equilibrium for T" is also guaranteed to be a full-information communication equilibrium
(that is, any mediator d that satisfies Definition 2 for I" also satisfies Definition 3.) The
proofs are straightforward, and they are omitted here.

Constrained games. The first class we consider are games where given the behavior of all
the other agents, there is only one “good” action that player i can take.
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The games in this class involve a set of legal outcomes L C A x ... x A,, and we require
that players prefer to reach a legal outcome above all other considerations. This is referred
to as solution preference [4], and is assumed by most work on rational distributed computing.
Formally, the requirement is that for any player i, type profile t € Ty x ...T,, legal outcome
a € L and illegal outcome a & L, we have u;(t,a) > u;(t,a’).

» Definition 8 (Constrained games). We say that a set of legal outcomes L C Ay x ... X A,
is constrained if for any player i and legal outcome (a;,a—;) € L, there does not exist any
action a; # a; such that (a},a_;) € L.

A game T" is called constrained if there exists a set of outcomes L C Ay X ... X A,, such
that T' has the solution-preference property with respect to L, and L is constrained.

Examples of this class include agreement problems such as leader election and consensus,
where the set of legal solutions requires all players to agree on an output, but also other
problems, depending on the output specification; we can turn any problem into a constrained
game by simply having each node output its neighbors’ actions in addition to its own. For
instance, computing a spanning tree can be cast as a constrained game, by having the output
(action) of each player include both its children and its parent in the tree. This version of
the spanning-tree problem makes explicit the intuition that in any legal solution, if node u
claims v as its parent, then v should agree that w is its child, and vice-versa.

Games with local utility functions. The second class we consider are games where each
player’s payoff depends only on its own type and action, that is, for any two type profiles
t,t’ € T and action profiles a,a’ € A, if t; = ¢} and a; = a}, then u;(¢,a) = u;(¢',a).
Examples of games in this class include resource-allocation problems (e.g., dynamic spectrum
allocation), where players only care about the resources allocated to them, and do not care
about the allocation of the remaining resources to the other players. In local games, revealing
the other players’ recommended actions does not provide any additional incentive for player
1 to deviate from the mediator’s recommendation; it is therefore not hard to show that any
communication equilibrium is also a full-information communication equilibrium.

7 Communication Lower Bound

In this section we show that for some network graphs and games, every protocol that achieves
a given full-information equilibrium must send §2(n? - b) bits in total. This holds even if the
actions of the players are “short”, requiring b bits to represent.

» Theorem 9. For everyn > 1,b > 1, there is a 2n-player normal-form Bayesian game I’
with b-bit types and actions, and a full-information communication equilibrium d for T', such
that any protocol that implements d must send Q(b-n?) bits in expectation on a ring.

Proof sketch. Consider the following 2n-player Bayesian game I', where the players are
given by {0,...,2n — 1}, and each player has 2° possible types, denoted {0, 20— 1}. The
types of the players are iid uniformly random. The actions available to each player are also
given by {0,...,2° —1}.

Given a player i € [2n], the opposite player of i, denoted —i, is player (i +n) mod 2n. We
define the utility w; of player ¢ to be 1 if player ¢ outputs the type ¢_; of its opposite player,
and 0 otherwise. It is not hard to show that for this game, (1,...,1) is a full-information
communication equilibrium, which is achieved by having the mediator tell each player the
opposite player’s type.
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Now consider a distributed implementation of this equilibrium. Suppose the 2n players
are arranged consecutively in a ring, and consider only synchronous executions, where the
scheduler lets the players run in round-robin order, and every message that is sent by player
1 to player j is delivered the next time player j takes a step. Fix a protocol P which achieves
utility (1,...,1) in all runs (in fact, our proof can be extended to protocols that achieve
utility (1,...,1) with constant probability, see Appendix A). Every run of P must end with
player i correctly outputting the type of the opposite player, t_;. Intuitively, this means
b bits of information must flow from —i to i, and they must be repeated along every edge
between —i and i; the distance between players i and —i is n, so the total number of bits sent
is Q(n - b), and these bits only “help” players i, —i, so every other pair of players must also
send Q(n - b) bits of their own. The total communication complexity is therefore Q(n? - b).

The formal argument is given in Appendix A. It uses the technique of [11], where we
consider each balanced cut in the graph, and argue by reduction to two-party communication
complexity that Q(n - b) bits must flow across the cut. Since there are ©(n) balanced cuts in
the ring, and each edge appears in exactly one, the total communication is Q(n? - b) bits. <«

8 Necessity of Two-Connectivity

Finally, we show that there is some full-information communication equilibrium that cannot
be implemented in any network that is not 2-connected. We start from a two-player game,
as follows:

» Theorem 10. There is a normal-form Bayesian two-player game ', which has a welfare-
maximizing full-information communication equilibrium d, such that no asynchronous protocol
P implements d or any other welfare-mazimizing communication equilibrium.

(Recall that a welfare-mazimizing equilibrium is one where the expected sum of the players’
utilities is maximized.)

Theorem 10 implies that for any graph G that is not 2-connected, there is a normal-form
Bayesian game I'” such that no protocol can achieve maximum-welfare in IV: since G is not
2-connected, it has a bridge, an edge (u,v) whose removal disconnects the graph. We take I
to be the game where players u, v take on the roles of the two players in I', and all other
players have only one possible type and action. It is not hard to see that the impossibility
result of Theorem 10 carries over to I".

The proof of Theorem 10 is inspired by a game from [7, Ch. 4], and essentially involves a
game of “chicken”: the utility function incentivizes each player to learn the other player’s
type, but not to reveal its own true type. However, the only welfare-maximizing equilibrium
is achieved when both players reveal their true types to one another. In any run of an
asynchronous protocol, some player must be the first to reveal some information about its
type, but neither player wants to “go first”, because revealing this information gives an
advantage to the other player, and decreases the revealing player’s expected payoff. Therefore,
there is no protocol that implements the welfare-maximizing equilibrium: players always
have an incentive to deviate from the protocol. There is some subtlety involved in capturing
what it means to “reveal information about the type” (for example, suppose player 1 sends
its true type with probability 1/100, and otherwise sends a random type), and proving that
this indeed gives the other player an advantage. See Appendix B for the details.
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A Missing Details from the Communication Lower Bound

We prove that any protocol implementing the equilibrium (1, ..., 1) in the game from Section 7
must send Q(n? - b) bits in total (in expectation). In fact, this holds even if the protocol only
achieves global output (1,...,1) with probability 1 — €, where € € (0,1) is some constant
error probability (which may exceed 1/2).

Proof. Consider the family of cuts S = {Sj}je[n]7 where S; is the cut containing edges
{j, (7 +1) mod 2n} and the “opposite edge” {(j + n) mod 2n, (j + n + 1) mod 2n}. We ar-
gue that across each such cut, Q(nb) bits of communication must flow.

Let A;, B; be the players on the two sides of the cut S}, and let M; be a random variable
representing the messages that flow across the two edges in the cut S;. Given a tuple X of
players, let tx represent the tuple consisting of the types of all players i € X.

Consider a game G; between two parties, Alice and Bob, where Alice receives the types
ta, of all players on one side of the cut, and Bob receives the types tp; of all players on the
other side of the cut. The goal is for Alice and Bob to each output the other party’s input.

For information-theoretic reasons, in order for Alice to output t4; correctly with proba-
bility 1 — ¢, Bob must send her Q(n - b) bits in expectation: the input of each player i is a
uniformly random string of length n - b, so the entropy of tp; is H(tp,) = nb. However, by
Fano’s inequality, conditioned on the communication M; between Alice and Bob, we have

H(tp,|M;) < H(e) + € - log(2" — 1) < 1 + enb.

(Here, H(e) = —elog(e) — (1 — €) log(1 — ¢€) is the binary entropy of € € (0, 1), which satisfies
H(e) € (0,1).) For symmetric reasons, we also have H(t,|M;) <1+ enb. This means that
I(Mj;t) = H(ta,tp,) — H(ta,ts,[M;) = 2nb — 2enb — 2 = Q(nb), assuming n is sufficiently
large. Mutual information is symmetric: we can also write I(M;;t) = H(M,) — H(M;|t) <
H(M;), which implies that H(M;) > 2nb. Entropy is never greater than the expected number
of bits required to represent M, and the claim follows.

Alice and Bob can simulate the protocol P to win the game G;: each party locally
simulates the vertices on their side of the cut, and sends to the other party the messages
crossing the cut edges. Under P, with probability at least 1 — ¢, each vertex outputs the
type of the opposite vertex, as this is the only scenario where the utilities of the players are
(1,...,1). Thus, with probability 1 — ¢, Alice and Bob learn the correct output for G; by
simulating P. The communication between the two parties in this simulation is exactly M.

Observe that each edge of the ring appears in exactly one cut in the family S = {5, }j €ln’
Thus, by linearity of expectation (summing over all cuts), the total communication that P
sends on all edges is, in expectation, Q(n? - b). <

B Necessity of Two-Connectivity: Proof Overview

In this section we give a detailed overview of the proof of Theorem 10.

Consider the following 2-player Bayesian game I': there are two possible types, {1, 2},
and the type of each player is chosen uniformly and independently of the other player. The
game has two possible actions, denoted {1,2} (the same as the set of types). The utilities
are given by the following matrices, {u” | i,7 € {1, 2}}, where element (a1, as2) of matrix
u®? represents the utilities of the two players when their types are 4, j (respectively) and the
actions they take are a1, as (respectively).
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11 1,1 2,-2 1.9 0,0 0,0 91 0,0 1,1 2.9 0,0 —2,2
w :(—2,2 0,0)’“' :<1,1 0,0)’“7 :(0,0 070)’“7 :(2,—2 1,1)'

It is not difficult to verify that the information-dissemination mediator di,s defined in
Section 3 is a full-information communication equilibrium for I" (i.e., it satisfies the conditions
of Definition 3), and furthermore, it is the only communication equilibrium that achieves
social welfare of 2 (the social welfare of an equilibrium with utilities (uq,...,u,) in an
n-player game is the sum Y .- | u; of the players’ utilities).

Now fix a protocol P which achieves utility (1,1) in all runs, and let us show that P
cannot be an equilibrium.

While we have so far avoided giving the formal definitions associated with extensive-form
games with imperfect information, here we cannot avoid them completely. However, to
simplify matters, we consider a restricted set of executions, and give only the simplified
definitions that are necessary to understand the proof. Throughout, we use bold-face letters
to denote random variables, and plain letters to denote concrete values.

We consider only runs of P resulting from a scheduler that schedules the two players in
alternating order, and immediately delivers every message that is sent (e.g., if player 1 sends
a message to player 2, then in the next step the scheduler immediately schedules player 2
and delivers the message). We also assume w.l.o.g. that both players send a message every
time they take a step, as any protocol that does not do this can be transformed into one that
does, without affecting whether or not the protocol is an equilibrium (under this specific
set of runs). The history h of such a run is represented by the sequence of messages sent
and received by the two players; both players know the entire history, since they know what
they sent and what they received. Moreover, since the types are initially independent, they
remain independent conditioned on any history®. We emphasize that a run consists of the
types of the two players and all the steps they have taken (messages sent and received), while
a history consists only of the steps taken, as those are visible to both players.

After fixing the scheduler, for every assignment of types, the protocol P induces a
probability distribution over histories of every given length. The belief of player 1 about
player 2’s type given the history h (and similarly for player 2) is the distribution pq(+|¢t1, k) :
{1,2} — [0, 1], where

. Pr[t2:j|t1:t1,h:h]
to = jlti,h) =
pl( 2 .7‘ 1 ) Pr[t2=]|t1:t1]

The probability is taken with respect to the protocol’s distribution over histories of length
|h| and the random assignment of types. However, since the player’s types are independent,
and they remain so conditioned on the history, we can omit ¢; from our notation and write
p1(:|h) (and for player 2, we omit t5 and write pa(:|h)). By Bayes’ law, we can also write

Pr[h = Aty = j]
2Pr[h=1h

pi(te = jlh) =

where the probability is again with respect to the protocol’s distribution over histories of
length |h|. In particular, p;(te = jlh) > 0 iff there exists a run r where to = j and the
history is h.

3 It is well-known that no communication protocol can create dependence between its inputs if they were
initially independent.
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Now we are ready to show that P cannot be an equilibrium. We begin by observing that
since P is welfare-maximizing, every run must end with each player outputting the other
player’s type, to reach the maximum total payoff of 2. Thus, if P has a run with types (¢1, t2)
that ends after some history h, then

P2ty =t1]h) =1, p1(te = talh) = 1.

Next, we show that at any history h where pa(t; = alh) > 0 (that is, “player 2 still
believes that t; = a is possible”), player 1 can force player 2 to output a by deviating from
the protocol (and vice-versa):

» Observation 11. Let r be a run with a history h, and let a € {1,2} be a type such that
p2(t1 = alh) > 0. Then there is a strategy s1 for player 1 starting from r, such that in every
extension from r where player 2 plays according to P and player 1 plays s1, player 2 always
outputs a. The same holds with the roles of players 1 and 2 reversed.

Proof. Since pa(t; = a|h) > 0, there exists a run r where t; = a and the history is h. In
every extension of r where both players follow the protocol, player 2 eventually outputs a,
as we assumed that the protocol always terminates with each player outputting the other
player’s type. Therefore, player 1’s strategy s; is to simply behave the same way that it
would under P when t; = a, regardless of its true type, as this will always end with player 2
outputting a (if player 2 follows P). <

Now consider a run r of P, where the types of both players are 1. Observe that when a
player sends a message, this does not change its belief; only receiving a message can change
a player’s belief about the other player’s type.

The run begins with the prior pi(to = 1) = pa(t1 = 1) = 1/2, and it ends at a history
h where p;(te = 1|h) = p2(t1 = 1|h) = 1. Let h be the longest history during r such that
p1(ta = 1|h) = pa(ty = 1|h) = 1/2. Let A’ be the history following h in r; then either

p1(ta = 1|h') # 1/2 or pa(ty = 1|h’) # 1/2, and we assume w.l.o.g. that pi(ta = 1|h) > 1/2.

This implies that pa(t1 = 1|h’) = 1/2, because at each step, only one player’s belief changes
(the player that receives a message).

Since pa(t; = 2|h') = 1 — pa(t; = 1]A') = 1/2, by Observation 11, there is a strategy s;
for player 1 from h’ that always leads to player 2 outputting 2. Player 1’s expected payoff is
improved by following this strategy and outputting 1: under P, player 1 always receives a
payoff of 1, but if player 1 follows s; and outputs 1, the expected payoff is

pi(ta = 1[A") - w1 (1,2) + py (2 = 2|R') - u'3(1,2)
1
=pi(te = 1|1') - 2+ pi(t2 = 2|W') - 0 > 5 2=1

Note that the strategy s; is not the strategy player 1 is supposed to follow under P, since
playing according to P always ends with both players earning 1. Therefore, at h’ player 1’s
rational choice is not to follow P, meaning P is not an equilibrium.
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